新人教版七年级下册第五章《相交线与平行线》全章教案(
人教版七年级数学下册第五章相交线与平行线全章教学设计(全章教案)
5.1相交线六、教学过程设计师生活动设计意图教学过程一、观察剪刀剪布的过程,引入两条相交直线所成的角二、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.3.学生根据观察和度量完成下表:4.概括形成邻补角、对顶角概念5.对顶角性质三、巩固运用判断题:(课堂作业)(1)如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )(2)两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )四、小结五、布置作业通过教具直观演示法、启发引导、尝试研讨、变式练习白板(课件)和黑板(重点板书)结合教学经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角。
通过学生练习,对有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验5.1.2 垂线5.1.3 同位角、内错角、同旁内角一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。
二、同位角、内错角、同旁内角如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。
我们来研究那些没有公共顶点的两个角的关系。
∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。
(同位角形如字母“F”)∠3与∠2、∠4与∠6的位置有什么共同的特点?在截线的两旁,被截直线之间。
具有这种位置关系的两个角叫做内错角.(内错角形如字母“Z”)∠3与∠6、∠4与∠2的位置有什么共同的特点?在截线的同旁,被截直线之间。
人教版七年级数学下册第5章相交线与平行线(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份.
1第五章相交线与平行线5.1.1相交线一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章相交线、平行线5. 1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边, 初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条 a 、 b ,用钉子将它们钉在一起,并且能随意张开. 生:画出图形,并用几何语言描述所画的图形. 师:思考所画的图形中有几个小于平角的角? 生:四个.师:为了方便描述,我们用::∠ 1、∠ 2、∠ 3、∠ 4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充∠ 1和∠ 2, ∠ 1和∠ 3, ∠ 1和∠ 4, ∠ 2和∠ 3, ∠ 2和∠ 4, ∠ 3和∠ 4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?教学过程设计2 2 222 22生 1:一类是相邻的∠ 1和∠ 2,∠ 2和∠ 3,∠ 3和∠ 4,∠ 1和∠ 4,一类是相对的∠ 1和∠ 3,∠ 2和∠ 4.生 2:一类是有公共边的∠ 1和∠ 2,∠ 2和∠ 3,∠ 3和∠ 4,∠ 1和∠ 4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠ 1和∠ 2,∠ 2和∠ 3, ∠ 3和∠ 4, ∠ 1和∠ 4 ; 另一类是没有公共边, 两边都互为反向延长线 (∠ 1和∠ 3, ∠ 2和∠ 4 ,这就是今天要学的对顶角和邻补角.【板书】 :两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边.... .邻补角:有公共顶点且有一公共边..... .“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠ 1是∠ 3的对顶角,反过来∠ 3也是∠ 1的对顶角.【设计意图】引导学生按位置关系进行分类, 并针对分类的原因进行探索和交流, 让学生经历概念的形成过程, 真正理解对顶角和邻补角的概念.在探索过程中, 渗透分类思想, 培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠ l 和∠ 2是对顶角吗?为什么?(1 (2 (3 (4【设计意图】本组题目是巩固对顶角概念的, 通过练习, 使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2. 下列各图中,∠ l 和∠ 2是邻补角吗?为什么?(1 (2师:图(1中的邻补角可以看成是怎样形成的?邻补角为什么互补? 生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠ l 对顶角和∠ 2的邻补角.23AB E CD O22ACDEab 34、如图,三条直线 AB 、 CD 、 EF 相交于点 O ,∠ AOE 的对顶角是 ,∠ EOD 的邻补角是 .【设计意图】通过辨、画、找, 及时反馈学生思维上的一些偏差, 加深对两个概念的理解, 在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中, 我们知道互为邻补角的两个角的和为 180度, 互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型生:相等.师:为什么?生:(讨论交流生 1:∵∠ 1=180°-∠ 2,∠ 3=180°-∠ 2(邻补角定义,∴∠ 1=∠ 3(等量代换生 2:∵∠ 1与∠ 2互补,∠ 3与∠ 2互补(邻补角定义,∴∠ l =∠ 3(同角的补角相等师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质.【板书】 :对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线 a 、 b 相交,∠ l =40°, 求∠ 2、∠ 3、∠ 4的度数.2. 变式 1:把∠ l =40°变为∠ l =90°, 求∠ 2、∠ 3、∠ 4的度数.变式 2:把∠ l =40°变为∠ l =n°, 求∠ 2、∠ 3、∠ 4的度数.变式 3:把∠ l =40°改为∠ 2是∠ l 的 3倍,求∠ 1、∠ 2∠ 3、∠ 4的度数.变式 4:如图,直线 AB 、 CD 相交于 O 点, OE 平分∠ AOD ,若∠ 1=20°,那么∠ 2=______.4A CD E变式 5:如图,直线 AB 、 CD 相交于 O 点,∠ AOE =90°,若∠ 1=20°,那么∠2=____,∠ 3=____,∠ 4=____.3.右图是对顶角量角器 , 你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角 AOB 的度数,但人不能进入围墙,如何测量?5. 如图,三条直线 AB 、 CD 、 EF 相交于点 O ,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形. 对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个.【设计意图】通过变式, 由易到难,培养学生举一反三的能力, 在利用数学解决实际问题中感受成功, 培养学生从现实情境中建立几何模型的能力, 思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑? 生:……七:布置作业,分层发散1.课本:P 7-91, 2, 8, 9;2.探究(选做四条直线相交于一点,共有几对对顶角?几对邻补角? n 条直线呢?【教学反思】 :5.1.2垂线 (第 1课时教学过程设计55.1.2垂线 (第 2课时教学过程设计115.1.3同位角、内错角、同旁内角教学过程设计12131415165.2.1平行线教学过程设计17185.2.2平行线的判定 (一教学过程设计1920215.2.2平行线的判定 (二教学过程设计2223245.3.1平行线的性质(第 1课时教学过程设计2526275.3.1平行线的性质(第 2课时教学过程设计2829305.3.2命题、定理、证明教学过程设计3132335.4平移教学过程设计343536第五章小结与复习教学过程设计37383940教学反思 41。
相交线与平行线全章教案
相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
新人教版数学七年级下册第五章《相交线与平行线》全章教案
1.【探究一】
合
作 如图,怎样描述直线 AB、CD 和 EF 的位置关系? 学生讨论、回答:
探
究
直线 AB、CD 被直线 EF
所截
师概括为三线八角
2.【探究二】
引导学生观察得出
(1)观察图中的∠1 和∠5 与截线及两条 这 两 个 角 分 别 在 直 线
教学反思:
, 的垂线.
C
A
D
B
B
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(2)
教学目标
了解垂线段、点到直线的距离的概念,会利用三角尺画垂线段,会量点到 直线的距离.
教学重、难点
重点:两个结论的探究、垂线段和点到直线距离的概念. 难点:经历探究“垂线段最短”的过程,掌握垂线性质 2
教 学 过 程设计
角两边的反向延长线。
互为邻补角的两个角的特点:①两个角有一个公共顶点②两个角有一条公共边
(邻)③两个角在公共边两侧④两个角和为
五、布置作业:、 教学反思:
(补)
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(1)
教学目标
1、理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的 垂线。 2、掌握点到直线的距离的概念,并会度量点到直线的距离。 3、掌握垂线的性质,并会利用所学知识进行简单的推理。
(5)如图直线 AB、CD、EF 相交于点 O,∠BOE 的对顶角是______,∠COF 的邻
a 补角是____ ,若∠AOE=30°,那么∠BOE=_____,∠BOF=_______。 E 2
人教版数学七年级下册第五章相交线与平行线数学活动课教学设计
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将采用生活情境导入法,引导学生从日常生活中发现数学知识。首先,我会展示一张包含平行线元素的图片,如铁轨、斑马线等,让学生观察并思考这些图片中的共同特征。接着,提出问题:“大家知道这些图片中的线有什么特别之处吗?”让学生展开讨论,激发学生的好奇心。通过这种方式,学生能够初步感知平行线的概念。
二、学情分析
七年级下册的学生已经具备了一定的几何基础,掌握了基本的几何图形和性质,但对相交线与平行线的理解尚处于表面层次。在此阶段,学生正处于从直观思维向抽象思维过渡的阶段,需要通过具体实例和实践活动来加深对几何概念的理解。此外,学生在小组合作学习中表现出较强的互动意识和沟通能力,但独立思考问题和解决问题的能力有待提高。因此,在教学过程中,教师应关注以下方面:
此外,我还将针对学生的个体差异,进行有针对性的辅导,确保每个学生都能掌握本节课的知识。最后,布置课后作业,鼓励学生在课后进行拓展学习,提高学生的自主学习能力。
五、作业布置
为了巩固学生对相交线与平行线知识的掌握,提高学生的应用能力和解决问题的能力,特此布置以下作业:
1.基础作业:
(1)完成课本第89页的练习题1、2、3;
5.能够运用相交线与平行线的知识,解决生活中的实际问题。
(二)过程与方法
1.通过观察、分析、归纳,培养学生的逻辑思维能力;
2.通过实践操作,如尺规作图,培养学生的动手操作能力和空间想象力;
3.通过小组讨论与合作学习,培养学生的团队协作能力和沟通交流能力;
4.学会运用数学语言表达几何问题,提高学生的数学表达能力;
(三)学生小组讨论,500字
2024年最全面新人教版七年级数学下册教案全册精华版
2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线Array教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.Array 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
2024年新人教版七年级数学下册教案全册
2024年新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的性质与判定5.3 两条平行线的距离2. 第六章:概率初步6.1 概率的基本概念6.2 概率的计算6.3 概率的实际应用3. 第七章:三角形7.1 三角形的性质7.2 三角形的判定7.3 三角形的面积二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法,能够运用相关知识解决实际问题。
2. 了解概率的基本概念,学会计算简单事件的概率,并能应用于实际情境。
3. 掌握三角形的性质、判定和面积计算方法,培养空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:平行线的判定方法、概率的计算、三角形面积的计算。
2. 教学重点:相交线与平行线的性质、概率的基本概念、三角形的性质和判定。
四、教具与学具准备1. 教具:多媒体教学设备、几何画板、三角板、量角器。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入:通过展示生活中常见的相交线与平行线实例,引导学生发现其中的数学问题。
概率部分,通过掷骰子、抽签等游戏,让学生感受概率现象。
三角形部分,利用图片和实物展示,让学生观察三角形的特点。
2. 例题讲解:结合教材中的例题,详细讲解相交线与平行线的性质、判定方法、概率的计算以及三角形的性质、判定和面积计算。
3. 随堂练习:设计相应的练习题,让学生巩固所学知识,并及时给予反馈。
结合实际情境,设计拓展延伸题,提高学生的应用能力。
六、板书设计1. 相交线与平行线:性质、判定方法、应用实例。
2. 概率:基本概念、计算方法、实际应用。
3. 三角形:性质、判定、面积计算。
七、作业设计1. 作业题目:相交线与平行线:判断下列图形中哪些是平行线,并说明理由。
概率:掷两个骰子,求得到两个相同点数的概率。
三角形:已知三角形两边和一角,求第三边。
2. 答案:相交线与平行线:根据判定方法,判断出平行线。
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案一. 教学内容:相交线与平行线二. 主要概念:1. 邻补角有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。
2. 对顶角一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角。
3. 垂线两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
4. 垂线段过直线外一点,作已知直线的垂线,这点和垂足之间的线段。
5. 点到直线的距离直线外一点到这条直线的垂线段的长度。
6. 平行线在同一平面内,不相交的两条直线叫做平行线。
7. 命题判断一件事情的语句叫做命题。
8. 平移把一个图形整体沿着某一方向平行移动,这种移动叫做平移变换,简称平移。
三. 主要性质:1. 对顶角的性质对顶角相等。
2. 邻补角的性质互为邻补角的两个角和为180°。
3. 垂线的基本性质(1)经过一点有且只有一条直线垂直于已知直线;(2)垂线段最短。
4. 平行线的判定与性质【典型例题】一. 选择题1. 如图,下列条件中,能判断直线∥的是()A. =B. =C. =D. +=2. 如图,直线a、b都与直线c相交,给出下列条件:(1)=;(2)=;(3)+=;(4)+=,其中能判断a∥b的是()A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)3. 如图,AB∥EF∥DC,EG∥DB;则图中与相等的角(除外)共有()A. 6个B. 5个C. 4个D. 3个4. 如图,若AB∥CD,则()A. =+B. =-C. ++ =D. -+=5. 如图,AB∥EF∥DC,EH⊥CD于H,BAC+ACE+CEH=()A. 180°B. 270°C. 360°D. 450°6. 已知两个角的两边分别垂直,其中一个角比另一个角的3倍少8,那么这个角的度数是()A. 47°或4°B. 133°或4°C. 47°或133°D. 以上都不对7. 下列条件中,能得到互相垂直的是()(1)对顶角的平分线(2)邻补角的平分线(3)内错角的平分线(4)同旁内角的平分线(5)同位角的平分线A. 0个B. 1个C. 2个D. 3个8. 如图,AB∥EF,C=90,则1、2和3的关系是()A. =1+ 3B. +1+ 3 =C. +1- 3 =90D. +3- 1 =909. 若直线a、b分别与直线c、d相交,且+=,-=,=115,那么=()A. 55°B. 65°C. 75°D. 85°10. 如图,已知a∥b,且AB⊥a,ABC=130,则1=()A. 30°B. 40°C. 50°D. 60°11. 下列命题不正确的是()A. 两条不相交的直线是平行线B. 在同一平面内不平行的两条直线必相交C. 在同一平面内不相交的两条直线必平行D. 在同一平面内两条直线的位置关系只有两种:相交、平行12. 一条道路经过两次转弯后,与原来的方向平行,若第一次拐弯为150°,那么第二次转弯度数应为()A. 150°B. 30°C. 150°或30°D. 以上都不对答案:1—5 CDBAB 6—10 ABCBB 11—12 AC二. 解答题:1. 如图所示,图中有几对同旁内角?分析:我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角。
人教版初中数学七年级下册《第五章相交线与平行线》全章教学设计
优质资料欢迎下载第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教学目标1.通过动手观察、操作、推断、交流等数学活动 , 进一步发展空间观念 , 培养识图能力、推理能力和有条理表达能力 .2.在具体情境中了解邻补角、对顶角 , 能找出图形中的一个角的邻补角和对顶角 , 理解对顶角相等 , 并能运用它解决一些问题 .重点、难点重点 : 邻补角、对顶角的概念 , 对顶角性质与应用 .难点 : 理解对顶角相等的性质的探索.教学手段与方法师生共同探讨教学准备三角尺课件教学过程一、读一读 , 看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片 , 阅读其中的文字 .师生共同总结 : 我们生活的世界中, 蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征 , 相交线的一种特殊形式即垂直 , 垂线的性质 , 研究平行线的性质和平行的判定以及图形的平移问题 .二、观察剪刀剪布的过程, 引入两条相交直线所成的角教师出示一块布片和一把剪刀, 表演剪刀剪布过程 , 提出问题 : 剪布时 , 用力握紧把手 , 引发了什么变化 ?进而使什么也发生了变化?学生观察、思想、回答, 得出 :握紧把手时 , 随着两个把手之间的角逐渐变小 , 剪刀刃之间的角边相应变小 . 如果改变用力方向 , 随着两个把手之间的角逐渐变大 , 剪刀刃之间的角也相应变大 .教师点评 : 如果把剪刀的构造看作两条相交的直线, 以上就关系到两条相交直线所成的角的问题, 本节课就是探讨两条相交线所成的角及其特征 .三、认识邻补角和对顶角, 探索对顶角性质1.学生画直线 AB、CD相交于点 O,并说出图中 4 个角 , 两两相配共能组成几对角 ? 各对角的位置关系如何?根据不同的位置怎么将它们C B分类 ?OA D(1)学生思考并在小组内交流, 全班交流 .当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达, 如:∠AOC和∠ BOC有一条公共边 OC,它们的另一边互为反向延长线 .∠AOC和∠ BOD有公共的顶点 O,而是∠ AOC的两边分别是∠BOD两边的反向延长线 .2.学生用量角器分别量一量各个角的度数 , 以发现各类角的度数有什么关系 , 学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等 .3.学生根据观察和度量完成下表 :两直线相交所形成的角分类位置关系数量关系134AOD教师再提问 : 如果改变∠ AOC的大小 , 会改变它与其它角的位置关系和数量关系吗 ?4.概括形成邻补角、对顶角概念 .(1)师生共同定义邻补角、对顶角 .有一条公共边 , 而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线 , 那么这两个角叫对顶角.(2)初步应用 .练习 1: 下列说法 , 你同意吗 ?如果错误 , 如何订正 .①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角.③邻补角是互补的两个角, 互补的两个角也是邻补角?5.对顶角性质 .(1)教师让学生说一说在学习对顶角概念后 , 结果实际操作获得直观体验发现了什么 ?并说明理由 .(2)教师把说理过程 , 规范地板书 :在图 1 中, ∠AOC的邻补角是∠ BOC和∠ AOD,所以∠ AOC与∠ BOC 互补 , ∠AOC与∠ AOD 互补 , 根据“同角的补角相等”, 可以得出∠AOD=∠BOC,类似地有∠ AOC=∠BOD.教师板书对顶角性质 : 对顶角相等 .强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系 , 对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象 .四、巩固运用1. 例: 如图 , 直线 a,b 相交 , ∠1=40°, 求∠ 2, ∠3, ∠43的度2数 .a14b 教学时 , 教师先让学生辨让未知角与已知角的关系, 用指出通过什么途径去求这些未知角的度数的, 然后板书出规范的求解过程.2.练习 :(1)课本 P5练习.(2)补充 : 判断下列图中是否存在对顶角 .11122221五、作业课本 P9.1,2,P10.7,8.垂线第五章第一节第二课时教学目标一、素质教育目标(一)知识教学点1.使学生掌握垂线的概念。
2024年人教版七年级数学下册教案精选
2024年人教版七年级数学下册教案精选一、教学内容本节课选自2024年人教版七年级数学下册第五章《相交线与平行线》的第一节“平行线的判定”。
具体内容包括:平行线的定义、平行线的判定方法、平行线的性质、运用平行线解决实际问题的方法。
二、教学目标1. 知识与技能:掌握平行线的定义,学会用三种方法判定两条直线是否平行,了解平行线的性质,并能运用这些知识解决实际问题。
2. 过程与方法:通过观察、猜想、验证等环节,培养学生的逻辑思维能力和空间想象能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养合作意识和团队精神。
三、教学难点与重点教学难点:平行线的判定方法及其应用。
教学重点:平行线的定义、判定方法及性质。
四、教具与学具准备教具:多媒体课件、黑板、直尺、量角器。
学具:直尺、量角器、练习本。
五、教学过程1. 情境导入:通过展示校园内的平行线实景图片,引导学生发现生活中的平行线,激发学生的学习兴趣。
2. 探索新知:(1)回顾直线、射线的定义,引导学生归纳出平行线的定义。
(3)通过例题讲解,让学生掌握平行线的性质,并能运用性质解决实际问题。
3. 随堂练习:让学生运用刚学到的知识,完成教材第61页的练习题。
(1)如何判断两条直线是否平行?(2)平行线具有哪些性质?六、板书设计1. 平行线的定义2. 平行线的判定方法(1)同位角相等(2)内错角相等(3)同旁内角互补3. 平行线的性质七、作业设计1. 作业题目:(1)教材第61页练习题1、2、3;(2)下列说法正确的是()A. 同位角相等的两条直线一定平行B. 内错角相等的两条直线一定平行C. 同旁内角互补的两条直线一定平行2. 答案:(1)教材第61页;(2)C。
八、课后反思及拓展延伸1. 反思:本节课学生对平行线的判定方法掌握较好,但对性质的运用还不够熟练,需要在今后的教学中加强练习。
(1)在同一平面内,两条直线不平行,它们一定相交吗?(2)在同一平面内,两条直线既不相交,也不平行,这可能吗?为什么?重点和难点解析1. 教学过程中的情境导入。
新人教版七年级数学下册第五章相交线与平行线精品教案
新人教版七年级数学下册第5章第3.1节平行线的性质教案教学目标:知识与能力经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.经历探索直线平行的性质的过程,掌握平行线的三条性质,培养运用知识进行推理和计算的能力.数学思考通过学习直线平行的性质,掌握平行线的三条性质,能用它们进行简单的推理和计算. 解决问题能够综合运用平行线性质和判定解题. 让学生在探索过程中,体会从数学的角度理解问题,形成解决问题的策略和方法.情感态度与价值观通过对平行线性质的认识,师生的共同活动,促使学生在学习活动中学会与人交流,培养学生良好的情感和主动参与的意识.教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.教学难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程设计:活动一.引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?活动二.实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P19图5.3-1).2.角∠1∠2∠3∠4∠5∠6∠7∠8度数3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想. 4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗? 5.师生归纳平行线的性质,教师板书.cb a4321活动三.归纳平行线的性质 1.平行线的性质性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等. 性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等. 性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合上面左图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质 平行线的判定 因为a∥b, 因为∠1=∠2, 所以∠1=∠2 所以a∥b . 因为a∥b, 因为∠2=∠3, 所以∠2=∠3, 所以a∥b.因为a∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a∥b.2.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 3.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗? 结合上面左图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为a∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 4.平行线性质应用.例.如上右图是一块梯形铁片的线全部分,量得∠A=70°,∠B=85°, 梯形另外两个角分别是多少度?DCBA教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 活动四.巩固练习 1.课本练习(P21).2.补充:如下图,BCD 是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B 的度数.E21DCBA本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路. 活动五.课堂小结1.平行线的性质2.推理过程中平行线的性质与平行线判定的区别比较. 活动六.布置作业课本第22页第1题和第23页第2,3,4,6题.。
2024年新版人教版七年级数学下册教案全册
2024年新版人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质6.3:坐标与图形的变化二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法。
2. 学会运用平面直角坐标系表示点的位置,并分析坐标与图形之间的关系。
3. 能够运用所学知识解决实际问题。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用。
平面直角坐标系的建立和点的坐标表示。
2. 教学重点:理解并运用相交线与平行线的性质。
掌握平面直角坐标系的概念和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入新课实践情景引入:展示实际生活中相交线与平行线的应用场景,如道路、桥梁等。
提问:同学们在生活中见过这样的图形吗?它们有什么特点?2. 新课讲解讲解第五章相交线与平行线的内容,通过示例和练习进行巩固。
讲解第六章平面直角坐标系的概念,以及坐标与图形的关系。
3. 例题讲解解答第五章相交线与平行线的相关例题。
解答第六章平面直角坐标系的相关例题。
4. 随堂练习学生完成第五章相交线与平行线的随堂练习题。
学生完成第六章平面直角坐标系的随堂练习题。
5. 知识巩固学生互相讨论,加深对知识的理解。
六、板书设计1. 黑板左侧:相交线与平行线的性质、判定方法。
2. 黑板右侧:平面直角坐标系的概念、坐标表示方法。
3. 中间部分:例题解答、随堂练习题。
七、作业设计1. 作业题目:第五章相交线与平行线习题:练习判断相交线与平行线,并解释原因。
第六章平面直角坐标系习题:在坐标系中绘制给定坐标的点,并分析坐标与图形的关系。
答案:见教材课后习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生探索相交线与平行线在生活中的应用,以及平面直角坐标系在地理、计算机等领域的应用。
人教版七年级下册第五章相交线与平行线课程设计
人教版七年级下册第五章相交线与平行线课程设计
一、课程背景
本课程是人教版七年级下册数学课程中的第五章,主要内容是相交线与平行线。
在初中阶段,平面图形的基本概念、平面几何基本性质均是必修课程,也是学生后续学习的基础。
因此,通过本章的学习,旨在使学生能够清晰地认识到:相交线、平行线的概念及性质;用这两个概念解决具体问题等。
二、教学目标
1.掌握平行线的定义及判定方法;
2.掌握平行线性质;
3.了解相交线的概念及性质;
4.学习用相交线、平行线来解决实际问题;
5.培养学生的数学逻辑思维和实际问题解决能力。
三、教学内容
1. 平行线的概念与判定
1.平行线的定义,即在同一平面内,不相交的两条直线;
2.通过角的判定方法判断平行线,即两条直线所对应的同位角相等;
3.通过距离的判定方法判断平行线,即两条直线上对应的两点向另一条
直线的距离相等。
2. 平行线的性质
1.平行线间距离相等;
2.平行线与一截线的交线平行;
3.平行线断线成等比例。
1。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)44086
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是Array∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
相交线与平行线教案人教版(教案)
相交线与平行线教案人教版(优秀教案)第一章:相交线与平行线的概念介绍1.1 相交线的定义:讲解两条直线在平面内相交的概念。
展示实例,让学生理解相交线的特征。
1.2 平行线的定义:讲解两条直线在平面内不相交的概念。
展示实例,让学生理解平行线的特征。
第二章:相交线与平行线的性质2.1 相交线的性质:讲解相交线的交点特征,即交点将相交线分为两对对应角。
展示实例,让学生理解相交线的性质。
2.2 平行线的性质:讲解平行线的对应角特征,即同位角相等、内错角相等、同旁内角互补。
展示实例,让学生理解平行线的性质。
第三章:相交线与平行线的判定3.1 相交线的判定:讲解如何判断两条直线是否相交。
展示实例,让学生学会判断相交线。
3.2 平行线的判定:讲解如何判断两条直线是否平行。
展示实例,让学生学会判断平行线。
第四章:相交线与平行线在实际问题中的应用4.1 相交线的应用:通过实例讲解相交线在实际问题中的应用,如测量角度、确定位置等。
4.2 平行线的应用:通过实例讲解平行线在实际问题中的应用,如建筑设计、道路规划等。
第五章:相交线与平行线的练习题5.1 相交线的练习题:提供一些关于相交线的练习题,让学生巩固相交线的概念和性质。
5.2 平行线的练习题:提供一些关于平行线的练习题,让学生巩固平行线的概念和性质。
第六章:同位角与内错角的性质6.1 同位角的性质:讲解同位角的定义及特点,即两条直线被第三条直线所截,位于两条直线同一侧且相对位置相同的两对角。
展示实例,让学生理解同位角的性质。
6.2 内错角的性质:讲解内错角的定义及特点,即两条直线被第三条直线所截,位于两条直线之间且相对位置相同的两对角。
展示实例,让学生理解内错角的性质。
第七章:同位角与内错角的判定7.1 同位角的判定:讲解如何判断两对角是否为同位角。
展示实例,让学生学会判断同位角。
7.2 内错角的判定:讲解如何判断两对角是否为内错角。
展示实例,让学生学会判断内错角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word格式,下载后您可任意编辑修改!)
第五章相交线与平行线
(总第一课时)5.1.1相交线
教学过程设计
一、联系生活,导入新知
生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?
师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.
【板书】第五章相交线、平行线
5.1 相交线、对顶角
【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.
二、合作探究,形成概念
师:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.
生:画出图形,并用几何语言描述所画的图形.
师:思考所画的图形中有几个小于平角的角?
生:四个.
师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?
生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.
师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?
生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.
生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的
……
师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.
【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.
师:强调“相交直线”的前提条件.
对顶角:有公共顶点无公共边
.....邻补角:有公共顶点且有一公共边
......
“互为”两个字的含义是什么?
生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.
【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.
三、及时巩固,加深理解
1、下列各图中,∠l和∠2是对顶角吗?为什么?
(1)(2)(3)(4)
【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.
2.下列各图中,∠l和∠2是邻补角吗?为什么?
(1)(2)(3)
师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?
生:一条直线和一条射线相交形成,邻补角构成一个平角.
3、请分别画出图中的∠l对顶角和∠2的邻补角.
4、如图,三条直线AB、CD、EF相交于点O,
∠AOE的对顶角是,
∠EOD的邻补角是.
【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.
四、师生互动,再探性质
师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型)
生:相等.
师:为什么?
生:(讨论交流)
生1:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),
∴∠1=∠3(等量代换)
生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等)
师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质.
【板书】:对顶角相等.
【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.
五、变式训练,提升能力
1.已知直线a、b相交,∠l=40°,求∠2、∠3、∠4的度数.
2.变式1:把∠l=40°变为∠l=90°,求∠2、∠3、∠4的度数.
变式2:把∠l=40°变为∠l=n°,求∠2、∠3、∠4的度数.
变式3:把∠l=40°改为∠2是∠l的3倍,求∠1、∠2∠3、∠4的度数.
变式4:如图,直线AB、CD相交于O点,OE平分∠AOD,
若∠1=20°,那么∠2=______.
变式5:如图,直线AB、CD相交于O点,∠AOE=90°,若
∠1=20°,那么∠2=____,∠3=____,∠4=____.
3.右图是对顶角量角器,你能说出用它测量角的原理吗?
4.如图,要测量两堵围墙所形成的角AOB的度数,但人不能进入围墙,如何测量?
5.如图,三条直线AB、CD、EF相交于点O,
图中共有几对对顶角?
变式:图中共有几对邻补角?
师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:
为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.
【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.
六:回顾梳理,归纳小结
师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑?生:……
七:布置作业,分层发散
1.课本:P7-91,2,8,9;
2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n条直线呢?【教学反思】:
(总第二课时)5.1.2垂线(第1课时)
教学过程设计
(总第三课时)5.1.2垂线(第2课时)
教学过程设计
(总第四课时)5.1.3同位角、内错角、同旁内角
教学过程设计
3.如图,∠6和∠2是_________角,∠
(总第五课时)5.2.1平行线
教学过程设计
(总第六课时)5.2.2平行线的判定(一)
教学过程设计
(总第七课时)5.2.2平行线的判定(二)
教学过程设计
(总第八课时)5.3.1平行线的性质(第1课时)
教学过程设计
(总第九课时)5.3.1平行线的性质(第2课时)
教学过程设计
(总第十课时)5.3.2命题、定理、证明
学过程设计
教
(总第十一课时)5.4平移
教学过程设计
2.欣赏并说出下列各商标图案哪些是利用平移来设计的?
(总第十二课时)第五章小结与复习
教学过程设计。