2010年高考试题——理数(浙江卷)解析版
2010年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)(解析版)(word版)
绝密★考试结束前2010年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高k n k kn n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设P={x ︱x <4},Q={x ︱2x <4},则( )(A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位( ) (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( ) (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) (A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
2012年浙江高考试题(理数,word解析版)
2012年普通高等学校招生全国统一考试(浙江卷)科数学理本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C R B)=A.(1,4) B.(3,4) C.(1,3) D.(1,2)【解析】A=(1,4),B=[-1,3],则A∩(C R B)=(3,4).【答案】B2.已知i是虚数单位,则3+i1i-=A.1-2i B.2-i C.2+i D.1+2i【解析】3+i1i-=()()3+i1+i2=2+4i2=1+2i.【答案】D3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:211aa=+,解之得:a=1 or a=﹣2.所以为充分不必要条件.【答案】A4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x +1)+1,再向下平移1个单位长度得:y 3=cos(x+1).令x =0,得:y 3>0;x =12-π,得:y 3=0;观察即得答案. 【答案】A5.设a ,b 是两个非零向量.A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实 数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种 【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有: 4个都是偶数:1种;2个偶数,2个奇数:225460C C =种;4个都是奇数:455C =种. ∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是 A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意的n ∈N*,均有S n >0D .若对任意的n ∈N*,均有S n >0,则数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立. 【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是ABCD【解析】如图:|OB |=b ,|O F 1|=c .∴k PQ =b c ,k MN =﹣bc.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c cb y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c (x -ac c a -+),令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e. 【答案】B 9.设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a ba b +>+.构造函数:()22x f x x =+,则()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.已知矩形ABCD ,AB =1,BC ∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】B非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分. 11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=. 【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________.【解析】T ,i 关系如下图: 5 【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,q 表示的式子. 即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________.【解析】对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =ACcos ∠BAC =1783421003434-=⨯-+.AB AC ⋅=.16)178(3434-=-⋅⋅【答案】-1616.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x的距离为:d ==C 2到直线l :y =x的距离为d d r d '=-=另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),492)41(212'=⇒+-==a a d .【答案】4917.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【解析】本题按照一般思路,则可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1).考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:23a 0==或者a ,舍去0=a ,得答案:23=a .【答案】23=a三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C . (Ⅰ)求tan C 的值;(Ⅱ)若a ∆ABC 的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
2010年高考数学试题分类汇编立体几何
2010年高考数学试题分类汇编——立体几何1.(2010年山东卷理科)在空间,下列命题正确的是( )(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 2.( 2010年全国卷I 理科)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( )(A)3(B)3(C) (D)33.(2010年福建卷理科)如图,若Ω是长方体1111ABC D -A B C D 被平面E F G H 截去几何体11EFG H B C 后得到的几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1B B 上异于1B 的点,且E H ∥11A D ,则下列结论中不.正确..的是( ) A. E H ∥F G B.四边形E F G H 是矩形 C. Ω是棱柱 D. Ω是棱台3题图 4题图4.(2010年安徽卷理科)一个几何体的三视图如图,该几何体的表面积为( )A 、280B 、292C 、360D 、3725.(2010年广东卷理科)如图,△ ABC 为直角三角形,A A '//B B ' //C C ' , C C ' ⊥平面ABC 且3A A '=32B B '=C C ' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )6.(2010年宁夏卷)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) (A) 2a π(B)273a π(C)2113a π (D) 25a π7.(2010年浙江卷)设m,l 是两条不同的直线,α是一个平面,则下列命题正确的是( )CA9.(2010年全国2卷理数)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点( )(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个10.(2010年湖北卷理科)圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm . 11.(2010年江西卷理科)如图,在三棱锥O A B C -中,三条棱O A ,O B ,O C 两两垂直,且O A O B O C >>,分别经过三条棱O A ,O B ,O C 作一个截面平分三棱锥的体积,截面面积依次为1S ,2S ,3S ,则1S ,2S ,3S 的大小关系为 .12.(2010年浙江卷)若某几何体的正视图(单位:cm )如图所示,则此几何体的体积是____cm 3. 13.(2010年全国2卷理数)已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,A B 为圆M 与圆N 的公共弦,4A B =.若3O M O N ==,则两圆圆心的距离M N = . 14.(2010年上海市理科)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去A O B ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 为顶点的四面体的体积为 。
2010高考浙江理数(含解析)
2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x ︱x <4},Q={x ︱2x <4},则 (A )p Q ⊆ (B )Q P ⊆ (C )Rp Q C⊆(D )RQ P C⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基 本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位 (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =(A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
备战2021年高考理数 6年高考真题分项版精解精析专题08 立体几何(棱锥)(原卷版)
【2022年高考试题】1. 【2022高考北京卷理第7题】在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S == B .21S S =且23S S ≠ C .31S S =且32S S ≠ D .32S S =且31S S ≠2.【2022山东高考理第13题】 三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =________.3. 【2022陕西高考理第5题】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π4. 【2022大纲高考理第8题】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814π B .16π C .9π D .274π5. 【2022高考安徽卷第20题】如图,四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD .四边形ABCD 为梯形,BC AD //,且BC AD 2=.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q . (1)证明:Q 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若A A 14=,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小.6. 【2022高考北京理第17题】如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱FD ,PC 分别交于G ,H . (1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.7. 【2022高考湖北理第19题】如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线//1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.8. 【2022高考湖南理第19题】如图6,四棱柱1111ABCD A B C D -的全部棱长都相等,11111,ACBD O AC B D O ==,四边形11ACC A 和四边形11BDD B 为矩形.(1)证明:1O O ⊥底面ABCD ;(2)若060CBA ∠=,求二面角11C OB D --的余弦值.9、【2022高考江苏第16题】如图在三棱锥-P ABC 中,,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===,求证(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC10. 【2022高考江西理第19题】如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD .(1)求证:;PD AB ⊥(2)若,2,2,90===∠PC PB BPC问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值11. 【2022高考辽宁理第19题】如图,ABC ∆和BCD ∆所在平面相互垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.12. 【2022高考全国1第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.13. 【2022高考陕西第17题】四周体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四周体的棱CA DC BD ,,于点H G F ,,.(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.14. 【2022高考上海理科第19题】底面边长为2的正三棱锥P ABC -,其表面开放图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .15.【2022高考四川第18题】三棱锥A BCD -及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥.(1)证明:P 为线段BC 的中点; (2)求二面角A NP M --的余弦值.16.【2022高考浙江理第20题】如图,在四棱锥BCDE A -中,平面⊥ABC 平面======∠=∠AC BE DE CD AB BED CDE BCDE ,1,2,90,02.(1)证明:⊥DE 平面ACD ; (2)求二面角E AD B --的大小17. 【2022高考重庆理科第19题】如题(19)图,四棱锥ABCD P -中,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (Ⅰ)求PO 的长;(Ⅱ)求二面角C PM A --的正弦值.【2021年高考试题】(2021·辽宁理)(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A .3172B .210C .132D .310(2021·上海理)19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.(2021·广东理)6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥(2021·大纲理)19.(本小题满分12分)如图,四棱锥P-ABCD 中,090ABC BAD ∠=∠=,2BC AD =,PAB ∆和PAD ∆都是等边三角形.(Ⅰ)证明:PB CD ⊥; (Ⅱ)求二面角A-PD-C 的大小.(2021·大纲理)10.已知正四棱柱1111ABCD A B C D -中, 12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23 B 32 D .13(2021·北京理)17. (本小题共14分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面AB C ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D ,使得AD ⊥A 1B ,并求1BDBC 的值.(2021·北京理)14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .(2021·安徽理)15.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是 (写出全部正确命题的编号)。
【历年高考】2010年全国高考理科数学试题及答案-浙江
绝密★考试结束前2010年普通高等学校招生全国统一考试数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 P (A ·B )=P (A )·P (B ) 锥体的体积公式 如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高 k n kk n n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设}4|{},4|{2<=<=x x Q x x P (A )Q P ⊆ (B )P Q ⊆(C )QC P R ⊆(D )P C Q R ⊆(2)某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k(C )?6>k(D )?7>k(3)设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S (A )11 (B )5(C )-8(D )-11(4)设20π<<x ,则“1sin 2<x x ”是“1sin <x x ”的 (A )充分而不必不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)对任意复数i R y x yi x z ),,(∈+=为虚数单位,则下列结论正确的是(A )y z z 2||=- (B )222y x z += (C )x z z 2||≥- (D )||||||y x z +≤(6)设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若αα⊥⊂⊥l m m l 则,, (B )若αα⊥⊥m m l l 则,//,(C )若m l m l //,,//则αα⊂(D )若m l m l //,//,//则αα(7)若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033m y x y x y x 且y x +的最大值为9,则实数=m(A )-2(B )-1(C )1(D )2(8)设F 1,F 2分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点。
2010年高考试题——理综物理(浙江卷)解析版
绝密★启用前 2010年高考试题——理综物理(浙江卷)解析版.doc 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题) 请点击修改第I 卷的文字说明一、选择题 1. 如图所示,A 、B 两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。
下列说法正确的是A. 在上升和下降过程中A 对B 的压力一定为零B. 上升过程中A 对B 的压力大于A 对物体受到的重力C. 下降过程中A 对B 的压力大于A 物体受到的重力D. 在上升和下降过程中A 对B 的压力等于A 物体受到的重力 2.请用学过的电学知识判断下列说法正确的是 A. 电工穿绝缘衣比穿金属衣安全 B. 制作汽油桶的材料用金属比用塑料好 C. 小鸟停在单要高压输电线上会被电死 D. 打雷时,呆在汽车里比呆在木屋里要危险 3. 在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示。
则可判断出 A. 甲光的频率大于乙光的频率 B. 乙光的波长大于丙光的波长 C. 乙光对应的截止频率大于丙光的截止频率 D. 甲光对应的光电子最大初动能大于丙光的光电子最大初动能 4.某水电站,用总电阻为2.5 的输电线输电给500km 外的用户,其输出电功率是3×106kW 。
现用500kV 电压输电,则下列说法正确的是() A. 输电线上输送的电流大小为2.0×105A B. 输电线上由电阻造成的损失电压为15kV C. 若改用5kV 电压输电,则输电线上损失的功率为vD. 输电线上损失的功率为△P=U2/r,U5.在O点有一波源,t=0离O点为3m的A点第一次达到波峰;t2=7s谷。
则以下说法正确的是(BC)A. 该横波的波长为2mB. 该横波的周期为4sC. 该横波的波速为1m/sD. 距离O点为1m6.半径为r刻平板之间中心有一重力不计,电荷量为qA. 第2秒内上极板为正极B. 第3秒内上极板为负极C. 第2秒末微粒回到了原来位置D. 第3秒末两极板之间的电场强度大小为0.2dr/2π7..宙飞以周期为T示。
【备战】历届高考数学真题汇编专题15 程序框图 理
【2012年高考试题】1.【2012高考真题新课标理6】如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数2.【2012高考真题陕西理10】右图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( )A. 1000NP = B. 41000NP =C. 1000MP =D. 41000MP =3.【2012高考真题山东理6】执行下面的程序图,如果输入4a =,那么输出的n 的值为(A )2 (B )3 (C )4 (D )5 【答案】B【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.4.【2012高考真题辽宁理9】执行如图所示的程序框图,则输出的S 的值是(A) -1 (B) 23(C)32(D) 45.【2012高考真题北京理4】执行如图所示的程序框图,输出的S 值为( )A. 2 B .4 C.8 D. 16 【答案】C【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。
6.【2012高考真题安徽理3】如图所示,程序框图(算法流程图)的输出结果是()()A3()B4()C5()D87.【2012高考真题天津理3】阅读右边的程序框图,运行相应的程序,当输入x的值为-25时,输出x的值为(A)-1 (B)1(C)3 (D)9x=-,n=3,则输出的8.【2012高考真题湖南理14】如果执行如图3所示的程序框图,输入1数S= .9.【2012高考真题江西理14】下图为某算法的程序框图,则程序运行后输出的结果是______________.【答案】310.【2012高考真题浙江理12】若某程序框图如图所示,则该程序运行后输出的值是__________11.【2012高考真题湖北理12】阅读如图所示的程序框图,运行相应的程序,输出的结果s .12.【2012高考真题广东理13】执行如图所示的程序框图,若输入n 的值为8,则输出s 的值为 .【答案】8【解析】第一步:2=s ,第二步:4)42(21=⨯=s ,第三步:8)64(31=⨯=s 。
2010年浙江省高考数学【理】(含解析版)
2010年高考浙江卷理科数学试题及答案选择题目部分(共50分)参考公式:如果事件A 、B 互斥,那么柱体的体积公式P (A +B )=P (A )+P (B )�=Sh如果事件A 、B 相互独立,那么其中S 表示柱体的底面积,ℎ表示柱体的高P (A ·B )=P (A )·P (B )锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n �=13Sh次独立重复试验中恰好发生k 次的概率其中S 表示锥体的底面积,ℎ表示锥体的高��(�)=�����(1−�)�−�(�=0,1,2,⋯,�)球的表面积公式台体的体积公式퐸 .�=13ℎ(�1+�1�2+�2)球的体积公式其中S 1,S 2分别表示台体的上、下底面积�=43 3ℎ表示台体的高其中R 表示球的半径一、选择题目:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设�=�|�<4,�=�|�2<4(A )�⊆�(B )�⊆�(C )�⊆� �(D )�⊆� �(2)某程序框图如图所示,若输出的S=57,则判断框内为(A )�>4?(B )�>5?(C )�>6?(D )�>7?(3)设��为等比数列��的前�项和,8�2+�5=0,则�'EF ⊥(A )11(B )5(C)-8(D )-11(4)设0<�<,则“�sin2�<1”是“�sin�<1”的2(A)充分而不必不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)对任意复数�=�+yi(�,�∈ ),�为虚数单位,则下列结论正确的是(A)|�−�|=2�(B)�2=�2+�2(C)|�−�|≥2�(D)|�|≤|�|+|�|(6)设�,�是两条不同的直线,是一个平面,则下列命题正确的是(A)若�⊥�,�⊂,则�⊥(B)若�⊥,�//�,则�⊥(C)若�//�,�⊂,则�//�(D)若�//�,�//�,则�//�(7)若实数�,�满足不等式组�+3�−3≥0,2�−�−3≤0,且�+�的最大值为9,则实数�=(A)-2(B)-1(C)1(D)2(8)设F1,F2分别为双曲线�2�2−�2�2=1(�>0,�>0)的左、右焦点。
高考总复习理数(人教版)课时作业提升第11章概率随机变量及其分布列第2节古典概型
课时作业提升(六十五) 古典概型(对应学生用书P 281) A 组 夯实基础1.4张卡上分别写有数字1、2、3、4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )A .12B .13C .23D .34解析:选B 因为从四张卡片中任取出两张的情况为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种.其中两张卡片上数字和为偶数的情况为(1,3)、(2,4)共2种,所以两张卡片上的数字之和为偶数的概率为13.2.(2018·武汉调研)同时抛掷两个骰子,则向上的点数之差的绝对值为4的概率是( ) A .118B .112C .19D .16解析:选C 同时抛掷两个骰子,基本事件总数为36,记“向上的点数之差的绝对值为4”为事件A ,则事件A 包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4个,故P (A )=436=19. 3.(2017·合肥二模)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A .13B .512C .12D .712解析:选A 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,12种情况,而星期六安排一名男生,星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2 4种情况,则发生的概率为P =412=13,故选A .4.(2018·威海一模)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )A .16B .13C .14D .12解析:选A 由题意可知m =(a ,b )有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3), (5,5),共12种情况.因为m ⊥n ,即m ·n =0,所以a ×1+b ×(-1)=0,即a =b , 满足条件的有(3,3),(5,5)共2个, 故所求的概率为16.5.(2018·亳州质检)已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A . 12B .13C .14D .18解析:选C 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由所求的概率为416=14.6.(2018·浙江模拟)从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于________.解析:设2名男生为A 、B,3名女生为a 、b 、c ,则从5名同学中任取2名的方法有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,而这2名同学刚好是一男一女的有(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c )共6种,故所求的概率P =1-610=25.答案:257.(2018·绵阳诊断)如图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.解析:依题意,记题中的被污损数字为x ,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x +5)≤0,x ≥7,即此时x 的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P =310=0.3.答案:0.38.(2018·宣武模拟)曲线C 的方程为x 2m 2+y 2n 2=1,其中m ,n 是将一枚骰子先后投掷两次所得点数,事件A =“方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆”,那么P (A )=________.解析:试验中所含基本事件个数为36;若想表示椭圆,则m >n ,有(2,1),(3,1),…,(6,5),共1+2+3+4+5=15种情况,因此P (A )=1536=512.答案:5129.(2015·天津卷)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.B 组 能力提升1.(2018·衡水调研)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该运动员射击4次至少击中3次的概率为( ) A .0.852 B .0.819 2 C .0.8D .0.75解析:选D 本题主要考查随机模拟法,考查学生的逻辑思维能力.因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-520=0.75.2.在平面直角坐标系xOy 中,不等式组⎩⎪⎨⎪⎧-1≤x ≤2,0≤y ≤2表示的平面区域为W ,从W 中随机取点M (x ,y ).若x ∈Z ,y ∈Z ,则点M 位于第二象限的概率为( )A .16B .13C .1-π12D .1-π6解析:选A 画出平面区域,列出平面区域内的整数点有:(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共12个,其中位于第二象限的有(-1,1),(-1,2),共2个,所以所求概率P =16.3.(2018·昆明模拟)投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1,2,3,4,5,6)一次,则两颗骰子向上点数之积等于12的概率为________.解析:投掷两颗相同的正方体骰子共有36种等可能的结果:(1,1),(1,2),(1,3),…,(6,6).点数积等于12的结果有:(2,6),(3,4),(4,3),(6,2),共4种,故所求事件的概率为436=19. 答案:194.设集合P ={-2,-1,0,1,2},x ∈P 且y ∈P ,则点(x ,y )在圆x 2+y 2=4内部的概率为________.解析:以(x ,y )为基本事件,可知满足x ∈P 且y ∈P 的基本事件有25个.若点(x ,y )在圆x 2+y 2=4内部,则x ,y ∈{-1,0,1},用列表法或坐标法可知满足x ∈{-1,0,1}且y ∈{-1,0,1}的基本事件有9个.所以点(x ,y )在圆x 2+y 2=4内部的概率为925.答案:9255.一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为________.解析:设3个白球分别为a 1、a 2、a 3,2个黑球分别为b 1、b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 3),共6种,故所求概率为620=310.答案:3106.(2015·安徽卷)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.7.一汽车厂生产A 、B 、C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):A 类轿车10辆. (1)求z 的值;(2)按型号用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解:(1)设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得4001 000=a5,则a =2.因此在抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1、A 2表示2辆舒适型轿车,用B 1、B 2、B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有(A 1,A 2)、(A 1,B 1)、(A 1,B 2)、(A 1,B 3)、(A 2,B 1)、(A 2,B 2)、(A 2,B 3)、(B 1,B 2)、(B 1,B 3)、(B 2,B 3),共10个.事件E 包含的基本事件有(A 1,A 2)、(A 1,B 1)、(A 1,B 2)、(A 1,B 3)、(A 2,B 1)、(A 2,B 2)、(A 2,B 3)共7个,故P (E )=710,即所求概率为710.(3)样本平均数x -=18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包含的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P (D )=68=34,即所求概率为34.。
高考数学(文)5年真题精选与模拟 专题01 集合 (2)
专题 7 平面向量【2012高考真题精选】1.(2012·浙江卷设a ,b 是两个非零向量( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |2.(2012·陕西卷) 已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.3.(2012·广东卷) 若向量BA →=(2,3),CA →=(4,7),则BC →=( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)【答案】A 【解析】∵BC →=BA →-CA →,∴BC →=(2,3)-(4,7)=(-2,-4),所以选择A.4.(2012·全国卷) △ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a |=1,|b |=2,则AD →=( )A.13a -13bB.23a -23bC.35a -35bD.45a -45b 【答案】D 【解析】本小题主要考查平面向量的基本定理,解题的突破口为设法用a 和b 作为基底去表示向量AD →.易知a ⊥b ,|AB |=5,用等面积法求得|CD |=255, ∵AD =AC 2-CD 2=455,AB =5,∴AD →=45AB →=45(a -b ),故选D.5.(2012·安徽卷) 在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是( )A .(-72,-2)B .(-72,2)C .(-46,-2)D .(-46,2)【答案】A 【解析】设∠POx =α,因为P ()6,8,所以OP →=(10cos α,10sin α)⇒cos α=35,sin α=45,则OQ →=⎝⎛⎭⎫10cos ⎝⎛⎭⎫θ+3π4,10cos ⎝⎛⎭⎫θ+3π4=(-72,-2).故答案为A. 6.(2012·江西卷) 在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2=( )A .2B .4C .5D .107.(2012·重庆卷) 设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5 D .10【答案】B 【解析】因为a ⊥c ,所以a ·c =0,即2x -4=0,解得x =2,由b ∥c ,得-4=2y ,解得y =-2,所以a =(2,1),b =(1,-2),所以a +b =(3,-1),所以|a +b |=32+-1 2=10.8.(2012·上海卷) 在平行四边形ABCD 中,∠A =π3,边AB 、AD 的长分别为2、1.若M 、N 分别是边BC 、CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →·AN →的取值范围是________.9.(2012·辽宁卷) 已知两个非零向量a ,b 满足|a +b|=|a -b|,则下面结论正确的是( )A .a ∥bB .a ⊥bC .|a|=|b|D .a +b =a -b10.(2012·课标全国卷) 已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.11.(2012·安徽卷) 若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值是________.【答案】-98【解析】本题考查平面向量的数量积,模的有关运算.12.(2012·广东卷) 对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若平面向量a ,b 满足|a |≥|b |>0,a与b 的夹角θ∈⎝⎛⎭⎫0,π4,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫⎪⎪n 2n ∈Z 中,则a ∘b =( ) A.12 B .1 C.32 D.5213.(2012·北京卷) 已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________.DE →·DC →的最大值为________.14.(2012·重庆卷) 设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5 D .1015.(2012·浙江卷) 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.AM =3,BC =10,AB =AC =34,cos ∠BAC =34+34-1002×34=-817,AB →·AC →=|AB →|·|AC →|·cos ∠BAC =-16.16.(2012·湖南卷) 在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( ) A. 3 B.7 C .2 2 D.2317.(2012·福建卷) 如图1-4,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e=12,过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.图1-4【答案】解:解法一: (1)因为|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 所以4a =8,a =2.又因为e =12,即c a =12,所以c =1,所以b =a 2-c 2= 3. 故椭圆E 的方程是x 24+y 23=1.18.(2012·山东卷) 已知向量m =(sin x,1),n =⎝⎛⎭⎫3A cos x ,A2cos2x (A >0),函数f (x )=m·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域.因此,g (x )=6sin ⎝⎛⎭⎫4x +π3.因为x ∈⎣⎡⎦⎤0,5π24, 所以4x +π3∈⎣⎡⎦⎤π3,7π6. 故g (x )在⎣⎡⎦⎤0,5π24上的值域为(-3,6). 19.(2012·天津卷) 已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R.若BQ →·CP →=-32,则λ=( )A.12B.1±22C.1±102D.-3±222【答案】A 【解析】本题考查平面向量基本定理及向量的数量积的运算,考查数据处理能力,中档题.BQ →·CP →=(AQ →-AB →)·(AP →-AC →) =((1-λ)AC →-AB →)·(λAB →-AC →)=-(1-λ)AC →2-λAB →2+[]1-λλ+1AB →·AC →=-2λ2+2λ-2=-32,解之得λ=12.20.(2012·浙江卷) 设a ,b 是两个非零向量( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |垂直,故A 错;再取a =()2,0,b =()1,0,满足a =λb ,但不满足||a +b =||a -||b ,故D 错;取a =()2,0,b =()0,-1,满足a ⊥b ,但不满足||a +b =||a -||b ,故B 错,所以答案为C.21.(2012·四川卷) 设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |【答案】C 【解析】要使得a |a |=b|b |,在a ,b 都为非零向量的前提下,必须且只需a 、b 同向即可,对照四个选项,只有C 满足这一条件.22.(2012·山东卷) 如图1-4所示,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐标为________.【2011高考真题精选】1. (2011年高考四川卷理科4)如图,正六边形ABCDEF 中,BA CD EF ++=( )(A)0 (B)BE (C)AD (D)CF【答案】D【解析】BA CD EF DE CD EF CD DE EF CF ++=++=++=.2. (2011年高考全国卷理科12)设向量a b c 、、满足|a |=|b |=1, a b ⋅ 1=2-,,,a c b c <--> =060,则c 的最大值等于(A)2(D)1 【答案】A【解析】如图,构造AB = a , AD = b , AC =c ,120,60BAD BCD ∠=∠= ,所以,,,A B C D 四点共圆,可知当线段AC 为直径时,c最大,最大值为2.ABDC3. (2011年高考浙江卷理科14)若平面向量α ,β 满足1α= ,1β≤,且以向量α ,β为邻边的平行四边形的面积为12,则α 与β 的夹角θ的取值范围是 。
备战2021年高考理数 6年高考真题分项版精解精析专题06 不等式(解析版)
【2022高考真题】1. 【2022高考安徽卷理第5题】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯..一.,则实数a 的值为( ) A,121-或 B.212或 C.2或1 D.12-或2.【2022高考北京版理第6题】若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12-3. 【2022高考福建卷第11题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________.4. 【2022高考福建卷第13题】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元).5. 【2022高考广东卷理第3题】若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M m -=( )A.8B.7C.6D.56.【2022高考湖南卷第14题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤k y y x x y 4,且y x z +=2的最小值为6-,则____=k .7.【2022辽宁高考理第16题】对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .8. 【2022全国1高考理第9题】不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是( )A .23,p pB .12,p pC .13,p pD .14,p p10. 【2022山东高考理第5题】已知实数y x ,满足)10(<<<a a a yx,则下面关系是恒成立的是( )A.111122+>+y x B.)1ln()1(ln 22+>+y x C.y x sin sin > D.33y x >11. 【2022山东高考理第9题】 已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为( )A.5B.4C.5D.212. 【2022四川高考理第4题】若0a b >>,0x d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c< 4.若0a b >>,0c d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c<13. 【2022四川高考理第5题】执行如图1所示的程序框图,假如输入的,x y R ∈,则输出的S 的最大值为( )A .0B .1C .2D .314. 【2022浙江高考理第13题】当实数x,y满足240,10,1,x yx yx+-≤⎧⎪--≤⎨⎪≥⎩时,14ax y≤+≤恒成立,则实数a的取值范围是________. 【考点定位】线性规划.15. 【2022天津高考理第2题】设变量x,y满足约束条件0,20,12,yx yyx+-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y=+的最小值为()(A)2(B)3(C)4(D)51 6. 【2022大纲高考理第14题】设,x y满足约束条件2321x yx yx y-≥⎧⎪+≤⎨⎪-≤⎩,则4z x y=+的最大值为.17. 【2022高考上海理科】若实数x,y 满足xy=1,则2x +22y 的最小值为______________.18.【2022高考安徽卷第21题】设实数0>c ,整数1>p , *N n ∈. (1)证明:当1->x 且0≠x 时,px x p+>+1)1(;(2)数列{}n a 满足pc a 11>,pn n n a pc a p p a -++-=111,证明:p n n c a a 11>>+. ①【2021高考真题】(2021·天津理)8. 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是( ) (A) 15,02⎛⎫- ⎪ ⎪⎝⎭(B) 13,02⎛⎫- ⎪ ⎪⎝⎭(C) 15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭(D) 52,1⎛⎫-- ⎪ ⎝⎭∞⎪ (2021·上海理)15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞(2021·陕西理)9. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )(A) [15,20] (B) [12,25] (C) [10,30](D) [20,30](2021·山东理)12.设正实数,,x y z 满足22340x xy y z -+-=,则当zxy取得最大值时,z y x 212-+的最大值为A.0B. 1C.49D. 3 (2021·湖南理)10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 .(2021·广东理)9.不等式220x x +-<的解集为___________.(2021·湖南理)20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 动身沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”。
2010年全国各地高考试题及答案
2010年全国各地高考试题及答案名师点评2010年高考试题>>在线观看中小学教育网在第一时间为您收集整理2010年高考试题,试题均为word校对版,已公布的“下载”链接为蓝色。
“下载”是灰色的试题请您耐心等待。
2010年全国各地高考试卷统一命题大纲全国卷Ⅰ课标全国卷Ⅰ大纲全国卷Ⅱ自主命题北京天津重庆上海辽宁江苏浙江安徽福建广东江西山东湖南湖北四川陕西海南大纲全国卷Ⅰ语文全国Ⅰ语文卷-2010年高考试题word 版下载数学全国Ⅰ文数卷-2010年高考试题word版下载全国Ⅰ理数卷-2010年高考试题word版下载综合全国Ⅰ文综卷-2010年高考试题word版下载全国Ⅰ理综卷-2010年高考试题word版下载英语全国Ⅰ英语卷-2010年高考试题word版下载课标全国卷Ⅰ语文课标全国I语文卷-2010年高考试题word版下载数学课标全国I文数卷-2010年高考试题word版下载课标全国I理数卷-2010年高考试题word版下载综合课标全国I文综卷-2010年高考试题word版下载课标全国I理综卷-2010年高考试题word版下载英语课标全国I英语卷-2010年高考试题word版下载大纲全国卷Ⅱ语文全国Ⅱ语文卷-2010年高考试题word 版下载数学全国Ⅱ文数卷-2010年高考试题word版下载全国Ⅱ理数卷-2010年高考试题word版下载综合全国Ⅱ文综卷-2010年高考试题word版下载全国Ⅱ理综卷-2010年高考试题word版下载英语全国Ⅱ英语卷-2010年高考试题word版下载江苏省语文江苏省语文卷-2010年高考试题word版下载数学江苏省数学卷-2010年高考试题word版下载英语江苏省英语卷-2010年高考试题word版下载物理江苏省物理卷-2010年高考试题word版下载历史江苏省历史卷-2010年高考试题word版下载化学江苏省化学卷-2010年高考试题word 版下载生物江苏省生物卷-2010年高考试题word版下载政治江苏省政治卷-2010年高考试题word版下载地理江苏省地理卷-2010年高考试题word版下载安徽省语文安徽省语文卷-2010年高考试题word版下载数学安徽省文数卷-2010年高考试题word版下载安徽省理数卷-2010年高考试题word版下载综合安徽省文综卷-2010年高考试题word版下载安徽省理综卷-2010年高考试题word 版下载英语安徽省英语卷-2010年高考试题word版下载浙江省语文浙江省语文卷-2010年高考试题word版下载数学浙江省文数卷-2010年高考试题word版下载浙江省理数卷-2010年高考试题word版下载综合浙江省文综卷-2010年版下载英语浙江省英语卷-2010年高考试题word版下载自选模块浙江省自选模块卷-2010年高考试题word版下载重庆市语文重庆市语文卷-2010年高考试题word版下载数学重庆市文数卷-2010年高考试题word版下载重庆市理数卷-2010年高考试题word版下载综合重庆市文综卷-2010年高考试题word版下载重庆市理综卷-2010年高考试题word 版下载英语重庆市英语卷-2010年高考试题word版下载四川省语文四川省语文卷-2010年高考试题word版下载数学四川省文数卷-2010年高考试题word版下载四川省理数卷-2010年高考试题word版下载综合四川省文综卷-2010年高考试题word版下载四川省理综卷-2010年高考试题word 版下载英语四川省英语卷-2010年高考试题word版下载山东省语文山东省语文卷-2010年高考试题word版下载数学山东省文数卷-2010年高考试题word版下载山东省理数卷-2010年高考试题word版下载综合山东省文综卷-2010年高考试题word版下载山东省理综卷-2010年高考试题word 版下载英语山东省英语卷-2010年高考试题word版下载基本能力山东省基本能力卷-2010年高考试题word版下载广东省语文广东省语文卷-2010年高考试题word版下载数学广东省文数卷-2010年高考试题word版下载广东省理数卷-2010年高考试题word版下载综合广东省文综卷-2010年版下载英语广东省英语卷-2010年高考试题word版下载北京市语文北京市语文卷-2010年高考试题word版下载数学北京市文数卷-2010年高考试题word版下载北京市理数卷-2010年高考试题word版下载综合北京市文综卷-2010年高考试题word版下载北京市理综卷-2010年高考试题word 版下载英语北京市英语卷-2010年高考试题word版下载天津市语文天津市语文卷-2010年高考试题word版下载数学天津市文数卷-2010年高考试题word版下载天津市理数卷-2010年高考试题word版下载综合天津市文综卷-2010年高考试题word版下载天津市理综卷-2010年高考试题word 版下载英语天津市英语卷-2010年高考试题word版下载湖南省语文湖南省语文卷-2010年高考试题word版下载数学湖南省文数卷-2010年高考试题word版下载湖南省理数卷-2010年高考试题word版下载综合湖南省文综卷-2010年高考试题word版下载湖南省理综卷-2010年高考试题word 版下载英语湖南省英语卷-2010年高考试题word版下载湖北省语文湖北省语文卷-2010年高考试题word版下载数学湖北省文数卷-2010年高考试题word版下载湖北省理数卷-2010年高考试题word版下载综合湖北省文综卷-2010年高考试题word版下载湖北省理综卷-2010年高考试题word 版下载英语湖北省英语卷-2010年高考试题word版下载福建省语文福建省语文卷-2010年高考试题word版下载数学福建省文数卷-2010年高考试题word版下载福建省理数卷-2010年高考试题word版下载综合福建省文综卷-2010年高考试题word版下载福建省理综卷-2010年高考试题word版下载英语福建省英语卷-2010年高考试题word版下载陕西省语文陕西省语文卷-2010年高考试题word版下载数学陕西省文数卷-2010年高考试题word版下载陕西省理数卷-2010年高考试题word版下载综合陕西省文综卷-2010年高考试题word版下载陕西省理综卷-2010年高考试题word 版下载英语陕西省英语卷-2010年高考试题word版下载辽宁省语文辽宁省语文卷-2010年高考试题word版下载数学辽宁省文数卷-2010年高考试题word版下载辽宁省理数卷-2010年高考试题word版下载综合辽宁省文综卷-2010年高考试题word版下载辽宁省理综卷-2010年高考试题word 版下载英语辽宁省英语卷-2010年高考试题word版下载江西省语文江西省语文卷-2010年高考试题word版下载数学江西省文数卷-2010年高考试题word版下载江西省理数卷-2010年高考试题word版下载综合江西省文综卷-2010年高考试题word版下载江西省理综卷-2010年高考试题word 版下载英语江西省英语卷-2010年高考试题word版下载上海市语文上海市语文卷-2010年高考试题word版下载数学上海市文数卷-2010年高考试题word版下载上海市理数卷-2010年高考试题word版下载综合能力上海市文综卷-2010年高考试题word版下载上海市理综卷-2010年高考试题word版下载英语上海市英语卷-2010年高考试题word版下载物理上海市物理卷-2010年高考试题word版下载化学上海市化学卷-2010年高考试题word版下载生物上海市生物卷-2010年高考试题word版下载地理上海市地理卷-2010年高考试题word版下载政治上海市政治卷-2010年高考试题word 版下载历史上海市历史卷-2010年高考试题word版下载海南省语文海南省语文卷-2010年高考试题word版下载数学海南省文数卷-2010年高考试题word版下载海南省理数卷-2010年高考试题word版下载物理海南省物理卷-2010年高考试题word版下载英语海南省英语卷-2010年高考试题word版下载政治海南省政治卷-2010年高考试题word版下载历史海南省历史卷-2010年高考试题word版下载地理海南省地理卷-2010年高考试题word版下载生物海南省生物卷-2010年高考试题word版下载化学海南省化学卷-2010年高考试题word版下载。
高考数学之三角函数和解三角形
高考数学之三角函数和解三角形【知识网络构建】【重点知识整合】一、三角恒等变换与三角函数1.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sincos 1αα+=;(3)切弦互化:弦的齐次式可化为切; (4)角的替换:2()()ααβαβ=++-, ()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=21cos 2sin2αα-=tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):22sin cos sin()(tan )ba b a b aαααϕϕ+=++=.二、解三角形1.正弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).2.余弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc,另外两个同样.3.面积公式已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则 (1)三角形的面积等于底乘以高的12;(2)S =12ab sin C =12bc sin A =12ac sin B =abc 4R (其中R 为该三角形外接圆的半径);(3)若三角形内切圆的半径是r ,则三角形的面积S =12(a +b +c )r ;(4)若p =a +b +c2,则三角形的面积S =p p -a p -b p -c .【高频考点突破】【变式探究】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35D.45【方法技巧】1.用三角函数定义求三角函数值有时反而更简单;2.同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式的应用条件. 考点二 三角函数的性质 三角函数的单调区间:y =sin x 的递增区间是[2k π-π2,2k π+π2](k ∈Z),递减区间是[2k π+π2,2k π+3π2](k ∈Z); y =cos x 的递增区间是[2k π-π,2k π](k ∈Z),递减区间是[2k π,2k π+π](k ∈Z);y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z).例2、已知a =(sin x ,-cos x ),b =(cos x ,3cos x ),函数f (x )=a ·b +32. (1)求f (x )的最小正周期,并求其图像对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.【变式探究】已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z) B.[k π,k π+π2](k ∈Z)C .[k π+π6,k π+2π3](k ∈Z) D.[k π-π2,k π](k ∈Z)考点三 函数y =A sin(ωx +φ)的图像及变换 函数y =A sin(ωx +φ)的图像: (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图像变换:y =sin x ―――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)――――――――――→纵坐标变为原来的AA >0倍横坐标不变y =A sin(ωx +φ).例3、已知函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图像经过点(0,1),如图所示.(1)求f 1(x )的表达式;(2)将函数f 1(x )的图像向右平移π4个单位长度得到函数f 2(x )的图像,求y =f 1(x )+f 2(x )的最大值,并求出此时自变量x 的集合.【变式探究】已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)= ( )A .2+ 3 B. 3 C.33D .2- 3考点四 三角变换及求值 三角函数求值有以下类型:(1)“给角求值”,即在不查表的前提下,通过三角恒等变 换求三角函数式的值;(2)“给值求值”,即给出一些三角函数值,求与之有关的 其他三角函数式的值;(3)“给值求角”,即给出三角函数值,求符合条件的角. 例1、已知函数f (x )=2sin(13x -π6),x ∈R.(1)求f (0)的值;(2)设α,β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65.求sin(α+β)的值.【变式探究】已知:cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β的值为________. 考点五 正、余弦定理的应用【变式探究】△ABC 中,B =120°,AC =7,AB =5, 则△ABC 的面积为________. 考点 六 解三角形与实际应用问题在实际生活中,测量底部不可到达的建筑物的高度、不可到达的两点的距离及航行中的方位角等问题,都可通过解三角形解决. 例6、如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?【难点探究】难点一 简单的三角恒等变换例1 、(1)若0<α<π2,-π2<β<0,cos (π4+α)=13,cos (π4-β2)=33,则cos (α+β2)=( )A.33 B .-33 C.539 D .-69(2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 【点评】 在进行三角恒等变换时,一个重要的技巧是进行角的变换,把求解的角用已知角表示出来,把求解的角的三角函数使用已知的三角函数表示出来,常见的角的变换有,把π2+2α变换成2⎝⎛⎭⎫π4+α,α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·α+β2,α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β等;在进行三角函数化简或者求值时,如果求解目标较为复杂,则首先要变换这个求解目标,使之简化,以便看出如何使用已知条件.难点二 三角函数的图象例2 (1)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝⎛⎭⎫π24=________.(2)要得到函数y =cos (2x +π3)的图象,只需将函数y =12sin2x +32cos2x 的图象( )A .向左平移π8个单位 B .向右平移π2个单位 C .向右平移π3个单位 D .向左平移π4个单位难点三 三角函数的性质例3已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z)B.⎣⎡⎦⎤k π,k π+π2(k ∈Z)C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z)D.⎣⎡⎦⎤k π-π2,k π(k ∈Z)【规律方法】1.根据三角函数的图象求解函数的解析式时,要注意从图象提供的信息确定三角函数的性质,如最小正周期、最值,首先确定函数解析式中的部分系数,再根据函数图象上的特殊点的坐标适合函数的解析式确定解析式中剩余的字母的值,同时要注意解析式中各个字母的范围.2.进行三角函数的图象变换时,要注意无论进行的什么样的变换都是变换的变量本身,特别在平移变换中,如果这个变量的系数不是1,在进行变换时变量的系数也参与其中,如把函数y =sin ⎝⎛⎭⎫2x +π4的图象向左平移π12个单位时,得到的是函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π4=sin2x +5π12的图象. 3.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.难点四 正余弦定理的应用例4 、(1)在△A BC 中,若b =5,∠B =π4,sin A =13,则a =________.(2)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A ⎝⎛⎦⎤0,π6 B.⎣⎡⎭⎫π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π 难点五 函数的图象的分析判断例5 、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S .【点评】 本题的难点是变换cos A -2cos C cos B =2c -a b 时,变换方向的选取,即是把角的函数转化为边的关系,还是把边转化为角的三角函数,从已知式的结构上看,把其中三个内角的余弦转化为边的关系是较为复杂的,而根据正弦定理把其中边的关系转化为角的正弦,则是较为简单的,在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.探究点六 解三角形的实际应用例6、如图6-1,渔政船甲、乙同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70 km 的C 处,渔政船乙在渔政船甲的南偏西20°方向的B 处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C 处沿直线AC 航行前去救援,渔政船乙仍留在B 处执行任务,渔政船甲航行30 km 到达D 处时,收到新的指令另有重要任务必须执行,于是立即通知在B 处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC 航行前去救援渔船丙),此时B 、D 两处相距42 km ,问渔政船乙要航行多少千米才能到达渔船丙所在的位置C 处实施营救?45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船?并指出巡逻艇航行方向.图6-2【规律技巧】1.使用正弦定理能够解的三角形有两类,一类是已知两边及其中一边的对角,一类已知一边和两个内角(实际就是已知三个内角),其中第一个类型也可以根据余弦定理列出方程求出第三边,再求内角.在使用正弦定理求三角形内角时,要注意解的可能情况,判断解的情况的基本依据是三角形中大边对大角.2.当已知三角形的两边和其中一个边的对角求解第三边时,可以使用正弦定理、也可以使用余弦定理,使用余弦定理就是根据余弦定理本身是一个方程,这个方程联系着三角形的三个边和其中的一个内角.3.正弦定理揭示了三角形三边和其对角正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系. 【历届高考真题】 【2012年高考试题】 一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320xx -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )33.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010B 、1010C 、510D 、5157.【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=(A) -1 (B) 22-(C)22(D) 18.【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 129.【2012高考真题湖南理6】函数f (x )=sinx-c os(x+6π)的值域为 A .3332,32]10.【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin<+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定13.【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) 5-3 (B )5-9 (C)59(D)53二、填空题14.【2012高考真题湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,332),则ω= ; (2)若在曲线段¼ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .17.【2012高考真题安徽理15】设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333ab c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2ab c a b +<;则3C π>18.【2012高考真题福建理13】已知△ABC 得三边长成公比为2的等比数列,则其最大角的余弦值为_________.19.【2012高考真题重庆理13】设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c = 20.【2012高考真题上海理4】若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。
2010年高考试题——理综(浙江卷)含答案解析版
2010年普通高等学校招生全国统一考试(浙江卷)理科综合能力测试非择题部分(共120分)一、选择题(本题共17小题。
在每小题给出的四个选项中,只有一符合题目要求的。
)1.乙肝疫苗的接种需在一定时期内间隔注射三次,其目的是A.使机体积累更多数量的疫苗B.使机体产生更多数量的淋巴细胞C.使机体产生更多数量的抗体和淋巴细胞D.使机体产生更强的非特异性免疫2.在用基因工程技术构建抗除草剂的转基因烟草过程中,下列操作错误的是A.用限制性核酸内切酶切割烟草茶叶病毒的核酸B.用DNA连接酶连接经切割的抗除草剂基因和载体C.将重组DNA分子导入烟草原生质体D.用含除草剂的培养基筛选转基因烟草细胞3.某生态系统中生活着多种植食性动物,其中某一植食性动物种群个体数量的变化如图所示。
若不考虑该系统内生物个体的迁入与迁出,下列关于该种群个体数量变化的叙述,错误的是A.若a点时环境因素发生变化,但食物量不变,则a点以后个体数量变化不符合逻辑斯谛增长B.若该种群出生率提高,个体数量的增加也不会大幅走过b点C.天敌的大量捕食会导致该种群个体数量下降,下降趋势与b-c段相似D.年龄结构变动会导致该种群个体数量发生波动,波动趋势与c-d段相似4.下列关于动物细胞培养的叙述,正确的是A.培养保留接触抵制的细胞在培养瓶壁上可形成多层细胞B.克隆培养法培养过程上多数细胞的基因型会发生改变C.二倍体细胞的传代培养次数通常是无限的D.恶性细胞系的细胞可进行传代培养5. 下图①-⑤依次表示蛙坐骨神经爱到刺激后的电位变化过程。
下列分析正确的是A. 图①表示甲乙两个电极处的膜外电位的大小与极性不同B. 图②表示甲电极处的膜处于去极化过程,乙电极处的膜处于极化状态C. 图④表示甲电极处的膜处于去极化过程,乙电极处的膜处于反极化状态D. 图⑤表示甲电乙两个电极处的膜均处于去极化状态6. 将无根的非洲菊幼苗转入无植物激素的培养中,在适宜的温度和光照等条件下培养一段时间后,应出现的现象是7. 下列说法中正确的是A. 光导纤维、棉花、油脂、ABS 树脂都是由高分子化合物组成的物质B. 开发核能、太阳能等新能源,推广基础甲醇汽油,使用无磷洗涤剂都可直接降低碳排放C. 红外光谱仪、核磁共振仪、质谱仪都可用于有机化合物结构的分析D. 阴极射线、α-粒子散射现象及布朗运动的发现都对原子结构模型的建立作出了贡献8. 有X 、Y 、Z 、W 、M 五种短周期元素,其中X 、Y 、Z 、W 同周期, Z 、M 同主族; X +与M 2-具有相同的电子层结构;离子半径:Z 2->W -;Y 的单质晶体熔点高、硬度大,是一种重要的半导体材料。
2010年高考浙江省理科数学试题及答案解析(名师精校版)
第1页共20页第2页共20页绝密★考试结束前2010年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B ∙=∙如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n k n n P k C p p k n -=-=台体的体积公式11221()3V h S S S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题(共10小题,每小题5分,满分50分)1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆P C.P⊆C R Q D.Q⊆C R P【考点】集合的包含关系判断及应用.【专题】集合.【分析】此题只要求出x2<4的解集{x|﹣2<x<2},画数轴即可求出【解答】解:P={x|x<4},Q={x|x2<4}={x|﹣2<x<2},如图所示,可知Q⊆P,故B正确.【点评】此题需要学生熟练掌握子集、真子集和补集的概念,主要考查了集合的基本运算,属容易题.2.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S是否继续循环循环前11/第一圈24是第二圈311是第三圈426是第四圈557否故退出循环的条件应为k>4故答案选A.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.3.设S n为等比数列{a n}的前n项和,8a2+a5=0,则=()A.﹣11B.﹣8C.5D.11【考点】等比数列的前n项和.【专题】等差数列与等比数列.【分析】先由等比数列的通项公式求得公比q,再利用等比数列的前n项和公式求之即可.【解答】解:设公比为q,由8a2+a5=0,得8a2+a2q3=0,解得q=﹣2,所以==﹣11.故选A.【点评】本题主要考查等比数列的通项公式与前n项和公式.4.设0<x<,则“xsin2x<1”是“xsinx<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】不等关系与不等式;必要条件、充分条件与充要条件的判断;正弦函数的单调性.【专题】三角函数的图像与性质;简易逻辑.【分析】由x的范围得到sinx的范围,则由xsinx<1能得到xsin2x<1,反之不成立.答案可求.【解答】解:∵0<x<,∴0<sinx<1,故xsin2x<xsinx,若“xsinx<1”,则“xsin2x<1”若“xsin2x<1”,则xsinx<,>1.此时xsinx<1可能不成立.例如x→,sinx→1,xsinx>1.由此可知,“xsin2x<1”是“xsinx<1”的必要而不充分条故选B.【点评】本题考查了充分条件、必要条件的判定方法,判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.是基础题.5.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.B.z2=x2﹣y2C.D.|z|≤|x|+|y|【考点】复数的基本概念.【专题】数系的扩充和复数.【分析】求出复数的共轭复数,求它们和的模判断①的正误;求z2=x2﹣y2+2xyi,显然B错误;,不是2x,故C错;|z|=≤|x|+|y|,正确.【解答】解:可对选项逐个检查,A选项,,故A错,B选项,z2=x2﹣y2+2xyi,故B错,C选项,,故C错,故选D.【点评】本题主要考查了复数的四则运算、共轭复数及其几何意义,属中档题6.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【考点】直线与平面平行的判定.【专题】空间位置关系与距离.【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B【点评】本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题7.若实数x,y满足不等式组且x+y的最大值为9,则实数m=()A.﹣2B.﹣1C.1D.2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先根据约束条件画出可行域,设z=x+y,再利用z的几何意义求最值,只需求出直线x+y=9过可行域内的点A时,从而得到m值即可.【解答】解:先根据约束条件画出可行域,设z=x+y,将最大值转化为y轴上的截距,当直线z=x+y经过直线x+y=9与直线2x﹣y﹣3=0的交点A(4,5)时,z最大,将m等价为斜率的倒数,数形结合,将点A的坐标代入x﹣my+1=0得m=1,故选C.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.8.设F1、F2分别为双曲线的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.3x±4y=0B.3x±5y=0C.4x±3y=0D.5x±4y=0【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,可知答案选C,【解答】解:依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影是其中点,由勾股定理知可知|PF1|=2=4b根据双曲定义可知4b﹣2c=2a,整理得c=2b﹣a,代入c2=a2+b2整理得3b2﹣4ab=0,求得=∴双曲线渐近线方程为y=±x,即4x±3y=0故选C【点评】本题主要考查三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考查,属中档题9.设函数f(x)=4sin(2x+1)﹣x,则在下列区间中函数f(x)不存在零点的是()A.[﹣4,﹣2]B.[﹣2,0]C.[0,2]D.[2,4]【考点】函数的零点.【专题】函数的性质及应用.【分析】将函数f(x)的零点转化为函数g(x)=4sin(2x+1)与h(x)=x的交点,在同一坐标系中画出g(x)=4sin(2x+1)与h(x)=x的图象,数形结合对各个区间进行讨论,即可得到答案【解答】解:在同一坐标系中画出g(x)=4sin(2x+1)与h(x)=x的图象如下图示:由图可知g(x)=4sin(2x+1)与h(x)=x的图象在区间[﹣4,﹣2]上无交点,由图可知函数f(x)=4sin(2x+1)﹣x在区间[﹣4,﹣2]上没有零点故选A.【点评】本题主要考查了三角函数图象的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考查,对能力要求较高,属较难题.函数F(x)=f(x)﹣g(x)有两个零点,即函数f(x)的图象与函数g(x)的图形有两个交点.10.设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数f(x)的图象恰好经过Q中两个点的函数的个数是()A.4B.6C.8D.10【考点】对数函数的图像与性质.【专题】函数的性质及应用.【分析】把P中a和b的值代入f(x)=log2(x+a)+b中,所得函数f(x)的图象恰好经过Q中两个点的函数的个数,即可得到选项.【解答】解:将数据代入验证知当a=,b=0;a=,b=1;a=1,b=1a=0,b=0a=0,b=1a=1,b=﹣1时满足题意,故选B.【点评】本题主要考查了函数的概念、定义域、值域、图象和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考查,属中档题二、填空题(共7小题,每小题4分,满分28分)11.函数的最小正周期是π.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】本题考查的知识点是正(余)弦型函数的最小正周期的求法,由函数化简函数的解析式后可得到:f(x)=,然后可利用T=求出函数的最小正周期.【解答】解:===∵ω=2故最小正周期为T=π,故答案为:π.【点评】函数y=Asin(ωx+φ)(A>0,ω>0)中,最大值或最小值由A确定,由周期由ω决定,即要求三角函数的周期与最值一般是要将其函数的解析式化为正弦型函数,再根据最大值为|A|,最小值为﹣|A|,周期T=进行求解.、12.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是144cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由三视图可知几何体是一个四棱台和一个长方体,求解其体积相加即可.【解答】解:图为一四棱台和长方体的组合体的三视图,由公式计算得体积为=144.故答案为:144.【点评】本题主要考查了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题13.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为.【考点】抛物线的定义;抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】根据抛物线方程可表示出焦点F的坐标,进而求得B点的坐标代入抛物线方程求得p,则B点坐标和抛物线准线方程可求,进而求得B到该抛物线准线的距离.【解答】解:依题意可知F坐标为(,0)∴B的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣所以点B到抛物线准线的距离为+=,故答案为【点评】本题主要考查抛物线的定义及几何性质,属容易题14.设n≥2,n∈N,(2x+)n﹣(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k≤n)的最小值记为T n,则T2=0,T3=﹣,T4=0,T5=﹣,…,T n…,其中T n=.【考点】归纳推理;进行简单的合情推理.【专题】函数的性质及应用.【分析】本题主要考查了合情推理,利用归纳和类比进行简单的推理,属容易题.根据已知中T2=0,T3=﹣,T4=0,T5=﹣,及,(2x+)n﹣(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k≤n)的最小值记为T n,我们易得,当n的取值为偶数时的规律,再进一步分析,n为奇数时,Tn的值与n的关系,综合便可给出Tn的表达式.【解答】解:根据Tn的定义,列出Tn的前几项:T0=0T1==T2=0T3=﹣T4=0T5=﹣T6=0…由此规律,我们可以推断:T n=故答案:【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).15.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0,则d的取值范围是.【考点】等差数列的性质;等差数列的前n项和.【专题】等差数列与等比数列.【分析】由题设知(5a1+10d)(6a1+15d)+15=0,即2a12+9a1d+10d2+1=0,由此导出d2≥8,从而能够得到d的取值范围.【解答】解:因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,整理得2a12+9a1d+10d2+1=0,此方程可看作关于a1的一元二次方程,它一定有根,故有△=(9d)2﹣4×2×(10d2+1)=d2﹣8≥0,整理得d2≥8,解得d≥2,或d≤﹣2则d的取值范围是.故答案案为:.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细解答,注意通项公式的合理运用.16.已知平面向量满足,且与的夹角为120°,则||的取值范围是(0,].【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】画出满足条件的图形,分别用、表示向量与,由与的夹角为120°,易得B=60°,再于,利用正弦定理,易得||的取值范围.【解答】解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值范围是(0,]故答案:(0,]【点评】本题主要考查了平面向量的四则运算及其几何意义,突出考查了对问题的转化能力和数形结合的能力,属中档题.17.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有264种(用数字作答).【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】法一:先安排上午的测试方法,有A44种,再安排下午的测试方式,由于上午的测试结果对下午有影响,故需要选定一位同学进行分类讨论,得出下午的测试种数,再利用分步原理计算出结果法二:假定没有限制条件,无论是上午或者下午5个项目都可以选.组合总数为:4×5×4×4=320.再考虑限制条件:上午不测“握力”项目,下午不测“台阶”项目.在总组合为320种的组合中,上午为握力的种类有32种;同样下午为台阶的组合有32种.最后还要考虑那去掉的64种中重复去掉的,如A同学的一种组合,上午握力,下午台阶(这种是被去掉了2次),A同学上午台阶,下午握力(也被去掉了2次),这样的情况还要考虑B.C.D三位,所以要回加2×4=8.进而可得答案.【解答】解:解法一:先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、“台阶”测试,共有A44种不同安排方式;接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A、B、C同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D同学选择“握力”测试,安排A、B、C同学分别交叉测试,有2种;若D同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有A31种方式,安排A、B、C同学进行测试有3种;根据计数原理共有安排方式的种数为A44(2+A31×3)=264,故答案为264解法二:假定没有这个限制条件:上午不测“握力”项目,下午不测“台阶”项目.无论是上午或者下午5个项目都可以选.上午每人有五种选法,下午每人仅有四种选法,上午的测试种数是4×5=20,下午的测试种数是4×4=16故我们可以很轻松的得出组合的总数:4×5×4×4=320.再考虑这个限制条件:上午不测“握力”项目,下午不测“台阶”项目.在总组合为320种的组合中,上午为握力的种类有多少种,很好算的,总数的,32种;同样下午为台阶的组合为多少的,也是总数的,32种.所以320﹣32﹣32=256种.但是最后还要考虑那去掉的64种中重复去掉的,好像A同学的一种组合,上午握力,下午台阶(这种是被去掉了2次),A同学上午台阶,下午握力(也被去掉了2次),这样的情况还要B.C.D三位,所以要回加2×4=8.所以最后的计算结果是4×5×4×4﹣32﹣32+8=264.答案:264.【点评】本题主要考查了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考查,属较难题.三、解答题(共5小题,满分72分)18.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(Ⅰ)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.【考点】正弦定理;三角函数中的恒等变换应用;余弦定理.【专题】解三角形.【分析】(1)注意角的范围,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出边长c,由二倍角公式求cosC,用余弦定理解方程求边长b.【解答】解:(Ⅰ)解:因为cos2C=1﹣2sin2C=,及0<C<π所以sinC=.(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理=,解得c=4.由cos2C=2cos2C﹣1=,及0<C<π得cosC=±.由余弦定理c2=a2+b2﹣2abcosC,得b2±b﹣12=0,解得b=或b=2.所以b=或b=2,c=4.【点评】本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力,属于中档题.19.如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P (η=2).【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.【专题】概率与统计.【分析】(Ⅰ)解:由题意知随变量ξ为获得k等奖的折扣,则ξ的可能取值是50%,70%,90%,结合变量对应的事件和等可能事件的概率公式写出变量的分布列,做出期望.(2)根据第一问可以得到获得一等奖或二等奖的概率,根据小球从每个叉口落入左右两个管道的可能性是相等的.可以把获得一等奖或二等奖的人次看做符合二项分布,根据二项分布的概率公式得到结果.【解答】解:(Ⅰ)解:随变量量ξ为获得k(k=1,2,3)等奖的折扣,则ξ的可能取值是50%,70%,90% P(ξ=50%)=,P(ξ=70%)=,P(ξ=90%)=∴ξ的分布列为ξ50%70%90%P∴Εξ=×50%+×70%+90%=.(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为+=.由题意得η~(3,)则P(η=2)=C32()2(1﹣)=.【点评】本题主要考查随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识,是一个综合题.20.如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=FD=4.沿直线EF将△AEF 翻折成△A′EF,使平面A′EF⊥平面BEF.(Ⅰ)求二面角A′﹣FD﹣C的余弦值;(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长.【考点】与二面角有关的立体几何综合题.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力.(1)取线段EF的中点H,连接A′H,因为A′E=A′F及H是EF的中点,所以A′H⊥EF,又因为平面A′EF⊥平面BEF.则我们可以以A的原点,以AE,AF,及平面ABCD的法向量为坐标轴,建立空间直角坐标系A﹣xyz,则锐二面角A′﹣FD﹣C的余弦值等于平面A′FD的法向量,与平面BEF的一个法向量夹角余弦值的绝对值.(2)设FM=x,则M(4+x,0,0),因为翻折后,C与A重合,所以CM=A′M,根据空间两点之间距离公式,构造关于x的方程,解方程即可得到FM的长.【解答】解:(Ⅰ)取线段EF的中点H,连接A′H,因为A′E=A′F及H是EF的中点,所以A′H⊥EF,又因为平面A′EF⊥平面BEF.如图建立空间直角坐标系A﹣xyz则A′(2,2,),C(10,8,0),F(4,0,0),D(10,0,0).故=(﹣2,2,2),=(6,0,0).设=(x,y,z)为平面A′FD的一个法向量,﹣2x+2y+2z=0所以6x=0.取,则.又平面BEF的一个法向量,故.所以二面角的余弦值为(Ⅱ)设FM=x,则M(4+x,0,0),因为翻折后,C与A重合,所以CM=A′M,故,,得,经检验,此时点N在线段BC上,所以.方法二:(Ⅰ)解:取线段EF的中点H,AF的中点G,连接A′G,A′H,GH.因为A′E=A′F及H是EF的中点,所以A′H⊥EF又因为平面A′EF⊥平面BEF,所以A′H⊥平面BEF,又AF⊂平面BEF,故A′H⊥AF,又因为G、H是AF、EF的中点,易知GH∥AB,所以GH⊥AF,于是AF⊥面A′GH,所以∠A′GH为二面角A′﹣DH﹣C的平面角,在Rt△A′GH中,A′H=,GH=2,A'G=所以.故二面角A′﹣DF﹣C的余弦值为.(Ⅱ)解:设FM=x,因为翻折后,C与A′重合,所以CM=A′M,而CM2=DC2+DM2=82+(6﹣x)2,A′M2=A′H2+MH2=A′H2+MG2+GH2=+(2+x)2+22,故得,经检验,此时点N在线段BC上,所以.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;21.已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(Ⅰ)当直线l过右焦点F2时,求直线l的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的应用;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(1)把F2代入直线方程求得m,则直线的方程可得.(2)设A(x1,y1),B(x2,y2).直线与椭圆方程联立消去x,根据判别式大于0求得m的范围,且根据韦达定理表示出y1+y2和y1y2,根据,=2,可知G(,),h(,),表示出|GH|2,设M是GH的中点,则可表示出M的坐标,进而根据2|MO|<|GH|整理可得x1x2+y1y2<0把x1x2和y1y2的表达式代入求得m的范围,最后综合可得答案.【解答】解:(Ⅰ)解:因为直线l:x﹣my﹣=0,经过F2(,0),所以=,得m2=2,又因为m>1,所以m=,故直线l的方程为x﹣y﹣1=0.(Ⅱ)解:设A(x1,y1),B(x2,y2).由,消去x得2y2+my+﹣1=0则由△=m2﹣8(﹣1)=﹣m2+8>0,知m2<8,且有y1+y2=﹣,y1y2=﹣.由于F1(﹣c,0),F2(c,0),故O为F1F2的中点,由,=2,可知G(,),H(,)|GH|2=+设M是GH的中点,则M(,),由题意可知2|MO|<|GH|即4[()2+()2]<+即x1x2+y1y2<0而x1x2+y1y2=(my1+)(my2+)+y1y2=(m2+1)()所以()<0,即m2<4又因为m>1且△>0所以1<m<2.所以m的取值范围是(1,2).【点评】本题主要考查椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.22.已知a是给定的实常数,设函数f(x)=(x﹣a)2(x+b)e x,b∈R,x=a是f(x)的一个极大值点,(Ⅰ)求b的取值范围;(Ⅱ)设x1,x2,x3是f(x)的3个极值点,问是否存在实数b,可找到x4∈R,使得x1,x2,x3,x4的某种排列x i1,x i2,x i3,x i4(其中{i1,i2,i3,i4}={1,2,3,4})依次成等差数列?若存在,求所有的b及相应的x4;若不存在,说明理由.【考点】利用导数研究函数的极值.【专题】导数的综合应用.【分析】先求出函数f(x)的导函数f′(x)=e x(x﹣a)[x2+(3﹣a+b)x+2b﹣ab﹣a],令g(x)=x2+(3﹣a+b)x+2b﹣ab﹣a,讨论g(x)=0的两个实根x1,x2是否为a,从而确定x=a是否是f(x)的一个极大值点,建立不等关系即可求出b的范围.【解答】解:(1)f′(x)=e x(x﹣a)[x2+(3﹣a+b)x+2b﹣ab﹣a],令g(x)=x2+(3﹣a+b)x+2b﹣ab﹣a,则△=(3﹣a+b)2﹣4(2b﹣ab﹣a)=(a+b﹣1)2+8>0,于是,假设x①当x1=a或x2=a时,则x=a不是f(x)的极值点,此时不合题意.②当x1≠a且x2≠a时,由于x=a是f(x)的极大值点,故x1<a<x2.即g(a)<0,即a2+(3﹣a+b)a+2b﹣ab﹣a<0,所以b<﹣a,所以b的取值范围是:(﹣∞,﹣a).(2)由(1)可知,假设存在b及x4满足题意,则①当x2﹣a=a﹣x1时,则x4=2x2﹣a或x4=2x1﹣a,于是2a=x1+x2=a﹣b﹣3,即b=﹣a﹣3.此时x 4=2x2﹣a=a﹣b﹣3+﹣a=a+2,或x 4=2x1﹣a=a﹣b﹣3﹣﹣a=a﹣2,②当x2﹣a≠a﹣x1时,则x2﹣a=2(a﹣x1)或a﹣x1=2(x2﹣a),(ⅰ)若x2﹣a=2(a﹣x4),则x4=,于是3a=2x1+x2=,即=﹣3(a+b+3),于是a+b﹣1=,此时x4===﹣b﹣3=a+.(ⅱ)若a﹣x1=2(x2﹣a),则x4=,于是3a=2x2+x1=,即=3(a+b+3),于是a+b﹣1=.此时x2===﹣b﹣3=a+.综上所述,存在b满足题意.当b=﹣a﹣3时,x4=a±2;当b=﹣a﹣时,x4=a+;当b=﹣a﹣时,x4=a+.【点评】本题主要考查函数极值的概念、导数运算法则、导数应用等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x ︱x <4},Q={x ︱2x <4},则(A )p Q ⊆ (B )Q P ⊆(C )R p Q C ⊆ (D )RQ P C ⊆ 解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基 本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位(A ) k >4? (B )k >5?(C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是(A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥(C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //解析:选B ,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2- (B )1- (C )1 (D )2解析:将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题(8)设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±=解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,可知答案选C ,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4解析:将()x f 的零点转化为函数()()()x x h x x g =+=与12sin 4的交点,数形结合可知答案选A ,本题主要考察了三角函数图像的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考察,对能力要求较高,属较难题(10)设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭, 平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭, 则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是 (A )4 (B )6 (C )8 (D )10解析:当a=0,b=0;a=0,b=1;a=21,b=0; a=21,b=1;a=1,b=-1;a=1,b=1时满足题意,故答案选B ,本题主要考察了函数的概念、定义域、值域、图像和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考察,属中档题二、填空题:本大题共7小题,每小题4分,共28分。
(11)函数2()sin(2)4f x x x π=--的最小正周期是__________________ .解析:()242sin 22-⎪⎭⎫ ⎝⎛+=πx x f 故最小正周期为π,本题主要考察了三角恒等变换及相关公式,属中档题(12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .解析:图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题(13)设抛物线22(0)y px p =>的焦点为F ,点 (0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
解析:利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B 题 (14)设112,,(2)(3)23n n n n N x x ≥∈+-+ 2012n n a a x a x a x =+++⋅⋅⋅+, 将(0)k a k n ≤≤的最小值记为n T ,则2345335511110,,0,,,,2323n T T T T T ==-==-⋅⋅⋅⋅⋅⋅ 其中n T =__________________ .解析:本题主要考察了合情推理,利用归纳和类比进行简单的推理,属容易题(15)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .解析:(16)已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°, 则α的取值范围是__________________ .解析:利用题设条件及其几何意义表示在三角形中,即可迎刃而解,本题主要考察了平面向量的四则运算及其几何意义,突出考察了对问题的转化能力和数形结合的能力,属中档题。
(17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).解析:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题三、解答题:本大题共5小题.共72分。
解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分l4分)在△ABC中,角A、B、C所对的边分别为a,b,c,已知1 cos24C=-(I)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.解析:本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。
(Ⅰ)解:因为cos2C=1-2sin2C=14-,及0<C<π所以(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理a csin A sin C=,得c=4由cos2C=2cos2C-1=14-,J及0<C<π得cosC=由余弦定理c2=a2+b2-2abcosC,得b2b-12=0解得或所以b=c=4 或c=4(19)(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落A或B或C。
已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望ξE;(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求)2(=ηP .解析:本题主要考察随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识。
(Ⅰ)解:由题意得ξ的分布列为则Εξ=16×50%+8×70%+1690%=4. (Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916. 由题意得η~(3,916) 则P (η=2)=23C (916)2(1-916)=17014096. (20)(本题满分15分)如图, 在矩形ABCD 中,点,E F 分别在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF V 翻折成'A EF V ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM的长。
解析:本题主要考察空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力。
(Ⅰ)解:取线段EF 的中点H ,连结'A H ,因为'A E ='A F 及H 是EF 的中点,所以'A H EF ⊥,又因为平面'A EF ⊥平面BEF .如图建立空间直角坐标系A-xyz则'A (2,2,),C (10,8,0),F (4,0,0),D (10,0,0).故'FA →=(-2,2,),FD →=(6,0,0).设n →=(x,y,z )为平面'A FD 的一个法向量,z=0所以6x=0.取z =,则(0,n =-。