中考数学总复习 第一部分 教材梳理 第五章 图形的认识(二)第3节 与圆有关的计算

合集下载

中考圆形知识点总结数学

中考圆形知识点总结数学

中考圆形知识点总结数学数学是中考中最重要的科目之一,而在数学中,圆形知识点是一个重要的部分。

本文将为大家总结中考数学中的圆形知识点,并介绍一些解题的步骤和思路。

一、圆的基本概念圆是由平面内到定点的距离恒定的所有点的集合。

其中,定点称为圆心,距离称为半径。

- 圆心:圆心通常用大写字母O表示。

- 半径:半径通常用小写字母r表示。

二、圆的性质 1. 同圆弧对应的圆心角相等。

2. 同弦对应的圆心角相等。

3. 圆内接角等于其对应的圆弧的一半。

三、圆的计算 1. 圆的周长圆的周长是指圆的边界的长度,可以通过公式C=2πr来计算,其中C表示周长,r表示半径。

2.圆的面积圆的面积是指圆的内部区域的大小,可以通过公式S=πr²来计算,其中S表示面积,r表示半径。

四、圆与三角形的关系 1. 圆与直角三角形 - 在直角三角形中,斜边的一半恰好可以作为圆的半径,而直角边可以作为圆心与圆的切点。

- 根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方,即a²+b²=c²。

其中a、b表示直角边,c表示斜边。

2.圆与等腰三角形•在等腰三角形中,等腰边恰好可以作为圆的半径,并且通过等腰边的中垂线可以找到圆心。

•根据勾股定理,等腰三角形的底边的一半为半径,底边的一半和高可以构成直角三角形。

五、圆的相关题型解题步骤 1. 计算周长和面积 - 根据给定的半径或直径,使用相应的公式计算圆的周长和面积。

- 注意单位的换算,保留合适的精度。

2.圆与三角形的关系•根据题目中给出的条件,结合圆的性质和三角形的性质,找到合适的角度和边长关系。

•如果涉及到勾股定理,可以根据已知条件计算未知边长或角度。

3.运用解题方法•对于复杂问题,可以运用解题方法,如相似三角形、平行线性质、面积比较等,来简化解题过程。

•注意思考解题的合理性和步骤的连贯性,避免漏解或多解的情况。

六、小结圆形知识点在中考数学中占据重要的地位,掌握圆的基本概念和性质,能够运用相关公式计算圆的周长和面积,理解圆与三角形的关系,在解题过程中合理运用解题方法,都是取得好成绩的关键。

广东省中考数学总复习 第一部分 教材梳理 第五章 图形

广东省中考数学总复习 第一部分 教材梳理 第五章 图形

2. (2016西宁)如图1-5-2-4,D为⊙O上一点,点C在直径BA 的延长线上,且∠CDA=∠CBD. 求证:CD是⊙O的切线.
证明:如图1-5-2-2,连接OE. ∵在△ABC中,∠C=90°,FG⊥BC, ∴∠BGF=∠C=90°. ∴FG∥AC. ∴∠OFG=∠A. ∵∠OFE= ∠A, ∴∠OFE= ∠OFG. ∴∠OFE=∠EFG. ∵OE=OF,∴∠OFE=∠OEF. ∴∠OEF=∠EFG. ∴OE∥FG.∴OE⊥BC. ∴BC是⊙O的切线.
设⊙O的半径为r,圆心O到直线l的距离为d,则有:
(1)直线l和⊙O相离 d>r. (2)直线l和⊙O相切 d=r. (3)直线l和⊙O相交 d<r.
3. 切线 (1)判定定理:经过半径的外端并且垂直于这条半径的直线 是圆的切线. (2)切线的主要性质: ①性质定理:圆的切线垂直于过切点的半径. ②切线和圆只有一个公共点. ③切线和圆心的距离等于圆的半径. ④经过圆心且垂直于切线的直线必过切点. ⑤经过切点且垂直于切线的直线必过圆心.
考点演练
3. 一个点到圆的最小距离为3 cm,最大距离为8 cm,则该圆
的半径是 A. 5 cm或11 cm
B. 2.5 cm
( D)
C. 5.5 cm
D. 2.5 cm或5.5 cm
4. 在平面直角坐标系中,M(2,0),圆M的半径为4,那么
点P(-2,3)与圆M的位置关系是
A. 点P在圆内
B. 点P在圆上
( C)
C. 点P在圆外
D. 不能确定
考点点拨: 本考点的题型一般为选择题,难度较低. 解答本考点的有关题目,关键在于掌握点(或直线)与圆心的 距离和半径的关系(相关要点详见“知识梳理”部分).注意 以下要点: 根据点(或直线)的位置可以确定该点(或直线)到圆心的距 离和半径的关系,反过来,已知点(或直线)到圆心的距离与 半径的关系也可以确定该点(或直线)和圆的位置关系.

九年级数学圆知识点梳理

九年级数学圆知识点梳理

九年级数学圆知识点梳理一、圆的定义与特点圆是由平面上离定点(圆心)距离相等的点构成的图形。

圆的特点有:1. 圆心:圆中心点的位置。

2. 半径:连接圆心和圆上任意一点的线段的长度,即半径。

3. 直径:通过圆心的两个点所构成的线段,即直径。

直径的长度是半径的两倍。

4. 弧:连接圆上两点的弧。

5. 圆周:由圆上所有点组成的曲线,也叫圆周。

二、圆的计算公式1. 圆的周长公式:C = 2πr,其中C代表圆的周长,r代表圆的半径。

π取近似值3.14。

2. 圆的面积公式:S = πr²,其中S代表圆的面积,r代表圆的半径。

三、圆的相交关系1. 相离:两个圆没有任何公共点,彼此之间没有交集。

2. 外切:两个圆相切于一点,且外切的圆没有穿过另一个圆。

3. 相交:两个圆有公共点,且相交的圆穿过另一个圆。

4. 内切:一个圆刚好位于另一个圆内部,并且两圆相切于一点。

5. 同心圆:有相同的圆心,但半径不同的圆。

四、圆的性质和定理1. 弧与角度的关系:圆心角是以圆心为顶点的角,圆心角的度数等于其所对应的弧所对角的度数。

2. 弧长公式:弧长等于圆周的$\frac{1}{n}$,其中n是圆周上被划分的几等分,m是圆周上的弧所对应的角的角度。

3. 弧与切线的关系:圆上的切线与切点处的弧垂直。

4. 切线定理:当一条直线与圆相切时,切点与切线的连线垂直于半径。

5. 弦的性质:如果两个弦在圆内或圆外相交,那么穿过内圆或外圆的弦的两边相乘的和等于其他穿过的弦的两边相乘的和。

6. 弧度制:以圆心为顶点的角所对应的弧长与半径的比值等于一个常数,即弧度制。

7. 平行切线定理:平行于切线的直线也是切线。

8. 平行弦定理:当两个弦平行时,两个弦的长度之比等于两个弦所对应的弧的长度之比。

五、圆的应用1. 几何画图:根据已知的圆心、半径、弦、切线等元素要求画出几何图形。

2. 圆的作图:根据已知条件画出满足要求的圆。

3. 物体的运动轨迹:物体在圆周运动时,物体的位置与时间的关系可表示为圆。

一张图让你看透中考数学有关圆的知识点!

一张图让你看透中考数学有关圆的知识点!

一张图让你看透中考数学有关圆的知识点!一张图让你看透中考数学有关圆的知识点!安徽中考考试通05-20 11:27关注数学在中考中占了一席之地,而圆又是数学必考的一部分,学生必须对圆的知识点掌握熟练。

一张图让你纵观一切有关的圆的知识点,对中考的你一定有所裨益!展开全文热门评论哈利波波94409002你这是用的哪个版本的教材?展开打开今日头条查看更多评论精彩推荐小学生作业:老师看得脸羞红,爸爸很尴尬?妈妈拿扫把打?打开头条阅读浪花一朵10小时前2017高考录取分数线 2017年各省高考录取分数线预测打开头条阅读深圳之窗10小时前挤痘痘出脓液,痘还没好,那是没用对方法试这个看颜肌广告2017事业单位工资标准表(最新)打开头条阅读江西华图02-23一年级数学速算题目,家长来看看打开头条阅读茵苗教育02-06一道小学应用题,考哭了100万家长!2017年最难应用题!打开头条阅读志强的农村生活故事01-222017中考时间表,家长考生请收好!打开头条阅读最高分03-03初中生背下这8大公式,中考数学分分钟考145分!打开头条阅读围棋快手小江03-13孩子中考后,一位母亲的后悔独白,点醒了无数家长!打开头条阅读小玉搞笑专业户01-12教师资格证面试全真模拟打开头条观看恒智教师04-1709:312017全国各省份高考录取分数线预测!建议收藏!打开头条阅读叛逆的自我05-03会计证不再取消,即日起会计从业资格证改为打开头条阅读话题03-12其实科二考试一点也不难做好这些细节准过关!打开头条阅读驾驶员考试03-24只拿死工资没有出路,六个值钱的证书,值得你奋斗下去打开头条阅读文娱多宝阁02-28一个班37人进清华北大,班主任的短信让家长无言打开头条阅读忠犬无二01-29小学1~6年级所有数学公式!给孩子打印出来,不用再去翻书了!打开头条阅读王雷的良师益友04-26加载更多精彩推荐...捕蜓郎一直在努力,从未停止过,你们的陪伴是我最大的动力!记得点赞评论哦!订阅、关注不迷路!打开今日头条,查看精彩内容 >广告【劲爆】99%不知道为什么佩戴这款貔貅手链?--点击揭秘。

初三数学专题复习教案

初三数学专题复习教案

初三数学专题复习教案【篇一:2016年数学中考第一轮复习整套教案(完整版)】中考数学一轮复习资料第一轮复习的目的1、第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。

我要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容我还重点串讲。

(2)过基本方法关。

如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、一轮复习的步骤、方法(1)全面复习,把书读薄:全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义(2)突出重点,精益求精:在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.”猜题”的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,”猜题”便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.(3)基本训练反复进行:学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张”题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下”盲棋”一样,只需用脑子默想,即能得到正确答案.这就是我们在常言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,”熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会”粗心”地出错3、数学:过来人谈中考复习数学巧用“两段”法中考数学复习大致分为两个阶段。

浙江省中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇

浙江省中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇

第22讲 圆的基本性质1.圆的有关概念考试内容考试要求圆的定义 定义1:在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆.b定义2:圆是到定点的距离 定长的所有点组成的图形.弦 连结圆上任意两点的 叫做弦.直径 直径是经过圆心的 ,是圆内最 的弦. 弧圆上任意两点间的部分叫做弧,弧有____________________之分,能够完全重合的弧叫做____________________.a等圆 能够重合的两个圆叫做等圆. 同心圆圆心相同的圆叫做同心圆.2.圆的对称性考试内容考试要求圆的对称性 圆是轴对称图形,其对称轴是任意一条经过 的直线. c圆是中心对称图形,对称中心为____________________.圆心角、弧、弦之间的关系 在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量 ,那么它们所对应的其余各组量也分别相等.3.圆周角考试内容考试要求圆周角的顶点在圆上,并且 都和圆相交的角叫做圆周角.b定义圆周角定理一条弧所对的圆周角等于它所对的圆心角的.c 推论1 同弧或等弧所对的圆周角.推论2半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是.推论3 圆内接四边形的对角.4.点与圆的位置关系考试内容考试要求位置关系点在圆内点在圆上点在圆外b 数量(d与r)的大小关系(设圆的半径为r,点到圆心的距离为d)_________________ _________________ _____________考试内容考试要求基本思想分类讨论思想:在很多没有给定图形的题目中,常常不能根据题目的条件把图形确定下来,因此会导致解的不唯一性.对于这种多解题必须要分类讨论,分类时要注意标准一致,不重不漏.如:圆周角所对的弦是唯一的,但是弦所对的圆周角不是唯一的.c 基本方法辅助线:有关直径的问题,如图,常作直径所对的圆周角.1.(2016·绍兴)如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°2.(2015·宁波)如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为( )A .15°B .18°C .20°D .28°3.(2017·绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O 上,边AB ,AC 分别与⊙O 交于点D ,E ,则∠DOE 的度数为____________________.第3题图 第4题图4.(2017·湖州)如图,已知在△ABC 中,AB =AC.以AB 为直径作半圆O ,交BC 于点D.若∠BAC=40°,则AD ︵的度数是____________________度.【问题】如图,四边形ABCD 内接于⊙O,CE 是直径.(1)观察图形,你能得到哪些信息?(2)若∠ADC=130°,则∠B=______,∠AOC =______,AE ︵的度数为____; (3) 若AC =6,AO =5,则AE =________.【归纳】通过开放式问题,归纳、疏理圆的有关性质,弦、弧、圆心角的关系定理及推论,圆周角定理,圆的内接四边形等.类型一 圆的有关概念例1 下列语句中,正确的是__________________.①半圆是弧;②长度相等的弧是等弧;③相等的圆心角所对的弧相等;④圆是轴对称图形,任何一条直径所在直线都是对称轴;⑤经过圆内一定点可以作无数条直径;⑥三个点确定一个圆;⑦直径是圆中最长的弦;⑧一个点到圆的最小距离为6cm ,最大距离为9cm ,则该圆的半径是1.5cm 或7.5cm ;⑨⊙A 的半径为6,圆心A(3,5),则坐标原点O 在⊙A 内.【解后感悟】圆中相关概念经常会出现错误,需要辨析,如在同圆或等圆中,相等的圆心角所对的弧相等.1.(1)A 、B 是半径为5cm 的⊙O 上两个不同的点,则弦AB 的取值范围是( ) A .AB>0 B .0<AB<5 C .0<AB<10 D .0<AB ≤10 (2)下列说法中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .相等圆周角所对弧相等C .正多边形一定是轴对称图形D .三角形的外心到三角形各边的距离相等(3) (2017·河北模拟)如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是____________________.类型二圆的内接多边形例2(2017·陕西模拟)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.【解后感悟】本题主要考查圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.2.(1)(2015·杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=( )A.20°B.30°C.70°D.110°(2)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45°B.50°C.60°D.75°(3)(2015·南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=____________________.类型三圆心角与圆周角的关系例3(1)如图,AB为⊙O的直径,诸角p,q,r,s之间的关系①p=2q;②q=r;③p +s=180°中,正确的是( )A.只有①和②B.只有①和③C.只有②和③D.①,②和③(2)(2015·台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.①若∠CBD=39°,求∠BAD的度数;②求证:∠1=∠2.【解后感悟】解题利用图形联想,揭示数量关系,如等腰三角形、圆周角定理、圆内接四边形等知识;圆周角定理及其推论建立了圆心角、弦、弧、圆周角之间的关系,最终实现了圆中的角(圆心角和圆周角)的转化;当图中出现同弧或等弧时,常常考虑到弧所对的圆周角或圆心角,“一条弧所对的圆周角等于该弧所对的圆心角的一半”,通过弧把角联系起来.注意掌握数形结合思想的应用.3.(1)(2017·衢州模拟)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O 的弦,∠ABD=58°,则∠BCD等于____________________.(2)(2017·巴中模拟)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE 上,连结AE,∠E=36°,则∠ADC的度数是____________________.(3)(2017·潍坊模拟)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于____________________.类型四圆的综合运用例4(2017·台州)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C 重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.【解后感悟】解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,注意数形结合的应用.4.(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【探索研究题】(2017·杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O 交于点G,设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【方法与对策】本题涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,这样要联想,并及时调整图形,揭示数量关系特征,从而解决问题,这是中考命题的热点.【忽视圆周角顶点可能在优弧上,也可能在劣弧上】一条弦的长度等于它所在的圆的半径,那么这条弦所对的圆周角的度数是________.参考答案第22讲圆的基本性质【考点概要】1.等于线段弦长优弧、半圆、劣弧等弧2.圆心圆心相等 3.两边一半相等直角直径互补 4.d<r d=r d >r【考题体验】1.D 2.B 3.90° 4.140【知识引擎】【解析】(1)由圆心角、圆周角定理,圆的内接四边形可知:∠B=∠E=12∠AOC, ∠B+∠D =180°, ∠CAE =90°等; (2)50°,100°,80°; (3)8.【例题精析】 例1 ①④⑦⑧⑨例2 (1)∠E=∠F,∵∠DCE =∠BCF,∴∠ADC =∠E+∠DCE,∠ABC =∠F+∠BCF,∴∠ADC =∠ABC; (2)由(1)知∠ADC=∠ABC,∵∠EDC =∠ABC,∴∠EDC =∠ADC,∴∠ADC =90°,∴∠A =90°-42°=48°; (3)连结EF ,如图,∵四边形ABCD 为圆的内接四边形,∴∠ECD =∠A,∵∠ECD =∠1+∠2,∴∠A =∠1+∠2,∵∠A +∠1+∠2+∠E+∠F =180°,∴2∠A+α+β=180°,∴∠A =90°-α+β2. 例3 (1)A ;(2)①∵BC=CD ,∴BC ︵=DC ︵.∴∠BAC =∠CAD=∠CBD.∵∠CBD=39°,∴∠BAC =∠CAD=39°.∴∠BAD =∠BAC+∠CAD=78°.②∵EC =BC ,∴∠CBE =∠CEB,∵∠CBE =∠1+∠CBD,∠CEB =∠2+∠BAC ,又∵∠BAC=∠CBD,∴∠1=∠2.例4 (1)∵AB=AC ,∠BAC =90°,∴∠C =∠ABC=45°,∴∠AEP =∠ABP=45°,∵PE 是直径,∴∠PAE =90°,∴∠APE =∠AEP=45°,∴AP =AE ,∴△PAE 是等腰直角三角形. (2)作PM⊥AC 于M ,PN ⊥AB 于N ,则四边形PMAN 是矩形,∴PM =AN ,∵△PCM ,△PNB 22PA=)2PN +22(AN =)2PN +22(PM =2PB +2PC ,∴PN 2=PB ,PM 2=PC ,∴都是等腰直角三角形)是直角三角形PBE ,△△ACP≌△ABE 也可以证明4.(=22=2PE =【变式拓展】1.(1)D (2)C (3)3<r<5 2.(1)D (2)C (3)215° 3.(1)32° (2)54° (3)3 4.(1)连结OD ,∵DE 是切线,∴∠ODE =90°,∴∠ADE +∠BDO=90°,∵∠ACB =90°,∴∠A +∠B=90°,∵OD =OB ,∴∠B =∠BDO,∴∠ADE=∠A. (2)连结CD.∵∠ADE=∠A,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC =202-162=12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2-202,∴x 2+122=(x +16)2-202,解得x =9,∴BC =122+92=15.11 / 11【热点题型】【分析与解】(1)猜想:β=α+90°,γ=-α+180°,连结OB ,∴由圆周角定理可知:2∠BCA=360°-∠BOA,∵OB =OA ,∴∠OBA =∠OAB=α,∴∠BOA =180°-2α,∴2β=360°-(180°-2α),∴β=α+90°,∵D 是BC 的中点,DE ⊥BC ,∴OE 是线段BC 的垂直平分线,∴BE =CE ,∠BED =∠CED,∠EDC =90°,∵∠BCA =∠EDC+∠CED,∴β=90°+∠CED,∴∠CED =α,∴∠CED =∠OBA=α,∴O 、A 、E 、B 四点共圆,∴∠EBO +∠EAG=180°,∴∠EBA +∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA =90°,∠BCE =45°,由(1)可知:O 、A 、E 、B 四点共圆,∴∠BEC =90°,∵△ABE 的面积为△ABC 的=BCE ,∵∠6=2CD =BC 可知:(1)由,x =AC ,3x =CE 设,3=CE AC ,∴4=AEAC ,∴倍4面积的AC ,23=CE =BE ,∴2=x ,26=2(3x)+2(3x)由勾股定理可知:,∴3x =BE =CE °,∴45AB ,∴2)2(4+2)2(3=2AB 由勾股定理可知:,中ABE △Rt 在,24=CE +AC =AE ,∴2=2AB由勾股定理可知:,r 设半径为,中AOB △Rt 在°,90=AOB °,∴∠45=BAO ,∵∠25= 5.半径的长为O ,∴⊙5=r ,∴22r =【错误警示】30°或150°。

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(基础)责编:常春芳【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系 1.点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:点P 在圆外⇔d >r ; 点P 在圆上⇔d =r ; 点P 在圆内⇔d <r . 要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A 、B 的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r ”时,要特别注意,R >r .【典型例题】类型一、圆的性质及垂径定理的应用【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题1】1.已知:如图所示,在⊙O 中,弦AB 的中点为C ,过点C 的半径为OD .(1)若AB =OC =1,求CD 的长; (2)若半径OD =R ,∠AOB =120°,求CD 的长.【思路点拨】如图所示,一般的,若∠AOB =2n °,OD ⊥AB 于C ,OA =R ,OC =h ,则AB =2R ·sin n °=2n ·tan n °=CD =R -h ;AD 的长180n Rπ=. 【答案与解析】解:∵半径OD 经过弦AB 的中点C , ∴半径OD ⊥AB .(1)∵AB=AC=BC∵OC=1,由勾股定理得OA=2.∴CD=OD-OC=OA-OC=1,即CD=1.(2)∵OD⊥AB,OA=OB,∴∠AOD=∠BOD.∴∠AOB=120°,∴∠AOC=60°.∵OC=OA·cos∠AOC=OA·cos60°=12 R,∴1122CD OD OC R R R =-=-=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.举一反三:【变式】在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到A点时,乙已跟随冲到B点(如图所示),此时甲是自己直接射门好还是迅速将球回传给乙,让乙射门好呢?(不考虑其他因素)【答案】解:过M、N、B三点作圆,显然A点在圆外,设MA交圆于C,则∠MAN<∠MCN.而∠MCN=∠MBN,∴∠MAN<∠MBN.因此在B点射门较好.即甲应迅速将球回传给乙,让乙射门.2.(2015•大庆模拟)已知AB是⊙O的直径,C是圆周上的动点,P是弧AC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.【思路点拨】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)如图2,根据圆心角、弧、弦的关系,以及三角形内角和等推论证来求得∠A的度数.【答案与解析】(1)证明:连结AC,延长PO交AC于H,如图1,∵P是弧AB的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)解:如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°,当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=()°,即∠PAO=()°.综上所述,∠A的度数为36°或()°.【总结升华】本题考查了圆周角定理及其推论同时考查了等腰三角形的性质、垂径定理和三角形内角和定理.举一反三:【变式】(2015•温州模拟)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.【答案】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.类型二、圆的切线判定与性质的应用3.如图所示,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC与⊙O相切.【思路点拨】AC与⊙O有无公共点在已知条件中没有说明,因此只能过点O向AC作垂线段OE,长等于⊙O的半径,则垂足E必在⊙O上,从而AC与⊙O相切.【答案与解析】证明:连接OD,作OE⊥AC,垂足为E,连结OA.∵AB与⊙O相切于点D,∴OD⊥AB.∵AB=AC,OB=OC,∴∠1=∠2,∴OE=OD.∵OD为⊙O半径,∴AC与⊙O相切.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.求△ABC的内切圆的半径.【答案】解:设△ABC的内切圆与三边的切点分别为D、E、F,根据切线长定理可得:AE =AF ,BF =BD ,CD =CE ,而AE+CE =b ,CD+BD =a ,AF+BF =c , 可求2a b cCE +-=. 连接OE 、OD ,易证OE =CE .即直角三角形的内切圆半径2a b cr +-=.4.如图所示,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D =30°. (1)求证:AD 是⊙O 的切线; (2)若AC =6,求AD 的长.【思路点拨】(1)连接OA ,根据圆周角定理求出∠O 的度数,根据三角形的内角和定理求出∠OAD ,根据切线的判定推出即可;(2)得出等边三角形AOC ,求出OA ,根据勾股定理求出AD 的长即可. 【答案与解析】(1)证明:连接OA ,∵1sin 2B =,∴∠B =30°. ∵∠AOC =2∠B ,∴∠AOC =60°. ∵∠D =30°,∴∠OAD =180°-∠D -∠AOD =90°. ∴AD 是⊙O 的切线.(2)解:∵OA =OC ,∠AOC =60°,∴△AOC是等边三角形,∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=【总结升华】证明直线是圆的切线的方法:①有半径,证垂直;②有垂直,证半径.举一反三:【变式】如图所示,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线交PO于C 点,求证:PC=CD.【答案】证明:连接OD.∵CE切⊙O于D,∴OD⊥CE.∴∠2+∠3=90°.∵OA⊥OB,∴∠P+∠A=90°.∵OD=OA,∴∠3=∠A..∴∠P=∠2.又∵∠1=∠2,∴∠P=∠1.∴PC=CD.类型三、切线的性质与等腰三角形、勾股定理综合运用5.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC 的平分线交AC于点D,求∠CDP的度数.【思路点拨】连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【答案与解析】解:连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°.【总结升华】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于做好辅助线构建直角三角形,求证∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题3】6.如图所示,AB是⊙O的直径,AF是⊙O的弦,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若DE=4,sinC=35,求AE的长.【思路点拨】构造半径、半弦、弦心距的直角三角形.【答案与解析】解:(1)证明:连接OE,BF,交于点G,则BF⊥AF,BF∥CD.∵OA=OE,∴∠OAE=∠OEA.∵∠OAE=∠FAE,∴∠OEA=∠FAE.∴OE∥AF,∵AF⊥DE,∴OE⊥CD.∴CD为⊙O的切线.(2)解:∵ BF∥DE,OE∥AF,∠D=90°,∴四边形DEGF为矩形.∴BF=2GF=2DE=8.∵BF∥CD,∴∠C=∠ABF.可求得OA=OB=5,OG=3.∴DF=EG=2,AF=AB·sinC=6.∴AD=8,AE=【总结升华】(1)通过挖掘图形的性质,将分散的条件sinC=35,DE=4,集中到一个直角三角形中,使问题最终得到解决;(2)本题第(2)问还可以适当改变后进行变式训练,如改为:若DF=2,sinC=35,求AE的长;(3)第(2)问还可以过O作OM⊥AF于M后得OM=DE=4,sin∠AOM=sinC=35加以解决.。

初三数学圆知识点总结完整版

初三数学圆知识点总结完整版

初三数学圆知识点总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初三数学圆知识点总结一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2 下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

2023最新中考数学总复习(精品课件)第六篇 《圆》

2023最新中考数学总复习(精品课件)第六篇    《圆》

经过半径的外端并且 垂直 这条半径的直线是圆的切线.
4.证明直线和圆相切的方法:
(1)当已知直线与圆有公共点时,连半径,证 垂直 .
(2)当不知道直线与圆是否有公共点时,过圆心作直线的垂线,证圆心到直线的距离
等于半径
.
5.切线长定理.
PA=PB , ∠APO=∠BPO .
_____p_r______
知识点5:五种基本作图
(1)作一条线段等于已知线段. (2)作一个角等于已知角. (3)作一个角的平分线. (4)经过一已知点作直线的垂线: ①经过已知直线 上 一点作这条直线的垂线; ②经过直线 外 一点做已知直线的垂线. (5)作已知线段的垂直平分线.
【注意】运用基本作图法作图时,一般先画出草图,分析作图步骤以及相应的字母表 示,选择正确的作图程序,再按分析后编排的字母写出已知、求作,按步骤一边画图一 边写好作法.
知识点5:圆心角与圆周角
________
∠_________________. ACB=90°
知识点6:圆内接四边形及其性质
___∠__D____
知识点7:弦、弧、圆心角的关系
1.定理: 同圆 或 等圆 中,相等的圆心角所对的弧相等 ,所对的弦相等 .
2.推论:在同圆或等圆中,如果两个圆心角、两条弦和两条弧(同是优弧或劣弧)中有一 组量相等,那么它们对应的其余各组量也分别 相等 .
知识点4:垂径定理及推论
1.垂径定理:垂直于弦的直径 平分 这条弦,并且平分弦所对的两条弧.
2.推论:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (2)弦的垂直平分线经过 圆心 ,并且平分弦所对的两条弧. (3)平分弦所对的一条弧的直径 垂直于 弦,并且平分弦所对的另一条弧.

中考数学复习第一部分中考基础复习第四章图形的认识圆与圆有关的计算课件

中考数学复习第一部分中考基础复习第四章图形的认识圆与圆有关的计算课件

正多边形
中心 即一个正多边形的外接圆的圆心 半径 即正多边形的外接圆的半径 中心角 正多边形每一边所对的圆心角
边心距
中心到正多边形的一边的距离叫做正多 边形的边心距
扇形的弧长和面积计算
例 1:( 年山东枣庄)如图 4-4-67,在▱ ABCD 中,AB
为⊙O 的直径,⊙O 与 DC 相切于点 FE»,E与 AD 相交于点 F,已
∴∠A=∠C=60°,∠D=120°.
∵OA=OF,
∴∠A=∠OFA=60°. ∴∠DFO=120°. F»∴E∠的E长OF==33016·8π00·°6=-π∠. D-∠DFO-∠DEO=30°,
答案:π [解题技巧]计算弧的长度时,根据题意确定弧的半径和圆 心角是关键.
例 2:( 年山东临沂)如图 4-4-69,AB 是⊙O 的直径,
B是T(是⊙O )的切线,若∠ATB=45°,AB=2,则阴影部分的面积
图 4-4-69
A.2
B.32-14π
C.1
D.12+14π
[思路分析]设 AT 交⊙O 于 D,连接 BD,先根据圆周角定
理得到∠ADB=90°,则可判断△ADB,△BDT 都是等腰直角三
角形,所以 AD=BD=TD= 22AB= 2,然后利用弓形 AD 的面 积等于弓形 BD 的面积得到阴影部分的面积为 S△BTD.
圆柱体的侧面积和全面积 例 3:( 年四川绵阳)“赶陀螺”是一项深受人们喜爱 的运动,如图 4-4-72 所示是一个陀螺的立体结构图,已知底面 圆的直径 AB=8 cm,圆柱体部分的高 BC=6 cm,圆锥体部分
的高 CD=3 cm,则这个陀螺的表面积是( )
A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm2

九年级数学中考第一轮复习⑸ 图形的认识二 圆华东师大版知识精讲

九年级数学中考第一轮复习⑸ 图形的认识二 圆华东师大版知识精讲

九年级数学中考第一轮复习⑸图形的认识㈡圆华东师大版【本讲教育信息】一. 教学内容:中考第一轮复习⑸图形的认识㈡圆二. 重点、难点扫描:1. 与圆有关的概念;三角形的内心和外心的概念;2. 圆周角及其与同弧上圆心角的关系;3. 圆的对称性——轴对称性与旋转不变性;4. 和圆有关的位置关系:⑴点和圆的位置关系;⑵直线和圆的位置关系--切线的判定和性质,切线长定理;⑶圆和圆的位置关系;5. 圆中的计算问题:⑴弧长公式、扇形的面积公式;⑵圆锥的侧面积、圆锥的表面积.三. 知识梳理:1. 圆的基本元素⑴圆心和半径;⑵弦;⑶弧;⑷圆心角和圆周角;2. 圆周角与圆心角⑴圆周角与圆心角:一条弧所对的圆周角等于它所对的圆心角的一半.性质的验证,运用了“分类”的思想.⑵圆周角与半圆或直径:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是圆的直径。

一般地,若题目无直径,需要作出直径。

⑶圆周角与同弧或等弧:同弧或等弧所对的圆周角相等;在同一圆或等圆中,相等的圆周角所对的弧相等.3. 圆的对称性⑴圆是中心对称图形,圆心是它的对称中心,圆的旋转不变性使它具有其他中心对称图形所没有的性质,即圆心角、弧、弦之间的关系,概括为:在一个圆(同圆或等圆)中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.⑵圆也是轴对称图形,经过圆心的任意一条直线都是它的对称轴.于是就有了垂直于弦的直径的性质:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.还可概括为:如果一条直线:①垂直于弦;②经过圆心;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.具备其中任意两个条件,那么就可得到其他三个结论.[注:具备②③条件时,应是平分(不是直径的)弦.]4. 与圆有关的位置关系⑴了解点和圆、直线和圆、圆和圆共有几种位置关系,并能恰当地运用数量关系来判断位置关系是学习的关键;⑵掌握圆的切线的性质与判定.⑶切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.切线长定理是圆的对称性的体现,它为说明线段相等、角相等、弧相等、•垂直关系提供了理论依据.⑷内接外切多边形: 经过多边形各顶点的圆叫做多边形的外接圆,外接圆的圆心叫做多边形的外心,这个多边形叫做这个圆的内接多边形;和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.(5)三角形内心外心:三角形外接圆的圆心叫三角形的外心, 三角形的外心是三角形三边垂直平分线的交点;三角形内切圆的圆心叫做三角形的内心, 三角形的内心是三角形三条角平分线的交点,它到三边的距离相等。

人教版数学九年级上册必备数学第一部分第五章第3节-课件

人教版数学九年级上册必备数学第一部分第五章第3节-课件

考点2 扇形的面积计算[5年2考:2013年(填空题)、 2015年(选择题)]
典型例题
1. (2017山西)如图1-5-3-9是
某商品的标志图案,AC与BD是
⊙O的两条直径,首尾顺次连
接点A,B,C,D,得到四边形
ABCD. 若AC=10 cm,∠BAC=36°,
则图中阴影部分的面积 ( B )
∴S阴影 =S半圆-S△ACE
=12.5π- 1 ×4× 2 21
2
=12.5π- 4 21 .
考点点拨: 本考点是广东中考的高频考点,题型一般为选择题或解答题, 难度中等偏高. 解答本考点的有关题目,关键在于掌握扇形的面积公式. 注意以下要点: (1)切线的性质和判定; (2)求不规则的图形(阴影部分)的面积,可以设法转化成几个 规则的图形的面积的和或者差来求.
又∠BAC=∠CAF,
∴△ACF∽△ABC.

即AC2=AB·AF.
考点演练
5. 如图1-5-3-13,半圆的直径BC恰与等腰Rt△ABC的一条直角
边完全重合,若BC=4,则图中阴影部分的面积是
( A)
A. 2+π
B. 2+2π
C. 4+π
D. 2+4π
6. 如图1-5-3-14,AB是⊙O的直径,弦DE垂直平分半径OA,C 为垂足,弦DF与半径OB相交于点P,连接EF,EO,若DE= 2 3 , ∠DPA=45°. (1)求⊙O的半径; (2)求图中阴影部分的面积.
3
2. (2017咸宁)如图1-5-3-2,⊙O的
半径为3,四边形ABCD内接于⊙O,
连接OB,OD,若∠BOD=∠BCD,则
的长为 A. π C. 2π

中考数学一轮复习 第五章 图形的性质(二)第25讲 与圆有关的计算课件

中考数学一轮复习 第五章 图形的性质(二)第25讲 与圆有关的计算课件

π D. 2 -
3 2
典例探究
类型一:弧长公式的应用
【例1】 (2015·恩施州)如图,半径为5的半圆的初始状态是直径 平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使 半圆的直径与直线b重合为止,则圆心O运动路径的长度等于 ___5_π__. 【点评】 本题考查的是弧长的计算和旋转的知识,解题关键是 确定半圆作无滑动翻转所经过的路线并求出长度.
1.(2015·天水)如图,△ABC是正三角形,曲线CDEF叫做正三角 形的渐开线,其中弧CD,弧DE、弧EF的圆心依次是A,B,C, 如果AB=1,那么曲线CDEF的长是______4_π__.
类型二:扇形面积公式的运用
【例2】 如图,BD是汽车挡风玻璃前的刮雨刷.如果BO=65 cm ,DO=15 cm,当BD绕点O旋转90°时,求刮雨刷BD扫过的面积 .
锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10 cm,
那么这张扇形纸板的面积是(
A)
A.240πcm2 B.480πcm2
C.1200πcm2 D.2400πcm2
【点评】 就圆锥而言,“底面圆的半径”和“侧面展开图的扇
形半径”是完全不同的两个概念,要注意其区别和联系,其中扇
形的弧长为圆锥底面圆的周长,扇形的半径为圆锥的母线长;圆
二是进行图形的割补.此题可利用图形的割补,把△OAC放到
△OBD的位置.扇形面积公式和弧长公式容易混淆.S扇形=n 360 Nhomakorabeaπ
R2=12lR.
[对应训练] 2 . (2015· 达 州 ) 如 图 , 直 径 AB 为 12 的 半 圆 , 绕 A 点 逆 时 针 旋 转 60°,此时点B旋转到点B′,则图中阴影部分的面积是( B ) A.12π B.24π C.6π D.36π

2024年中考数学复习-圆知识点复习讲义

2024年中考数学复习-圆知识点复习讲义

圆知识点复习讲义第1 节圆的认识一、知识梳理1.圆的基本概念弦:连接圆上任意两点的线段叫作弦.直径:经过圆心的弦叫作直径.圆弧:圆上任意两点间的部分叫作圆弧 .弧包括优弧和劣弧,大于半圆的弧叫作优弧,小于半圆的弧叫作劣弧.半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫作半圆.等圆:能够重合的两个圆叫作等圆.等弧:在同圆或等圆中,能够互相重合的弧叫作等弧.2.圆的对称性圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.【例】如图1-1所示,AB是⊙O 的直径,四边形ABCD 内接于⊙O. 若BC=CD=DA=4cm,则⊙O的周长为( ).A. 5πcmB. 6πcmC. 9πcmD. 8πcm解:如图1-2所示,连接OD,OC.∵AB是⊙O的直径,四边形ABCD 内接于⊙O, BC=CD=DA=4cm,̂=CD̂=BĈ.∴AD∴∠AOD=∠DOC=∠COB=60°.又∵OA=OD,∴△AOD是等边三角形.∴OA=AD=4cm.∴⊙O 的周长=2π×4=8π(cm).故选 D.二、分层练习☆万丈高楼平地起1.下列命题正确的个数是( )个.①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆;⑤同一条弦所对的两条弧一定是等弧;A. 2B. 3C. 4D. 52.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1-3 所示 .为了在商店配到与原来大小一样的圆形玻璃,小明要选择携带的应该是( ).A. 第①块B. 第②块C. 第③块D. 第④块3. 如图1-4所示,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为点D.已知CD=4,OD=3,则AB的长为 .4. 如图1-5所示,AB是⊙O的直径,点C,D在AB的异侧,连接AD,OD,OC. 若∠AOC=70°,且AD∥OC,则∠AOD的度数为 .欲穷千里目,更上一层楼5. 如图1-6所示,AB,CD是⊙O的直径, AÊ=BD̂.若∠AOE=32°,则∠COE的度数是( ).A. 32°B. 60°C. 68°D. 64°6. 如图1-7所示,AB是⊙O的直径, BĈ=CD̂=DÊ,∠COD=35∘,则∠AOE 的度数是( ).A. 65°B. 70°C. 75°D. 85°̂=DĈ=CB̂,则四边7. 如图1-8所示,已知⊙O的半径为2cm,AB是⊙O的直径,点C,D是⊙O 上的两点,且AD形ABCD的周长为( ).A. 8cmB. 10cmC. 12cmD. 16cm̂=2AĈ,那么( ).8. 如图1-9所示,在⊙O 中,如果ABA.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC9. 如图1-10 所示,在矩形ABCD中, AB=8,BC=3√5,点 P 在边 AB 上,且BP=3AP.如果圆P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A. 点B,C均在圆P外B. 点 B在圆 P 外,点 C在圆 P 内C. 点B在圆P内,点C在圆P外D. 点 B,C均在圆P内10. 如图1-11所示,城市A的正北方向50km的B处,有一无线电信号发射塔,该发射塔发射的无线电信号的有效半径为100km,AC 是一条直达C 城的公路,从A城开往C城的班车速度为60km/h.(1)当班车从A城出发开往C城时,有人立即打开无线电收音机,班车行驶了0.5h时接收信号最强,则此时班车到发射塔的距离是多少?(离发射塔越近,信号越强)(2)班车从 A城到C城共行驶2h,请你判断,班车到C城后还能接收到信号吗?请说明理由.会当凌绝顶,一览众山小̂的中点,点P 是直径MN上一动点,⊙O 的半径11.如图1-12所示,已知点A是半圆上的三等分点,点B是AN为1.请问:点 P 在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.第2 节垂径定理一、知识梳理(一)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图2-1所示,垂径定理的条件与结论理解如下:∵AB是直径,AB⊥CD于点 E,∴CE=DE,CB̂=DB̂,AĈ=AD̂.(二)垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.【例】如图2-2所示,AB是⊙O 的弦,点 C,D是直线AB上的两点,且AC=BD,求证:OC=OD.证明:如图2-3所示,过点O作OE⊥AB于点E.∵OE⊥AB,∴AE=BE.又∵AC=BD,∴CE=DE.∴OE是CD的中垂线.∴OC=OD.二、分层练习☆万丈高楼平地起1.下列判断中正确的是( ).A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图2-4所示,已知AB=16m,,半径OA为10m,则中间柱CD的高度为( )m.A. 6B. 4C. 8D. 53. 如图2-5所示,点A,B是⊙O上的两点,AB=10,点P是⊙O上的动点(点 P与点A,B不重合). 连接AP,PB,过点O 分别作OE⊥AP于点E,( OF⊥PB于点F,连接EF,则EF长为( ).A. 4B. 5C. 5.5D. 64. 点P为⊙O内一点,且OP=4. 若⊙O的半径为6,则过点P的弦长不可能为( ).A. 12B.2√30C. 8D. 10.5欲穷千里目,更上一层楼5.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图2-6所示,设⊙O的半径为2,若用⊙O的内接正六边形的面积来估计⊙O的面积,则⊙O的面积约为 (结果保留根号).6. 如图2-7所示,已知⊙O的半径为2,四边形ABCD为⊙O的内接四边形,且AD=2√2,AB=2√3,则∠DAB的度数为( ).A.105°B.60°C.75°D.70°7. 如图2-8所示, ∠PAC=30°,,在射线AC 上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于点 E,F.(1)求圆心 O到AP的距离;(2)求弦 EF的长.8. 如图2-9所示,AB是⊙O的直径,弦CD交AB于点 P, AP=2,BP=6,∠APC=30°,,则 CD的长为( ).A.√15B.2√5C.2√15D. 89. 如图2-10所示,在半径为√5的⊙O中,AB,CD是互相垂直的两条弦,垂足为点 P,且AB=CD=4,则OP的长为( ).A. 1B.√2C. 2D.2√210. 如图2-11所示,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为y=x2√3,,则a的值是( ).A.2√2B.2+√2C.2√3D.2+√311. 如图2-12所示,△ABC外接圆的半径为5,其圆心O恰好在中线CD上.若AB=CD,则△ABC的面积为( ).A. 36B. 32C. 24D.1812.圆柱形油槽内装有一些油,截面如图2-13所示,油面宽AB 为6dm,再注入一些油后,油面 AB 上升1dm,油面宽变为 8dm,则圆柱形油槽直径 MN 为( ).A. 6dmB. 8dmC. 10dmD. 12dm会当凌绝顶,一览众山小13.如图2-14所示,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y=kx-3k+44与⊙O 相交于点B,C,则弦BC的长的最小值为 .第3 节圆周角定理(1)一、知识梳理圆心角:顶点在圆心的角叫作圆心角.圆周角:顶点在圆上,并且两边都和圆相交的角叫作圆周角.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.推论3:圆内接四边形对角互补,并且任何一个外角都等于它的内对角.【例】如图3-1所示,直径为10的⊙A经过点C(0,5)和点O(0,0),点B 是y轴右侧⊙A优弧上的一点,则∠OBC的余弦值为( ).A.12B.34C.√32D.54解:如图3-2 所示,连接CA 并延长交⊙A 于点D.∵CD为直径,∴∠COD=∠yOx=90°.∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5.∴DO=√CD2−CO2=5√3.∵∠OBC=∠CDO,∴cos∠OBC=cos∠CDO=ODCD =5√310=√32.故选 C.二、分层练习☆万丈高楼平地起1. 如图3-3所示,AB是⊙O的直径,点C,D是⊙O 上的两点. 若∠CAB=25°,则∠ADC 的度数为 .2.如图3-4所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan∠CBD 的值等于( ).A.2√55B.3√55C. 2D.123. 如图3-5 所示,△ABC 是⊙O 的内接三角形,AC是⊙O的直径, ∠C=50°,∠ABC的角平分线BD交⊙O 于点D,则∠BAD的度数为( ).A. 45°B. 85°C. 90°D. 95°4. 如图3-6所示,△ABC内接于⊙O, AB=AC,,连接BO 并延长交AC 于点 D. 若∠A=50°,,则∠BDC 的度数为( ).A. 75°B.76°C.65°D.70°5. 如图3-7所示,点A,B,C,D在⊙O上,直径AB交CD于点E. 已知∠C=57°,∠D=45°,则∠CEB=.6. 如图3-8所示,AB是半圆的直径,点D是AĈ的中点,∠ABC=50°,则∠DAB等于( ).A.55°B.60°C.65°D.70°欲穷千里目,更上一层楼7. 如图3-9所示,若△ABC内接于半径为R的⊙O,且∠A=60°,,连接OB,OC,则边 BC的长为( ).A.√2RRB.√32RC.√22D.√3R8. 如图3-10所示,在⊙O中, AC‖OB,∠BOC=50°,则∠OAB的度数为( ).A.25°B. 50°C. 60°D. 30°9. 如图3-11 所示,AD 是半圆的直径,点 C 是弧 BD 的中点, ∠ADC=55°,则∠BAD 等于( ).A. 50°B. 55°C. 65°D. 70°̂=2BĈ,∠C=20∘, 10. 如图3-12所示,AB为⊙O的直径,点C,D在⊙O上,连接AC,CD,CD交AB于点 E.若BD则∠AED的度数为( ).A. 50°B. 53°C. 55°D. 58°11. 如图3-13所示,AB是⊙O的弦,( OH⊥AB于点H,点P是优弧上的一点.若AB=2√3,OH=1,则∠APB的度数为 .12. 如图3-14所示,⊙O的半径为2,. △ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC 互补,则弦BC的长为( ).A.4√3B.3√3C.2√3D.√3☆会当凌绝顶,一览众山小13. 如图3-15所示,在Rt△ABC中,. ∠ACB=90°,∠A=56°.. 以 BC 为直径的⊙O交AB 于点 D. 点 E 是⊙O 上的一点,且CÊ=CD̂,连接 OE. 过点 E 作. EF⊥OE,交AC的延长线于点F,则∠F的度数为( ).A. 92°B. 108°C. 112°D. 124°14. 如图3-16所示,点B,C在⊙A上,AB的垂直平分线交⊙A于点E,F,交线段AC 于点 D. 若∠BFC=20°,则∠DBC=(A. 30°B.29°C.28°D. 20°。

2023年中考专题复习:圆形知识点

2023年中考专题复习:圆形知识点

2023年中考专题复习:圆形知识点1. 圆的基本属性- 定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。

定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。

- 半径:从圆心到圆上任意点的距离都相等,称为圆的半径。

半径:从圆心到圆上任意点的距离都相等,称为圆的半径。

- 直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。

直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。

- 弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。

弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。

- 扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。

扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。

- 弦:连接圆上任意两点的线段称为弦。

弦:连接圆上任意两点的线段称为弦。

2. 圆的计算公式- 周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。

周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。

- 面积:圆的面积等于半径的平方乘以π,即A = πr^2。

面积:圆的面积等于半径的平方乘以π,即A = πr^2。

3. 圆的相关定理- 圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。

圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。

- 圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。

圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。

- 圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。

圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。

- 同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。

同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。

- 相交弧定理:相交的两个弧所对的圆心角互补。

相交弧定理:相交的两个弧所对的圆心角互补。

4. 圆的应用- 圆的投影:当光线垂直照射在立体表面上时,投影形成的图形通常是圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5)求扇形阴影面积的主要思路是将不规则图形面积转化为 规则图形的面积. (6)求扇形阴影面积常用的方法:①直接用公式法; ②和差法; ③割补法. (7)求弧长或扇形的面积问题常结合圆锥考查,解这类问题 只要抓住圆锥侧面展开即为扇形,而这个扇形的弧长等于原 圆锥底面的周长,扇形的半径等于原圆锥的母线长.注意不要 混淆圆锥的底面半径和圆锥展开后的扇形半径两个概念.
(2)图中两阴影部分面积的和.
考点点拨: 本考点是广东中考的高频考点,题型一般为填空题或解答题, 难度中等偏高. 解答本考点的有关题目,关键在于掌握扇形的面积公式.注意 以下要点: 求扇形的面积问题常以求不规则图形(阴影部分)的面积问题 的形式考查,解此类问题要设法将不规则图形的面积转化成几 个规则的图形的面积的和或差来求.
中考考点精讲精练
考点1 弧长的计算
考点精讲 【例1】如图1-5-3-1,△ABC是等边三角形, 曲线CDEF叫做正三角形的渐开线,其中
的圆心依次是A,B,C,如果 AB=1,那么曲线CDEF的长是________.
考题再现 1. (2016广东)如图1-5-3-2,把一个圆锥沿母线OA剪开, 展开后得到扇形AOC,已知圆锥的高h为12 cm,OA=13 cm,则 扇形AOC中 的长是___1_0_π___cm. (计算结果保留π)
PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周
转过45°时,点Q走过的路径长为
(A)
6. 如图1-5-3-7,在⊙O中,弦AB=弦CD, AB⊥CD于点E,且AE<EB,CE<ED,连接 AO,DO,BD. (1)求证:ED=EB; (2)若AO=6,求 的长.
考点点拨: 本考点是广东中考的高频考点,题型一般为填空题或选择题, 难度中等. 解答本考点的有关题目,关键在于掌握弧长的公式. 求弧长,首先要找准该弧长所对的圆心角并确定其度数,然 后再确定半径的长度即可求出弧长.
部分的面积.
(1)证明:如答图1-5-3-1,连接OC. ∵AC=CD,∠ACD=120°, ∴∠A=∠D=30°. ∵OA=OC,∴∠2=∠A=30°. ∴∠OCD=180°-∠A-∠D-∠2=90°. ∴OC⊥CD. ∴CD是⊙O的切线.
考点演练 4. 如图1-5-3-12,直径AB为12的半圆,绕点A逆时针旋转60°, 此时点B旋转到点B′,则图中阴影部分的面积是
( A)
A. 2π-4 C. 2π-8
B. 4π-8 D. 4π-4
2. (2014佛山)如图1-5-3-10,AC⊥BC,AC=BC=4,以BC为 直径作半圆,圆心为O.以点C为圆心,BC为半径作 ,过点 O作AC的平行线交两弧于点D,E,则阴影部分的面积是
____________.
3. (2016梅州)如图1-5-3-11,点D在⊙O的直径AB的延长线 上,点C在⊙O上,AC=CD,∠ACD=120°. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为2,求图中阴影
课堂巩固训练
1. 在半径为6的⊙O中,60°圆心角所对的弧长是 ( B )
2. (2016广州)如图1-5-3-3,以点O为圆心的两个同心圆中,
大圆的弦AB是小圆的切线,点P为切点,AB=
,OP=
6,则劣弧AB的长为___8_π____.
3. (2014广东)如图1-5-3-4,⊙O是△ABC的外接圆,AC是 直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作 PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. 若 ∠POC=60°,AC=12,求劣弧PC的长. (结果保留π)
解:∵AC=12, ∴CO=6. 又∵∠POC=60°,
答:劣弧PC的长为2π.
考点演练
4. 如图1-5-3-5,⊙O的半径为1,A,B,C是圆周上的三点,
∠BAC=36°,则劣弧BC的长是
(B)
5. 如图1-5-3-6,⊙O的半径为2,AB,CD是互相垂直的两条直
径,点P是⊙O上任意一点(P与A,B,C,D不重合),经过P作
主要公式
方法规律
计算弧长与扇形面积的有关要点
(1)在弧长计算公式中,n是表示1°的圆心角的倍数,n和
180都不要带单位. (2)若圆心角的单位不全是度,则需要先化为度后再计算弧 长. (3)题设未标明精确度的,可以将弧长用π表示. (4)正确区分弧、弧的度数、弧长三个概念:度数相等的弧, 弧长不一定相等;弧长相等的弧不一定是等弧;只有在同圆或 等圆中,才有等弧的概念,才是三者的统一.
( B)
A. 12π C. Hale Waihona Puke πB. 24π D. 36π
5. 如图1-5-3-13,⊙O的半径为2,点A,C在⊙O上,线段BD 经过圆心O,∠ABD=∠CDB=90°,AB=1,CD= ,则图中阴
影部分的面积为________.
6. 如图1-5-3-14,AB为⊙O的直径,弦AC=2,∠ABC=30°, ∠ACB的平分线交⊙O于点D,求: (1)BC,AD的长;
考点2 扇形的面积计算
考点精讲
【例2】(2015广东)如图1-5-3-8,某数学兴趣小组将边长为
3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽
略铁丝的粗细),则所得扇形DAB的面积为
()
A. 6
B. 7
C. 8
D. 9
考题再现 1. (2016深圳)如图1-5-3-9,在扇形AOB中,∠AOB=90°, 正方形CDEF的顶点C是 的中点,点D在OB上,点E在OB的延 长线上,当正方形CDEF的边长为 时,阴影部分的面积为
第一部分 教材梳理
第五章 图形的认识(二) 第3节 与圆有关的计算
知识梳理
概念定理
1. 弧长:弧是圆的一部分,弧长是圆周长的一部分. 2. 扇形:由组成圆心角的两条半径和圆心角所对的弧所围成 的图形叫做扇形. 3. 圆锥 (1)圆锥是由一个底面和一个侧面围成的几何体. (2)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的 母线.连接顶点与底面圆心的线段叫圆锥的高. (3)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥 底面的周长,扇形的半径等于圆锥的母线长.
相关文档
最新文档