2011年各地中考数学模拟试题100套精选汇编:矩形、菱形、正方形

合集下载

2011年全国各地100份中考数学试卷分类汇编-平移、旋转与对称

2011年全国各地100份中考数学试卷分类汇编-平移、旋转与对称

2011年全国各地100份中考数学试卷分类汇编第31章 平移、旋转与对称一、选择题1. (2011浙江省舟山,3,3分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45° (C )90° (D )135°【答案】C2. (2011广东广州市,4,3分)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(0,1) B.(2,-1) C.(4,1) D.(2,3) 【答案】A[来源:]3. (2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .【答案】D4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )CDB (A )ABABCD图1ABOCD(第3题)A. 30,2B.60,2C. 60,23D. 60,3 【答案】C 5. (2011山东菏泽,5,3分)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为A .6B .3C . 23D .3【答案】C6. (2011山东泰安,3,3分)下列图形:其中是中心对称图形的个数为( )A.1B.2C.3D.4 【答案】B7. (2011浙江杭州,2,3)正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A .锐角三角形B .钝角三角形C .梯形D .菱形 【答案】C8. (2011 浙江湖州,7,3)下列各图中,经过折叠不能..围成一个立方体的是【答案】D9. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕A B C D E点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是A.150°B.120°C.90°D.60°[来源:学§科§网]【答案】A10.(2011浙江省,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是()【答案】D11.(2011浙江义乌,6,3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【答案】B12. (2011四川重庆,3,4分)下列图形中,是中心对称图形的是()A.B.C.D.【答案】B13. (2011浙江省嘉兴,3,4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD 是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()(A)30°(B)45°(C)90°(D)135°【答案】C14. (2011台湾台北,21)21.坐标平面上有一个线对称图形,)25,3(-A、)211,3(-B两点在此图形上且互为对称点。

2011年中考数学试题汇编---菱形

2011年中考数学试题汇编---菱形

选择题(每小题x 分,共y 分)(2011?安徽省)10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是……………………………………………………………………………………【 C 】〔2011?湖北省武汉市〕?12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论:??①△AED ≌△DFB ;??②S 四边形?B C D G =?43 CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论D只有①②.?B.只有①③.C.只有②③.?D.①②③.〔2011?山东省烟台市〕7、如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是CA 、等腰梯形B 、矩形C 、菱形D 、正方形(2011?重庆市潼南县)10. 如图,在平面直角坐标系中,四边形OABC是菱形,点C 的坐标为(4,0),∠AOC= 60第10题直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M,N (点M 在点N 的上方),若△OMN的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是C〔2011?大理〕6.用两块边长为a 的等边三角形纸片拼成的四边形是【 B 】A .等腰梯形B .菱形C .矩形D . 正方形〔2011?德州市〕8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是C(A )2n (B )4n(C )12n + (D )22n +二、填空题(每小题x 分,共y 分)(2011●河北省)14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =___5__.1. 〔2011?凉山州〕已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MC AM 的值是 85或811 。

2011年全国各地中考数学真题分类汇编—矩形、菱形与正方形(三)

2011年全国各地中考数学真题分类汇编—矩形、菱形与正方形(三)

证明:∵∠AEP=∠AOE=90°,∠EAP=∠OAE∴△AOE ∽△AEP ∴AO AE AE AP=,得AE 2=AO ·AP 即2AE 2=2AO ·AP 又AC=2AO∴2AE 2=AC ·AP15. (2011广东株洲,23,8分)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q.(1)求证: OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.【答案】(1)证明:四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB ,∴△POD ≌△QOB ,∴OP=OQ 。

(2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm.当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB ,∴△ODP ∽△ADB , ∴OD AD PD BD =,即58810t =-, A B C DE FO P解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm ,∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 16. (2011江苏苏州,28,9分)(本题满分9分)如图①,小慧同学吧一个正三角形纸片(即△OAB )放在直线l 1上,OA 边与直线l 1重合,然后将三角形纸片绕着顶点A 按顺时针方向旋转120°,此时点O 运动到了点O 1处,点B 运动到了点B 1处;小慧又将三角形纸片AO 1B 1绕B 1点按顺时针方向旋转120°,点A 运动到了点A 1处,点O 1运动到了点O 2处(即顶点O 经过上述两次旋转到达O 2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O 运动所形成的图形是两段圆弧,即弧OO 1和弧O 1O 2,顶点O 所经过的路程是这两段圆弧的长度之和,并且这两端圆弧与直线l1围成的图形面积等于扇形AOO 1的面积、△AO 1B 1的面积和扇形B 1O 1O 2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC 放在直线l 2上,OA 边与直线l 2重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;小慧又将正方形纸片AO 1C 1B 1绕B 1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片OABC 按上述方法经过3次旋转,求顶点O 经过的路程,并求顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积;若正方形OABC 按上述方法经过5次旋转,求顶点O 经过的路程;问题②:正方形纸片OABC 按上述方法经过多少次旋转,顶点O 经过的路程是222041+π? 请你解答上述两个问题.【答案】解问题①:如图,正方形纸片OABC 经过3次旋转,顶点O 运动所形成的图形是三段弧,即弧OO 1、弧O 1O 2以及弧O 2O 3,∴顶点O 运动过程中经过的路程为πππ)221(1802902180190+=⋅⋅+⨯⋅⋅.顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积为11212360)2(90236019022⨯⨯⨯+⋅⋅+⨯⋅⋅ππ=1+π. 正方形OABC 经过5次旋转,顶点O 经过的路程为πππ)2223(1802903180190+=⋅⋅+⨯⋅⋅. 问题②:∵方形OABC 经过4次旋转,顶点O 经过的路程为πππ)221(1802902180190+=⋅⋅+⨯⋅⋅ ∴222041+π=20×)221(+π+21π. ∴正方形纸片OABC 经过了81次旋转.17. (2011江苏泰州,24,10分)如图,四边形ABCD 是矩形,直线L 垂直平分线段AC ,垂足为O ,直线L 分别与线段A D 、CB 的延长线交于点E 、F .(1)△ABC 与△FOA 相似吗?为什么?(2)试判定四边形AFCE 的形状,并说明理由.【答案】(1)相似.由直线L 垂直平分线段AC ,所以AF=FC ,∴∠FAC=∠ACF ,又∵∠ABC=∠AOF=90°,∴△ABC ∽FOA .(2)四边形AFCE 是菱形。

2011年全国各地中考(100套真题 100套模拟)试题分类汇编第19章图形

2011年全国各地中考(100套真题 100套模拟)试题分类汇编第19章图形

2011全国各地中考数学100套真题分类汇编第19章图形的展开与叠折1. (2011山东德州16,4分)长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为 正方形,则操作终止.当n =3时,a 的值为_____________.【答案】35或34[来源:21世纪教育网]2. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为.【答案】3:2[来源:21世纪教育网]3. (2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

已知第一个矩形的面积为1,则第n 个矩形的面积为 。

【答案】114n -[来源:21世纪教育网]21世纪教育网4. (2011四川绵阳17,4)如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长……第一次操作第二次操作为_____cm.【答案】25图形变换(图形的平移、旋转与轴对称)一、选择题21世纪教育网1.(2011年江苏盐都中考模拟)图所示的汽车标志图案中,能用平移变换来分析形成过程的 图案是( )A .B .C .D .[来源:21世纪教育网] 答案 D2.(2011年北京四中中考模拟19)图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300, 则∠1+∠2=( ) A 、500B 、600C 、450D 、以上都不对答案 B3.(2011年浙江省杭州市中考数学模拟22)如图是万花筒的一个图案,图中所有小三角形均是全等三角形,其中把菱形ABCD 以A 为中心旋转多少度后可得图中另一阴影的菱形( )A 、顺时针旋转60°B 、 顺时针旋转120°C 、逆时针旋转60°D 、 逆时针旋转120° 答案:D4. (2011年兴华公学九下第一次月考)如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ,则图中阴影部分的面积是(第3题)A .6πB .5πC .4πD .3π 答案:A21世纪教育网21世纪教育网5. (2011年黄冈市浠水县中考调研试题)下列图案由黑、白两种颜色的正方形组成,其中属于轴对称图形的是( )答案:B6.(2011年青岛二中)视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转C .对称D .位似答案:D7、(北京四中模拟)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A 、角 B 、平行四边形 C 、等边三角形 D 、矩形 答案:D8、(2011浙江杭州模拟14)如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB=38, ∠B=30°, 则DE 的长是( ).A. 6B. 4C. 34D. 23[来源:21世纪教育网]答案:B21世纪教育网9. (2011武汉调考模拟)下列图形中,绕着它的中心旋转60°后,能够与原图形完全重合.,则这个图形是( ) A .等边三角形 B .正方形 C .圆 D .菱形 答案:C10、(2011年浙江杭州二模)下列图形中,既是轴对称图形,又是中心对称图形的是( )21世纪教育网21世纪教育网标准对数视力表 0.1 4.0 0.124.10.15 4.2 (第6题图)yAC O xBMNPQ (第11题图)11 SR Q P ②①A. B. C. D.答案:C11、(2011年浙江杭州七模)如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形是中心对称图形的个数有( )A .1个B .2个C .3个D .4个答案:CB 组1.(2011 天一实验学校 二模)下列交通标志中既是中心对称图形,又是轴对称图形的是 ( )答案:A2. (2011浙江慈吉 模拟) 如图所示网格中, 已知②号三角形是由①号三角形经旋转变化得到的, 其旋转中心是下列各点中的( )A. PB. QC. RD. S 答案:C[来源:21世纪教育网]3.(2011年重庆江津区七校联考一模)下列美丽的图案,既是轴对称图形又是中心对称图形的个数是.( )A .1个B .2个C .3个D .4个 答案:C4.(2011年安徽省巢湖市七中模拟)下列美丽图案,既是轴对称图形又是中心对称图形的个数是()A. B.C . D. 第2题图A.1个B.2个C.3个D.4个答案:C5.(2011北京四中二模)下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )(A)1个(B)2个(C)3个(D)4个答案:C6.(2011浙江杭州育才初中模拟)一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)。

全国2011年中考数学试题分类解析汇编 专题36矩形、菱形、正方形

全国2011年中考数学试题分类解析汇编 专题36矩形、菱形、正方形

全国2011年中考数学试题分类解析汇编(181套)专题36:矩形、菱形、正方形一、选择题1.(某某某某、某某3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为(A )48cm(B )36cm (C )24cm (D )18cm 【答案】A 。

【考点】菱形的性质,平行四边形的性质。

【分析】根据①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,从图可求出⑤的面积: 2ABCD 1S S S 2cm ⑤四边形①+②+③+④=-=11-7=4。

从而可求出菱形的面积:2EFGH S S 14418cm ==+=①+②+③+④+⑤菱形。

又∵∠EFG=30°,∴菱形的边长为6cm 。

从而根据菱形四边都相等的性质得:①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE )=2(EF+FG+GH+HE )=48cm 。

故选A 。

2.(某某某某4分)如图,在矩形ABCD 中,对角线AC ,BD 交与点O .已知∠AOB=60°,AC=16,则图中长度为8的线段有A 、2条B 、4条C 、5条D 、6条 【答案】D 。

【考点】矩形的性质。

等边三角形的判定和性质。

【分析】因为矩形的对角线相等且互相平分,AC=16,所以AO=BO=CO=DO=8;又由∠AOB=60°,所以三角形AOB 是等边三角形,所以AB=AO=8;又根据矩形的对边相等得,CD=AB=AO=8.从而可求出线段为8的线段有6条。

故选D 。

3.(某某某某3分)如图,矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE,EF⊥AE,则CF 等于A .23B .1C .32D .2【答案】C 。

2011年各地中考数学模拟试题100套精选汇编:操作探究

2011年各地中考数学模拟试题100套精选汇编:操作探究

2011年全国各地中考数学100套模拟试卷分类汇编第40章 操作探究A 组二、填空题 1.(南京市下关区秦淮区沿江区2011年中考一模)如图,正方形ABCD 中,点E在边AB 上,点G 在边AD 上,且∠ECG =45°,点F 在边AD 的延长线上,且DF = BE .则下列结论:①∠ECB 是锐角,;②AE <AG ;③△CGE ≌△CGF ;④EG = BE +GD 中一定成立的结论有 ▲ (写出全部正确结论).答案: ①③④2.(南京市六合区2011年中考一模)写出绝对值小于2的一个负数:▲ . 答案:不唯一如:—1 3.(南京市鼓楼区2011年中考一模)已知点P (x ,y )位于第二象限,并且y ≤x +4,x 、y 为整数,符合上述条件的点P 共有 ▲ 个. 答案:6三、解答题 1.(南京市雨花台2011年中考一模)(8分)如图,△ABC 中,点O 在边AB 上,过点O作BC 的平行线交∠ABC 的平分线于点D ,过点B 作BE ⊥BD ,交直线OD 于点E 。

(1)求证:OE =OD ;(2)当点O 在什么位置时,四边形BDAE 是矩形?说明理由;(3)在满足(2)的条件下,还需△ABC 满足什么条件时,四边形BDAE 是正方形?写出你确定的条件,并画出图形,不必证明....。

解:(1)∵BD 是ABC Ð的平分线,∴12??。

∵DE ∥BC ,∴13?? ∴23?? ∴OB OD =∵BE BD ^ ∴90EBD ?∴425390????∴45?? ∴OE OB =∴OE OD = ………………………3分(2)当点O 是边AB 的中点时,四边形ABCD 是矩形。

…………4分 理由:当点O 是边AB 的中点时,OA OB = ∵OE OD =(第4题)FED B A G C(第1题)∴四边形BDAE 是平行四边形 ∵90EBD?∴四边形BDAE 是矩形 ………………………5分 (3)△ABC 是以ABC Ð为直角的直角三角形时,四边形BDAE 是正方形。

2011年全国各地100份中考数学试卷分类汇编(含答案)

2011年全国各地100份中考数学试卷分类汇编(含答案)

方程的应用一、选择题A 组1、(2011年北京四中中考模拟20)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=-B 、289)x 1(2562=-C 、256)x 21(289=-D 、289)x 21(256=-答案A2.(2011年浙江仙居)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+=答案:D3.(浙江省杭州市党山镇中2011年中考数学模拟试卷)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )(A ) 18%)201(160400160=+-+x x (B )18%)201(400160=++xx (C ) 18%20160400160=-+xx (D )18%)201(160400400=+-+x x 答案:AB 组1. (2011浙江慈吉 模拟)2010年元旦的到来, 宁波市各大商厦纷纷推出各种优惠以答谢顾客, 其中银泰百货贴出的优惠标语是: 买200元物品, 送100元购物券, 买400元物品送200购物券,……依次类推; 于是小红陪着她的妈妈一起来到大厦买东西, 没过多少时间小红就看中了一件衣服, 一问价钱需要600元. 她心想贵是贵了点,但是能送300元的购物券还是挺划算的, 于是就花600元把这件衣服买了, 同时也得到了300元购物券. 后来小红又用这300元购物券恰好买了一双鞋子, 这时就没有购物券送了. 则下列优惠中, 与小红在这次购物活动中所享受的优惠最接近的是( )A. 5折B. 6折C. 7折D. 8折 答案:C2.(2011湖北省崇阳县城关中学模拟)一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙答案:B3.(2011湖北武汉调考模拟二)黄陂木兰旅游产业发展良好,2008年为640万元,2010年为1000万元,2011年增长率与2008至2010年年平均增长率相同,则2011年旅游收入为( )A.1200万元B.1250万元C.1500万元D.1000万元答案:B4. (2011湖北武汉调考一模)某县为发展教育事业,加强了对教育经费的投入,2 0019年投入3 000万元,预计2011年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.3000( l+x )2=5000B.3000x 2=5000C.3000( l+x ﹪ )2=5000D.3000(l+x)+3000( l+x)2=5000答案:A5. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是 A.121+=πb a B.122+=πb a C.221+=πb a D.12+=πb a 答案:D6.(2011灌南县新集中学一模)某超市一月份的营业额为200万元,已知第一季度....的总营业第5题额共1000万元, 如果平均每月增长率为x,则由题意列方程应为【 】A .200(1+x)2=1000 B .200+200×2x=1000C .200+200×3x=1000D .200[1+(1+x)+(1+x)2]=1000答案:D二、填空题 A 组1、(2011重庆市纂江县赶水镇)含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重 40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再 将每种饮料所倒出的部分与另一种饮料余下的部分混合,如果混合后的两种饮料所含的果蔬 浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克.答案:242、(重庆一中初2011级10—11学年度下期3月月考)某公司生产一种饮料是由A 、B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是__________.答案:50%3、(2011年北京四中三模)某商场销售一批电视机,一月份每台毛利润是售出价的20% (毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结 果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比 是 .答案:11:124.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 .答案:100)1(1202=-x5、(2011浙江杭州模拟16)由于人民生活水平的不断提高,购买理财产品成为一个热门话题。

2011年全国各地100份中考数学试卷分类汇编

2011年全国各地100份中考数学试卷分类汇编

2011 年全国各地100 份中考数学试卷分类汇编
2011 年全国各地100 份中考数学试卷分类汇编
第13 章二次函数
一、选择题
1. (2011 山东滨州,7,3 分)抛物线可以由抛物线平移得到,则下列平移过程正确的是( )
A.先向左平移2 个单位,再向上平移3 个单位
B.先向左平移2 个单位,再向下平移3 个单位
C.先向右平移2 个单位,再向下平移3 个单位
D.先向右平移2 个单位,再向上平移3 个单位
【答案】B
【答案】D
2. (2011 广东广州市,5,3 分)下列函数中,当x>0 时y 值随x 值增大而减小的是().
A.y = x2 B.y = x-1C.y = x D.y =
【答案】D
3. (2011 湖北鄂州,15,3 分)已知函数,则使y=k 成立的x 值恰好有三个,则k 的值为()
A.0 B.1 C.2 D.3
4. (2011 山东德州6,3 分)已知函数(其中)的图象
如下面右图所示,则函数的图象可能正确的是
【答案】D
5. (2011 山东菏泽,8,3 分)如图为抛物线的图像,A、B、C 为抛物线。

(200套真题+模拟)2011年全国各地中考数学(100套真题+100套模拟)试题分类汇编第23章等腰三角形

(200套真题+模拟)2011年全国各地中考数学(100套真题+100套模拟)试题分类汇编第23章等腰三角形

2011全国各地中考数学100套真题分类汇编第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )(A )32(B )33(C )34(D )36【答案】B[来源:学科网]2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个MECA【答案】D 3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有(第7题)ABCD EA .1个B .2个C .3个D .4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75【答案】C 5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或17cm[来源:学科网ZXXK]ABCDEFG7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .7513[来源:][来源:学科网]【答案】C 8.二、填空题 1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________. 【答案】332. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 .【答案】4或6[来源:学§科§网Z§X§X§K]3. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .3131+- 4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.(第14题)A BCD6. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

2011年全国中考数学模拟汇编二 34矩形 菱形 正方形

2011年全国中考数学模拟汇编二 34矩形 菱形 正方形

34.矩形、菱形、正方形A 组 一 选择题1.(2011某某市杨浦区中考模拟)如图,在矩形ABCD 中,AD =4,DC =3,将△ADC 绕点A 按逆时针方向旋转到△AEF (点A 、B 、E 在同一直线上),则C点运动的路线的长度为 .【答案】52π;2. (2011某某市余杭中考模拟) 如图,矩形ABCG (BC AB ⊥)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠ 的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是A .0B .1C .2D .3 【答案】C3. (2011某某市金山学校中考模拟)(原创)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒ D .30︒或60︒ 【答案】DA(第17题图)ABCPG(第8题)ED4. (2011某某市金山学校中考模拟)(引黄冈市 2010年秋期末考试九年级数学模拟试题)正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为( ▲ )A、10 B、12 C、14 D、16 【答案】D5、 (某某市浦口区2011年中考一模)如图,从边长为(a +3)cm 的正方形纸片中剪去一个边长为3cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为a cm ,则另一边长是( ▲ )A .(2 a +3)cmB .(2 a +6)cmC .(2a +3)cmD .(a +6)cm 答案:D6.(某某市下关区秦淮区沿江区2011年中考一模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为( ▲ )A .1B .2 2C .2 3D .12答案:C7. (2011某某新昌县模拟)如图,四边形ABCD 的对角线互相平分,要使它成为矩形,D ABRP FCGKEa +3a(第1题)A DEPBC第16题图DCPBA 第4题图那么需要添加的条件是A.CD AB =B.BC AD =C.BC AB =D.BD AC = 【答案】D二、填空题1. (2011某某市金山学校中考模拟)(原创)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为 ▲ . 【答案】 32.(2011某某金衢十一校联考)如图正方形ABCD ,其边长为4.P 是射线AB 上的点,且AP=x .将△APD 沿过点D 的折痕PD 折叠,点A 的落点记为A /,若△A /DP 与正方形ABCD 的重叠面积记为S , (1)若x=6, 则S=▲(2)12≤S ≤1时,则x 的取值X 围为(用含x 的不等式表示)____▲______. 【答案】3162141≤≤x 或 32 ≤x ≤64 3.(2011某某某某市模拟)如图,Rt△ABC 中,∠C= Rt∠,AC=10,BC=20,正方形DEFG 顶点G 、F 分别在AC 、BC 边上,D 、 E 在边AB 上,且JE//GH//BC ,IF//DK//AC ,则四边 形HIJK 的面积=。

2011年全国各地中考数学真题分类汇编—矩形、菱形与正方形(四)

2011年全国各地中考数学真题分类汇编—矩形、菱形与正方形(四)

【解】(1) 假设当m =10时,存在点P 使得点Q 与点C 重合(如下图),∵PQ ⊥PD ∴∠DPC =90°,∴∠APD +∠BPC =90°, 又∠ADP +∠APD =90°,∴∠BPC =∠ADP , 又∠B =∠A =90°,∴△PBC ∽△DAP ,∴PB BCDA AP=, ∴1044AP AP-=,∴2AP =或8,∴存在点P 使得点Q 与点C 重合,出此时AP 的长2 或8.(2) 如下图,∵PQ ∥AC ,∴∠BPQ =∠BAC ,∵∠BPQ =∠ADP ,∴∠BAC =∠ADP ,又∠B =∠DAP =90°,∴△ABC ∽△DAP ,∴AB BC DA AP =,即44m AP =,∴16AP m=.∵PQ ∥AC ,∴∠BPQ =∠BAC ,∵∠B =∠B ,∴△PBQ ∽△ABC ,PB BQAB BC=,即164m BQ m m -=,∴2164BQ m =-.(3)由已知 PQ ⊥PD ,所以只有当DP =PQ 时,△PQD 为等腰三角形(如图),∴∠BPQ =∠ADP ,又∠B =∠A =90°,∴△PBQ ≌△DAP , ∴PB =DA =4,AP =BQ =4m -,∴以P 、Q 、C 、D 为顶点的四边形的面积S 与m 之间的函数关系式为:S 四边形PQCD = S 矩形ABCD-S △DAP -S △QBP =1122DA AB DA AP PB BQ ⨯-⨯⨯-⨯⨯=()()114444422m m m -⨯⨯--⨯⨯-=16(4<m ≤8).30.(2011贵州贵阳,18,10分)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(5分)(2)求∠AFB的度数.(5分)(第18题图)【答案】解:(1)∵四边形ABCD是正方形,∴∠ADC=∠BCD=90°,AD=BC.∵△CDE是等边三角形,∴∠CDE=∠DCE=60°,DE=CE.∵∠ADC=∠BCD=90°,∠CDE=∠DCE=60°,∴∠ADE=∠BCE=30°.∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE.(2)∵△ADE≌△BCE,∴AE=BE,∴∠BAE=∠ABE.∵∠BAE+∠DAE=90°,∠ABE+∠AFB=90°,∠BAE=∠ABE,∴∠DAE=∠AFB.∵AD=CD=DE,∴∠DAE=∠DEA.∵∠ADE=30°,∴∠DAE=75°,∴∠AFB=75°.31.(2011广东肇庆,20,7分)如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于点F,若∠DEB =140 ,求∠AFE的度数.【答案】解:(1)证明:∵四边形ABCD 是正方形 ∴CD =CB , ∵AC 是正方形的对角线 ∴∠DCA =∠BCA又 CE = CE ∴△BEC ≌△DEC (2)∵∠DEB = 140︒由△BEC ≌△DEC 可得∠DEC =∠BEC =140︒÷2=70︒, ∴∠AEF =∠BEC =70︒,又∵AC 是正方形的对角线, ∠DAB =90︒ ∴∠DAC =∠BAC =90︒÷2=45︒, 在△AEF 中,∠AFE =180︒— 70︒— 45︒=65︒32. (2011广东肇庆,22,8分)如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB =30︒,菱形OCED 的面积为38,求AC 的长.【答案】解:(1)证明:∵DE ∥OC ,CE ∥OD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形 ∴ AO =OC =BO =OD ∴四边形OCED 是菱形.(2)∵∠ACB =30° ∴∠DCO = 90°— 30°= 60° 又∵OD = OC , ∴△OCD 是等边三角形 过D 作DF ⊥OC 于F ,则CF =21OC ,设CF =x ,则OC = 2x ,AC =4x 在Rt △DFC 中,tan 60°=FCDF∴DF =FC ⋅ tan 60°x 3= 由已知菱形OCED 的面积为38得OC ⋅ DF =38,即3832=⋅x x , 解得 x =2, ∴ AC =4⨯2=833. (2011湖北襄阳,25,10分)如图9,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF .E图E(1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数; (3)当ABAP的值等于多少时,△PFD ∽△BFP ?并说明理由.【答案】(1)证明:∵四边形ABCD 是正方形∴∠A =∠PBC =90°,AB =AD ,∴∠ADP +∠APD =90° ·················· 1分 ∵∠DPE =90° ∴∠APD +∠EPB =90° ∴∠ADP =∠EPB . ······························································································ 2分 (2)过点E 作EG ⊥AB 交AB 的延长线于点G ,则∠EGP =∠A =90° ····· 3分GPFE DCBA又∵∠ADP =∠EPB ,PD =PE ,∴△PAD ≌△EGP∴EG =AP ,AD =AB =PG ,∴AP =EG =BG ·············································· 4分 ∴∠CBE =∠EBG =45°. ················································································· 5分 (3)方法一:当21=AB AP 时,△PFE ∽△BFP . ······································································· 6分 ∵∠ADP =∠FPB ,∠A =∠PBF ,∴△ADP ∽△BPF ······························ 7分 设AD =AB =a ,则AP =PB =a 21,∴BF =BP ·a AD AP 41= ···················· 8分 ∴a AP AD PD 2522=+=,a BF PB PF 4522=+= ∴55==PF BF PD PB ································································································ 9分 又∵∠DPF =∠PBF =90°,∴△ADP ∽△BFP ········································· 10分 方法二:假设△ADP ∽△BFP ,则PFBFPD PB =. ····························································· 6分 ∵∠ADP =∠FPB ,∠A =∠PBF ,∴△ADP ∽△BPF ···························· 7分PFEDCBA图9∴BFAPPF PD =, ··································································································· 8分 ∴BFAPBF PB =, ···································································································· 9分 ∴PB =AP , ∴当21=AB AP 时,△PFE ∽△BFP . 10分34. (2011湖南永州,25,10分)探究问题: ⑴方法感悟: 如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠EAF=45°,连接EF ,求证DE+BF=EF .感悟解题方法,并完成下列填空: 将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得: AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°, ∴∠ABG+∠ABF=90°+90°=180°,因此,点G ,B ,F 在同一条直线上. ∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°. ∵∠1=∠2, ∴∠1+∠3=45°. 即∠GAF=∠_________. 又AG=AE ,AF=AF ∴△GAF ≌_______. ∴_________=EF ,故DE+BF=EF .⑵方法迁移:如图②,将AB C Rt ∆沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF=21∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.⑶问题拓展:321GEFD CBA (第25题)①EFDCBA(第25题)②如图③,在四边形ABCD 中,AB=AD ,E ,F 分别为DC,BC 上的点,满足DAB EAF ∠=∠21,试猜想当∠B 与∠D 满足什么关系时,可使得DE+BF=EF .请直接写出你的猜想(不必说明理由).【答案】⑴EAF 、△EAF 、GF . ⑵DE+BF=EF ,理由如下: 假设∠BAD 的度数为m ,将△ADE 绕点A 顺时针旋转︒m 得到△ABG ,此时AB 与AD 重合,由旋转可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°, ∴∠ABG+∠ABF=90°+90°=180°,因此,点G ,B ,F 在同一条直线上. ∵∠EAF=︒m 21 ∴∠2+∠3=∠BAD-∠EAF=︒=︒-︒m m m 2121 ∵∠1=∠2, ∴∠1+∠3=︒m 21. 即∠GAF=∠EAF 又AG=AE ,AF=AF ∴△GAF ≌△EAF . ∴GF=EF , 又∵GF=BG+BF=DE+BF ∴DE+BF=EF .⑶当∠B 与∠D 互补时,可使得DE+BF=EF . 35. (2011江苏盐城,27,12分)情境观察将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线321GE FDCB A (第25题)②解得图EFD CBA(第25题)③上,如图2所示.观察图2可知:与BC 相等的线段是 ▲ ,∠CAC ′= ▲ °.问题探究如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H . 若AB =k AE ,AC =k AF ,试探究HE 与HF 之间的数量关系,并说明理由.【答案】情境观察AD (或A′D ),90 问题探究结论:EP =FQ .证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE =90°.∴∠BAG +∠EAP =90°.∵AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP .图4MNGFECBAH图3AB CEFGPQ图1 图2C'A'B A DCABCDBCD A (A')C'∵EP ⊥AG ,∴∠AGB =∠EP A =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . 同理AG =FQ . ∴EP =FQ . 拓展延伸结论: HE =HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q .Q P H ABCEFGNM∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP .∵∠AGB =∠EP A =90°,∴△ABG ∽△EAP ,∴AG EP = ABEA.同理△ACG ∽△F AQ ,∴AG FP = ACF A .∵AB =k AE ,AC =k AF ,∴AB EA = AC F A =k ,∴AG EP = AGFP. ∴EP =FQ .∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF .36. (20011江苏镇江,23,7分)已知:如图,在梯形ABCD 中A B ∥CD,BC=CD,AD ⊥BD,E 为AB 中点, 求证:四边形BCDE 是菱形.答案:证明:∵AD ⊥BD , ∴∠ADB=90°。

(200套真题+模拟)2011年全国各地中考数学(100套真题+100套模拟)试题分类汇编第7章分式与分式方程

(200套真题+模拟)2011年全国各地中考数学(100套真题+100套模拟)试题分类汇编第7章分式与分式方程

2011全国各地中考数学100套真题分类汇编第7章分式与分式方程一、选择题1.(2011湖北孝感,6,3分)化简的结果是()A. B. C. D. y【答案】B2. (2011山东威海,8,3分)计算:的结果是()A.B.C.D.[来源:学*科*网Z*X*X*K]【答案】B3. (2011四川南充市,8,3分)当8、分式的值为0时,x的值是()(A)0 (B)1 (C)-1 (D)-2【答案】B4. (2011浙江丽水,7,3分)计算1a-1 –aa-1的结果为()A. 1+aa-1B. -aa-1C. -1D.1-a【答案】C5. (2011江苏苏州,7,3分)已知,则的值是A. B.- C.2 D.-2【答案】D6. (2011重庆江津,2,4分)下列式子是分式的是( )A. B. C. D.【答案】B.7. (2011江苏南通,10,3分)设m>n>0,m2+n2=4mn,则的值等于A. 2B.C.D. 3【答案】A8. (2011山东临沂,5,3分)化简(x-)÷(1-)的结果是()A.B.x-1 C.D.【答案】B9. (2011广东湛江11,3分)化简的结果是A B C D 1【答案】A10.(2011浙江金华,7,3分)计算1a-1 –aa-1的结果为()A. 1+aa-1B. -aa-1C. -1D.1-a【答案】C二、填空题1. (2011浙江省舟山,11,4分)当时,分式有意义.【答案】2. (2011福建福州,14,4分)化简的结果是.【答案】3. (2011山东泰安,22 ,3分)化简:(2xx+2-x x-2)÷xx2-4的结果为。

【答案】x-64. (2011浙江杭州,15,4)已知分式,当x=2时,分式无意义,则a=,当a<6时,使分式无意义的x的值共有个.【答案】6,25. (2011 浙江湖州,11,4)当x=2时,分式的值是【答案】16. (2011浙江省嘉兴,11,5分)当时,分式有意义.【答案】7. (2011福建泉州,14,4分)当= 时,分式的值为零.【答案】2;[来源:学|科|网]8. (2011山东聊城,15,3分)化简:=__________________.【答案】9. (2011四川内江,15,5分)如果分式的值为0,则x的值应为.【答案】-3[来源:学科网ZXXK]1 0.(2011 四川乐山11,3分)当x= 时,【答案】311. (2011四川乐山15,3分)若m为正实数,且,=【答案】12. (2011湖南永州,5,3分)化简=________.【答案】1.13. (2011江苏盐城,13,3分)化简:x2 - 9x - 3 = ▲.【答案】x+3三、解答题1. (2011安徽,15,8分)先化简,再求值:,其中x=-2.[来源:]【答案】解:原式= .2. (2011江苏扬州,19(2),4分)(2)【答案】(2)解:原式= = =3. (2011四川南充市,15,6分)先化简,再求值:( -2),其中x=2.【答案】解:方法一:= == = = == =当=2时,= =-1方法二:= = == =当=2时,= =-1.4. (2011浙江衢州,17(2),4分)化简:.【答案】原式5. (2011四川重庆,21,10 分)先化简,再求值:(x-1x-x-2x+1)÷2x2-xx2+2x+1,其中x满足x2-x-1=0.【答案】原式=(x-1x-x-2x+1)÷2x2-xx2+2x+1 =(x-1)( x+1)-x( x-2)x( x+1)÷2x2-xx2+2x+1=2x-1x(x+1)×(x+1)2 2x-1=x+1x2当x2-x-1=0时,x2=x+1,原式=1.6. (2011福建泉州,19,9分)先化简,再求值,其中.【答案】解:原式4分6分当时,原式.9分7. (2011湖南常德,19,6分)先化简,再求值.【答案】解:8. (2011湖南邵阳,18,8分)已知,求的值。

2011年数学中考模拟试卷及答案

2011年数学中考模拟试卷及答案

命题人:张晓云 2011年数学模拟试卷一、选择题(每小题3分,共30分) 1.下列四个数中,小于0的是( )(A )-2. (B )0. (C )1. (D )3. 2.下列运算正确的是 ( )A .523a a a =+B .632a a a =⋅C .22))((b a b a b a -=-+ D.222)(b a b a +=+3.右边的几何体是由五个大小相同的正方体组成的,它的正视图为( )4.两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为( ) (A )外离. (B )外切. (C )相交. (D )内切.5. 二次函数2)1(2+-=x y 的最小值是( )(A )2 (B )1 (C )-1 (D )-2 6.下列命题中不成立的是( )A .矩形的对角线相等B .三边对应相等的两个三角形全等C .两个相似三角形面积的比等于其相似比的平方D .一组对边平行,另一组对边相等的四边形一定是平行四边形7.下列四个点中,有三个点在同一反比例函数xk y =的图象上,则不在这个函数图象上的点是 ( )A .(5,1)B .(-1,5)C .(35,3) D .(-3,35-)(第2题)8.已知圆锥的底面半径为5cm ,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( )(A )125 (B )135 (C )1310 (D )13129.如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE=( ) A .2 B .3 C .22D .2310. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )二、填空题(每小题3分,共30分)11.新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为 . 12.分解因式241a -= . 13.当x = 时,分式1x x+没有意义. 14.如图,AB//CD,CE 平分∠ACD ,若∠1=250,那么∠2的度数是 . 15.在一个不透明的袋子中有2个黑球、3个白球,它们除 颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸 出1个球,那么两个球都是黑球的概率为 . 16如图,沿倾斜角为30的山坡植树,要求相邻两棵树的水 平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

2011年中考数学试题汇编---菱形

2011年中考数学试题汇编---菱形

选择题(每小题x 分,共y 分)(2011•安徽省)10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………【 C 】〔2011•湖北省武汉市〕 12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论: ①△AED ≌△DFB ; ②S四边形B C D G =43CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论D 只有①②. B.只有①③.C.只有②③. D.①②③.〔2011•山东省烟台市〕7、如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是CA 、等腰梯形B 、矩形C 、菱形D 、正方形(2011•重庆市潼南县)10. 如图,在平面直角坐标系中,四边形OABC 是菱形, 点C 的坐标为(4,0),∠AOC = 60°,垂直于x 轴的 直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长 度的速度向右平移,设直线l 与菱形OABC 的两边分 别交于点M,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则 能大致反映S 与t 的函数关系的图象是C 第10题图〔2011•大理〕6.用两块边长为a 的等边三角形纸片拼成的四边形是【 B 】 A .等腰梯形 B .菱形 C .矩形 D . 正方形〔2011•德州市〕8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是C(A )2n (B )4n (C )12n + (D )22n +二、填空题(每小题x 分,共y分)(2011●河北省)14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =___5__.1. 〔2011•凉山州〕已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MC AM 的值是 85或811。

2011年全国各地中考数学压轴题专集之七、平行四边形、矩形、菱形、正方形、梯形

2011年全国各地中考数学压轴题专集之七、平行四边形、矩形、菱形、正方形、梯形

七、平行四边形、矩形、菱形、正方形、梯形1.图形既关于点O 中心对称,又关于直线AC ,BD 对称,AC =10,BD =6,已知点E ,M 是线段AB 上的动点(不与端点重合),点O 到EF ,MN 的距离分别为h 1,h 2.△OEF 与△OGH 组成的图形称为蝶形. (1)求蝶形面积S 的最大值;(2)当以EH 为直径的圆与以MQ 为直径的圆重合时,求h 1与h 2满足的关系式,并求h 1的取值范围.2.如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点,P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值; (3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从点O 向点C 运动时,点H 也随之运动,请直接写出点H 所经过的路径长.(不必写解答过程)3.以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,设∠ADC =α(0°<α<90°). (1)求∠HAE 的大小(用含 α 的代数式表示); (2)求证:HE =HG ;(3)判断四边形EFGH 是什么四边形?并说明理由.4.在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F . (1)在图1中证明CE =CF ;(2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数 (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数. C A D BG PEM N F QHO图1EB F GD H A C AD BC E ABC DE ABCD E5.如图,有一张长为5宽为3的矩形纸片ABCD ,要通过适当的剪拼,得到一个与之面积相等的正方形. (1)该正方形的边长为____________;(2)现要求只能用两条裁剪线.请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明剪拼的过程.6.如图,矩形ABCD 中,AB =6,BC =8,对角线AC 与BD 相交于点O ,点E 在射线BM 上. (1)连接OE ,与边CD 交于点F .若CE =OC ,求CF 的长;(2)连接DE 、AE ,AE 与对角线BD 相交于点P .若△ADE 为等腰三角形,求DP 的长.7.如图,梯形ABCD 中,AD ∥BC ,∠DCB =45°,CD =2,BD ⊥CD .过点C 作CE ⊥AB 于E ,交对角线BD 于F ,点G 为BC 中点,连结EG 、AF .(1)求EG 的长;(2)求证:CF =AB +AF .8.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 3;(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12;(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况.9.如图,已知四边形ABDE 、ACFG 都是△ABC 外侧的正方形,连接DF ,若M 、N 分别为DF 、BC 的中点,求证:MN ⊥BC 且MN =12BC . A BCDB CDAOEMF BC DAOM备用图A BCDGEFl l l l10.矩形纸片ABCD 中,AD =12cm ,现将这张纸片按下列图示方式折叠,AE 是折痕.(1)如图1,P ,Q 分别为AD ,BC 的中点,点D 的对应点F 在PQ 上,求PF 和AE 的长; (2)如图2,DP =13AD ,CQ =13BC ,点D 的对应点F 在PQ 上,求AE 的长; (3)如图3,DP =1 n AD ,CQ = 1nBC ,点D 的对应点F 在PQ 上. ①直接写出AE 的长(用含n 的代数式表示);②当n 越来越大时,AE 的长越来越接近于_________.11.如图,等腰梯形ABCD 中,AD =4,BC =9,∠B =45°.动点P 从点B 出发沿BC 向点C 运动,动点Q 同时以相同速度从点C 出发沿CD 向终D 运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AB 的长;(2)设BP =x ,问当x 为何值时△PCQ 的面积最大,并求出最大值;(3)探究:探究:在AB 边上是否存在点M ,使得四边形PCQM 为菱形?请说明理由.12.如图①,将矩形ABCD 折叠,使点B 落在边AD (含端点)上,落点记为E ,此时折痕与边BC 或边CD (含端点)交于点F ,然后展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”. (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形; (2)如图②,在矩形ABCD 中,AB =2,BC =4,当它的“折痕△BEF ”的顶点E 位于AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中,AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标?若不存在,为什么? CAFBDEGMN图1CAFBD EP Q 图2C AFBD EP Q 图3C AFBD EPQ13.如图,在梯形ABCD 中,AB ∥CD ,∠A =90°,AB =3,CD =6,BE ⊥BC 交直线AD 于点E . (1)当点E 与D 恰好重合时,求AD 的长;(2)当点E 在边AD 上时(E 不与A 、D 重合),设AD =x ,ED =y ,求y 关于x 的函数关系式,并写出自变量x 取值范围;(3)是否可能使△ABE 、△CDE 与△BCE 都相似?若能,请求出此时AD 的长;若不能,请说明理由.14.如图,矩形ABCD 中,AB =3,BC =4,M 为CD 中点,点E 在线段MC 上运动,FG 垂直平分AE ,垂足为O ,分别交AD 、BC 于F 、G .(1)求AEFG的值; (2)设CE =x ,四边形AGEF 的面积为y ,求y 关于x 的函数关系式;当y 取最大值时,判断四边形AGEF 的形状,并说明理由.15.如图1,矩形ABCD 中,AB =10cm ,BC =6cm ,在BC 边上取一点E ,将△ABE 沿AE 翻折,使点B 落在DC 边上的点F 处. (1)求CF 和EF 的长;(2)如图2,一动点P 从点A 出发,以每秒1cm 的速度沿AF 向终点F 作匀速运动,过点P 作PM ∥EF 交AE 于点M ,过点M 作MN ∥AF 交EF 于点N .设点P 运动的时间为t (0<t<10),四边形PMNF 的面积为S ,试探究S 的最大值?(3)以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,如图3,在(2)的条件下,连接FM ,若△AMF 为等腰三角形,求点M 的坐标.16.如图,四边形OABC 是矩形,点A 、C 的坐标分别为(6,0),(0,2),M 是线段BC 上的动点(与端点B 、C 不重合),过点M 的直线y =-2 3x +m 交折线OAB 于点N .(1)记△MOE 的面积为S ,求S 与m 的函数关系式,并写出m 的取值范围;(2)当点N 在线段OA 上时,若矩形OABC 关于直线MN 的对称图形为四边形O 1A 1B 1C 1.①当m 为何值时,B 、N 、B 1三点在同一直线上;②试探究四边形O 1A 1B 1C 1与矩形OABC 重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. D ABC EEMG(图2)E(图1) DBC EFA17.如图,边长为1的正方形ABCD 中,以A 为圆心,1为半径作BD ︵,将一块直角三角板的直角顶点P放置在BD ︵(不包括端点B 、D )上滑动,一条直角边通过顶点A ,另一条直角边与边BC 相交于点Q ,连接PC ,设PQ =x .(1)△CPQ 能否为等边三角形?若能,求出x 的值;若不能,说明理由; (2)求△CPQ 周长的最小值;(3)当△CPQ 分别为锐角三角形、直角三角形和钝角三角形时,求x 的取值范围.18.如图,菱形ABCD 中,AB =10,sin A =45,点E 在AB 上,AE =4,过点E 作EF ∥AD ,交CD 于F ,点P 从点A 出发,以每秒1个单位长的速度沿线段AB 向终点B 匀速运动,同时点Q 从点E 出发,以相同的速度沿线段EF 向终点F 匀速运动,设运动时间为t (秒). (1)当t =5秒时,求PQ 的长;(2)当BQ 平分∠ABC 时,直线PQ 将菱形ABCD 的周长分成两部分,求这两部分的比;(3)以P 为圆心,PQ 长为半径的⊙P 是否能与直线AD 相切?如果能,求此时t 的值;如果不能,说明理由.19.如图,在平面直角坐标系中,四边形ABCD 为菱形,AB =10,AB 边在x 轴上,点D 在y 轴上,点A 的坐标是(-6,0). (1)求点C 的坐标;(2)连接BD ,点P 是线段CD 上一动点(点P 不与C 、D 两点重合),过点P 作PE ∥BC 交BD 于点E ,过点B 作BQ ⊥PE 交PE 的延长线于点Q .设PC 的长为x ,PQ 的长为y ,求y 与x 之间的函数关系式(直接写出自变量x 的取值范围);4备用图备用图A PB C D QAB C D 备用图ABCD备用图ADCB E备用图 F心,以5为半径的⊙P 与直线BC 的位置关系,请说明理由.20.在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,如图1.(1)将图1中的△BEF 绕点B 逆时针旋转90°,取DF 的中点G ,连接EG ,CG ,如图2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想; (2)将图1中的△BEF 绕点B 逆时针旋转180°,取DF 的中点G ,连接EG ,CG ,如图3,则线段EG 和CG 有怎样的数量关系和位置关系?请写出你的猜想,并加以证明;(3)将图1中的△BEF 绕点B 逆时针旋转任意角度,取DF 的中点G ,连接EG ,CG ,如图3,则线段EG 和CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.21.如图,将矩形OABC 放置在平面直角坐标系中,点D 在边OC 上,点E 在边OA 上,把矩形沿直线DE 翻折,使点O 落在边AB 上的点F 处,且tan ∠BFD =4 3.若线段OA 的长是一元二次方程x2-7x -8=0的一个根,又2AB =3OA .请解答下列问题: (1)求点B 、F 的坐标; (2)求直线ED 的解析式;(3)在直线ED 、FD 上是否存在点M 、N ,使以点C 、D 、M 、N 为顶点的四边形是等腰梯形?若存在,求点M 的坐标;若不存在,请说明理由.备用图C AB DE GF图2 C ABDEGF图4C AB DEGF 图3 C A B DEF图122.如图,在平面直角坐标系中,四边形OABC 是梯形,BC ∥OA ,点A 的坐标为(10,0),点C 的坐标为(0,8),OA =OB . (1)求点B 的坐标;(2)点P 从点A 出发,沿线段AO 以1个单位/秒的速度向终点O 匀速运动,过点P 作PH ⊥OA ,交折线A -B -O 于点H ,设点P 的运动时间为t 秒(0≤t ≤10).①是否存在某个时刻t ,使△OPH 的面积等于△OAB 面积的320?若存在,求出t 的值,若不存在,请说明理由;②以P 为圆心,P A 长为半径作⊙P ,当⊙P 与线段OB 只有一个公共点时,求t 的值或t 的取值范围.23.如图,在Rt △OAB 中,∠A =90°,∠ABO =30°,OB =833,边AB 的垂直平分线CD 分别与AB 、x 轴、y 轴交于点C 、E 、D .(1)求点E 的坐标;(2)求直线CD 的解析式; (3)在直线CD 上和坐标平面内是否分别存在点Q 、P ,使得以O 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.24.在四边形ABCD 中,对角线AC 、BD 相交于点O ,设锐角∠DOC =α,将△DOC 绕点O 按逆时针方向旋转得到△D ′OC ′(0°<旋转角<90°),连接AC ′、BD ′,AC ′ 与BD ′ 相交于点M .(1)当四边形ABCD 是矩形时,如图1,请猜想AC ′ 与BD ′ 的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(2)当四边形ABCD 是平行四边形时,如图2,已知AC =kBD ,请猜想此时AC ′ 与BD ′ 的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(3)当四边形ABCD 是等腰梯形时,如图3,AD ∥BC ,此时(1)AC ′ 与BD ′ 的数量关系是否成立?∠AMB 与α的大小关系是否成立?不必证明,直接写出结论.MBCAODC ′D ′M BCAODC ′D ′M BC AODC ′D ′25.如图l ,己知正方形ABCD ,点E 、F 分别在边AB 、AD 上,且AE =AF . (1)如图2,将△AEF 绕点A 顺时针旋转∠α,当0°<α<90°时,连接BE 、DF ,判断线段BE 、DF 的数量关系和位置关系,并加以证明;(2)如图3,将△AEF 绕点A 顺时针旋转∠α,当α=90°时,连接BE 、DF ,当AE 与AD 满足什么数量关系时,直线DF 垂直平分BE ?请说明理由;(3)如图4,将△AEF 绕点A 顺时针旋转∠α,当90°<α<180°时,连接BD 、DE 、EF 、FB 得到四边形BDEF ,则顺次连接四边形BDEF 各边中点所组成的四边形是什么特殊四边形?请说明理由.26.如图,ABCD 是一张矩形纸片,AD =BC =1,AB =CD =5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK .(1)若∠1=70°,求∠MKN 的度数;(2)△MNK 的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK 的面积最大?请你用备用图探究可能出现的情况,求最大值.27.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .BDA CEF 图1BDACEF图2BDA CEF图3 BDACEF图4B D AC BD A M N C K 1B D AC BD A C AQ28.已知四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点(不与点A 、B 重合),连接P A 、PB 、PC 、PD . (1)如图①,当P A 的长度等于_________时,∠PAB =60°;当P A 的长度等于_________时,△PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如图所示的直角坐标系(点A 即为原点O ),记△PAD 、△PAB 、△PBC 的面积分别为S 1、S 2、S 3.设P 点坐标为(a ,b ),试求2S 1S 3-S 22的最大值,并求出此时a 、b 的值.29.如图,把边长为1的正方形纸片OABC 放在直线l 上,OA 边与直线l 重合.将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;再将正方形纸片AO 1C 1B 1绕顶点B 1按顺时针方向旋转90°,……,按上述方法经过若干次旋转.请解答下列问题:(1)求正方形纸片OABC 经过3次旋转,顶点O 经过的路程以及顶点O 在此过程中所形成的图形与直线l 围成图形的面积;(2)求正方形纸片OABC 经过5次旋转,顶点O 经过的路程; (3)正方形纸片OABC 经过多少次旋转,顶点O 经过的路程是 41+2022π?30.如图,将矩形纸片ABCD 按如下顺序进行折叠:对折、展平,得折痕EF (如图①);沿GC 折叠,使点B 落在EF 上的点B ′ 处(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′ 处(如图④);沿GC ′ 折叠(如图⑤);展平,得折痕GC ′、GH (如图⑥). (1)求图②中∠BCB ′ 的大小;(2)图⑥中的△GCC ′ 是正三角形吗?请说明理由.AP BCD(图①)(图②)A OB 1 A E DC B F 图① A ED C B F 图② B ′ G A D C B 图③ G A D C B 图④ C ′G H A D C B 图⑤ C ′ G H A ′A E D CB F 图⑥ GC ′ H31.如图,在边长为2的正方形ABCD 中,P 为AB 的中点,Q 为边CD 上一动点,设DQ =t (0≤t ≤2),线段PQ 的垂直平分线分别交边AD 、BC 于点M 、N ,过Q 作QE ⊥AB 于点E ,过M 作MF ⊥BC 于点F . (1)当t ≠1时,求证:△PEQ ≌△NFM ;(2)顺次连接P 、M 、Q 、N ,设四边形PMQN 的面积为S ,求出S 与自变量t 之间的函数关系式,并求S 的最小值.32.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.33.如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =8,AD =14,点E 、F 、G 分别在BC 、AB 、AD 上,且BE =3,BF =2,以EF 、FG 为邻边作□EFGH ,连接CH 、DH . (1)直接写出点H 到AD 的距离;(2)若点H 落在梯形ABCD 内或其边上,求△HGD 面积的最大值与最小值; (3)当△EHC 为等腰三角形时,求AG 的长.34.已知菱形ABCD 中,点E 、F 分别在边BC 、CD 上(点E 、F 分别不与点C 、D 重合),且AE =AF ,∠EAF =54°.(1)如图1,当AC 平分∠EAF 时,若AB =AE ,求∠AEB 的度数;(2)如图2,当AC 不平分∠EAF 时,若△ABE 是一个等腰三角形,求∠AEB 的度数. A D CE P BF M N Q图2ADC EOB F 图1 备用图 QADCGB FEH35.如图,△ABC 是等腰直角三角形,∠BAC =90º,BC =2,D 是线段BC 上一点,以AD 为边,在AD 的右侧作正方形ADEF .直线AE 与直线BC 交于点G ,连接CF . (1)猜想线段CF 与线段BD 的数量关系和位置关系,并说明理由; (2)连接FG ,当△CFG 是等腰三角形时,求BD 的长.36.在矩形ABCD 中,点E 是AD 边上一点,∠ABE =30°,BE =DE ,连接BD .动点M 从点E 出发沿射线ED 运动,过点M 作MN ∥BD 交直线BE 于点N .(1)如图1,当点M 在线段ED 上时,求证:BE =PD +33MN ; (2)若BC =6,设MN 长为x ,以M 、N 、D 为顶点的三角形面积为y ,求y 关于x 的函数关系式;(3)在(2)的条件下,当点M 运动到线段ED 的中点时,连接NC ,过点M 作MF ⊥NC 于F ,MF 交对角线BD 于点G (如图2),求线段MG 的长.37.在矩形ABCD 中,点P 在AD 上,AB =2,AP =1.将直角尺的顶点放在P 处,直角尺的两边分别交AB 、BC 于点E 、F ,连接EF (如图1).(1)当点E 与点B 重合时,点F 恰好与点C 重合(如图2),求PC 的长;(2)探究:将直尺从图2中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中,请你观察、猜想,并解答:①tan ∠PEF 的值是否发生变化?请说明理由; ②直接写出从开始到停止,线段EF 的中点经过的路线长.ADCB F E 图1 A DC B F E 图2D C B FE A G CB A 备用图 AE MBD N C 图1AEBD C 备用图AE M BDNC图2G FA E BD FCP 图1A B DC P 图2(F )(E )38.已知菱形ABCD 的边长为1,∠ADC =60°,等边△AEF 两边分别交边DC 、CB 于点E 、F .(1)特殊发现:如图1,若点E 、F 分别是边DC 、CB 的中点,求证:菱形ABCD 对角线AC 、BD 的交点O 即为等边△AEF 的外心;(2)若点E 、F 始终分别在边DC 、CB 上移动,记等边△AEF 的外心为点P .①猜想验证:如图2,猜想△AEF 的外心P 落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF 面积最小时,过点P 任作一直线分别交边DA 于点M ,交边DC 的延长线于点N ,试判断1DM+1DN是否为定值.若是,请求出该定值;若不是,请说明理由.39.如图,在直角梯形ABCD 中,∠D =∠BCD =90°,∠B =60°,AB =6,AD =9,点E 是CD 上的一个动点(E 不与D 重合),过点E 作EF ∥AC ,交AD 于点F (当E 运动到C 时,EF 与AC 重合),把△DEF 沿着EF 对折,点D 的对应点是点G .设DE =x ,△GEF 与梯形ABCD 重叠部分的面积为y . (1)求CD 的长及∠1的度数;(2)若点G 恰好在BC 上,求此时x 的值;(3)求y 与x 之间的函数关系式,并求x 为何值时,y 的值最大?最大值是多少?40.如图,梯形ABCD 中,AD ∥BC ,∠A =90°,AD =10,AB =3,BC =14,点E 、F 分别在BC 、DC 上,将梯形ABCD 沿直线EF 折叠,使点C 落在AD 上一点C ′,再沿C ′G 折叠四边形C ′ABE ,使AC ′ 与C ′E 重合,且C ′A 过点E . (1)试证明C ′G ∥EF ;(2)若点A ′ 与点E 重合,求此时图形重叠部分的面积.41.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =AB =1,BC =2.将点A 折叠到CD 边上,记折叠后A 点对应的点为P (P 与D 点不重合),折痕EF 只与边AD 、BC 相交,交点分别为E 、F .过点P 作PN ∥BC 交AB 于N ,交EF 于M ,连结PA 、PE 、AM ,EF 与P A 相交于O .图1AEBD FC O图2图3BAB C EDFG1A B CD备用图G A B C D EFA ′B ′C ′(1)指出四边形PEAM 的形状(不需证明);(2)记∠EPM =α,△AOM 、△AMN 的面积分别为S 1、S 2.①求证:S 1tanα2=18PA2;②设AN =x ,y =S 1-S 2tanα2,试求出以x 为自变量的函数y 的解析式,并确定y 的取值范围.42.如图1,边长为2的正方形ABCD 中,E 是BA 延长线上一点,且AE =AB ,点P 从点D 出发,以每秒1个单位长度的速度沿D →C →B 向终点B 运动,直线EP 交AD 于F ,过点F 作直线FG ⊥DE 于G ,交AB 于Q .设点P 运动时间为t (秒). (1)求证:AF =AQ ;(2)当t 为何值时,四边形PQBC 是矩形?(3)如图2,连接PB ,当t 为何值时,△PQB 是等腰三角形?43.如图1,已知梯形ABCD 中,AD ∥BC ,∠A =90°,AB =AD =4,BC =6.点E 为AB 边上一点,EF ∥DC ,交BC 边于点F ,FG ∥ED ,交DC 边于点G . (1)若四边形DEFG 为矩形,求AE 的长;(2)如图2,将(1)中的∠DEF 绕E 点逆时针旋转,得到∠D ′EF ′,EF ′交BC 边于F ′点,且F ′点与C 点不重合,射线ED ′交AD 边于点M ,作F ′N ∥ED ′交DC 边于点N .设AM 的长为x ,△NF ′C 中,F ′C 边上的高为y ,求y 关于x 的函数关系式,并确定自变量x 的取值范围.44.如图,四边形OABC 的四个顶点坐标分别为O (0,0),A (8,0),B (4,4),C (0,4),直线l :y =kx +b 保持与四边形OABC 的边交于点M 、N (M 在折线AOC 上,N 在折线ABC 上)设四边形OABC在l 右下方部分的面积为S 1,在l 左上方部分的面积为S 2,记S =|S 1-S 2|.OA BCDPE F MN CD FG P图1 CDF G P 图2 A B C E D F G 图1 A B C E D F ′ N图2 M D ′(1)求∠OAB 的大小;(2)当M 、N 重合时,求l 的解析式;(3)当b ≤0时,问线段AB 上是否存在点N 使得S =0?若存在,求b 的值;若不存在,请说明理由; (4)求S 与b 的函数关系式。

2011年中考数学试题矩形、菱形与正方形分类汇编及答案

2011年中考数学试题矩形、菱形与正方形分类汇编及答案

2011年中考数学试题矩形、菱形与正方形分类汇编及答案2011年全国各地100份中考数学试卷分类汇编第26章矩形、菱形与正方形一、选择题 1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()(A)48cm (B)36cm (C)24cm (D)18cm 【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n个图形的周长是(A)(B)(C)(D)【答案】C 3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为 A.17 B.17 C.18 D.19 【答案】B 4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为 A.23 B. 332 C. 3 D.6【答案】A 5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为.现给出下列命题:()①若,则.②若则.则: A.①是真命题,②是真命题 B.①是真命题,②是假命题 C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A 6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡分别架在墙体的点、点处,且 ,侧面四边形为矩形,若测得,则( ] A. 35° B. 40° C. 55° D. 70° 【答案】C 7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条 B.4条 C.5条 D.6条【答案】D 8. 2011四川重庆,10,4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( ) [来源:中.考.资.源.网] A.1 B.2 C.3 D.4 【答案】C 9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()(A)48cm (B)36cm (C)24cm (D)18cm [来源:Z#xx#] 【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD中,E为中点,作的角平分线交于F点。

2011年各地中考数学模拟试题100套精选汇编:相似形

2011年各地中考数学模拟试题100套精选汇编:相似形

2011中考模拟分类汇编:相似形一、选择题 1、(2011年北京四中模拟26)在比例尺1:6000000的地图上,量得南京到北京的距离是15㎝,这两地的实际距离是 ( )A .0.9㎞ B. 9㎞ C.90㎞ D.900㎞ 答案:D2、(2011杭州模拟26)如图所示,平地上一棵树高为6米,两次观察地面上的影子,•第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长…………………( )A. 633-B. 43C. 63D. 323-答案:B3.( 2011年杭州三月月考).如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( ) (A)32 (B)76 (C)256(D)2答案:B4.(2011年三门峡实验中学3月模拟)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③AD ABAE AC=;其中正确的有 ( )A 、3个B 、2个C 、1个D 、0个答案:A5. (安徽芜湖2011模拟)如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC 的边长为 ( )A .9B .12C .15D .18 答案: AA DB EC(第4 题)E D CBA6.(2011深圳市三模)为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。

如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m ,参考数据:错误!未找到引用源。

≈1.414,错误!未找到引用源。

≈1.732,错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABCDMP 第4题图34.矩形、菱形、正方形一 选择题 A 组1、(2011浙江杭州模拟14)下列命题中的真命题是( ).A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 两条对角线相等的梯形是等腰梯形D. 等腰梯形是中心对称图形 答案:C2、(2011浙江杭州模拟16)下列图形中,周长不是32的图形是( )答案:B3.(2011浙江省杭州市8模)如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =422-,BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③ GD=2AM ;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。

其中正确的结论个数有( )A. 1个B. 2个C. 3个D. 4个 答案:D 4、(2011年黄冈中考调研六)矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )答案AM H G F ED C B A 第3题图MH GF ED C BA丙丙甲乙乙甲5、(2011年浙江杭州三模) 如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。

若∠ABC=∠BEF =60°,则=PCPG( ) A.2 B. 3C.22 D.33 答案:B6、(2011年浙江杭州八模)如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =422-,BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③ GD=2AM ;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。

其中正确的结论个数有( ) A. 1个 B. 2个 C. 3个 D. 4个 答案:D B 组1. (2011浙江慈吉 模拟)如图, 将一个正方体分割成甲、乙、丙三个长方体, 且三个长方体的长和宽均与正方体的棱长相等; 若已知甲、乙、丙三个长方体的表面积之比为2∶3∶4, 则它们的体积之比等于( )A. 2∶3∶4B. 2∶5∶7C. 1∶10∶23D. 1∶6∶11答案:D 2、(2011北京四中一模)下列命题中,真命题是( )(A)有两边相等的平行四边形是菱形 (B)有一个角是直角的四边形是矩形1 123 3.5x y OA . 11 2 3 3.5 xy O B . 11 2 3 3.5 xyO 1 1 2 3 3.5 xy ODC 第5题图(第6题)第1题图(C)四个角相等的菱形是正方形 (D)两条对角线互相垂直且相等的四边形是正方形3(2011深圳市中考模拟五)下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形[来源:] B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形 答案:D4. (2011深圳市全真中考模拟一)如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为(A)42. (B)52(C)6.(D)9.(第4题) 答案:D5.(安徽芜湖2011模拟)如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形'''D C AB ,边''C B 与DC 交于点O ,则四边形OD AB '的周长..是 ( ) A .22 B .3 C .2 D .21+ 答案: A6.(浙江杭州金山学校2011模拟)(原创)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 答案:D7.(浙江杭州金山学校2011模拟)(引黄冈市 2010年秋期末考试九年级数学模拟试题)AD CEFOB正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为( )A、10 B、12 C、14 D、16 答案:D8.(河南新乡2011模拟)如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =,则下列结论正确的有( ) ①6cm DE =②2cm BE = ③菱形面积为260cm④410cm BD =A.1个B.2个C.3个D.4个答案:C9.(浙江杭州进化2011一模)下列命题中的真命题是( ).A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 两条对角线相等的梯形是等腰梯形D. 等腰梯形是中心对称图形 答案:C10、(2011年黄冈市浠水县)如图所示,将边长为8cm 的正方形纸片ABCD折叠,使点D 落在BC 中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是… ( )A. 2B. 3C. 4D. 5答案:B11、(2011年北京四中33模)如图,四边形ABCD 的对角线互相平分,要使它变为菱形,ABCD需要添加的条件是( )A .AB=CD B. AD=BC C. AB=BC D. AC=BD答案C12.(2011年杭州市上城区一模)如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =6,DF =4,则菱形ABCD 的边长为( ) A.42 B.32 C.5D.7答案:D13.(2011年杭州市上城区一模)已知下列命题:①若00a b >>,,则0a b +>;②若22a b ≠,则a b ≠;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是( ) A. ① ③④B. ①②④C. ③④⑤D. ②③⑤答案:C14. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是A.121+=πb aB.122+=πb a C.221+=πb a D.12+=πb a 答案:D15. (2011年海宁市盐官片一模)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ▲ )A .23B .26C .3D .6 答案:A二 填空题1、(2011浙江杭州模拟16)同学们在拍照留念的时候最喜欢做一个“V”字型的动作。

我们ABCDEFO第12题)第14题ADEPBC第15题图)……将宽为cm2的长方形如图进行翻折,便可得到一个漂亮的“V”。

如果“V”所成的锐角为600,那么折痕AB的长是。

[来源:学科网]答案:3342.(2011.河北廊坊安次区一模)如图6,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.答案: 定义或判定3.(2011.河北廊坊安次区一模)如图8,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为.答案:4. (2011湖北省天门市一模)如图4(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图4(2));以此下去···,则正方形A4B4C4D4的面积为__________。

5.(浙江杭州金山学校2011模拟)(原创)如图所示,正方形ABCD的面积为12,ABE△是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD PE的和最小,则这个最小值为▲ .第3题图上第4题图(1)A1B1C1D1A BCDD2A2B2C2D1C1B1A1A BCD图(2)(第6题图)AFCDBE 第9题图答案: 23答案: 6256.(2011浙江杭州模拟7) 如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于________.[来源:Z|xx|]7.(2011年宁夏银川)如图,已知正方形ABCD 的边长为3,E 为CD 边上一点, 1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABE ',连接EE ',则EE '的长等于 . 答案:258.(2011年青岛二中)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .答案:179(2011年浙江仙居)如图在ABC △中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA ∥.下列四种说法:①四边形AEDF 是平行四边形; ②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有 .(只填写序号) 答案:①②③④10、(2011山西阳泉盂县月考)如图,在矩形ABCD 中,E 、F 分别是(第8题图)ED BC′ F CD ′ A 第11题 (第14题图)边AD 、BC 的中点,G 、H 在DC 边上,且GH=21DC ,AB=10,BC=12,则阴影 部分的面积为 35 。

11.(2011年江苏盐都中考模拟)如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 °.答案50 12、(2011年北京四中中考模拟19)在正方形的截面中,最多可以截出 边形 答案4 13、(2011年浙江杭州三模) 如图,边长为2的正方形ABCD 中,点E 是对角线BD 上的一点,且BE=BC ,点P 在EC 上,PM⊥BD于M ,PN⊥BC 于N ,则PM+PN= 答案:214、(2011年浙江杭州七模)如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 答案:7 B 组1.(2011安徽中考模拟)如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_____________. 答案:5第1题图D AB CP MNOB CD A AD(第5题)2. (2011湖北武汉调考模拟二)如图,菱形ABCD 中,AB=2,∠C=60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心D 所经过的路径总长为(结果保留π)___.答案:(83,+4)π3、(北京四中2011中考模拟14)要使一个平行四边形成为正方形,则需添加的条件为____________(填上一个正确的结论即可). 答案:对角线垂直且相等4. (2011年杭州市模拟)菱形OABC 在平面直角坐标系中的位置如图所示,4522AOC OC ∠==°,,则点B 的坐标为 . 答案:(222,2)+5.(2011年海宁市盐官片一模)如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 . 答案:166、(赵州二中九年七班模拟)若菱形ABCD 的对角线AC =24,BD =10,则菱形的周长为 。

相关文档
最新文档