八年级数学下册2.6一元一次不等式组(1)典型训练课件(新版)北师大版

合集下载

北师大版数学八下第二章一元一次不等式和一元一次不等式组复习与回顾(1)课件

北师大版数学八下第二章一元一次不等式和一元一次不等式组复习与回顾(1)课件

例3.某种商品的进价为600元,出售时标价为900元, 后来由于该商品积压,商店准备打折出售,但要保 持利润不低于20%,则最多可以打多少折?
例4.某单位急需用车,但以不准备买车,他们准备和一个个体车主或一国营出 租车公司中一家签订月租车合同,设汽车每月行驶x千米,应付给个体车主有 月租费用是y1元,应付给国营出租车公司的月租费用是y2元,y1、y2分别与x 之间的函数关系(两条射线)如图所示,回答下列问题: (1)分别写出y1、y2与x的函数关系式? (2)每月行驶的路程在什么范围内,租国营出租车公司的车合算?在什么范 围内租个体车主的车合算? (3)每月行驶的路程是多少千米时,租两家车的费用相同? (4)如果这个单位估计每月行驶的路程为2300米,那么这个单位租哪家的车 y(元) 合算?
3000 2500 2000
1000
O
500
1000
1500
2000
ห้องสมุดไป่ตู้x(千米)
建立数学模型
实 际 问 题 与 一 元 一 次 不 等 式 组
实际问题 符号表达
1.关键语句
2.用代数式表示各过程量
计算问题
3.解不等式的基本方法
( )
本节课的心得笔记
一元一次不等式的解题步骤: 1.去分母
实际问题 注意: 与一元一 符号表达 3.移项 次不等式 不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 计算问题 (组 ) 实际问题
例1、已知实数a、b、c在数轴上对应的点如图所示,则下列式中正确的是( (A)cb>ab (B)ac>ab (C)ac>bc (D)c+b>a+b
跟踪练习: 1、若m<n,则下列各式中正确的是( ) A. m-3>n-3 B. 3m>3n C. -3m>-3n D.

北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)

北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)

12.【2019·常德】某生态体验园推出了甲、乙两种消费卡, 设入园次数为x时所需费用为y元,选择这两种卡消费时, y与x的函数关系如图所示,解答下列问题: (1)分别求出选择这两种卡消费时,y关于x的函数表达式;
解:设y甲=k1x,根据题意得5k1=100, 解得k1=20,∴y甲=20x; 设y乙=k2x+100, 将点(20,300)的坐标代入得20k2+100=300, 解得k2=10.∴y乙=10x+100.
4.如图,直线y1=x+b与y2=kx-1相交于点P,点 P的横坐标为-1,则关于x的不等式x+b>kx-1 的解集在数轴上表示正确的是( A )
*5.如图,已知正比例函数 y1=ax 与一次函数 y2=12x+b 的图象交于点 P.下面有四个结论:①a<0;②b<0; ③当 x>0 时,y1>0;④当 x<-2 时,y1>y2.其中正 确的是( ) A.①② B.②③ C.①③ D.①④
(2)该药店四月份计划一次性购进两种型号的口罩共10 000 只,其中B型口罩的进货量不超过A型口罩的1.5倍,设 购进A型口罩m只,这10 000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?
解:根据题意得, W=0.5m+0.6(10 000-m)=-0.1m+6 000, 由题知10 000-m≤1.5m,解得m≥4 000. ∵-0.1<0,∴W随m的增大而减小. ∴当m=4 000时,W取最大值, W最大=-0.1×4 000+6 000=5 600, 即药店购进A型口罩4 000只、B型口罩6 000只,才能使 销售总利润最大,最大总利润为5 600元.
【点拨】由图象知,对于 y1=ax,y1 随 x 的增大而减小, ∴a<0,故①正确;直线 y2=12x+b 与 y 轴交于正半轴, ∴b>0,故②错误;当 x>0 时,y1<0,故③错误;当 x<-2 时,直线 y1=ax 在直线 y2=12x+b 的上方,

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(2)设商店所获利润为y(单位:元),购进篮球的个数为 x(单位:个),请写出y与x之间的函数关系式(不要 求写出x的取值范围).
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.

北师大八年级数学下册2.6 一元一次不等式组

北师大八年级数学下册2.6 一元一次不等式组

初中数学试卷2.6 一元一次不等式组基础巩固1.下列不等式组中,解集是2<x <3的不等式组是( )A.⎩⎨⎧>>23x xB.⎩⎨⎧<>23x xC.⎩⎨⎧><23x xD.⎩⎨⎧<<23x x2.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A.a <12B.a <0C.a >0D.a <-123.不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4.不等式组31025x x +>⎧⎨<⎩的整数解的个数是( )A.1个B.2个C.3个D.4个5.在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )A.3<x <5B.-3<x <5C.-5<x <3D.-5<x <-36.方程组43283x m x y m+=⎧⎨-=⎩的解x 、y 满足x >y ,则m 的取值范围是( ) A.910m > B. 109m > C. 1910m > D. 1019m > 7.若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________.能力提升1-1x 1-1 x 1-1 x 1-1 x A B C D8.若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .9.若不等式组2x x a >⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________. 10.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________. 11.若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是_______________.12.解下列不等式组(1)328212x x -<⎧⎨->⎩ (2)13.求同时满足不等式6x -2≥3x -4和2112132x x +--<的整数x 的值.20.若关于x 、y 的二元一次方程组533x y m x y m -=-⎧⎨+=+⎩中,x 的值为负数,y 的值为正数,求 m 的取值范围.572431(1)0.54x x x --⎧⎪⎨--<⎪⎩≥。

2.6 一元一次不等式组 北师大版八年级下册数学作业(含答案)

2.6 一元一次不等式组 北师大版八年级下册数学作业(含答案)

6一元一次不等式组(打“√”或“×”)1.是一元一次不等式组. (×)2.在平面直角坐标系中,点A(2x-5,6-2x)在第四象限,则x的取值范围是<x<3. (×)3.不等式组的解集是x<-1. (×)4.已知不等式组则x可取的整数是0,1,2. (×)5.根据“x的2倍大于4,且x的三分之一与1的和不大于2”列出的不等式组是(×)·知识点1一元一次不等式组的概念1.下列不等式组是一元一次不等式组的是 (B)A. B.C. D.·知识点2一元一次不等式组的解集2.(2021·泉州丰泽区期末)下列不等式组中,无解的是(D)A. B. C. D.3.关于x的不等式组的解集是x<-3,则m的取值范围是m≥-3.·知识点3解一元一次不等式组4.(2021·厦门集美区模拟)不等式组的解集是(C)A.x>-1B.x>-C.x≥-D.-1<x≤-5.若不等式组无解,则a的取值范围是a≥2.·知识点4一元一次不等式组的特殊解6.若关于x的不等式组恰有3个整数解,则实数a的取值范围是(C)A.7<a<8B.7<a≤8C.7≤a<8D.7≤a≤87.不等式组的最大整数解是x=-4.·知识点5一元一次不等式组的实际应用8.(2021·福州马尾区期中)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.1.(2021·湘潭中考)不等式组的解集在数轴上表示正确的是(D)2.(2021·南平延平区期末)已知且0<x-y<1,则k的取值范围为(B)A.<k<1B.0<k<C.0<k<1D.-1<k<-3.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[]=2,则x的取值范围是(D)A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<74.如图,是甲、乙、丙三人玩跷跷板的示意图(支点在板的中点处),则甲的体重m的取值范围是.(C)A.0<m<45B.45≤m<60C.45<m<60D.45<m≤605.(2021·三元区质检)先阅读理解下面的例题,再按要求完成后面的问题:例:解不等式(x-2)(x+1)>0.【解析】由有理数的乘法法则“两数相乘,同号得正,异号得负”得: ①,或②解不等式组①,得:x>2.解不等式组②,得:x<-1.所以(x-2)(x+1)>0的解集为x>2或x<-1.根据上述方法解析下列问题:(1)解一元二次不等式x2-4>0;(2)解不等式<0.【解析】见全解全析易错点1:依据不等式组的解集确定不等式组中参数的值时,忽略等号导致漏解1.(2021·菏泽中考)如果不等式组的解集为x>2,那么m 的取值范围是(A)A.m≤2B.m≥2C.m>2D.m<2易错点2:套用解方程组的方法直接把两个不等式相加或相减得出其解集造成错误2.解不等式组【解析】见全解全析6一元一次不等式组必备知识·基础练【易错诊断】1.×2.×3.×4.×5.×【对点达标】1.B A.是二元一次不等式组,故本选项不符合题意;B.是一元一次不等式组,故本选项符合题意;C.是一元二次不等式组,故本选项不符合题意;D.是二元一次不等式组,故本选项不符合题意.2.D A.的解集为x<-3,故本选项不合题意;B.的解集为-3<x<2,故本选项不合题意;C.的解集为x>2,故本选项不合题意;D.无解,故本选项符合题意.3.【解析】解不等式2x-1>3x+2,得:x<-3,∵关于x的不等式组的解集是x<-3,∴m≥-3.答案:m≥-34.C解不等式2x≥-1,得:x≥-,又x>-1,∴不等式组的解集为x≥-.5.【解析】解不等式x+2>2a,得:x>2a-2,∵不等式组无解,∴a≤2a-2,解得a≥2.答案:a≥26.C解不等式①,得x>4.5.解不等式②,得x≤a.所以不等式组的解集是4.5<x≤a,∵关于x的不等式组恰有3个整数解(整数解是5,6,7),∴7≤a<8.7.【解析】由①得:x<-3.由②得:x≤3.∴不等式组的解集为x<-3.则不等式组最大的整数解为x=-4.答案:x=-48.【解析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:∵a,b均为整数.∴4<b<7,∴b最大可以取6.答案:6关键能力·综合练1.D解不等式x+1≥2,得:x≥1.解不等式4x-8<0,得:x<2.则不等式组的解集为1≤x<2.将不等式组的解集表示在数轴上如下:2.B两个方程相减,得:x-y=1-2k,∵0<x-y<1,∴0<1-2k<1,解得0<k<.3.D∵[]=2,∴2≤<3,解得5≤x<7.4.C∵甲的体重>乙的体重,∴m>45,∵甲的体重<丙的体重,∴m<60.∴45<m<60.5.【解析】(1)(x+2)(x-2)>0,原不等式可转化为①,或②解不等式组①,x>2.解不等式组②,x<-2.即一元二次不等式x2-4>0的解集为x>2或x<-2;(2)原不等式可转化为①,或②解不等式组①,-<x<.解不等式组②无解.即分式不等式<0的解集为-<x<.【易错必究】1.A解不等式x+5<4x-1,得:x>2,∵不等式组的解集为x>2,∴m≤2.2.【解析】由①得:x≤3.由②得:x≥-1.即不等式组的解集为-1≤x≤3.。

八年级数学北师大版初二下册--第二单元 《一元一次不等式与一元一次不等式组回顾与思考》课件

八年级数学北师大版初二下册--第二单元  《一元一次不等式与一元一次不等式组回顾与思考》课件

1 -5 -4 -3 -2 -1 -11 2 3 4 x
解:(1)x=1;(2).x<1;(3).x>1
-2
归纳:利用两个一次函数的图象求一元一次不等 式的解集:关键是确定两个一次函数图象的交点 坐标.
知识点三:一元一次不等式组
(一)一元一次不等式组: 一般地,关于同一未知数的几个一元一次不等式合在
性质3:不等式的两边乘以(或除以)同一个负数,不等 号的方向改变。
即:如果a>b,c<0,那么ac<bc,a/c<b/c.
1.设a>b,用“<”或“>”填空:
(1)a-3 > b-3 (2) a > b (3)-4a < -4b 22
2.单项选择: (1)由x>y 得ax>ay的条件是( A ) A.a>0 B.a<0 C.a≥0 D.a≤0 (2)由x>y得ax≤ay的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0 (3)由a>b得am2>bm2 的条件是( C ) A.m>0 B.m<0 C.m≠0 D.m是任意有理数
2.高速公路施工需要爆破,根据现场实际情况,操作 人员点燃导火线后,要在炸药爆破前跑到400米外的 安全区域,已知导火索燃烧速度是1.2厘米/秒,人跑 步的速度是5米/秒,问导火索至少需要多长? 分析:导火索燃烧的时间≥人跑出400米外的时间.
解:设导火索至少需要x厘米长,据题意有:
x 1.2

400 5
1.解不等式 2x 1 5 x 5 ,并把它的解集在数轴上 34
表示出来. 解: 去分母得: 4(2x 1) 12(5 x 5) 4 去括号得: 8x-4≥15x-60
移项得: 8x-15x≥-60+4
合并同类项得:
-7x≥-56

北师版八年级数学下册课件 第二章 一元一次不等式与一元一次不等式组 确定不等式(组)中参数的值或范围

北师版八年级数学下册课件 第二章 一元一次不等式与一元一次不等式组 确定不等式(组)中参数的值或范围

无解,那
A.m≤-1 么m的取值范围为( )
A
B.m<-1
C.-1<m≤0
D.-1≤m<0
式(组)②覆盖,特别地,若一个不等式(组)
无解,则它被其他任意不等式(组)覆盖.例
如:不等式x>1被不等式x>0覆盖,不等
式组
无解,被其他任意不等式
(组)覆盖.
(1)下列不等式(组)中,能被不等式x<-2 覆盖的是 D ;
13.(2018·黑龙江)若关于x的一元一次不等式组 有2个负整数解,则a的取值范围是
-3≤a<-2 ____________.
14.新定义:对非负数x“四舍五入”到个位的 值记为<x>,即当n为非负数时,若n- ≤x<n
+ ,则<x>=n.
例如:<0>=<0.49>=0,<0.5>=<1.49>=1,<2> =2,<3.5>=<4.23>=4,…
B.m<2
C.-2<m≤2 D.-2≤m<2
5.如果关于x的不等式x>2a-1的最小整数解
A.0<a<为2 x=3,则a的取值范围是(
C
)
B.a<2
C.≤a<2
D.a≤2
6.不等式组
的解集是3<x<a
A.a>1 +2,则a的取值范围是( )
D
B.a≤3
C.a<1或a>3
D.1<a≤3
7.已知关于x的不等式
类型四 已知不等式组的解集的情况确定参数
的取值范围
15.若关于x的不等式组
有实数解,则Aa的取值
范围是( )
A.a<4
B.a≤4
C.a>4
D.a≥4
16.(2018·贵港)若关于x的不等式组 A.a≤-3无解,则a的取值范围是( ) A

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式

不等式的基本性质教学课件--北师大版初中数学八年级(下)

不等式的基本性质教学课件--北师大版初中数学八年级(下)

(2) 1 x
3
<
1 y (不等式的基本性质 2 )
3
(3)-x > -y (不等式的基本性质 3 )
(4)x-m < y-m (不等式的基本性质 1 )
3、下列各题是否正确?请说明理由
(1)如果a>b,那么ac>bc
×
(2)如果a>b,那么ac2 >bc2
×
(3)如果ac2>bc2,那么a>b

a c
>
b c
a c
<
b c
知识讲授
不等式的基本性质 3 :
不等式的两边都乘(或除以)同一个负数, 不等号的方向 改变 .
即:若a b且c 0, 则a c<b c , 若a b且c 0,则a c> b c ,
ac <
b c
a c
>
b c
例题讲授
例1 将下列不等式化成“x>a”或“x<a”的情势:
-4<3 -4×2< 3×2 -4÷2< 3÷2 -4×(-2)> 3×(-2)
-4÷(-2)> 3÷(-2)
6×0 = 3×0
知识讲授
不等式的基本性质 2 :
不等式的两边都乘(或除以)同一个正数,不 等号的方向 不变 .
即:若a b且c 0, 则a c> b c , 若a b且c 0,则a c<b c ,
2
能力提升
1、单项选择:
(1)由 x>y 得 ax>ay 的条件是(B )
A.a ≥0 B.a > 0 C.a< 0 D.a≤0 (2)由 x>y 得 ax≤ay 的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0

北师大版八年级数学下册 2.6.1一元一次不等式组及含参数(含答案)

北师大版八年级数学下册 2.6.1一元一次不等式组及含参数(含答案)

2.6.1一元一次不等式组及含参数的一元一次不等式组一、选择题1.下列各式中是一元一次不等式组的是()A.{x +3<21x +2≥5B.{x +y >4x −y <6C.{x +4≥−36<12D.{x −6>−2x +1<8 2.不等式组{3−x >02x −4>0的解集是() A.x >3B.x <2C.2<x <3D.x >2或x <−3 3.不等式组{x −3≤−15−x <6的整数解是() A.2B.1,2C.0,1,2D.−1,0,1,24.已知不等式组{1−3(x −1)≤8−x 2x−53−x >−3 的最小整数解为a ,最大整数解为b ,则b a =() A.19 B.−8 C.116 D.165.不等式组{x >a +2x <3a −2无解,则常数a 的取值范围是() A.a <2B.a ≤2C.a >2D.a ≥2 6.已知点P(a +1, −a 2+1)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A. B.C. D.二、填空题7.写出一个无解的一元一次不等式组为________.8.不等式组{x −2≥03x +1>x的解集是________. 9.不等式组{x −1≤3,3−2x <1的最小整数解是________. 10.若关于x 的一元一次不等式组{x −2m <0,x +m >2有解,则m 的取值范围为________. 11.如果关于x 的不等式组{3x −a ≥02x −b ≤0的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(a, b)共有________个.12.按如图所示的程序计算,若输入的值x =17,则输出的结果为22;若输入的值x =34,则输出结果为22.当输出的值为24时,则输入的x 的值在0至40之间的所有正整数为________.三、解答题13.解不等式组{2x −1<53x +6>0.14.①{x −3(x −2)≥41+2x 3>x −1; ②{2(x +3)+5(x −2)<3x+13−1≤2x+12.15.解不等式组{3(x −2)≥−42x+13>x −1,并把解集在数轴上表示出来.16.解不等式组{x−32+3>x +11−3(x −1)≤8−x,并求出所有整数解的和.17.解不等式组{3+4(x −1)>−9x+32>x +1 ,并把它的解集在数轴上表示出来.18.解不等式组{x +5≥73x −3≤6. 请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________.19.若关于x 的不等式组{x −m ≥03−2x >1的整数解共有5个,求m 的取值范围.20.是否存在这样的整数m ,使得关于x ,y 的方程组{x +y =2m +12x −y =m −4的解满足x <0且y >0?若存在,求出整数m ;若不存在,请说明理由.2.6.1一元一次不等式组参考答案一、选择题1.D2.C3.C4.A5.B6.C二、填空题7.{x +1≤3x −1≥28.x ≥29.210.m >2311.612.19,38三、解答题13.解:{2x −1<53x +6>0,由①得:x <3,由②得:x >−2,∴不等式组的解集为:−2<x <3.14.解:(1){x −3(x −2)≥41+2x 3>x −1, 由①得:x ≤1;由②得:x <4,不等式组的解集为:x ≤1;(2){2(x +3)+5(x −2)<3x+13−1≤2x+12, 由①得:x <1;由②得:x ≥−74,不等式组的解集为:−74<x <1.15.解:不等式组的解集为1≤x <4,在数轴上表示如图:16.解:{x−32+3>x +11−3(x −1)≤8−x ,解不等式①得:x <2;解不等式②得:x ≥−2,所以不等式组的解集是:−2≤x <2,所以整数解是−2,−1,0,1,所以所以整数的解是−2−1+0+1=−2.17.{3+4(x −1)>−9x+32>x +1 ,解不等式①得:x >−2,解不等式②得:x <1,则不等式组的解集为−2<x <1,它的解集在数轴上表示出来为:18.x ≥2x ≤3把不等式①和②的解集在数轴上表示如解图:2≤x ≤319.解:解不等式x −m ≥0得x ≥m ,解不等式3−2x >1,得x <1,由题意可得m ≤x <1,因为满足不等式组的整数解共有5个,即这五个整数解为0,−1,−2,−3,−4, 所以−5<m ≤−4.20.解方程组{x +y =2m +12x −y =m −4得:{x =m −1y =m +2 , 根据题意,得:{m −1<0m +2>0, 解得:−2<m <1,则整数m 为−1,0.。

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,


现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号

不大于, 小于或 不超过 等于
大于或等于 号

不小于, 大于或
至少
等于
不等号

不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象

北师大版数学八年级下册2.6 一元一次不等式组(第1课时)教学设计(含教学反思)

北师大版数学八年级下册2.6 一元一次不等式组(第1课时)教学设计(含教学反思)

北师大版数学八年级下册
《2.6 一元一次不等式组(第1课时)》教学设计
1.某校今年冬季烧煤取暖时间为4个月,如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨。

该校计划每月烧煤多少吨?
问题:你能列出一个不等式组吗?你能尝试找出符合上面一元一次不等式组的未知数的值吗?
2.解不等式组:
3.课本第55页随堂练习。

活动目的:
通过学生自己的动手操作,一方面使学生能够体会数学的学习是运用于生活的,另一发面,通过学生解不等式组,可以达到巩固新知识的目的.
活动效果:
考察学生对一元一次不等式组解法的理解和应用,加深对数形结合思想的理解,使学生更好地进行知识的迁移。

此外,教师通过对学生练习的检查,及时发现问题并纠正。

总结归纳:
活动内容:
通过本节课的学习,你有哪些收获?
活动目的:
及时反思,便于学生将数学知识体系化,同时从能力、情感。

一元一次不等式第2课时课件北师大版八年级数学下册

一元一次不等式第2课时课件北师大版八年级数学下册

10
5%
200
解这个不等式,得x≥7,
答:最多可按7折销售.
活动2:一次环保知识竞赛共有25道题,规定答对一道题得4分,答 错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(87分或87 分以上),小明至少答对了几道题?
解:设小明答对了x道题,则他答错和不答的共有(25-x)道题. 根据题意,得 4x-1×(25-x)≥87. 解这个不等式,得 x≥22.4, 所以,小明至少答对了23道题.
3.某种商品的进价为400元,出售时标价为500元,商店准备打折 出售,但要保持利润率不低于10%,则最多可打几折?
解:设按标价的x%出售, 根据题意,得 500 x% 400 10%.
400
解这个不等式,得 x≥88. 所以至多可以打八八折.
一元一次不等式的应用
设未知数,列不等式 实际问题
解:设他还可买x根火腿肠, 根据题意,得 2x+3×5≤26, 解这个不等式,得 x 11
2
所以他最多还能买5根火腿肠.
1.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本
2.2元,她买了2个笔记本,则她最多可以买笔的支数为( D )
A.2
B.3C.4Fra bibliotekD.5
2.某次数学竞赛活动,共有20道选择题,评分办法是:答对一题得 5分,答错一题扣1分,不答题不得分也不扣分.某同学有一道题未 答,那么这个学生至少答对 17 题,成绩才能在80分以上.
问题1:找出本题中的不等关系. 问题2:列出不等式,作答此题.
打折后的销售价-进价
不等关系:
进价
≥5%
某种商品进价为200元,标价300元出售,商场规定可以打折 销售,但其利润率不能少于5%,请你帮助售货员计算一下,这种 商品最多可以按几折销售?

北师大版数学八年级下册《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组(第1课时)

北师大版数学八年级下册《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组(第1课时)

知识点二:选择适当的方法解一元一次不等式
【例2】1.如图,函数 y1 2x 和
y2
2 3
x
4
的图象相交于点A.
(1)求点A的坐标; (2)根据图像回答:当为x何值时,
① y1 y2
② y1 y2
③ y1 y2
归纳与小结: 在此问题中,涉及两个函数的比较大小,
我们依然有两种方法: 和
.
巩固练习:直线y=k1x+b与直线y=k2x在同一平面直角坐标系中的图象如图所示, 则关于x的不等式k1x+b>k2x的解为 X<-1 .
2.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式 0>3x+b>ax-3的解集是_______________。
感谢聆听!
《一元一次不等式与一次函 数》一元一次不等式和一元
一次不等式组(第1课时)
北师大版数学八年级下册
生动有趣的课程,搭配各个互动环节助理您教学成功感谢所Fra bibliotek辛勤付出的人民教师
目录
content
01 学习目标 02 课堂学习 03 课堂小结 04 当堂检测
学习目标 1 理解一次函数图象与一元一次不等式的关系 2 能够用图像法解一元一次不等式
题中应灵活选用。
04
当堂检测
Life isn't about waiting for the storm to pass. it's about learning to dance
四、当堂检测 1. 已知一次函数y=2x-5的图象如图所示,借助图象直接写出答案: (1)当x取何值时,2x-5=0? (2)当x取哪些值时,2x-5>0? (3)当x取哪些值时,2x-5<0? (4)当x取哪些值时,2x-5>3?

北师大版八年级数学下册课件:2

北师大版八年级数学下册课件:2
当 x>2.5时, 2x-5>0
(3)x取哪些值时, 2x-5<0 ?
当x<2.5时, 2x-5<0
y
4 3 2 1
-2 -1-O1 -2 -3 -4 -5
y=2x-5
(2.5,0)
12 34 5 x
学习探究一
观察一次函数y=2x-5的图象,回答下列问题:
(4)x取何值时, 2x-5=1 ? 当 x=3时, 2x-5=1 (5)x取哪些值时, 2x-5>1 ? 当 x>3时, 2x-5>1 (6)x取哪些值时,2x-5<1 ? 当 x<3时, 2x-5<1
情境引入
兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m, 哥哥每秒跑4m.
(1)何时弟弟跑在哥哥前面? (2)何时哥哥跑在弟弟前面?
解:(2)设哥哥起跑y秒时哥哥在弟弟前面. 4y>3y+9 解得:y>9
所以,从哥哥起跑,9秒之后哥哥跑在弟弟前面.
学习目标
1.通过观察函数图象、求方程的解和不等式的解集,从中体会一元一 次方程、一元一次不等式与一次函数的内在联系;
(2)____x_>_9____时,哥哥跑在弟弟前面.
(3)_弟__弟___先跑过20m,_哥__哥___先跑过100m.
问题解决
思路二:代数法
(1)何时弟弟跑在哥哥前面?
哥哥: y1=4x
弟弟: y2=3x+9
由y1<y2得,4x<3x+9
解得:x<9
所以,从哥哥起跑,9秒之前弟弟跑在哥哥前面.
2.通过具体问题初步体会一次函数的变化规律与一元一次不等式解集 的联系;
3.利用数形结合的思想,多角度解决一元一次不等式的问题,体会数 学思想方法的应用.

北师大版八年级下数学第一章不等式复习课件

北师大版八年级下数学第一章不等式复习课件

(2)m的2倍与n的5倍的差不大于7; 2m-5n≤7 (3)x与y的5倍的差最多为5.
x-5y≤5
3.如果a<b,用适当的符号填空. < (1) a+c___b+c;
(3) 2a+10___2b+10; < > (2) -3a___-3b; < (4) a-b___0;
自学指导二: (3分钟)
1.下列说法不正确的是( D ) A. 不等式x<3的整数解有无数个;
自学指导三: (5分钟)
1.下列式子:①3x2+2x>5; ②2x-5>3y+1;③3x+1<7;
2 ④-3>0. ⑤ - x +2<3; ⑥ y>0.中是一元一次不等式的
③⑥ 有_________.( 填序号)
2.如图是一次函数y=kx+b的图象, 观察图象回答问题:
y
2
0
1
x
(1)x 等于1时,y=0; (2) x 小于1 时.y>0; (3) x 大于1 时.y<0 3.移项 x-11 2x+1 3.求不等式 >-1的非负整数解. 1. 去分母 3 4 4.合并同类项 解: x -311 - 2x4- 1 < -12.去括号 4x - 6x < -12 + 44 - 3 5.系数化为1
1. (1)不等式x<3.5的非负整数解是 0, 1,2,3; (2)不等式x<-3.5的最大整数解是_______; -4 2. 已知关于x的不等式m-2x<3的解集如图,则m的值 -1 为_______.
-4 -3 -2 -1 0 1 2 3
2.根据题意确定不等式组 3.已知关于x不等式-5x+a<3的负整数解为 -1,-2,求a的取 值范围. ∵ x取负整数是 -1,-2 a -3 解: -5x+a<3 5 <-2 ∴-3≤ a-3 -5x<3-a 即 3≤ <-2 a-3 5 x> 5 解得:-12≤a<-7 1.用含a的式子表示x的取值 3.解不等式组确定a的取值
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
一元一次不等式与一元一次不 等式组
2.6 一元一次不等式组(1)
栏目导 航
同一未知数的几个一元一次不等式 1.一般的,关于 ______________________________________合
在一起,就组成一个一元一次不等式组.
一元一次不等式组中各个不等式的解集 2. __________________________________________ 的公共部分,
_____________________.
3x-1>5 2<x<3 . 9.不等式组 的解集为_______________ 2x<6
10.若关于 x
x-a>0 的一元一次不等式组 无解,则 1-x>x-1
a 的取
a≥1 . 值范围是_________
三、解答题 11.解下列不等式组,并将其解集在数轴上表示出来.
叫做这个一元一次不等式组的解集.
一、选择题 1.下列不等式组中,其中是一元一次不等式组的个数是( B )
x>-2 ① , x<3 x+3>0 ④ , x<-7 x>0 ② , x+2>0 x+1>0 ⑤ . y-1<x
2 x > x +1 ③ 2 , x +2>4
解:解不等式①得:x≤3, 解不等式②得:x≥-1, 所以不等式组的解集为:-1≤x≤3, 所以不等式组的非负整数解为 3,2,1,0.
5x+1>3(x-1) 13.已知不等式组1 恰好有两个整数解,求实数 a 3 x≤8- x+2a 2 2
的取值范围.
解:解 5x+1>3(x-1)得:x>-2, 1 3 解 x≤8- x+2a 得:x≤4+a. 2 2 则不等式组的解集是:-2<x≤4+a. 因为不等式组只有两个整数解,是-1 和 0. 根据题意得:0≤4+a<1. 解得-4≤a<-3.
解:解不等式 5x+1>3(x-1),得 x>-2, 1 3 解不等式 x-1≤7- x, 得 x≤4, 2 2 则不等式组的解集为-2<x≤4, 将解集表示在数轴上如下:
1+3x 2x- ≤1 ① 2 12.解不等式组 ,并写出所有的非负整数解. 2x+5≤3(x+2) ②
A.2 个
B.3 个
C. 4 个
D.5 个
2x+3>1 2.把不等式组 的解集表示在数轴上如下图,正确的 3x+4≥5x3.不等式组 的解集为 x-k<1
x<2,则 k 的取值范围为
( C) A.k>1 C.k≥1 B.k<1 D.k≤1
5 个整数解,
则正数 a 的最小值是( B ) A.3 C.1 B.2 D.0.5
二、填空题 7.试构造一个解集为 x<-1 的一元一次不等式组:
x<-1 (答案不唯一) x< 0 ____________________ .
8.写出一个解集在数轴上如图所示的不等式组:
x+1>0 (答案不唯一) x-2<0
5-4m)≤3…③ 3-2m)>p…④
5 3 由①得:m≤ , 由②得:m> p-3, 4 2 3 5 ∴不等式组的解集为 p-3<m≤ , 2 4
∵不等式组恰好有 2 个整数解,即 m=0,1, 3 4 ∴-1≤ p-3<0, 解得 ≤p<2, 2 3 4 即实数 p 的取值范围是 ≤p<2. 3
5-4m)≤3 恰好有 2 个整 3-2m)>p
数解,求实数 p 的取值范围.
a+b=5…① 解:(1)根据题意得: , 2a-b=4…②
①+②得:3a=9,即 a=3, 把 a=3 代入①得:b=2, 故 a,b 的值分别为 3 和 2;
T(4m, (2)根据题意得 T(2m,
ax+by 14.对 x,y 定义一种新运算 T,规定:T(x,y)= (其中, x+y a、b 均为非零常数),这里等式右边是通常的四则运算,例 a×0+b×1 如:T(0,1)= =b,已知 T(1,1)=2.5, 0+1 T(4,-2)=4.
(1)求 a,b 的值;
T(4m, (2)若关于 m 的不等式组 T(2m,
x-3(x-2)≥4 ① (1)2x-1 x+1 ; < ② 2 5
解:由①得:-2x≥-2,即 x≤1, 由②得:4x-2<5x+5,即 x>-7,所以-7<x≤1. 将解集表示在数轴上如下:
5x+1>3(x-1) (2)1 3 . x-1≤7- x 2 2
x-1 <1 4.不等式组 2 的解集是( 2(x+2)+1≥3
C)
A.-1<x≤3 C.-1≤x<3
B.1≤x<3 D.1<x≤3
2x-9<1 5.不等式组 的非负整数解的个数是( 3x+7≥2
B)
A.4 C.6
B.5 D.7
6.关于 x
x-a≤0 的不等式组 的解集中至少有 2x+3a>0
相关文档
最新文档