第十五章 整式的乘除与因式分解 第13学时导学案
整式的乘除与因式分解复习导学案
§ 12-13整式的乘除与因式分解复习【学习目标】1. 了解整数指数幕的意义和基本性质。
2. 会进行简单的整式乘除运算,能进行整式的加、减、乘、除混合运算3. 能运用乘法公式简便运算。
4•会用提取公因式法、公式法(直接用公式不超过二次)进行因式分解。
【问题探究】1. (2009重庆)下列计算错误的是( ) A 2m 3n 二 5mn; B. a^:' a 2 二 a 4;C. x 2 3 二 x 6;D. aLa 2 二 a 3;2 .(2009烟台).计算-(-3a 2b3 )4的结果是8 12 6 7 A.81a b ; B. 12a b ;C. -12a 6b 7;D. -81a 8b 12;3.. 计算(2011-江0的结果是 (A. 0;B. 1;C. 2011 -二;D.二-2011.考上*—. 宣必沖窃处击(aD ) ___ = ; a円 a亠—丁―. 【问题导学】•体系构建整式的考点二乘法公式 a+b a-b = ______ ;2 2(a+b ) =; (a-b ) =4. 下列运算结果错误的是 ()2 2 2 2 2A x y x - y = x - y ; B. a- b \ - a - b ;2 2 2C. -x-2 x 4x 4;D. x 2 x-3 = x -x-6;5. 在边长为a 的正方形中挖去一个边长为 b 的小正方形(a . b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可 考点三整式的运算乘法法则:;除法法则:;混合运算顺序:先乘方,再,最后,有括号的先计算的,注意乘法公式简化运算。
7. (2009泸州)化简-3x 2 2x 3的结果是( )A. -6x 5;B. -3x 5;C. 2x 6;D. 6x 5.38.. 计算(2x ) U 的结果正确的是( ).A.8x 2;B. 6x 2;C. 8x 3;D. 6x 3.9.计算:ab 2 L -a 3b 「丨 5ab ;考点四因式分解 以验证()A .B .C . 2 2 2(a b)二a 2ab b2 2 2(a -b) -a -2ab b2 2a -b = (a b)(a -b)2 2(a 2b)(a _b) =a ab -2b a2011- 20102.(用乘法公式)D . b图乙10.下列各式从左到右的变形中,是因式分解的是()2A.x 1 x 2 = x 3x 2;B.2a b c = 2ab 2ac;2 2C.m -n mn m-n;2D.x「4 2x = (x 2)(x「2) 2x11.把多项式x3-2x2• x分解因式结果正确的是()2 2A . x(x -2x)B . x (x「2)2C. x(x 1)(x -1)D. x(x -1)12.因式分解:(1)9a-a3 = ________ ;(2) 2x3 -6x2 +4x = _________ .【达标检测】—、填空题1.(2010大理)下列运算中,结果正确的是()6 3 2 2 22 4A. a ' a =a ;B. 2ab i;=2a b ;C. aLa2 a3;D. a b $ = a2 b2;2.下列计算结果正确的是. ).A. -2x2y3Ltxy =「2x3y4;B. 3x2y -5xy2=「2x2y;C.28x4y2,7x3y =4xy;D. -3a-2 3a-2 i; = 9a2-4.3.把x2 3x c分解因式得x2 3x x 1 x 2 ,则c的值为()A. 2;B. 3;C. -2;D. -3.4 . (2009 枣庄)若 m n =3,则 2m2 4mn 2n2 -6 的值为()A. 12;B. 6;C. 3;D. 0.二、选择题5.(2010 清远)计算:a* + a2=_;6.(2009贺州)计算:f-2^\-a3-^= ;\4丿7.(2009 齐齐哈尔)已知 10m =2,10n =3,则 103m '2^ _________ 三、解答题8.先化简,再计算:[】xy 2 xy-2 -2右-2八xy ,其中x =10, y =-9.(2009衢州)给出三个整式a2、b2和2ab.(1)当 a =3,b =4 时,求 a2 b2 2ab 的值;(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解,请写出你所选的式子及因式分解的过程。
人教版八年级数学上册教案第十五章整式的乘除与因式分解
人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.掌握整式的乘法与除法运算方法。
2.熟练运用因式分解法简化整式。
3.了解整式乘法运算法则。
4.理解同类项、化简、展开与合并的概念。
二、教学重点1.整式的乘除法。
2.因式分解的应用。
三、教学难点1.针对具体的题目,确定解题方法2.因式分解运用的灵活性四、教学方法1.巩固性问题讲义、规律性问题讲义、思维性问题讲义2.案例分析、启发引导3.组卷、强化训练五、教学过程1、整式乘法【教学目标】了解整式的乘法法则。
【教学重难点】了解整式的乘法法则,掌握基本的分配律、结合律。
【教学内容】1.整式的乘法法则2.常见的整式乘法运算【课堂探究】观察并解答以下问题:如果有两个整式A和B,i表示A的每一项与B的每一项相乘得到的积,那么有哪些特殊的性质?【课堂讲解】使用分配律,将A拆分成A1,A2两个项的和,B拆分成B1,B2两个项的和,得到相对应的乘积AB=A1B1+A1B2+A2B1+A2B2【课堂演示】展示实例,让学生可以更清楚地理解整式乘法方法。
2、整式除法【教学目标】了解整式的除法方法。
【教学重难点】掌握整式除法的基本方法,在解题中学生应灵活掌握解法的方式。
【教学内容】1.整式的除法法则2.常见的整式除法运算【课堂探究】观察并解答以下问题:如果有两个整式A和B,C表示A和B的商,D表示余数,那么有哪些特殊的性质?【课堂讲解】将整式A表示成B的某个倍数与余数的和,得到下式A=BC+D【课堂演示】展示实例,让学生可以更清楚地理解整式除法的运用。
3、整式的因式分解【教学目标】了解因式分解方法,掌握因式分解的应用场景【教学重难点】以实际例子解析因式分解方法及其应用。
【教学内容】1.因式分解的定义2.因式分解的基本方法及原则3.因式分解的常见技巧【课堂探究】观察并解答以下问题:什么情况下需要进行因式分解?以及进行因式分解的好处是什么?【课堂讲解】进行因式分解,可以将一个复杂的整式简化成简单的因式相乘的形式,便于进行运算或者求解。
第十五章 整式的乘除与因式分解 全章学案
15.1.1同底数幂的乘法自主学习重难点:1.熟记同底数幂的乘法的运算性质,了解法则的推导过程 2.能熟练地进行同底数幂的乘法运算学习过程:二.1. 同底数幂的乘法概念:探究:根据乘方的意义填空,看看计算结果有什么规律。
(1) 2×2×2×2×2=(),a·a·…·a=( )m个(2) 23×22=( )×( )=2( ),(3) 53×52=( )×( )=5( ),(4) a3a4=( )×( )=a( )。
(5) a n中a叫,n叫做,它表示。
2.同底数幂的乘法法则如果把a3×a4中指数3和4分别换成字母m和n(m、n为正整数)同底数幂的乘法法则:同底数幂相乘, 不变, 相加.(1) 公式:a m·a n=(m、n为正整数)(2) 推广:a m·a n·a p=(m、n、p为正整数)例1计算:(1) 52)()(xx•;(2) 6)()(aa•;➢熟记同底数幂的乘法的运算性质,了解法则的推导过程。
➢学习目标一.141~142(3) 34)2()2(2⨯⨯ ; (4) 13)()(+•m m x x 。
例2,计算:32)()(a a -⋅-例3:光的速度为3×510千米/秒,太阳光照射到地球上约需5×210秒,问:地球离太阳多远?若飞机时速856千米/秒,飞行这么远的距离需多长的时间?练习:① 23)()(x x -⋅- ②23)()()(a a a -⋅-⋅-③ n n t t -+-⋅-123)()( ④ y 2n ·y n+115.1.2幂的乘方自主学习重难点:1.熟记幂的乘方的运算法则2. 了解幂的乘方的运算性质学习过程:1.如果—个正方体的棱长为16厘米,即42厘米,那么它的体积是多少?2.计算:(1)a 4·a 4·a 4; (2)x 3·x 3·x 3·x 3。
第十五章__整式的乘除与因式分解教案
标
知识与技能
通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.
过程与方法
经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.
情感态度
与价值观
通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.
情感态度
与价值观
培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神。
教学重难点
重点:单项式乘法运算法则的推导与应用.难点:单项式乘法运算法则的推导与应用.
课堂教学设计
师生活动
个性化设计
一、创设情境,操作导入
让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.
【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?
【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.
实际上mx·x=m(x·x)=m·x2=mx2.
【教师活动】总结新知:我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.
四、课堂总结,发展潜能幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.
五、布置作业,专题突破课本P148习题15.1第1、2题.
人教版八年级数学上册教案第十五章整式的乘除与因式分解
人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.了解整式的概念,掌握整式的加减乘除等基本运算法则。
2.能够将一个多项式因式分解为一次项的积和二次项的积等形式,并掌握利用整除关系和公式进行因式分解的方法。
3.能够运用简单数的知识,解决实际问题,提高逻辑思维能力。
二、教学重点和难点重点1.整式的概念和基本运算法则。
2.多项式的因式分解,利用整除关系和公式进行因式分解。
难点1.将多项式因式分解为一次项的积和二次项的积等形式。
2.利用简单数的知识解决实际问题。
三、教学内容和方法教学内容1.整式的概念和基本运算法则,包括多项式的加减乘除。
2.多项式的因式分解。
教学方法1.讲解法:通过讲解,让学生掌握整式的概念和基本运算法则,并将多项式分解为一次项的积和二次项的积等形式。
2.练习法:通过练习,巩固知识点,提高解题能力。
3.探究法:通过探究实际问题,激发学生解决实际问题的兴趣和能力。
四、教学过程1. 整式的概念和基本运算法则1.引入例:小明拿到了如下一张表格,请你们看看这张表格,表格中的运算都有什么特点呢?a b c d23574610148122028在本章中,我们要学习的就是多项式的运算,它与这个表格有一定的联系。
你们能看出来吗?2.知识点讲解•定义1:若ax2+b(a e0,b为常数)是一个代数式,则称其为一个二次多项式(简称二次式),其中x是未知数。
•定义2:若多项式中每一项的次数都相同,则称其为整式。
•加减法:整式相加或相减时,将同类项的系数相加或相减,不同类项的系数保持不变。
•乘法:整式相乘时,将每一项的系数分别相乘,幂次相加,再将各项和起来即可,注意化简。
•除法:整数的除法不能简单地用分数表示,同样地,整式的除法也不能简单地用分母式来表示。
此处需要老师进行解释,建议采用韦达定理进行讲解。
3.练习请同学们将以下整式相加或相减:•(3x2+5x−2)+(2x2−3x+1)参考答案:5x2+2x−12. 多项式的因式分解1.引入在上面的练习中,我们要完成的就是两个整式的加减运算。
人教版八年级数学上册第十五章整式的乘除与因式分解(教案)
举例:计算(a+b)(c+d),重点强调如何正确处理符号和合并同类项。
(2)多项式乘以单项式的法则:理解和运用单项式乘以多项式的法则,注意乘法分配律的应用。
举例:计算3x(2x^2+4x-1),重点在于如何将单项式3x分别与多项式中的每一项相乘。
(3)平方差公式和完全平方公式的应用:掌握平方差公式(a^2-b^2)和完全平方公式(a^2±2ab+b^2),并能灵活运用到实际计算中。
举例:化简表达式a^2-4,重点在于应用平方差公式得到(a+2)(a-2)。
(4)因式分解的方法:掌握提公因式法、平方差公式法和完全平方公式法,能够将多项式分解为整式的乘积。
3.平方差公式:掌握平方差公式的结构特点,能够灵活运用平方差公式进行乘法运算。
4.完全平方公式:理解并掌握完全平方公式的结构,学会运用完全平方公式进行乘法运算。
5.因式分解:掌握提公因式法、平方差公式法和完全平方公式法等因式分解方法,解决实际问题。
本节课将结合实际例题,帮助学生巩固所学知识,提高解题能力。
在学生小组讨论环节,我注意到有些学生在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分整理自己的思路。针对这个问题,我需要在今后的教学中加强学生的语言表达训练,让他们学会如何条理清楚地表达自己的观点。
最后,总结回顾环节,我发现在这个阶段,部分学生仍然存在疑问。这说明我在课堂上的讲解和引导可能还不够到位,需要进一步关注学生的学习反馈,及时调整教学方法,提高教学效果。
五、教学反思
今天我们在课堂上学习了整式的乘除与因式分解,回顾整个教学过程,我觉得有几个地方值得反思。首先,我在导入新课环节提出了与日常生活相关的问题,希望通过这种方式激发学生的兴趣,但从学生的反应来看,可能问题设置得还不够贴近他们的实际经验,导致部分学生的参与度不高。在今后的教学中,我需要更加注意问题的设计,使其更具有针对性和吸引力。
人教版八年级数学上册第十五章整式的乘除与因式分解导学案
第十五章整式的乘除与因式分解导学案课题:15.1.1同底数幂的乘法第1课时学习目标:1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点:正确理解同底数幂的乘法法则难点:正确理解和应用同底数幂的乘法法则学习方法:归纳、概括一.提出问题,创设情境复习na的意义:na表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,•n 是指数.提出问题:问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?二.导入新课1.做一做计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)2.议一议a m·a n等于什么(m、n都是正整数)?为什么?“同底数幂相乘,底数__________,指数____________”.3.练习(1)x2·x5(2)a·a6(3)2×24×23(4)x m·x3m+1[例2]计算a m·a n·a p后,能找到什么规律?三.随堂练习1.课本P170练习四.反思归纳1、本节课学习的内容2、本节课的数学思想方法课 题:15.1.2幂的乘方学习目标:1.会进行幂的乘方的运算。
.2.了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题. 重 点: 会进行幂的乘方的运算难 点: 幂的乘方法则的总结及运用学习方法:归纳、概括一.提出问题,创设情境计算(1)(x+y )2·(x+y )3(2)x 2·x 2·x+x 4·x(3)(0.75a )3·(41a )4 (4)x 3·x n-1-x n-2·x 4二.导入新课1.做一做()426表示_________个___________相乘. 32)(a 表示_________个___________相乘.在这个练习中,要引导学生观察,推测(62)4与(a 2)3的底数、指数。
第十五章整式的乘除与因式分解导学案
课题:15.1.1同底数幂的乘法第1课时学习目标:1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点:正确理解同底数幂的乘法法则难点:正确理解和应用同底数幂的乘法法则学习方法:归纳、概括一.提出问题,创设情境复习na的意义:na表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,•n是指数.提出问题:问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?二.导入新课1.做一做计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)2.议一议a m·a n等于什么(m、n都是正整数)?为什么?“同底数幂相乘,底数__________,指数____________”.3.练习(1)x2·x5(2)a·a6(3)2×24×23(4)x m·x3m+1[例2]计算a m·a n·a p后,能找到什么规律?三.随堂练习1.课本P170练习四.反思归纳1、本节课学习的内容2、本节课的数学思想方法课题:15.1.2幂的乘方学习目标:1.会进行幂的乘方的运算。
.2.了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题.重点:会进行幂的乘方的运算难点:幂的乘方法则的总结及运用学习方法:归纳、概括一.提出问题,创设情境计算(1)(x+y )2·(x+y )3(2)x 2·x 2·x+x 4·x(3)(0.75a )3·(41a )4(4)x 3·x n-1-x n-2·x 4二.导入新课1.做一做()426表示_________个___________相乘.32)(a 表示_________个___________相乘.在这个练习中,要引导学生观察,推测(62)4与(a 2)3的底数、指数。
八年级数学上册 第15章整式的乘除与因式分解复习教案 人教新课标版
第十五章整式的乘除与因式分解(复习)教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式m a+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.m a+mb+mc=m(a+b+c)就是把m a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是m a+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4a b+2a=2a(4a b-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)x n(x2-x+1)=x n+2-x n+1+x n.典例剖析师生互动例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。
人教版八年级数学上册教案第十五章整式的乘除与因式分解
人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.理解整式乘法的概念和特殊情况,高效地进行整式的乘法运算。
2.了解整式除法的概念和常见方法,并能结合具体问题进行应用。
3.掌握整式的因式分解方法,包括公因式提取、配方法、分组、不完全平方、差平方等。
二、教学重点1.整式的乘法。
2.整式的因式分解方法。
三、教学难点1.整式的因式分解方法。
2.大题的解答。
四、教学方法1.讲授法。
2.示范法。
3.探究法。
五、教学过程1.整式的乘法1.1 身边的“表现”:观望4—5位学生,让他们两两组合,进行口算。
1.2 教材完整呈现(1)概念:乘法是指将两个数相乘得到一个新的数的运算。
(2)规律:同类项相乘系数相乘,变量相乘对应指数相加。
(3)例题展示:【P161,例1】(4)基本技能:能够识别同类项、合并同类项。
(5)习题练习:【P161,1—6】。
2.整式的除法2.1 身边“表现”:观察跑步者速度的关系,进行讨论。
2.2 教材完整呈现(1)概念:除法是指用一个数去除另一个数,得到商的过程。
(2)方法:长除法、缩项法,观察式子的形式选择不同的方法。
(3)例题展示:【P170,例5](4)基本技能:能够用长除法求商和余数,能够用缩项法求商(按公共项或者每项的最高次幂进行缩项)。
(5)习题练习:【P170,1—6】。
3.整式的因式分解3.1 身边“表现”:观察一些简单的数学实例,如把50分解成两个比较小的数。
3.2 教材完整呈现(1)概念:因式分解是指将一个多项式分解成几个因子相乘的形式。
(2)方法:公因式提取、配方法、分组、不完全平方、差平方等。
(3)例题展示:【P182—183,例5、6】(4)基本技能:能够根据不同题目结合多种方法进行因式分解。
(5)习题练习:【P183,1—6】。
四、教学反思本章教学重点在课堂实际操作中,学生在掌握基本技能的基础上根据题目选用相应方法进行熟练的解答,需要多返回前面课程,积累基础,多思考前后知识的联系,才能顺利进行深入的学习。
第十五章整式的乘除与因式分解教学案教案
(第一课时)学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。
通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方a n的意义:a n表示个相乘,即a n= .乘方的结果叫a叫做,•n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算列式为,你能利用乘方的意义进行计算吗二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)55×54=________ _=5( );(3)(-3)3×(-3)2=__ _______________ =(-3)( );(4)a6·a7=_______________ _ =a( ).(5)5m·5n猜一猜:a m·a n = (m、n都是正整数) 你能证明你的猜想吗说一说:你能用语言叙述同底数幂的乘法法则吗同理可得:a m·a n ·a p = (m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)a·a3;(3)m·m3·m5;(4)x m·x3m+1 (5)x·x2+ x2·x1.填空:⑴ 10×109= ;⑵ b2×b5= ;⑶x4·x= ;⑷x3·x3= .2.计算:(1) a2·a6; (2)(-x)·(-x)3; (3) 8m·(-8)3·8n; (4)b3·(-b2)·(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式.(1)(x+y)4·(x+y)3 (2)(x-y)3·(x-y)·(y-x)(3)-8(x-y)2·(x-y) (4) (x+y)2m·(x+y)m+1四、学以致用:1.计算:⑴ 10n·10m+1= ⑵x7·x5= ⑶m·m7·m9=⑷-44·44= ⑸ 22n·22n+1= ⑹ y5·y2·y4·y=2.判断题:判断下列计算是否正确并说明理由⑴a2·a3= a6( );⑵a2·a3= a5();⑶a2+a3= a5( );⑷a·a7= a0+7=a7();⑸a5·a5=2a10();⑹ 25×32=67()。
第十五章整式的乘除与因式分解导学案全章
圣源学校八年级数学高效课堂导学案【教材信息】课题:§15.1 整式的乘法第一课时同底数幂乘法课型课时总课时【教师信息】主备人:实施人:实施时间【学生信息】班级:姓名:所属小组编号学习日期____【教材信息】课题:§15.1 整式的乘法第二课时幂的乘方课型课时总课时【教师信息】主备人:实施人:实施时间【学生信息】班级:姓名:所属小组编号学习日期____圣源学校八年级数学高效课堂导学案【教材信息】课题:§15.1 整式的乘法第三课时积的乘方课型课时总课时【教师信息】主备人:实施人:实施时间【学生信息】班级:姓名:所属小组编号学习日期____圣源学校八年级数学高效课堂导学案【教材信息】课题:§15.1 整式的乘法第四课时幂的运算综合练习课型课时总课时【教师信息】主备人:实施人:实施时间【学生信息】班级:姓名:所属小组编号学习日期____圣源学校八年级数学高效课堂导学案【教材信息】课题:§15.1 整式的乘法第五课时单项式乘以单项式课型课时总课时【教师信息】主备人:实施人:实施时间【学生信息】班级:姓名:所属小组编号学习日期____圣源学校八年级数学高效课堂导学案【教材信息】课题:§15.1 整式的乘法第六课时单项式乘以多相式课型课时总课时【教师信息】主备人:实施人:实施时间【学生信息】班级:姓名:所属小组编号学习日期____圣源学校八年级数学高效课堂导学案【教材信息】课题:§15.1 整式的乘法第七课时多项式乘以多项式课型课时总课时【教师信息】主备人:实施人:实施时间【学生信息】班级:姓名:所属小组编号学习日期____学习目标 ⒈让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算. ⒉经历探索多项式与多项式相乘的运算法则的推理过程,培养学生计算能力.⒊发展有条理的思考,逐步形成主动探索的习惯. 学习重点:多项式与多项式的乘法法则的理解及应用. 学习难点:多项式与多项式的乘法法则的应用. 学习过程:一.预习与新知:⑴叙述单项式乘以单项式的法则?⑵计算;①()12+-x x x ②()y x xy xy 225351+⎪⎭⎫⎝⎛-⑶在硬纸板上用直尺画出一个矩形,并且分成如图所示的四部分标上字母, 则面积为多少?na ①m b⑷请把矩形沿竖线剪开分成如图所示的两部分。
八年级数学上册《第十五章 整式的乘除与因式分解》15.1.4 整式的乘法导学案(3) 新人教版
八年级数学上册《第十五章整式的乘除与因式分解》15.1.4 整式的乘法导学案(3)新人教版15、1、4 整式的乘法导学案(3)<目标导学>1、记住多项式乘以多项式的法则2、会运用法则转化计算。
难点:法则的归纳与运用重点:法则运用及符号的确定。
一、知识链接:1、x2(x-1)= ;2、-3x(2x-5)= ;3、x(x+2)-3(x+2)= = ;4、(m+n)a= ;5、(m+n)b= ;二、学生预习(课本p _p)部分完成下列问题:1、问题:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米(m+n)(a+b)=ma+mb+na+nb+nb2、结合图形,发现(m+n)(a+b)=3、讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。
注意:每一项必须连同前面的符号相乘。
多项式与多项式相乘实际上是把问题转化为与相乘的问题4、即学即练:(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;三、学生合作(合作探究)计算(1)(x+2)(x+3)(2)(x-4)(x +1)(3)、(x+2)(x-3);有上面的计算结果找规律,(x +p)(x+q)=( )+( )x +( )四、巩固练习:A组(5)、(3x-1)(2x+1);(6)、(2x+1)(2x+3);B组(7)、(y-x)(-x-y)(8)、(-2a-3b)(-2a+3b);五、达标测评计算(1)(3x+2)(x+2)(2)(x+)(x-)(3)(m+2n)(m-3n)(4)(x+2y—1)评价与反思教师“复备”栏或学生笔记栏。
第十五章整式的乘除与因式分解导学案教案修订稿
第十五章整式的乘除与因式分解导学案教案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-课题:15.1.1同底数幂的乘法第1课时学习目标:1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点:正确理解同底数幂的乘法法则难点:正确理解和应用同底幂的乘法法则学习方法:归纳、概括一.提出问题,创设情境复习na的意义:na表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a 叫做底数,•n是指数.提出问题:问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算二.导入新课1.做一做计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)2.议一议a m·a n等于什么(m、n都是正整数)为什么“同底数幂相乘,底数__________,指数____________”. 3.练习(1)x2·x5(2)a·a6(3)2×24×23(4)x m·x3m+1[例2]计算a m·a n·a p后,能找到什么规律三.随堂练习1.课本P170练习四.反思归纳1、本节课学习的内容2、本节课的数学思想方法课题:15.1.2幂的乘方学习目标:1.会进行幂的乘方的运算。
.2.了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题.重 点: 会进行幂的乘方的运算难 点: 幂的乘方法则的总结及运用学习方法:归纳、概括一.提出问题,创设情境计算(1)(x+y )2·(x+y )3(2)x 2·x 2·x+x 4·x(3)(0.75a )3·(41a )4 (4)x 3·x n-1-x n-2·x 4二.导入新课1.做一做()426表示_________个___________相乘.32)(a 表示_________个___________相乘. 在这个练习中,要引导学生观察,推测(62)4与(a 2)3的底数、指数。
八年级数学上册 第十五章整式的乘除与因式分解全章教案 人教新课标版【教案】
第十五章整式的乘除与因式分解§15.1.1 整式教学目标 1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC•的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,•那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为12·c·h.2.小王的平均速度是St.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、12ch、St是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、12ch、St中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、12ch、St这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、12ch是单项式.它们的系数分别是4、1、6、1、-1、12.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、•12ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即12ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、12ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、12ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项. 3x+5y+2z的项分别是3x、5y、2z.1 2ab-3.12r2的项分别是12ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》§15.1.2 整式的加减(1)教学目的:1、 解字母表示数量关系的过程,发展符号感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)根据上面的算式填空:
① =()()②y2-6y+9=()2
③x2+x=()()④ma+mb+mc=()
()
2.(2)中由多项式得到整式乘积形式:
把一个化成几个的的形式,这种变形叫做把这个多项式______,也叫做把这个多项式____________.
※多项式各项都含有的,叫做这个多项式各项的公因式。
6.提公因式法分解因式
如果一个多项式的各项含有公因式,那么就可以,从而将多项式化成两个的乘积的形式,这种分解因式的方法叫做提公因式法。
7.新知应用
例1.把 分解因式
解:分析(如何确定公因式)
(1)系数:若各项系数是整系数,取系数的
(2)字母因数:一是取的字母因式(也可是多项式因式)二是取各相同字母因式的指数,即:取次数的次数.
②分解后每个因式的次数要(填“高”或“低”)于原来多项式的次数.
5.公因式的概念.
⑴一块场地由三个矩形组成,这些矩形的长分别为a,b,c,宽都是m,用两个不同的代数式表示这块场地的面积.
①②
⑵填空:
①多项式 有项,每项都含有,是这个多项式的公因式
② 有项,每项都含有,是这个多项式的公因式
③ 有项,每项都含有,是这个多项式的公因式。
2.多项式与多项式相乘,先用一个多项式的去乘另一个多项式的再把所得的积相加。如: =
3.整式乘法的平方差公式: =
4.整式乘法的完全平方公式: =,(a-b)2=
(二)自主学习
1.认真阅读课本165-167页内容,解决下面问题:
(1)计算下列各式:
①(x+1)(x-1)=_______;②(y-3)2=__________;
本周习惯养成:培养分析、解决问题能力北街实验学校八年级数学上册导学案
课题
15.4.1因式分解—提公因式法
课时
1
本章第13学时
课型
新授课
主备人
李存虎授课人授课源自间审批学习目标
知识与能力
了解分解因式的意义,以及它与整式乘法的相互关系.
重点
会用提公因式法分解因式。
小主人
班级______第____组
姓名_____________
3.因式分解与整式的乘法有什么关系?
4.下列各式从左到右的变形,哪是因式分解?
(1)4a(a+2b)=4a2+8ab(2)6ax-3ax2=3ax(2-x)
(3)a2-4=(a+2)(a-2)(4)x2-3x+2=x(x-3)+2
(5)36a2b=3a﹒12ab⑹
反思:①.分解因式的对象是______________,结果是____________的形式.
⑴ ⑵
⑶2a(y-z)-3b(z-y)
4.利用因式分解计算:21×3.14+62×3.14+17×3.14
【课后巩固】
书面作业:1.课本p167页练习1题.
2.课本p170-171页习题1题﹑4(1)题.
过程与方法
经历从分解因数到分解因式的类比过程,熟练掌握分解因式的基本方法.
难点
了解分解因式的意义,以及它与整式乘法的相互关系
情感态度与价值观
通过用提公因式法分解因式的过程,使学生逐渐养成用分解因式解决数学问题的思想方法
教学流程
学习过程
师生笔记
【课前预习】
(一)知识链接
1.单项式与多项式相乘,就是用去乘的,再把所得的积相加。如: =
例3把2a(b+c)-3(b+c)分解因式。
(三)拓展提升课本p167页练习2﹑3题.
(四)预习小结
1.我的收获:
2.我的困惑:
【课堂互动】
(一)展示、交流、点拨(师生点评):
(二)达标测评:
1.下列各式中,从等式左边到右边的变形,属因式分解的是(填序号)
① ②
⑤ ⑥
2.若分解因式 ,则m的值为
3.把下列各式分解因式