(精选)概率论公式总结
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论公式总结
第一章P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时,P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|(∑≤==≤=xk k X P x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badx x f b X a P )()()0(1)(/≥=-x e x f x θ)(1)(b x a ab x f ≤≤-=分布函数 对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度⎰∞-=≤=xdt t f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ⎰+∞∞-=dy y x f x f X ),()()()('x f x F =离散型随机变量的独立性连续型随机变量的独立性第三章 数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(∑=kkk p x g X g E )())((常用公式方差 定义式常用计算式∑∑=ijiji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=ijijj i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数 当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY=ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章 正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P 一般正态分布的概率计算),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔一般正态分布的概率计算公式第五章卡方分布t 分布F 分布 )()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ则若),(~),1,0(~2n Y N X χ)(~/n t nY X正态总体条件下 样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计 最大似然估计似然函数均值的区间估计——大样本结果),(~2nN X σμ)1,0(~/N nX σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ)1,1(~//2122212221--n n F S S σσ);(1θi ni x f L ∏==);(1θi ni x p L ∏==⎪⎫⎛z x σα/—正态总体方差的区间估计⎪⎪⎭⎫ ⎝⎛-±n p p z p )1(2/α正态分布的分位点—大样本要求样本容量—样本比例—2/)50(αz n np >已知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛±n z x σα2/未知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛-±n s n t x )1(2/α分布的分位点的自由度为—t n n t 1)1(2/--α()22)1()1(--Sn Sn 样本方差—22S两个正态总体均值差的置信区间大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
(整理)概率论公式大全
第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
概率论与数理统计公式大全
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论公式大全
第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
《概率论公式大全》Word文档
概率论公式1.随机事件及其概率吸收律:AAB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni in i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P)()(A P AB P乘法公式 ())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式 ∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = pn k p p C k X P k n k k n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有 ,2,1,0!)1(lim ==---∞→k k e p p C kk n n k n kn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (m , s 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xy dvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( ⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) ⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征数学期望 ∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X EX 的 k 阶中心矩)))(((k X E X E -X 的 方差)()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X EX ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫ ⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ(注:素材和资料部分来自网络,供参考。
全概率论公式
全概率论公式总结概率公式整理1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=ni ini iA A 11=== ni ini iA A 11===2.概率的定义及其计算:)(1)(A P A P -= 若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P)()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P ()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()( 4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n kk n ,,1,0,)1()( =-==- *Possion 定理 0lim >=∞→λn n np 有,2,1,0!)1(l i m ==---∞→k k ep p C kkn n k nkn n λλ(3) Poisson 分布 )(λP ,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U ⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE ⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 ) +∞<<∞-=--x e x f x 222)(21)(σμσπ ⎰∞---=xt t ex F d 21)(22)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x tex xt d 21)(22π7.多维随机变量及其分布 二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x yd v d uv u f y x F ),(),(边缘分布函数与边缘密度函数 ⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( ⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量 (1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布 +∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222121121)())((2)()1(21221σμμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X = 10.随机变量的数字特征 数学期望∑+∞==1)(k k k p x X E ⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩 )(k X E X 的 k 阶绝对原点矩 )|(|k X EX 的 k 阶中心矩 )))(((k X E X E - X 的 方差 )()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩 )(l k Y X E X ,Y 的 k + l 阶混合中心矩 ()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数 XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) = E ((X - E (X ))2) )()()(22X E X E X D -= 协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ。
概率论的公式大全
概率论的公式大全1.基本概率公式:对于一个随机事件A,它发生的概率(记作P(A))等于A包含的元素数目除以样本空间中元素的总数目。
P(A)=个数(A)/个数(样本空间)2.条件概率公式:对于两个事件A和B,如果B已经发生,则A发生的概率记作P(A,B)。
P(A,B)=P(A交B)/P(B)3.全概率公式:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(A)=Σ(P(A,Bi)*P(Bi)),i=1到n4.贝叶斯定理:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(Bi,A)=(P(A,Bi)*P(Bi))/Σ(P(A,Bj)*P(Bj)),j=1到n5.独立事件公式:对于两个事件A和B,如果它们相互独立(即A的发生与B的发生没有任何关系),则它们的联合概率等于它们的乘积。
P(A交B)=P(A)*P(B)6.乘法公式:对于一系列独立事件A1,A2,...,An,它们的概率等于各个事件发生的概率的乘积。
P(A1交A2交...交An)=P(A1)*P(A2)*...*P(An)7.加法公式:对于两个事件A和B,它们的并集的概率等于各个事件发生的概率之和减去它们的交集的概率。
P(A并B)=P(A)+P(B)-P(A交B)8.期望值公式:对于一个随机变量X和它的概率分布P(X),它的期望值可以表示为:E(X)=Σ(Xi*P(Xi))9.方差公式:对于一个随机变量X和它的期望值E(X),它的方差可以表示为:Var(X) = Σ((Xi - E(X))^2 * P(Xi)),i为X的取值范围内的索引10.协方差公式:对于两个随机变量X和Y,它们的协方差可以表示为:Cov(X, Y) = E((X - E(X)) * (Y - E(Y)))11.相关系数公式:对于两个随机变量X和Y,它们的相关系数可以表示为:Corr(X, Y) = Cov(X, Y) / (σ(X) * σ(Y)),其中σ(X)和σ(Y)分别是X和Y的标准差12.大数定律:对于独立同分布的随机变量序列X1,X2,...,Xn,当n趋向于无穷大时,它们的算术平均值逐渐接近它们的期望值。
概率统计公式大全
概率统计公式大全概率统计是研究随机现象及其规律性的一门学科,其核心就是用数学方法来描述和分析随机现象。
在概率统计的理论体系中,有很多重要的公式和定理,下面对一些常用的公式进行介绍。
1.概率公式:(1)加法规则:P(A∪B)=P(A)+P(B)-P(A∩B),其中A和B为事件,P(A)和P(B)分别是事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
(2)乘法规则:P(A∩B)=P(A)×P(B,A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。
2.条件概率公式:(1)贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B),其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B发生的概率。
(2)全概率公式:P(B)=ΣP(Ai)×P(B,Ai),其中B是一个事件,Ai是样本空间的一个划分,即Ai是互不相容且并集为样本空间的一组事件。
3.期望公式:(1) 离散型随机变量的期望:E(X) = ΣxiP(X=xi),其中X是一个离散型随机变量,xi是X的取值,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的期望:E(X) = ∫xf(x)dx,其中X是一个连续型随机变量,f(x)是X的概率密度函数。
4.方差公式:(1) 离散型随机变量的方差:Var(X) = Σ(xi-E(X))^2P(X=xi),其中Var(X)表示随机变量X的方差,xi是X的取值,E(X)是X的期望,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的方差:Var(X) = ∫(x-E(X))^2f(x)dx,其中Var(X)表示随机变量X的方差,E(X)是X的期望,f(x)是X的概率密度函数。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。
2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。
3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。
4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。
5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。
2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。
3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。
4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。
5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。
6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。
以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。
掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。
概率论公式总结
第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤ba dx x fb X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dy y x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=k k k p x g X g E )())((∑∑=i j iji p x X E )(∑∑=i j ij j i p y x XY E )(方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数协方差的性质独立与相关 独立必定不相关、相关必定不独立、不相关不一定独立dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤ )(1)()(a a Z P a Z P Φ-=>=≥ )()()(a b b Z a P Φ-Φ=≤≤ 1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P 一般正态分布的概率计算一般正态分布的概率计算公式 ),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。
(完整版),概率论公式总结,推荐文档
P( Ai Aj Ak ) (1)n1 P( A1 A2 An )
i 1
i 1
1i jn
1i jk n
3.条件概率 PB A P(AB) 乘法公式 P(AB) P(A)PB A (P(A) 0) P( A)
P( A1 A2 An ) P( A1 )P A2 A1 P An A1 A2 An1
(P( A1 A2 An1 ) 0)
n
全概率公式 P(A) P(ABi ) i 1
n
P(Bi ) P( A
i 1
Bi ) Bayes 公式 P(Bk
A) P( ABk ) P( A)
P(Bk )P( A Bk ) n P(Bi )P( A Bi ) i 1
4.随机变量及其分布
分布函数计算 P(a X b) P(X b) P(X a)
f (x, y)dx
fY X ( y x) f X (x)dx
fX Y (x y)
f (x, y) fY ( y)
fY X ( y x) fX (x) fY ( y)
fY X ( y x)
f (x, y) fX (x)
fX Y (x y) fY ( y) fX (x)
10. 随机变量的数字特征
E ( X E( X ))k (Y E(Y ))l
E(X kY l )
X ,Y 的 k + l 阶混合中心矩
X ,Y 的 二阶混合原点矩 E(XY ) X ,Y 的二阶混合中心矩 X ,Y 的协方差 E( X E( X ))(Y E(Y ))
X ,Y 的相关系数
E
(X
E( X ))(Y E(Y D( X ) D(Y )
f (x, v)dv
8. 连续型二维随机变量 (1) 区域 G 上的均匀分布,U ( G )
概率论与数理统计必背公式
概率论与数理统计必背公式在概率论与数理统计中,掌握好一些重要的公式是非常重要的,这些公式可以帮助我们解决问题、推导证明以及计算概率和统计量。
下面将介绍一些必须掌握的概率论与数理统计的重要公式。
一、概率论公式:1.加法定理:如果事件A和B是互不相容的(即A和B不会同时发生),则它们的和事件的概率为P(A∪B)=P(A)+P(B)。
2.条件概率公式:对于两个事件A和B,A在给定B发生的条件下发生的概率定义为P(A,B)=P(A∩B)/P(B)。
3.乘法定理:对于两个事件A和B,其交事件的概率可以通过条件概率公式来计算,即P(A∩B)=P(A,B)*P(B)。
4.全概率公式:如果事件B1,B2,...,Bn是一组互不相容的且其并集为样本空间(即事件B1∪B2∪...∪Bn=S),则对于事件A,它的概率可以通过条件概率公式和全概率公式来计算,即P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。
5.贝叶斯公式:贝叶斯公式是条件概率公式的推广,对于事件A和B,其交事件的概率可以通过贝叶斯公式来计算,即P(A,B)=P(B,A)*P(A)/P(B)。
二、数理统计公式:1.期望:对于一组随机变量X,其期望(也称为均值)定义为E(X)=ΣX*P(X),即随机变量X乘以其概率的和。
2. 方差:对于一组随机变量X,其方差定义为Var(X) = E((X - μ)^2),其中μ为X的期望。
3. 协方差:对于两组随机变量X和Y,其协方差定义为Cov(X,Y) = E((X - μx)(Y - μy)),其中μx和μy分别为X和Y的期望。
4. 标准差:对于一组随机变量X,其标准差定义为σ = √Var(X),即方差的平方根。
5. 协方差矩阵:对于多组随机变量X1,X2,...,Xn,其协方差矩阵定义为Cov(X) = [Cov(Xi,Xj)],其中i和j分别表示第i组和第j组随机变量。
概率论公式总结
则称随机变量 服从参数为 , 的二项分布。记为 。当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
随机变量的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。
例如:若X与Y独立,则:3X+1和5Y-2独立。
函数分布
Z=X+Y
根据定义计算:
态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
,
Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和
W~
我们称随机变量W服从自由度为n的 分布记为
所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
离散型
连续型
期望
期望就是平均值
设X是离散型随机变量,其分布律为P( )=pk,k=1,2,…,n,
(要求绝对收敛)
设X是连续型随机变量,其概率密度为f(x),
(要求绝对收敛)
函数的期望
Y=g(X)
Y=g(X)
方差
D(X)=E[X-E(X)]2,
概率论核心概念及公式(全)
A B
如果同时有 A B ,B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A—B,也可
件的关 表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
1° 0≤P(A)≤1, 2° P(Ω) =1 3° 对于两两互不相容的事件 A1 , A2 ,…有
P Ai P(Ai) i1 i1 常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。1° Nhomakorabea,2 n,
(8)古 典概型
2°
P(1 )
P( 2 )
P( n )
1 n
。
设任一事件 A ,它是由1,2 m 组成的,则有
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成. 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
种方法来完成,则这件事可由 m×n 种方法来完成.
如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
(5)基 ②任何事件,都是由这一组中的部分事件组成的。
本事 这样一组事件中的每一个事件称为基本事件,用 来表示.
件、样 基本事件的全体,称为试验的样本空间,用 表示。
本空间 一个事件就是由 中的部分点(基本事件 )组成的集合.通常用大写字母
P(B | A) P(AB) P(A)P(B) P(B) P(A) P(A)
(完整版)概率论公式总结
(完整版)概率论公式总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤ba dx x fb X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dy y x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=k k k p x g X g E )())((方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质∑∑=i j iji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关独立必定不相关、相关必定不独立、不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。
概率论公式总结
第一章P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时,P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|(∑≤==≤=xk k X P x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badx x f b X a P )()()0(1)(/≥=-x ex f x θθ)(1)(b x a ab x f ≤≤-=分布函数 对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度⎰∞-=≤=xdt t f x X P x F )()()(⎰∞-=≤=x dt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ⎰+∞∞-=dyy x f x f X ),()()()('x f x F =离散型随机变量的独立性连续型随机变量的独立性第三章 数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(∑=kkk p x g X g E )())((∑∑=ijiji p x X E )(方差 定义式常用计算式常用公式dxdyy x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=ijijj i p y x XY E )(dxdyy x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数 当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质独立与相关))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+独立必定不相关 相关必定不独立 不相关不一定独立 第四章 正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P 一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔第五章卡方分布t 分布F 分布 正态总体条件下样本均值的分布:)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2nN X σμ)1,0(~/N nX σμ-则若),(~),1,0(~2n Y N X χ)(~/n t nY X样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计 最大似然估计似然函数均值的区间估计——大样本结果)1(~)1(222--n S n χσ)1(~/--n t ns X μ)1,1(~//2122212221--n n F S S σσ);(1θi ni x f L ∏==);(1θi ni x p L ∏==⎪⎭⎫ ⎝⎛±n z x σα2/正态分布的分位点—大样本要求样本容量—代替准差通常未知,可用样本标标准差—样本均值—2/)50()(ασz n ns x>正态总体方差的区间估计 两个正态总体均值差的置信区间大样本或正态小样本且方差已知⎪⎪⎭⎫ ⎝⎛-±n p p z p )1(2/α正态分布的分位点—大样本要求样本容量—样本比例—2/)50(αz n np >已知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛±n z x σα2/未知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛-±n s n t x )1(2/α分布的分位点的自由度为—t n n t 1)1(2/--α()22/1222/2)1()1(,ααχχ---S n S n 卡方分布的分位点—样本方差—22/2αχS ()⎪⎪⎭⎫ ⎝⎛+±-2221212/21n n z x x σσα两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
随机变量,
(5)八
F
(x)
pk ;对于连续型随机变量, 。 F (x)
f (x)dx
xk x
大分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生 的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2, , n 。
P( X
k)
Pn(k
)
C
k n
p k q nk
率。分布函数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
1. 0 F(x) 1, x ;2。 F(x) 是单调不减的函数,即 x1 x2 时,有
F(x1) F (x2) ; 3 。 F() lim F(x) 0 , F() lim F(x) 1 ; 4 。
x
x
F(x 0) F(x) ,即 F(x) 是右连续的;5. P(X x) F(x) F(x 0) 。对于离散型
x
F (x) f (x)dx
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度
函数或密度函数,简称概率密度。
密度函数具有下面性质: f (x) 0 。
f (x)dx 1
离 散 与 P(X x) P(x X x dx) f (x)dx 。积分元 f (x)dx 在连续型随机变量理论
并且同时满足 P(ABC)=P(A)P(B)P(C)
全概公式
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
贝叶斯公 式
P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
第 1 章 随机事件及其概率
加法公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B)
P(A-B)=P(A)-P(AB)
减法公式 当 B A 时,P(A-B)=P(A)-P(B)
当 A=Ω时,P( B )=1- P(B)
乘法公式: P(AB) P(A)P(B / A)
设随机变量 X 的密度函数为
f (x)
1
( x )2
e 2 2
2
正态分布
其中 、 0 为常数,则称随机变量 X 服从参数为 、 的 正态分布或高斯(Gauss)分布,记为 X ~ N (, 2 ) 。
f (x) 具有如下性质:
1° f (x) 的图形是关于 x 对称的; 2° 当 x 时, f () 1 为最大值;
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
独立性
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
离散型
连续型
已知 X 的分布列为
( x1 , x2 )内的概率为
f
(
x)
b
1
a
,
0,
a≤x≤b 其他
P( x1
X
x2 )
x2 b
x1 a
ex ,
x 0,
指数分布
f (x)
0,
x 0,
其中 0 ,则称随机变量 X 服从参数为 的指数分布。
X 的分布函数为
F(x)
1 ex , 0,
x 0,
记住积分公式
x<0x。n e x dx n! 0
乘法公式
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 … An 1) 。
①两个事件的独立性
设事件 A 、 B 满足 P( AB) P( A)P(B) ,则称事件 A 、 B 是相互独立的。
泊松分布
P( X k) k e , 0 , k 0,1,2 ,
k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或 者 P( )。
超几何分布
P( X
k)
CMk
•
C
nk N M
,
k
0,1,2
,l
CNn
l min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1 ,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
“由果朔因”的推断。
第二章 随机变量及其分布
连续型 随机变 量的分 布密度
设 F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实数 x ,有
,
q 1 p,0 p 1, k 0,1,2, , n ,
其中
二项分布
则称随机变量 X 服从参数为 n , p 的二项分布。记为 X ~ B(n, p) 。当 n 1时, P( X k) p k q1k ,k 0.1,这
就是(0-1)分布,所以(0-1)分布是二项分布的特例。
设随机变量 X 的分布律为
几何分布
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀分布
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b]
上为常数 1 ,即 ba
当 a≤x1<x2≤b 时,X 落在区间
2 若 X ~ N (, 2 ) ,则 X 的分布函数为
F(x) 1
(t )2
x
e
2 2
dt
2
(x) 是不可求积函数,其函数值,已编制成表可供查用。
X
~ N (0,1)
Φ(-x)=1-Φ(x)且
Φ(0)=
1
。如果
X
~
N(,
2
)
,则
2
P( x1
X
x2 )
x2
x1
。
函数分 布
连续型
随 机 变 中所起的作用与 P( X xk) pk 在离散型随机变量理论中所起的作用相类似。
量的关
系
0-1 分布
P(X=1)=p, P(X=0)=q
设 X 为随机变量, x 是任意实数,则函数 F(x) P(X x) 称为随机变量 X 的分布函数,
本质上是一个累积函数。 P(a X b) F(b) F(a) 可以得到 X 落入区间 (a, b] 的概