高三数学一轮复习 数列(Ⅰ)单元练习题
高三 数学第一轮复习 试卷
高三数学试卷(理)一、选择题:1.已知等差数列{n a }满足a 2=2,a 6=0,则数列{n a }的公差为A .12B .2C .-12D .-2 2.已知R 是实数集,M ={x |2x <1},N ={y |y =2x -1},则(C R M )∩N = A .(-1,2) B .[-1,2] C .(0,2) D .[0,2]3.已知向量a r =(1,2),b r =(1,0),c r =(3,4),若λ为实数,(a r +λb r )∥c r ,则λ= A .2 B .1 C .12 D .-2 4.已知α∈(-4π,0),且sin2α=-2425,则sin α+cos α= A .-15 B .15 C .-75 D .755.若实数a ,b ,c ,d 成等比数列,且函数y =ln (x +2)-x 在x =b 处取到极值c ,则ad =A .-1B .-2C .1D .26.在等比数列{n a }中,a 2+a 3+…+a 8=8,21a +31a +…+81a =2,则a 5= A .2或-2 B .2 C .3或-3 D .37.已知函数f (x )=min{3-21log 2x ,2log x },其中min{p ,q}表示p ,q 两者中较小的一个,则满足f (x )<1的x 的集合为 A .(0B .(04,+∞)C .(0,2)D .(0,2)∪(16,+∞)8.直线y =12与曲线y =2sin (x +2π)cos (x -2π)在y 轴右侧的交点自左向右依次记为M 1,M 2,M 3,…,则|113M M uuuuuu r |等于A .6πB .7πC .12πD .13π9.已知数列{n a }的前n 项和n S =2n(n ∈N ﹡),则n ≥2时,21a +22a +…+2n a =A .1(41)3n - B .1(48)3n + C .21(21)3n - D .21(24)3n + 10.已知函数f (x )=23log (1)1,1032,x x x x x a ⎧⎨⎩-+-≤<-+0≤≤的值域是[0,2],则实数a 的取值范围是A .(0,1]B .[1,.[1,2] D .2]11.已知f (x )是定义在(0,+∞)上的单调递减函数,()f x '是其导函数,若()()f x f x '>x ,则下列不等关系成立的是A .f (2)<2f (1)B .3f (2)>2f (3)C .ef (e )<f (2e )D .ef (2e )>f (3e )12.定义域为R 的函数f (x )满足f (x +2)=4f (x ),当x ∈[0,2)时,f (x)=2,[0,1)1),[1,2)x x x x x ⎧⎪⎨⎪⎩-∈+∈.若x ∈[-2,0)时,对任意的t ∈[1,2)都有f (x )≥16t -28a t 成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .(-∞,6] D .[6,+∞)二、填空题:13.曲线yy =2x 所围成的图形的面积为____________.14.已知向量a r ,b r 满足|a r |=2|b r |≠0,且函数在f (x )=31132x +|a r |2x +(a r ·b r )x 在R 上有极值,则向量a r ,b r 的夹角的取值范围是_____________.15.下列四个命题:①函数f (x )=cosxsinx 的最大值为1;②命题“0x ∃∈R ,0x -2>0lg x ”的否定是“x ∀∉R ,x -2≤lg x ”;③若△ABC 为锐角三角形,则有sinA +sinB +sinC >cosA +cosB +cosC;④“a ≤0”是“函数f (x )=|2x -ax |在区间(0,+∞)内单调递增”的充分必要 条件.其中所有正确命题的序号为_______________.16.已知e 为自然对数的底数,函数f (x )=x e -x e -+)1x +,()f x '为其导函数,则()f e +()f e '+()f e --()f e '-=____________.三、解答题:17. 已知数列{n a }满足:a 1=23,a 2=2,且3(1n a +-2n a +1n a -)=2. (1)证明{1n a +-n a }是等差数列,并求{n a }的通项公式;(2)求使11a +21a +31a +…+1n a >52成立的最小的正整数n .18. 在用“五点法”画函数f (x )=Asin (ωx +ϕ)(ω>0,|ϕ|<2π)在某一周期内的图象时,列表并填入了部分数据,如下表(1)请将上表中①②③④处数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点的横坐标缩短为原来的23,再将所得图象向左平移π个单位,得到y =g (x )的图象,求g (x )在x ∈[-2π,2π]时的单调递增区间.19. 已知曲线f (x )=alnx -2bx 在点P (2,f (2))处的切线为y =-3x +2ln2+2.(1)求实数a ,b 的值;(2)若方程f (x )+m =0在[1e,e]上有两个不等实根(e 为自然对数的底数),求实数m 的取值范围.20. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成公差为1的等差数列,C =2A .(1)求a ,b ,c 的值;(2)求AC uuu r 在CB uu r 方向上的投影.21. 设函数f (x )=x e -ax -1(a >0).(1)求函数f (x )的最小值g (a ),并证明g (a )≤0;(2)求证:n ∈N ﹡,都有11n ++12n ++13n ++…+1n n +<12(1)3n n ++成立.23 在平面直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同的长度单位,建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的极坐标方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M ,N ,求|PM |+|PN |的取值范围.24. 设函数f (x )=|x -4m|+|x +m | (m >0). (1)证明:f (x )≥4;(2)若f (2)>5,求m 的取值范围.。
(15)“ 数列”单元测试题
北大附中广州实验学校2008—2009高三第一轮复习“数列”单元测试题一、选择题:(每小题5分,计50分)1. n 285(A)4 (B)5 (C)6 (D)72.(2008福建理)设{a n }是公比为正数的等比数列,若11=a ,a 5=16,则数列{a n }前7项的和为( )A.63B.64C.127D.1283.(2007辽宁文、理)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .274、(2008海南、宁夏文、理)设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2B. 4C. 152D. 1725.(1994全国文、理)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成-( )A.511个B.512个C.1023个D.1024个6.(2001天津、江西、山西文、理)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是( ) (A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列 (D )既非等比数列又非等差数列7.(2003全国文、天津文、广东、辽宁)等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50(D )518.(2006北京文)如果-1,a,b,c ,-9成等比数列,那么( )(A )b =3,ac =9 (B)b =-3,ac =9 (C)b =3,ac =-9 (D)b =-3,ac =-99.(2004春招安徽文、理)已知数列}{n a 满足01a =,011n n a a a a -=+++ (1n ≥),则当1n ≥时,n a =( ) (A )2n (B )(1)2n n + (C )12-n (D )12-n10.(2006江西文)在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( ) A.2-B.0C.1D.211.(2007北京文)若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 .12.(2006重庆理)在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =_________.13.(2007江西理)已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=91,则a 36= .14.(2004春招上海)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有_____ _________________个点.三、解答题:(15、16题各12分,其余题目各14分)15.(2008浙江文)已知数列{}n x 的首项13x =,通项2n n x p nq =+(,,n N p q *∈为常数),且145,,x x x 成等差数列,求: (Ⅰ),p q 的值; (Ⅱ)数列{}n x 的前n 项的和n S 的公式。
一轮复习大题专练30—数列(讨论奇偶求和)-2022届高三数学一轮复习
一轮复习大题专练30—数列(讨论奇偶求和)1.设{}n a 是公差不为0的等差数列,11a =,4a 是2a 和8a 的等比中项,数列{}n b 的前n 项和为n S ,且满足*322()n n b S n N -=∈.(1)求{}n a 和{}n b 的通项公式;(2)对任意的正整数n ,设2,,n n na n cb n +⎧=⎨⎩为奇数为偶数,求数列{}n c 的前21n +项和.解:(1)设等差数列{}n a 的公差为d ,因为11a =,4a 是2a 和8a 的等比中项,所以2428a a a =⋅,即2(13)(1)(17)d d d +=++,解得1d =或0d =.又因为0d ≠,所以1d =.所以1(1)1n a n n =+-⨯=.因为*322()n n b S n N -=∈,所以,当2n时,11322n n b S ---=,所以113()2()0n n n n b b S S -----=,所以13()20n n n b b b ---=,即13(2)nn b n b -= .当1n =时,11322b S -=,又因为11S b =,所以12b =,所以数列{}n b 是以2为首项、3为公比的等比数列.所以11123n n n b b q --=⋅=⨯.(2)因为()()1223n n n n c n -⎧+⎪=⎨⨯⎪⎩为奇数为偶数,故数列{}n c 的前21n +项和为2113521221(1)(323)6(19)93(35723)2(3333)421944n n n n n n T n n n +-++++-=++++++++++=+=+++- .2.设等差数列{}n a 的前n 项和为n S ,且等比数列{}n b 的前n 项和为n T ,满足112a b =,26S =,312S =,123b b +=.(1)求{}n a ,{}n b 的通项公式;(2)求满足条件的最小正整数k ,使得对*()n k n N ∀∈不等式1n n T S + 恒成立;解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由112a b =,26S =,312S =,123b b +=,可得126a d +=,13312a d +=,解得12a =,2d =,所以11b =,22b =,212b q b ==,所以2n a n =,12n n b -=;(2)由(1)可得21(22)2n S n n n n =+=+,122112n n n T -==--,1n n T S + 即为22n n n +,当1n =时,12n n T S +==;当24n时,1n n T S +<;当5n时,0122222()2n n n n C C C n n n n ++=++>+ ,所以满足条件的最小正整数k 为5;(3)22212122222221212111()(1)(1)(21)(21)32121n n n n nn n n n b C b b ------+===-++++++,所以132122221111111111...(...)()32551721213221n n n n c c c --+++=-+-++-=-+++;22218(4n n n n a C n b ==⋅,则2242111...816()...8(444n n c c c n +++=⋅+⋅++⋅,2312421111(...)8()16(...8(4444n n c c c n ++++=⋅+⋅++⋅,两式相减可得212423111(...)28[()...()]8()4444n n n c c c n ++++=+++-⋅1111(1)1164288()1414n n n -+-=+⋅-⋅-,化简可得124232321281...(()9394n n c c c n ++++=-+⋅,所以数列{}n c 的前2n 项和为121113232128167832111()()((()3221939418394341n n n nn n +-+-+⋅=-+⋅-⋅++.3.已知数列{}n a 满足11a =,11,,2,nn n a n a a n ++⎧=⎨+⋅⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.解:(1)因为11a =,11,2,n n na n a a n ++⎧=⎨+⎩为奇数为偶数,所以2112a a =+=,3224a a =+=,4315a a =+=,所以122b a ==,245b a ==,12222212122123n n n n n n n n b b a a a a a a ------=-=-+-=+=,2n,所以数列{}n b 是以12b =为首项,以3为公差的等差数列,所以23(1)31n b n n =+-=-.(2)由(1)可得231n a n =-,*n N ∈,则212223(1)1232n n a a n n --=+=--+=-,2n,当1n =时,11a =也适合上式,所以2132n a n -=-,*n N ∈,所以数列{}n a 的奇数项和偶数项分别为等差数列,则{}n a 的前20项和为122013192420109109...()()103102330022a a a a a a a a a ⨯⨯+++=++⋯++++⋯+=+⨯+⨯+⨯=.4.已知数列{a n }满足a n +2=a n +d (d ∈R ,d ≠1),n ∈N *,a 1=1,a 2=1,且a 1,a 2+a 3,a 8+a 9成等比数列.(Ⅰ)求d 的值和{a n }的通项公式;(Ⅱ)设,求数列{b n }的前2n 项和T 2n .解:(Ⅰ)数列{a n }满足a n +2=a n +d (d ∈R ,d ≠1),所以a 3=a 1+d ,a 8=a 6+d =a 2+3d ,a 9=a 1+4d ,所以a 2+a 3=a 1+a 2+d ,由于a 1=1,a 2=1,所以a 2+a 3=2+d ,a 8+a 9=2+7d ,且a 1,a 2+a 3,a 8+a 9成等比数列,所以,整理得d =1或2(1舍去).故a n +2=a n +2,所以n 为奇数时,a n =n ,n 为偶数时,a n =n ﹣1.所以数列{a n }的通项公式为.(Ⅱ)由于,所以.所以T 2n =b 1+b 2+...+b 2n =﹣20×12+20×22﹣22×32+22×42+...+[﹣22n ﹣2•(2n ﹣1)2]+22n﹣2•(2n )2,=20×(22﹣12)+22×(42﹣32)+...+22n ﹣2•[(2n )2﹣(2n ﹣1)2].=20×3+22×7+...+22n ﹣2•(4n ﹣1)①,所以,②,①﹣②得:﹣3T 2n =20×3+22×4+...+22n ﹣2×4﹣22n ×(4n ﹣1),=3+4×﹣22n ×(4n ﹣1),=,所以.5.已知等差数列{}n a 满足212a a =,459a a +=,n S 为等比数列{}n b 的前n 项和,122n n S S +=+.(1)求{}n a ,{}n b 的通项公式;解:(1)(基本量法求等差等比通项)等差数列{}n a 的公差设为d ,212a a =,459a a +=,可得112a d a +=,1279a d +=,解得11a d ==,可得n a n =;由122n n S S +=+得122n n S S -=+,2n,两式相减整理得12n n b b +=,可得公比12q =,由11112()22b b b +=+,解得11b =,∴112n n b -=;(2)证法1:(应用放缩和错位相减求和证明不等式)122331,,44211,,n n n n na b n n n c n n a n -⎧⎧⋅⎪⎪⎪⎪==⎨⎨⎪⎪⎪⎪⎩⎩为奇数为奇数为偶数为偶数,123n n C c c c c =+++⋯+,1321k k A c c c -=++⋯+,242k k B c c c =++⋯+,0131321(4444k k k A --=++⋯+,2131321(44444k kk A -=++⋯+,两式相减整理得12311(1)331112132124(1(1)14428244414k k k k k k k A -----=+++⋯+-=+--,可得55110(23346k k A k =-+<,又因为2(2)(21)(21)k k k >-+,∴222111*********()24(2)21335212126k B k k k =++⋯+<-+-+⋯-<=-+.所以222111324(2)6k B k =++⋯+<,∴10313666n k kC A B =+<+=.证法2:(应用放缩和裂项求和证明不等式)令11()4n n d an b -=+,11214n n n n d d +--=-化简整理得:1841()394nn d n -=-+,∴1155110(2)3346k k k A d d k +=-=-+<,222211*********1231223(1)n T n n n n =+++⋯+<+++⋯=-<⨯⨯-⨯,22221111111224(2)242n T n n =++⋯+<-<,所以222111324(2)6k B k =++⋯+<,∴10313666n k kC A B =+<+=.。
高三一轮复习数列专题
欢迎阅读数列专题复习第一节 等差数列n n n -1122080,则x 5+x 16=________.7.数列中,若11a =,1223(1)n n a a n +=+≥,则该数列的通项n a = . 8.(2013年重庆)若2、a 、b 、c 、9成等差数列,则c a -=____________. 9.(2013年上海)在等差数列{}n a 中,若123430a a a a +++=,则23a a +=____.}{n a10.(2013年大纲)等差数列{}n a 中,71994,2,a a a == 则该数列的通项n a = .11.(2015陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________。
12.若lg2,lg(2x -1),lg(2x+3)成等差数列,则x 等于________考点二 等差数列的性质11a 19a +=________.3. 在等差数列n 中,若25,求数列32}n -的前n 项和n 。
考点三 等差数列的前n 项和公式公式1:1()2n n n a a S +=公式2:1(1)2n n n d S na -=+ 变形:1.(2015高考新课标)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A.172 B.192C.10D.12 2.(2015高考安徽)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9, A. 18 B. 24 C. 60 D. 909.在等差数列中,2238380,29n a a a a a <++=,那么10S 等于_______.考点四 等差数列的前n 项和的性质性质1:设S n 是公差为d 等差数列{a n }的前n 项和,则数列232,,,m m m m m S S S S S --构成公差为__________的等差数列.1.设等差数列{a n }的前n 项和为S n ,若369,36S S ==则789a a a ++={}n aA.18B.27C.36D.452.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.18B.13C.19D.3103.已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )}n2.已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则n S = ________. 3. 已知等差数列{a n }的前三项为1,4,2a a -,记前n 项和为S n ,(1)若420k S =,求a 和k 的值。
2013届高三数学一轮复习单元训练:数列
2013届高三数学一轮复习单元训练:数列本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值( ) A . 130 B . 260 C . 156 D . 1682.若{an }为等差数列,Sn 是其前n 项和,且S 11=22π3,则tan a 6的值为( ) A . 3 B .- 3C .± 3D .-33 3.数列2222222235721,,,,,122334(1)n n n ++的前n 项和是( ) A .211n - B .211n + C .211(1)n ++ D .211(1)n -+ 4.若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-155.等比数列{}n a 中,15252||1,8,,a a a a a ==->则n a =( ) A .1(2)n -- B .1(2)n --- C .(2)n - D .(2)n-- 6.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .297.设等差数列{}n a 的前n 项之和为n S ,已知2553,9,a a S ==则等于 ( )A .15B .20C .25D .308.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .1109.等差数列}{n a 的公差不为零,首项1a =1,2a 是1a 和5a 等比中项,则数列}{na 的前10 项之和是( )A .90B . 100C . 145D . 19010.数列{}n a 满足1211,,2a a ==并且1111()2(2)n n n n n a a a a a n -++-+=≥,则数列的第2010项为 ( )A .10012B .201012 C .12010 D .110011.设{}n a ,{}n b 均为正项等比数列,将它们的前n 项之积分别记为n A ,n B ,若22n n n n A B -=,则55a b 的值为 ( ) A .32 B .64 C .256 D .51212.在等差数列{}n a 中,已知854=+a a ,则8S 等于( ) A .8 B .16 C .24D .32 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知数列{a n }的首项a 1≠0,其前n 项的和为S n ,且S n +1=2S n +a 1,则a n S n =________.14.设等差数列{a n }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值范围是_______.15.设)N (3*∈=-n a n n ,则数列}{n a 的各项和为 .16.已知数列{}n a 中,1n 1n 211a ,a a ,24n 1+==+-则n a =_____________。
江苏专版2020届高三数学一轮复习《数列》典型题精选精练附答案详析
3、(南京市 13 校 2019 届高三 12 月联合调研)设等比数列 {an }的前 n 项积为 Pn ,若 P12 = 32P7 ,则
a10 的值是 ▲ .
4、(苏州市
2019
届高三上学期期中)已知等比数列an 的前 n 项和为 Sn
,S4 S2
4
,则
S8 S4
▲.
5、(徐州市 2019 届高三上学期期中)已知等差数列{an} 的前 n 项和为 Sn , S11 132 , a6 a9 30 , 则 a12 的值为 ▲ .
(3)若数列 an
的各项均为正数,且an M
,数列
4n
an
中是否存在无穷多项依次成等差数列,
若存在,给出一个数列an 的通项;若不存在,说明理由.
4、(南京市 2018 高三 9 月学情调研)已知数列{an}的各项均为正数,记数列{an}的前 n 项和为 Sn, 数列{an2}的前 n 项和为 Tn,且 3Tn=Sn2+2Sn,n∈N*. (1)求 a1 的值; (2)求数列{an}的通项公式; (3)若 k,t∈N*,且 S1,Sk-S1,St-Sk 成等比数列,求 k 和 t 的值.
.
11、(苏锡常镇四市 2019 届高三教学情况调查(二))已知数列an 是各项都不为 0 的无穷数列,
数列练习题
高三数学单元练习(数列)1.设n S 为等差数列{}n a 的前n 项和,若105=S ,510-=S ,则公差为 . 2.等差数列{}n a 中,15a =-,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值为4,则抽取的是第 项.3.从集合{1,2,3,…,20}中任选3个不同的数排成一个数列,则这个数列为等差数列的概率是 .4.对于实数t ,已知等比数列{}n a 的前三项依次为2,51,62t t t -+,且该数列的前n 项和为n S ,则满足不等式1||165n S -<的最大整数n 的值是 . 5.数列{}n a 满足:32n a n =-,若[]5n n ab =,则1232007b b b b ++++= .6.正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为 .7.将各位数码不大于3的全体正整数m 按从小到大的顺序排成一个数列{}n a ,则2007a = .8.满足9a b >>,且使得,,,bab a b a b a-+可以按某一次序排成等比数列的实数对(,)a b 的个数为 .9. 在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么z y x ++的值为 . 10.等比数列3log 2+a ,3log 4+a ,3log 8+a 的公比是_________.11.已知{}n a 是等比数列,41,252==a a ,则()*+∈+⋅⋅⋅++N n a a a a a a n n 13221的取值范围是 . 12.对每一个正整数k,设111123k a k=++++ ,则12349357992500a a a a a ++++-= . 13. 已知函数21()()log 3xf x x =-,正实数,,a b c 成公差为正数的等差数列,且满足()()()0f a f b f c <,若实数d 是方程()0f x =的一个解,那么下列四个结论中:①d a <;②d b >;③d c <;④d c >。
高考数学一轮复习《数列的综合运用》练习题(含答案)
高考数学一轮复习《数列的综合运用》练习题(含答案)一、单选题1.某银行设立了教育助学低息贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果小新同学贷款10000元,一年还清,假设月利率为0.25%,那么小新同学每月应还的钱约为( )(1.002512≈1.03) A .833B .858C .883D .9022.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元3.一种预防新冠病毒的疫苗计划投产两月后,使成本降64%,那么平均每月应降低成本( ) A .20%B .32%C .40%D .50%4.今年元旦,市民小王向朋友小李借款100万元用于购房,双方约定年利率为5%,按复利计算(即本年利息计入次年本金生息),借款分三次等额归还,从明年的元旦开始,连续三年都是在元旦还款,则每次的还款额约是( )万元.(四舍五入,精确到整数) (参考数据:()21.05 1.1025=,()31.05 1.1576=,()41.05 1.2155=) A .36B .37C .38D .395.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月B .2023年2月C .2023年4月D .2023年6月6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n 个月的还款金额为n a 元,则n a =( )A .2192B .39128n -C .39208n -D .39288n -7.高阶等差数列是数列逐项差数之差或高次差相等的数列,中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.如南宋数学家杨辉在《详解九章算法.商功》一书中记载的三角垛、方垛、刍甍垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有1个小球,第二层有3个,第三层有6个,第四层有10个,则第30层小球的个数为( )A .464B .465C .466D .4958.某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率1%,当付清全部房款时,各次付款的总和为( ) A .1205万元B .1255万元C .1305万元D .1360万元9.小李在2022年1月1日采用分期付款的方式贷款购买一台价值a 元的家电,在购买1个月后的2月1日第一次还款,且以后每月的1日等额还款一次,一年内还清全部贷款(2022年12月1日最后一次还款),月利率为r .按复利计算,则小李每个月应还( ) A .()()1111111ar r r ++-元 B .()()1212111ar r r ++-元C .()11111a r +元D .()12111a r +元10.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( ) A .35B .42C .49D .5611.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元B .40000元C .42500元D .50000元12.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( ) A .2806万元B .2906万元C .3106万元D .3206万元二、填空题13.小李向银行贷款14760元,并与银行约定:每年还一次款,分4次还清所有的欠款,且每年还款的钱数都相等,贷款的年利率为0.25,则小李每年所要还款的钱数是___________元.14.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为_______万元.15.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于______.16.今年“五一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…,按照这种规律进行下去,到上午11时30分公园内的人数是____.三、解答题17.一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比. (1)求()*n n N ∈分钟后的水温n t ;(2)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:lg 20.3≈)18.某优秀大学生毕业团队响应国家号召,毕业后自主创业,通过银行贷款等方式筹措资金,投资72万元生产并经营共享单车,第一年维护费用为12万元,以后每年都增加4万元,每年收入租金50万元.(1)若扣除投资和维护费用,则从第几年开始获取纯利润?(2)若年平均获利最大时,该团队计划投资其它项目,问应在第几年转投其它项目?19.去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b . (1)求数列{}n a 和数列{}n b 的通项公式;(2)为了确定处理生活垃圾的预算,请求出从今年起n 年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).(参考数据41.05 1.215≈,51.05 1.276≈,61.05 1.340≈)20.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金(2500)t t ≤万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (1)写出1n a +与n a 的关系式,并判断{}2n a t -是否为等比数列;(2)若企业每年年底上缴资金1500t =,第*()m m N ∈年年底企业的剩余资金超过21000万元,求m 的最小值.21.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月()*1929,k k k +≤≤∈N 日起每天的新感染者比前一天的新感染者减少20人. (1)若9k =,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.22.教育储蓄是指个人按国家有关规定在指定银行开户、存入规定数额资金、用于教育目的的专项储蓄,是一种专门为学生支付非义务教育所需教育金的专项储蓄,储蓄存款享受免征利息税的政策.若你的父母在你12岁生日当天向你的银行教育储蓄账户存入1000元,并且每年在你生日当天存入1000元,连续存6年,在你十八岁生日当天一次性取出,假设教育储蓄存款的年利率为10%.(1)在你十八岁生日当天时,一次性取出的金额总数为多少?(参考数据:71.1 1.95≈) (2)当你取出存款后,你就有了第一笔启动资金,你可以用你的这笔资金做理财投资.如果现在有三种投资理财的方案: ①方案一:每天回报40元;②方案二:第一天回报10元,以后每天比前一天多回报10元; ③方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 你会选择哪种方案?请说明你的理由.23.已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅲ)证明:当5n =时,成等比数列。
(完整版)高三数学第一轮复习单元测试--数列
高三数学第一轮复习单元测试(2)— 《数列》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( )A .4B .2C .-2D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .454.在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为 ( ) A .48 B .54 C .60 D .665.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A .310B .13C .18D .196.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .757.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200= ( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +- B .3n C .2n D .31n -9.设4710310()22222()n f n n N +=+++++∈L ,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有 ( ) A .3 B .4 C .8 D .9 11.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .14.=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1110113112111,244)(f f f f x f xx Λ则设 . 15.在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正 三棱锥”形的展品,其中第一堆只有一层, 就一个乒乓球;第2、3、4、…堆最底层(第 一层)分别按右图所示方式固定摆放.从第一 层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示).16.已知整数对排列如下()()()()()()()()()()()()Λ,4,2,5,1,1,4,2,3,3,2,4,1,1,3,2,23,1,1,2,2,1,1,1, 则第60个整数对是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n 18.(本小题满分12分) 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)19.(本小题满分12分)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分) 某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数. 21.(本小题满分12分)等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==.(Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b 的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由. 22.(本小题满分14分)已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{n b 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列; (2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由; (3)(理做文不做)若211<<a ,试证明:211<<<+n n a a .参考答案(2)1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C . 3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =. ∴45613345a a a a d d d ++=+++=1312a d +=42. 4.B . 因为461912a a a a +=+=,所以1999()2a a S +==54,故选B . 5.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 6.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .7.A . 依题意,a 1+a 200=1,故选A .8.C .因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C .9.D . f (n )=3(1)432[12]2(81)127n n ++-=--,选D . 10.B . 正四面体的特征和题设构造过程,第k 层为k 个连续自然数的和,化简通项再裂项用公式求和.依题设第k层正四面体为(),k k k k k 2213212+=+=++++Λ则前k 层共有()()()()6062121212121222≤++=+++++++k k k k k L ,k 最大为6,剩4,选B .11.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .12.C .由已知4a =2a +2a = -12,8a =4a +4a =-24,10a =8a +2a = -30,选C .13.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3. 14.由()()11=+-x f x f ,整体求和所求值为5.15.2)1()()(111211+==-++-+=⇒+=--+n n a a a a a a n a a n n n n n ΛΛ )(n f 的规律由)2(2)1()1()(≥+==--n n n a n f n f n ,所以22)1()(223)2()3(222)1()2(1)1(222+=--+=-+=-=n n f n f f f f f f Λ所以)]321()321[(21)(222n n n f +++++++++=ΛΛ 6)2)(1(]2)1(6)12)(1([21++=++++=n n n n n n n n 16.观察整数对的特点,整数对和为2的1个,和为3的2个,和为4的3个,和为5的4个,和n 为的 n -1个,于是,借助()21321+=++++n n n Λ估算,取n=10,则第55个整数对为()1,11,注意横坐标递增,纵坐标递减的特点,第60个整数对为()7,517.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥ 又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =, 故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+18.ο1必要性:设数列}{n a 是公差为1d 的等差数列,则:--=-+++)(311n n n n a a b b )(2+-n n a a =--+)(1n n a a )(23++-n n a a =1d -1d =0,∴1+≤n n b b (n =1,2,3,…)成立; 又2)(11+-=-++n n n n a a c c )(12++-n n a a )(323++-+n n a a =61d (常数)(n =1,2,3,…) ∴数列}{n c 为等差数列.ο2充分性:设数列}{n c 是公差为2d 的等差数列,且1+≤n n b b (n =1,2,3,…), ∵2132++++=n n n n a a a c ……① ∴432232++++++=n n n n a a a c ……②①-②得:)(22++-=-n n n n a a c c )(231++-+n n a a )(342++-+n n a a =2132++++n n n b b b ∵+-=-++)(12n n n n c c c c 2212)(d c c n n -=-++∴2132++++n n n b b b 22d -=……③ 从而有32132+++++n n n b b b 22d -=……④ ④-③得:0)(3)(2)(23121=-+-+-+++++n n n n n n b b b b b b ……⑤ ∵0)(1≥-+n n b b ,012≥-++n n b b ,023≥-++n n b b , ∴由⑤得:01=-+n n b b (n =1,2,3,…),由此,不妨设3d b n =(n =1,2,3,…),则2+-n n a a 3d =(常数) 故312132432d a a a a a c n n n n n n -+=++=+++……⑥ 从而3211324d a a c n n n -+=+++31524d a a n n -+=+……⑦ ⑦-⑥得:3112)(2d a a c c n n n n --=-++,故311)(21d c c a a n n n n +-=-++3221d d +=(常数)(n =1,2,3,…), ∴数列}{n a 为等差数列.综上所述:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…). 19.(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a , ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列,当1≥n时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列.研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围. 研究的结论可以是:由()323304011010d d d d a a +++=+=, 依次类推可得 ()⎪⎩⎪⎨⎧=+≠--⨯=+++=++.1),1(10,1,11101101)1(10d n d d d d d a n nn Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.20.设第n 天新患者人数最多,则从n+1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数,构成一个首项为20,公差为50的等差数列的n 项和,()()N n ,n n n n n n S n∈≤≤-=⨯-+=3015255021202,而后30-n 天的流感病毒感染者总人数,构成一个首项为()60503050120-=-⨯-+n n ,公差为30,项数为30-n 的等差数列的和,()()()()(),n n n n n n Tn148502445653026050306050302-+-=-⨯--+--=依题设构建方程有,(),n n n n ,T S n n 867014850244565525867022=-+-+-∴=+化简,120588612=∴=+-n ,n n 或49=n (舍),第12天的新的患者人数为 20+(12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.21.(1)0d =时,{}n a 的项都是{}n b 中的项;(任一非负偶数均可); 1d =时,{}n a 的项不都是{}n b 中的项.(任一正奇数均可); (2) 4d =时,422(21),n a n n =-=-123n n b -=⨯131 2(21)2n m a -+=⨯-=131(2n m -+=为正整数),{}n b 的项一定都是{}n a 中的项 (3)当且仅当d 取2(*)k k ∈N (即非负偶数)时,{}n b 的项都是{}n a 中的项. 理由是:①当2(*)d k k =∈N 时,2(1)22[1(1)],n a n k n k =+-⋅=+-⋅2n >时,11122112(1)2(C C 1)n n n n n n n b k k k k ------=⋅+=++⋅⋅⋅++,其中112211C C n n n n n k k k-----++⋅⋅⋅+ 是k 的非负整数倍,设为Ak (*A ∈N ),只要取1m A =+即(m 为正整数)即可得n m b a =, 即{}n b 的项都是{}n a 中的项;②当21,()d k k =+∈N 时,23(23)2k b +=不是整数,也不可能是{}n a 的项. 22.(1)1111111121n n n n n a b a a a ---===----,而1111-=--n n a b ,∴11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴{n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有nn b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴5.311-=-n a n .对于函数5.31-=x y ,在x >3.5时,y >0,0)5.3(12<--=x y',在(3.5,∞+) 上为减函数. 故当n =4时,5.311-+=n a n 取最大值3. 而函数5.31-=x y 在x <3.5时,y <0, 0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)先用数学归纳法证明21<<n a ,再证明n n a a <+1. ①当1=n 时,211<<a 成立; ②假设当k n =时命题成立,即21<<k a ,当1+=k n 时,1121<<ka )23,1(121∈-=⇒+kk a a ⇒211<<+k a 故当1+=k n 时也成立,综合①②有,命题对任意+∈N n 时成立,即21<<n a . (也可设x x f 12)(-=(1≤x ≤2),则01)(2'>=xx f , 故=1)1(f 223)2()(1<=<=<+f a f a k k ).下证: n n a a <+10122)1(21=⋅-<+-=-+kk k k n n a a a a a a ⇒n n a a <+1.。
高考数学一轮复习等差数列专项练习(含解析)
高考数学一轮复习等差数列专项练习(含解析)假如一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那个数列就叫做等差数列。
查字典数学网为考生整理了等差数列专题训练,请考生认真做题。
一、填空题1.(2021重庆高考)若2,a,b,c,9成等差数列,则c-a=________.[解析] 由题意得该等差数列的公差d==,因此c-a=2d=.[答案]2.在等差数列{an}中,d=2,a15=-10,则S15=________.[解析] 由a15=a1+142=-10得a1=-38,因此S15===-360.[答案] -3603.等差数列{an}前9项的和等于前4项的和,若a1=1,ak+a4=0,则k =________.[解析] 由S9-S4=0,即a5+a6+a7+a8+a9=0,即a7=0.又ak+a4=0=2a7,故k=10.[答案] 104.(2021福建高考改编)等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为________.[解析] 法一:设等差数列{an}的公差为d,由题意得解得d=2.法二:在等差数列{an}中,a1+a5=2a3=10,a3=5.又a4=7,公差d=7-5=2.[答案] 25.假如等差数列{an}中,a5+a6+a7=15,那么a3+a4++a9=________.[解析] 等差数列{an}中,a5+a6+a7=15,由等差数列的性质可得3a6=1 5,解得a6=5.那么a3+a4++a9=7a6=35.[答案] 356.《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.[解析] 设自上第一节竹子容量为a1,则第9节容量为a9,且数列{an}为等差数列.则解之得a1=,d=,故a5=a1+4d=.[答案]7.(2021辽宁高考改编)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=________.[解析] S11===88.[答案] 888.(2021重庆高考)已知{an}是等差数列,a1=1,公差d0,Sn为其前n 项和,若a1,a2,a5成等比数列,则S8=________.[解析] a1,a2,a5成等比数列,a=a1a5,(1+d)2=1(4d+1),d2-2d=0.d0,d=2.S8=81+2=64.[答案] 64二、解答题9.(2021湖北高考)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn60n+800?若存在,求n的最小值;若不存在,说明理由.[解] (1)设等差数列{an}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,an=2;当d=4时,an=2+(n-1)4=4n-2,从而得数列{an}的通项公式为an=2或an=4n-2.(2)当an=2时,Sn=2n.明显2n60n+800,现在不存在正整数n,使得Sn60n+800成立.当an=4n-2时,Sn==2n2.令2n260n+800,即n2-30n-4000,解得n40或n-10(舍去),现在存在正整数n,使得Sn60n+800成立,n的最小值为41.综上,当an=2时,不存在满足题意的n;当an=4n-2时,存在满足题意的n,其最小值为41.10.(2021福建高考)已知等差数列{an}的公差d=1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)若S5a1a9,求a1的取值范畴.[解] (1)因为数列{an}的公差d=1,且1,a1,a3成等比数列,因此a= 1(a1+2),即a-a1-2=0,解得a1=-1或a1=2.(2)因为数列{an}的公差d=1,且S5a1a9,家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
2021高考数学(理)一轮复习专项检测《数列》(解析版)
故选 A。 4.(山东省潍坊市 2019 届高三模拟)如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一
些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有 n 个圆盘,较
a1, a2 ,, an,, 并记相应的极大值为 b1, b2 ,, bn,, 则 a1b1 a2b2 a20b20 的值为( )
A.19 320 1 B.19 319 1
C. 20 319 1
D. 20 320 1
【答案】A
【解析】由题当当 0 x 2 时, f x 2x x2 x 12 1, 极大值点为 1,极大值为 1
A.64
B.48
C.36
D.24
【答案】B
【解析】由等差数列性质可知, S17 17a9 272,解得 a9 16 ,故 a3 a9 a15 3a9 48.
故选 B。
6.(山东省日照市 2019 届高三联合考试)已知数列 an 前 n 项和为 Sn ,满足 Sn an2 bn ( a,b 为
常数),且 a9
2
,设函数
f
(x)
2 sin
2x
2 sin 2
x 2
,记
yn f an
,则数列 yn 的前 17 项和为
()
A. 17 2
【答案】D
B. 9
C.11
D.17
【解析】 因为 f ( x) 2 sin 2x 2 sin 2 x sin 2x cos x 1,
2
由 Sn an2 bn ,得 an Sn Sn1 an2 bn a(n 1)2 b(n 1) 2an a b ,
高三数学第一轮复习单元测试--数列(最新整理)
18.(本小题满分 12 分) 设数列{an } 、{bn } 、{cn } 满足: bn an an2 , cn an 2an1 3an2 (n=1,2,3,…), 证明:{an } 为等差数列的充分必要条件是{cn } 为等差数列且 bn bn1 (n=1,2,3,…)
19.(本小题满分 12 分) 已知数列 a1 , a2 , , a30 ,其中 a1 , a2 , , a10 是首项为 1,公差为 1 的等差数列; a10 , a11 , , a20
则第 60 个整数对是_______________.
三、解答题:本大题共 6 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分)
数列{an}的前 n 项和记为 Sn, a1 1, an1 2Sn 1n 1
(1)求{an}的通项公式; (2)等差数列{bn}的各项为正,其前 n 项和为 Tn,且 T3 15 ,又 a1 b1, a2 b2 , a3 b3 成等比数列,求 Tn
高三数学第一轮复习单元测试(2)— 《数列》
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目
要求的.
1.若互不相等的实数 a 、 b 、 c 成等差数列, c 、 a 、 b 成等比数列,且 a 3b c 10 ,
则a =
()
A.4
B.2 C.-2
A.2002
() B.2004
C.2006
D.2008
12.已知数列 an 对任意的 p,q N* 满足 apq ap aq ,且 a2 6 ,那么 a10 等于( )
A. 165
B. 33 C. 30 D. 21
高三一轮复习 数列 周测卷
高三理科数学周测卷(数列)(11.7)一、选择题:(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 ( )A .15B .30C .31D .642. 数列{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( )A .40B .200C .400D .203.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于 ( )A .3×44B .3×44+1C .45D .45+1 4.等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则 ( )A .a 1=1B .a 3=1C .a 4=1D .a 5=15.由a 1=1,a n +1=a n3a n +1给出的数列{a n }的第34项( )A.34103B .100C.1100D.11046.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于 ( )A .9B .8C .7D .67.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =32164,则项数n 等于 ( )A .13B .10C .9D .68.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( )A .6B .7C .8D .99. 已知数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( )A .0B.16C.13D.1210. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 ( )A.100101B.99101C.99100D.10110011.在△ABC 中,tan A ,tan B ,tan C 依次成等差数列,则B 的取值范围是 ( )A.⎝⎛⎦⎤0,π3∪⎝⎛⎦⎤π2,2π3B.⎝⎛⎦⎤0,π6∪⎝⎛⎦⎤π2,5π6C.⎣⎡⎭⎫π6,π2D.⎣⎡⎭⎫π3,π212.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成 立的是 ( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X ) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.填空题(本大题共4小题,每小题5分,共20分)13.数列{a n }的通项公式a n =1n +n +1,若{a n }的前n 项和为24,则n =________.14.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.15.数列{a n }满足a 1=0,a n +1=a n +2n ,则{a n }的通项公式a n =________.16.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n =_______时,S n 取得最大值,三.解答题(本大题共6小题,共70分)17.(10分)在等差数列{a n }中,若a 3+a 8+a 13=12,a 3a 8a 13=28,求数列{a n }的通项公式.18.(12分)已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式.19.(12分)已知数列{a n }的前n 项和为S n ,且向量a =(n ,S n ),b =(4,n +3)共线.(1)求证:数列{a n }是等差数列;(2)求数列 ⎩⎨⎧⎭⎬⎫1na n 的前n 项和T n .20.(12分)设数列{a n}满足a1+3a2+32a3+…+3n-1a n=n3,n∈N*.(1)求数列{a n}的通项;(2)设b n=na n,求数列{b n}的前n项和S n.21.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n.22.(12分)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .参考答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACCBCBDAAADD13.624 解析 a n =1n +n +1=n +1-n .∴(2-1)+(3-2)+…+(n +1-n )=24, ∴n +1=25,∴n =624. 14.52解析 ∵ log 2(a 5+a 9)=3,∴a 5+a 9=23=8.15.答案 n (n -1)解析 由已知,得a n +1-a n =2n ,故a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =0+2+4+…+2(n -1)=n (n -1).∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52.16.解 (1)方法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,方法二 同方法一求得d =-53.∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝⎛⎭⎫-53=130.17.解 ∵a 3+a 13=2a 8,a 3+a 8+a 13=12,∴a 8=4,…………………………………………………………………………………(2分)则由已知得⎩⎪⎨⎪⎧a 3+a 13=8,a 3a 13=7,解得⎩⎪⎨⎪⎧a 3=1,a 13=7,或⎩⎪⎨⎪⎧a 3=7,a 13=1.…………………………………………………………(7分)由a 3=1,a 13=7,可知d =a 13-a 313-3=7-110=35.故a n =a 3+(n -3)·35=35n -45;……………………………………………………………(9分)由a 3=7,a 13=1,可知d =a 13-a 313-3=1-710=-35.故a n =a 3+(n -3)·⎝⎛⎭⎫-35 =-35n +445.……………………………………………………………………………(11分)综上可得,a n =35n -45,或a n =-35n +445.……………………………………………(12分)18. 思维启迪:(1)由a n +S n =n 及a n +1+S n +1=n +1转化成a n 与a n +1的递推关系,再构造数列{a n -1}.(2)由c n 求a n 再求b n .(1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=12,∵首项c 1=a 1-1,∴c 1=-12,公比q =12.又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n . 19.(1)证明 ∵a =(n ,S n ),b =(4,n +3)共线,∴n (n +3)-4S n =0,∴S n =n (n +3)4.……………………………………………………(3分)∴a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n +12,……………………………………………………(5分)又a 1=1满足此式,∴a n =n +12.………………………………………………………(6分)∴a n +1-a n =12为常数,∴数列{a n }为首项为1,公差为12的等差数列.………………………………………(7分)(2)解 ∵1na n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,…………………………………………………(9分)∴T n =1a 1+12a 2+…+1na n.=2⎝⎛⎭⎫1-12+2⎝⎛⎭⎫12-13+…+2⎝⎛⎭⎫1n -1n +1=2n n +1.……………………………………(12分)20. 思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法.解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n 3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ),即2S n =n ·3n +1-3(1-3n)1-3,∴S n =(2n -1)3n +14+34.21. 解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.[4分]所以a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n .[6分](2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1) =14·⎝⎛⎭⎫1n -1n +1,[8分] 所以T n =14·(1-12+12-13+…+1n -1n +1)[10分]=14·(1-1n +1)=n 4(n +1), 即数列{b n }的前n 项和T n =n4(n +1).[12分]22.解 (1)当n =1时,a 1=13,当n ≥2时,a n =S n -S n -1,又S n =12-12a n ,所以a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝⎛⎭⎫13n.(2)由已知可得f (a n )=log 3⎝⎛⎭⎫13n=-n ,则b n =-1-2-3-…-n =-n (n +1)2,故1b n =-2⎝⎛⎭⎫1n -1n +1,又T n =-2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =-2⎝⎛⎭⎫1-1n +1,所以T 2 012=-4 0242 013.(3)由题意得c n =(-n )·⎝⎛⎭⎫13n , 故U n =c 1+c 2+…+c n=-⎣⎡⎦⎤1×⎝⎛⎭⎫131+2×⎝⎛⎭⎫132+…+n ·⎝⎛⎭⎫13n , 则13U n =-⎣⎡⎦⎤1×⎝⎛⎭⎫132+2×⎝⎛⎭⎫133+…+n ·⎝⎛⎭⎫13n +1,两式相减可得 23U n =-⎣⎡⎦⎤⎝⎛⎭⎫131+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -n ·⎝⎛⎭⎫13n +1 =-12⎣⎡⎦⎤1-⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1 =-12+12·⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1, 则U n =-34+34·⎝⎛⎭⎫13n +32n ·⎝⎛⎭⎫13n +1.。
高三数学单元测试《数列》
高三数学单元测试《数列》一、选择题(本题每小题5分,共60分)1.在等比数列}{n a 中,a 1+a 2=2,a 3+a 4=50,则公比q 的值为 ( )A .25B .5C .-5D .±52.已知等差数列{a n }中,a 6=a 3+a 8=5,则a 9的值是( )A .5B . 15C .20D .253.给定正数p,q,a,b,c ,其中p ≠q ,若p,a,q 成等比数列,p,b,c,q 成等差数列, 则一元二次方程bx 2-2ax+c=0 ( ) A .无实数根B .有两个相等的实数根C .有两个同号的相异的实数根D .有两个异号的相异的实数根4.等差数列}{n a 的前n 项和记为n S ,若1062a a a ++为一个确定的常数,则下列各数中也是常数的是 ( )A .6SB .11SC .12SD .13S5.设数列{}n a 为等差数列,且65867424,20042a a a a a a a 则=++等于 ( )A .501B .±501C .2004D .±20046.已知等差数列{}n a 的前n 项和为S n ,若m>1,且38,012211==-+-+-m m m m S a a a ,则m等于 ( )A .38B .20C .10D .97.设等比数列}{n a 的前n 项和为S n ,若2:1:36=S S ,则=39:S S ( )A .1:2B .2:3C .3:4D .1:38.某人为了观看2008年奥运会,从2001年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将所有的存款及利息全部取回,则可取回的钱的总数(元)为 ( )A .7)1(p a + B .8)1(p a +C .)]1()1[(7p p p a+-+ D .()()[]p p pa+-+118 9.已知()1+=bx x f 为x 的一次函数,b 为不等于1的常量,且()=n g ⎩⎨⎧≥-=)1()],1([)0(1n n g f n , 设()()()+∈--=N n n g n g a n 1,则数列{}n a 为 ( )A .等差数列B .等比数列C .递增数列D .递减数列10.北京市为成功举办2008年奥运会,决定从2003年到2007年5年间更新市内现有全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新车辆数约为现有总车辆数的(参考数据1.14=1.46 1.15=1.61) ( )A .10%B .16.4%C .16.8%D .20%二、填空题(本题每小题5分,共20分)11.已知等比数列}{n a 及等差数列}{n b ,其中01=b ,公差d ≠0.将这两个数列的对应项相加,得一新数列1,1,2,…,则这个新数列的前10项之和为_________________.12.设数列{a n }满足a 1=6,a 2=4,a 3=3,且数列{a n+1-a n }(n ∈N *)是等差数列,求数列{a n }的通项公式__________________. 13.设()244+=x xx f ,利用课本中推导等差数列前n 项和方法,求+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛112111f f …⎪⎭⎫ ⎝⎛+1110f 的值为______ ___.14.(文)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖____________块.(理)已知nn a ⎪⎭⎫⎝⎛∙=312,把数列{}n a 的各项排成三角形状;1a 2a 3a 4a 5a 6a 7a 8a ……记A (m,n )表示第m 行,第n 列的项,则A (10,8)= .三、解答题(本大题共6小题,共80分。
高三第一轮复习数列基础练习题
/ 8 高三第一轮复习数列基础练习题 敕章知识点小结 等差数列 1相关公式: (1) 定义:),1(1为常数dndaann(2)通项公式:dnaan)1(1 (3)前n项和公式:dnnnaaanSnn2)1(2)(11(4)通项公式推广:dmnaamn)( 2.等差数列}{na的一些性质 (1)对于任意正整数n,都有121aaaann (2)}{na的通项公式)2()(2112aanaaan (3)对于任意的整数srqp,,,,如果srqp,那么srqpaaaa (4)对于任意的正整数rqp,,,如果qrp2,则qrpaaa2 (5)对于任意的正整数n>1,有112nnnaaa (6)对于任意的非零实数b,数列}{nba是等差数列,则}{na是等差数列 (7)已知}{nb是等差数列,则}{nnba也是等差数列 (8)}{},{},{},{},{23133122nnnnnaaaaa等都是等差数列 (9)nS是等差数列na的前n项和,则kkkkkSSSSS232,, 仍成等差数列,即)(323mmmSSS (10)若)(nmSSnm,则0nnS(11)若pSqSqp,,则)(qpSqp (12)bnanSn2,反之也成立 、等比数列 1相关公式: (1)定义:)0,1(1qnqaann (2)通项公式:11nnqaa (3)前n项和公式:1q 1)1(1q 11qqanaSnn (4)通项公式推广:mnmnqaa 2.等比数列}{na的一些性质
【步步高】2014届高考数学一轮复习 2.3.1-2.3.2 等比数列 (一)备考练习 苏教版
§2.3 等比数列2.3.1 等比数列的概念(一)2.3.2 等比数列的通项公式(一)一、基础过关1.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m =________.2.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad =________.3.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.4.如果-1,a ,b ,c ,-9成等比数列,那么b =________.5.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为________.6.若a ,b ,c 成等比数列,m 是a ,b 的等差中项,n 是b ,c 的等差中项,则a m +c n=________.7.已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .8.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000,求这四个数.二、能力提升 9.若数列{a n }满足a n +1=⎩⎨⎧ 2a n n 为奇数2a n +1n 为偶数,若a 1=1,则a 19=________.10.若正项等比数列{a n }的公比q ≠1,且a 3,a 5,a 6成等差数列,则a 3+a 5a 4+a 6=________. 11.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.12.已知(b -c )log m x +(c -a )log m y +(a -b )log m z =0.(1)若a ,b ,c 依次成等差数列且公差不为0,求证:x ,y ,z 成等比数列;(2)若正数x ,y ,z 依次成等比数列且公比不为1,求证:a ,b ,c 成等差数列.三、探究与拓展13.互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.答案1.11 2.2 3.4·(32)n -1 4.-3 5.536.2 7.解 方法一 ∵a 1a 3=a 22,∴a 1a 2a 3=a 32=8,∴a 2=2.从而⎩⎪⎨⎪⎧a 1+a 3=5a 1a 3=4,解得a 1=1,a 3=4或a 1=4,a 3=1. 当a 1=1时,q =2;当a 1=4时,q =12. 故a n =2n -1或a n =23-n .方法二 由等比数列的定义知a 2=a 1q ,a 3=a 1q 2代入已知得,⎩⎪⎨⎪⎧ a 1+a 1q +a 1q 2=7a 1·a 1q ·a 1q 2=8,即⎩⎪⎨⎪⎧ a 11+q +q 2=7,a 31q 3=8,即⎩⎪⎨⎪⎧ a 11+q +q 2=7, ①a 1q =2, ②将a 1=2q 代入①得2q 2-5q +2=0,∴q =2或q =12,由②得⎩⎪⎨⎪⎧ a 1=1q =2或⎩⎪⎨⎪⎧ a 1=4,q =12.∴a n =2n -1或a n =23-n.8.解 设前三个数分别为a -d ,a ,a +d ,则有a -d +a +a +d =48,即a =16.设后三个数分别为b q ,b ,bq ,则有b q ·b ·bq =b 3=8 000,即b =20,∴这四个数分别为m,16,20,n ,∴m =2×16-20=12,n =20216=25.即所求的四个数分别为12,16,20,25.9.1 023 10.5-12 11.-912.证明 (1)∵a ,b ,c 成等差数列且d ≠0,∴b -c =a -b =-d ,c -a =2d ,∴(b -c )log m x +(c -a )log m y +(a -b )·log m z=2d log m y -d log m x -d log m z=d (2log m y -log m x -log m z )=d log m (y 2xz )=0.∵d ≠0,∴log m y 2xz =0,∴y 2xz =1.∴y 2=xz ,即x ,y ,z 成等比数列.(2)∵x ,y ,z 成等比数列,且公比q ≠1,∴y =xq ,z =xq 2,∴(b -c )log m x +(c -a )log m y +(a -b )·log m z=(b -c )log m x +(c -a )log m (xq )+(a -b )log m (xq 2)=(b -c )log m x +(c -a )log m x +(c -a )·log m q +(a -b )log m x +2(a -b )log m q=(c -a )log m q +2(a -b )log m q=(a +c -2b )log m q =0,∵q ≠1,∴log m q ≠0,∴a +c -2b =0,即a ,b ,c 成等差数列.13.解 设三个数为a q ,a ,aq ,∴a 3=-8,即a =-2,∴三个数为-2q ,-2,-2q .(1)若-2为-2q 和-2q 的等差中项,则2q +2q =4,∴q 2-2q +1=0,q =1,与已知矛盾;(2)若-2q 为-2q 与-2的等差中项,则1q +1=2q ,2q 2-q -1=0,q =-12或q =1(舍去),∴三个数为4,1,-2;(3)若-2q 为-2q 与-2的等差中项,则q +1=2q ,∴q 2+q -2=0,∴q =-2或q =1(舍去),∴三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为4,1,-2或-2,1,4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习 数列(Ⅰ)单元练习题
一.选择题
(1)数列 ,10,6,3,1的一个通项公式是( ).
()A 12+-n n ()B 2)1(+n n ()C 2
)1(-n n ()D 321-+n (2)在等差数列{}n a 中,,6,5462+=-=a a a 那么=1a ( ).
()A -9 ()B -8 ()C -7 ()D -4
(3)某种商品提价25%后,要恢复成原价,应降价( ).
()A 25% ()B 20% ()C 15% ()D 30%
(4)等比数列{}n a 中,,91,762==S S 则4S 可能是( ).
()A 28 ()B 32 ()C 35 ()D 49
(5)三个数成等比数列,它们的和为38,它们的积为1728,则此三数为( ). ()A 3,12,48 ()B 4,16,27
()C 8,12,18 ()D 4,12,36
(6)已知数列{}n a 是等差数列,且()()24231310753=++++a a a a a ,那么数列{}n a 的前13项和为( ).
()A 26 ()B 13 ()C 52 ()D 156
二.填空题
(7)等差数列的前三项依次为,32,1,1++-a a a 那么这个等差数列的通项公式为_________.
(8)等比数列{}n a 中,,27
1710-=a a 那么4132a a a a ++的值为___________. (9)在等比数列
{}n a 中,),(12*321N n a a a a n n ∈-=++++ 则.__________2232221=++++n a a a a
(10)已知)(x f 是一次函数,且,21)10(=f 又)22(),7(),2(f f f 成等比数列,则___________)50()3()2()1(=++++f f f f .
三.解答题
(11)已知数列{}n a 中,)(12,56*11N n a a a n n ∈-==+.
①求101a ;
②求此数列前n 项和n S 的最大值.
(12)设一个等比数列的前n 项和为n S ,前n 项的倒数和为n T ,前n 项积为n p ,求证:
n n n n T S p ⎪⎪⎭
⎫ ⎝⎛=2.
答案:(1)B (2)B (3)B (4)A (5)C (6)A (7)32-=n a n (8)133-(9))14(3
1-n (10)2600(11)①-1144②1605=S (12)略。