第一届至第九届(2010-2018年)陈省身杯全国高中数学奥林匹克试题及答案【PDF版】

合集下载

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a?9,0?b?9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b?18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k +1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km +dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n?10a+1.因此b=n2100a2?20a+1由此得 20a+1<100,所以a?4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402?422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a 都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2?m2>1故n4+4m4不是素数.取a=4224,4234,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a 为奇数,从而第一列也是如此,因此第二列数字的和b+c?9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a22b2=a2…(直至b2分成不可分解的元素之积)与r=ab2ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137273.故对一切n?2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,1043M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n?5)个数的和为合数.1987年全苏【解】由n个数a i=i2n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m2n!+k(m∈N,2?k ?n)由于n!=1222…2n是k的倍数,所以m2n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n?2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m?p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n?n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m?p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n?n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m?m,p?2m+1由得4m2+4m+1?m2+m+n即3m2+3m+1-n?0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab?0(否则ab?-1,a2+b2=k(ab+1)?0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a?b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方. 18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2?k?n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2?k?n+1)这n个连续正整数都不是素数的整数幂. 19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n -2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d?n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和?15005,所以A?15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402 ………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1?i?20,1?j?10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k +m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由。

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。

以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。

7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。

8. 一个圆的半径为5,那么它的周长是______。

9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。

10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。

三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 一个圆的直径为10,求圆内接正六边形的边长。

14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。

历届全国中学生数学竞赛试题

历届全国中学生数学竞赛试题

中国数学奥林匹克(CMO)历届试题及解答1986-20052,其余x k 均等于0.则 2(a i + a j ) 4(a i 2(180 2(180第一届中国数学奥林匹克(1986年)天津 南开大学1.已知 a 1, a 2, . . . , a n 为实数, 如果它们中任意两数之和非负,那么对于满足x 1 + x 2 + · · · + x n = 1的任意非负实数 x 1, x 2, . . . , x n , 有不等式a 1x 1 + a 2x 2 + · · · + a n x n成立.请证明上述命题及其逆命题. a 1x 21 + a 2x 22 + · · · + a n x 2n证明:原命题的证明:由0 x i1, x i − x 2i0, x ix 2i (i = 1, 2, . . . , n ).(1)若a i0(i = 1, 2, . . . , n ),则显然有a 1x 1 + a 2x 2 + · · · + a n x na 1x 21 + a 2x 22 + · · · + a n x 2n ;(2)否则至少存在一个a i < 0,由对称性不妨设a 1 < 0. 又因为a 1, a 2, . . . , a n 中任两数之和非负,所 以a i + a 10, a i−a 1 > 0(i = 2, 3, . . . , n ).a 1x 1 + a 2x 2 + · · · + a n x n − a 1x 21 − a 2x 22 − · · · − a n x 2n-37∴= a 1(x 1 − x 21) + a 2(x 2 − x 22) + · · · + a n (x n − x 2n )a 1(x 1 − x 21) + (−a 1)(x 2 − x 22) + · · · + (−a 1)(x n − x 2n ) = (−a 1)(x 21 − x 22 − · · · − x 2n − x 1 + x 2 + · · · + x n ) = (−a 1)(x 21 − x 1 + (1 − x 1) − x 22 − · · · − x 2n ) = (−a 1)((1 − x 1)2 − x 22 − · · · − x 2n ) = (−a 1)((x 2 + · · · + x n )2 − x 22 − · · · − x 2n )-370最后一步是由于x 2, x 3, . . . , x n > 0, (x 2 + · · · + x n )2 = x 22 + · · · + x 2n +2 i<j nx i x jx 22 + · · · + x 2n . 逆命题的证明:对于任意的1 i<jn ,令x i = x j =1 11+ a j ).∴ a i + a j0,即任两数之和非负.证毕.2.在三角形ABC 中,BC 边上的高AD = 12,∠A 的平分线AE = 13,设BC 边上的中线AF = m ,问m 在什 么范围内取值时,∠A 分别为锐角,直角,钝角?解:设O 为 ABC 的外心,不妨设AB > AC ,∠B 为锐角.则OF 垂 直 平 分 线 段BC ,由 外 心 的 性 质,∠C 为 锐 角 时,∠OAB = ∠OBA =1 ◦− 2∠C ) = 90◦ − ∠C .又因为AD ⊥ BC ,∴ ∠CAD = 90◦ − ∠C ,∴ ∠OAB = ∠DAC . 类似地,当∠C 为直角或钝角时也有∠OAB = ∠DAC .由AE 平分∠BAC ,∠BAE = ∠CAE .∴ ∠OAE = ∠DAE .(由于F, D 在E 两侧). ∠A 为锐角时,O, A 在BC 同侧,∠F AE < ∠OAE = ∠DAE ; ∠A 为直角时,O, F 重合,∠F AE = ∠OAE = ∠DAE ; 1 ◦− ∠AOB ) =由正弦定理 sin ∠∠DAE = DE × AD .其中DE =AE 2 − AD 2 = 5,√ √且∠A 为锐角等价于∠A 为直角等价于× ∠A 为钝角等价于 ×< 1;119时,∠A 为锐角;119时,∠A 为直角; 119时,∠A 为钝角.4,即4.∴x k.∴ |z k | = |√ z k ∈Az k ∈Az k ∈A√而4 2 < 6, ∴ |z k |6.√ . 4.√sin F AE FEAF F E = F D − DE = AF 2 − AD 2 − DE = m 2 − 122 − 5 > 0. ∴ m > 13,√√√m 2−122−55m 2−122−55 m 2−122−55×12 m 12 m12 m= 1; > 1.解得当13 < m < 2028 当m = 当m >20282028 3.设z 1, z 2, . . . , z n 为复数,满足|z 1| + |z 2| + · · · + |z n | = 1.求证:上述n 个复数中,必存在若干个复数,它们的和的模不小于 16. 证明:设z k = x k + y k i(x k , y k ∈ R , k = 1, 2 . . . , n ) 将所有的z k 分为两组X,Y.若|x k ||y k |,则将z k 放入X 中;若|y k ||x k |,则将z k 放入Y 中. 其中必有一组中所有复数模长之和不小于 12.不妨设为X. 再将X 中的复数分为两组A,B.若x k0,则将z k 放入A 中;若x k 0,则将z k 放入B 中. 其中必有一组中的所有复数摸长之和不小于 41.不妨设为A. 则 |z k |z k ∈A而对于z k ∈ 1A ,x 2kz k ∈Ay k 2,x 2k + y k 2x 2k + y k 2 1 √2x k . 1 4 21z k ∈A即A 中复数之和的模不小于 16.证毕.x k + iz k ∈Ay k |z k ∈Ax k1 4 2另证:设z k = x k + y k i(x k , y k ∈ R , k = 1, 2 . . . , n ) 则|z k | =x 2k + y k 2|x k | + |y k |.∴ n|x k | + |y k |1.k =1∴ |x k 0x k | + |x k <0x k | + |y k 0y k | + |y k <0y k | 1. 其中必有一项不小于 14,不妨设为第一项,则 |x k 0x k |1 ∴ |x k 0z k | = |x k 0x k + ix k 0y k ||x k 0x k |1 4> 16.证毕.4.已知:四边形P 1P 2P 3P 4的四个顶点位于三角形ABC 的边上. 求证:四个三角形 P 1P 2P 3, P 1P 2P 4,P 1P 3P 4,P 2P 3P 4 中,至少有一个的面积不大于 ABC 的面积的四分之一.证明:有两种情况:(1)四个顶点在两条边上;(2)四个顶点在三条边上.(1)不妨设P 1, P 4在AB 上,P 2, P 3在AC 上,P 1, P 2分别在AP 4, AP 3上. 将B 移至P 4,C 移至P 3,三角形ABC 的BC ,设 AP 1 = 4S4SP 4P 2P 3中有一个不大于 4S面积减小,归为情形(2).(2)不妨设P 1在AB 上,P 2在AC 上,P 3, P 4在BC 上,P 3在P 4C 上. (2.1)若P 1P 2AB AP 2AC= λ,P 1P 2 = λBC .P 1P 2到BC 的距离为(1−λ)h ,h 为三角形ABC 中BC 边上的高的长度. ∴ SP 1P 2P 3= λ(1 − λ)SABC1 ABC .(2.2)若P 1P 2不 平 行 于BC ,不 妨 设P 1到BC 的 距 离 大 于P 2到BC 的 距 离. 过P 2作 平 行 于BC 的 直 线交AB 于E ,交P 1P 4于D .则S P 1P 2P 3, S P 4P 2P 3中有一个不大于S DP 2P 3,也就不大于SEP 2P 3.由(2.1)知SEP 2P 31 ABC .则SP 1P 2P 3, S1ABC .证毕.5.能否把1,1,2,2,. . . ,1986,1986这些数排成一行, 使得两个1之间夹着1个数,两个2之间夹着2个数,. . . , 两 个1986之间夹着1986个数.请证明你的结论.解:不能.假设可以做出这样的排列,将已排好的数按顺序编号为1,2,. . . ,3972.当n 为奇数时,两个n 的编号奇偶性相同;当n 为偶数时,两个n 的编号奇偶性不同. 而1到1986之间有993个 偶数,所以一共有2k + 993个编号为偶数的数.(k ∈ N ∗) 但是1到3972之间有1986个偶数,k = 496.5.矛 盾.所以不能按要求排成这样一行.√6.用任意的方式,给平面上的每一点染上黑色或白色. 求证:一定存在一个边长为1或 3的正三角形,它的 三个顶点是同色的.证明:(1)若平面上存在距离为2的两个点A, B 异色,设O 为它们的中点,不妨设A, O 同色. 考虑以AO 为一 √边的正三角形AOC, AOD ,若C, D 中有一个与A, O 同色,则该三角形满足题意. 否则BCD 为边长 3的 同色正三角形.(2)否则平面上任两个距离为2的点均同色,考虑任意两个距离为1的点,以他们连线为底,2为腰长作等腰 三角形,则任一腰的两顶点同色. 所以三个顶点同色,即任两个距离为1的点同色.所以平面上任意一个边 长为1的正三角形三个顶点同色.证毕.证明:当6|n + 2时,令z = e i 3 = − e + 2 i , z − (− 12 −2 i)2 i)3 3− z − 1 = 0有模为1的复根.6 ,k2 .n 2 .第二届中国数学奥林匹克(1987年)北京 北京大学1.设n 为自然数,求证方程z n +1 − z n − 1 = 0有模为1的复根的充分必要条件是 n + 2可被6整除.∴ z n +1 − z n − 1 = e −i π i π π√1 3 62− 1 = ( 12 − = 1, |z| = 1.√ 3√ 3 − 1 = 0.∴ z n +1n若z n +1 − z n − 1 = 0有模为1的复根e i θ = cos θ + i cos θ.则z n +1 − z n − 1 = (cos(n + 1)θ − cos nθ − 1) + i(sin(n + 1)θ − sin nθ) = 0. ∴ cos(n + 1)θ − cos nθ − 1 = −(2 sin 2n 2+1θ sin θ2 + 1) = 0. sin(n + 1)θ − sin nθ = 2 cos 2n 2+1θ sin θ2 = 0.∴ cos 2n 2+1θ = 0, sin 2n 2+1θ = ±1, sin θ2 = ± 12, 设 θ2 = ϕ. (1)sin ϕ = 12,sin(2n + 1)ϕ = −1. ϕ = 2kπ + π6 或2kπ +5π∈ Z.(2n + 1)ϕ = (2l + 32)π(l ∈ Z). ∴ (2n + 1)(2k + 16) = 2l + 23, 2n 6+1 = 2t + 32, n = 6t + 4(t ∈ Z). 或(2n + 1)(2k + 65) = 2l + 32, 5(2n 6+1) = 2t + 32, 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z). 设t = 5s + 3,则n = 6s + 4,总有6|n + 2.(2)sin ϕ = − 12,sin(2n + 1)ϕ = 1.显然以−ϕ代ϕ即有(1).所以6|n + 2.证毕.2.把边长为1的正三角形ABC 的各边都n 等分,过各分点平行于其它两边的直线, 将这三角形分成若干个 小三角形,这些小三角形的顶点都称为结点, 并且在每一结点上放置了一个实数.已知: (1)A, B, C 三点上放置的数分别为a, b, c.(2)在每个由有公共边的两个最小三角形组成的菱形之中, 两组相对顶点上放置的数之和相等. 试求:(1)放置最大数的点和放置最小数的点之间的最短距离.(2)所有结点上数的总和S .解:(1)不难证明同一直线上相邻三个结点上放置的数中间一个为两边的等差中项,所以同一直线上的数 按顺序成等差数列. 若两端的数相等,则所有的数都相等.否则两端的数为最大的和最小的. 若a, b, c 相等,显然所有数都相等,最短距离显然为0.若a, b, c 两两不等,最大的数与最小的数必出现在A, B, C 上,最短距离为1.若a, b, c 有两个相等但不与第三个相等,不妨设a = b > c ,最小的数为c ,最大的数出现在线段AB 的任意 结点上. 当n 为偶数时,与C 最近的为AB 中点,最短距离为 √ 3 当n 为奇数时,与C 最近的为AB 中点向两边偏 21n 的点,最短距离为 123+1 (2)将这个三角形绕中心旋转 32π, 43π弧度,得到的两个三角形也满足题意(2). 将这三个三角形对应结 点的数相加形成的三角形也满足(2),三个顶点上的数均为a + b + c .由(1)的分析知所有结点上的数均 为a + b + c . 共 21(n + 1)(n + 2)个结点,∴ S = 13( 12(n + 1)(n + 2))(a + b + c ) = 16(n + 1)(n + 2)(a + b + c ). 3.某次体育比赛,每两名选手都进行一场比赛, 每场比赛一定决出胜负,通过比赛确定优秀选手, 选 手A 被确定为优秀选手的条件是:对任何其它选手B, 或者A 胜B,或者存在选手C,C 胜B,A 胜C. 结果按上证明:可将换成169 +ε(ε > 0).13AB.连结A1C2, A2B1, B2C1交于A0, B0, C0. 正三角形覆盖, 面积之和为( 10)2 + 2 ×点. 即169 +ε(ε > 0)为最优. 169述规则确定的优秀选手只有一名, 求证:这名选手一定胜所有其它选手.证明:假设该优秀选手为A,且存在其他选手胜A.设B为所有胜A的人中胜的场次最多的一个,由B不是优秀选手,必存在选手C使得C胜B, 且不存在选手D使得B胜D,D胜C. 由B胜A,C也胜A,且C胜B胜过的所有人.C至少比B多胜一场,且C胜A,与B的选取矛盾.所以A胜所有人.4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内, 一定可以作三个正三角形盖住这五个点, 这三个正三角形的各边分别平行于原三角形的边, 并且它们的面积之和不超过0.64.100在面积为1的正三角形ABC中,在AB上取A1, B2,AC上取A2, C1,BC上取B1, C2, 使得AA1 = AA2 =BB1 = BB2 = CC1 = CC2 = 3(1)若AB2C1, BC2A1, CA2B1中有一个至少包含五个点中的三个,另两个点可分别用面积为2ε的13 ε2= 100169+ε.(2)菱形AA1A0A2, BB1B0B2, CC1C0C2中有两个有两个点,另一个中有一个点, 则可用两个边长为136 AB的正三角形和一个面积为ε的正三角形覆盖. 面积之和为2( 136 )2 +ε <100169+ε.(3)菱形AA1A0A2, BB1B0B2, CC1C0C2中有两个有一个点,另一个中有两个点, 不妨设为AA1A0A2,则B1B0C0C2中有一个点,不妨设这个点更靠近B, 则可用一个边长为136 AB的正三角形覆盖AA1A0A2中两个点, 用一个边长为136 AB的正三角形覆盖BB1B0B2, B1B0C0C2中的点. 用一个面积为ε的正三角形覆盖最后一个点, 面积之和为( 136 )2 + ( 138 )2 +ε = 100169+ε.证毕.注:当五个点取为A, B, C, A0, B0C0中点是不难证明不能用三个面积之和为100的正三角形覆盖这五个1005.设A1A2A3A4是一个四面体, S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球, 它们两两相外切.如果存在一点O, 以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切, 还可以作一个半径为R的球和四面体的各棱都相切,求证:这个四面体是正四面体.证明:设S i的半径为r i(i = 1, 2, 3, 4),则A i A j = r i + r j(1 i<j 4).设O到A2A3A4的投影为O1,由O到A2A3,A3A4,A4A2的距离相等, 得到O1到A2A3A4的三边距离相等.即O1为A2A3A4的内心,设O到A2A3的投影为B,即O1到A2A3的投影. 而BA3 = 21(A2A3 + A3A4−A2A4) = r3,OB = R. 若半径为r的球与四个球均外切,则A3O = r +r3,(r +r3)2 = r32 +R2, r3 = R2−r22r.若半径为r的球与四个球均内切,则A3O =r−r3,(r−r3)2 = r32+R2, r3 = r2−R22r. 类似可求得r1, r2, r4均为该值,所以该四面体各条棱长相等为正四面体.6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987, 对于所有这样的m与n,问3m + 4n的最大值是多少?请证明你的结论.解:设m个正偶数为a1 < a2 < · · · < a m,n个正偶数为b1 < b2 < · · · < b n.∴a i 2i, b j 2j − 1.1987 = a1 + a2 + · · · + a m + b1 + b2 + · · · + b n.∴1987 2 + 4 + · · · + 2m + 1 + 3 + · · · + 2n − 1 = m2 + m + n2.s − 8ns + 25n + 3s − 12n − 9 × 1987所以判别式∆ = (3 − 8n ) − 4(25n − 12n − 9 × 1987) = 26(1987 41 − n 2) > 0. 2(8n设f (n ) = 8n + 6 1987 14 − n 2, f (n ) = 8 − 6n (1987 14 − n 2)− 2 ,又n 为奇数. 2(280设s = 3m + 4n ,m = 13(s − 4n ), 13(s − 4n )( 13(s − 4n ) + 1) + n 21987.2 2 s 2 + (3 − 8n )s + 25n 2 − 12n − 9 × 19870. 0.2 2s1− 3+61987 14 − n 2).1不难知道n = 35时,f (n )有最大值280 + 6 762 14. 所以s1+ 6 762 14 − 3),由s ∈ N ∗, s221.又当s = 221, n = 35, m = 27.取2, 4, . . . , 52, 60, 1, 3, . . . , 69为和为1987的35个正奇数与27个正偶数,所 以3m + 4n 的最大值为221.iiii i i r i 2 = 1,由Cauchy不等式取等号的条件知 ∴=a i a n .2第三届中国数学奥林匹克(1988年)上海 复旦大学1.设a 1, a 2, . . . , a n 是给定的不全为零的实数, r 1, r 2, · · · , r n 为实数,如果不等式r 1(x 1 − a 1) + r 2(x 2 − a 2) + · · · + r n (x n − a n )对任何实数x 1, x 2, · · · , x n 成立,求r 1, r 2, · · · , r n 的值. x 21 + x 22 + · · · + x 2n −a 21 + a 22 + · · · + a 2n解:令x i = 0(i = 1, 2, . . . , n ),−(r 1a 1 + r 2a 2 + · · · + r n a n )n n∴ ( r i a i )2 a 2.i =1 i =1 令x i = 2a i (i = 1, 2, . . . , n ),r 1a 1 + r 2a 2 + · · · + r n a n n n∴ ( r i a i )2 a 2.i =1 i =1n n∴ ( r i a i )2 = a 2.i =1 i =1n n n n 由Cauchy 不等式, ( r 2)( a 2) ( r i a i )2, r 2 i =1 i =1 i =1 i =1− a 21 + a 22 + · · · + a 2n .a 21 + a 22 + · · · + a 2n .1.n又令x i = r i (i = 1, 2, . . . , n ),i =1 r i 2 −ni =1r i a ii =1 r i 2 −i =1a 2i .由 i =1r i a i =i =1a 2i =1r i 2i =1r i 2,i =1r i 21. ni =1不难解得r = (i =12n )a 21 + a 22 + · · · + a nr 1a 1r 2 a 2= ··· =r n2.设C 1, C 2为 同 心 圆,C 2的 半 径 是C 1的 半 径 的2倍, 四 边 形A 1A 2A 3A 4内 接 于C 1, 设A 4A 1延 长 线 交 圆C 2于B 1, A 1A 2延长线交C 2于B 2, A 2A 3延长线交圆C 2于B 3, A 3A 4延长线交圆C 2于B 4. 试证:四边形B 1B 2B 3B 4的周长 2(四边形A 1A 2A 3A 4的周长).并确定等号成立的条件. 证明:设圆心为O ,连结OB 1, OB 4, OA 4,设C 1的半径为R ,C 2的半径为2R . 在四边形B 4A 4OB 1中,由Ptolemy 定理,OA 4 × B 1B 4 + OB 1 × A 4B 4 OB 4 × A 4B 1.R × B 1B 4 + 2R × A 4B 4 2R × A 4B 1,即B 1B 42A 4B 1 − 2A 4B 4.同理B 1B 22A 1B 2 − 2A 1B 1,B 2B 3 2A 2B 3 − 2A 2B 2,B 3B 42A 3B 4 − 2A 3B 3.相加得B 1B 2 + B 2B 3 + B 3B 4 + B 4B 1 2(A 1A 2 + A 2A 3 + A 3A 4 + A 4A 1).即四边形B 1B 2B 3B 4的周长 2(四边形A 1A 2A 3A 4的周长).等号成立时OA i B i B i +1共圆,∠A i +1A i O = ∠B i +1B i O = ∠B i B i +1O = ∠A i−1A i O , ∴ A i +1A i = A i−1A i ,(i = 1, 2, 3, 4, A 5 = A 1, A 0 = A 4, B 5 = B 1). ∴ A 1A 2A 3A 4为菱形,又为圆内切四边形,所以A 1A 2A 3A 4为正方形.3.在有限的实数列a 1, a 2, · · · , a n 中, 如果一段数a k , a k +1, · · · , a k +l−1的算术平均值大于1988, 那么我们 把这段数叫做一条“龙”,并把a k 叫做这条龙的“龙头” (如果某一项a n > 1988,那么单独这一项也叫龙). 假设以上的数列中至少存在一条龙, 证明:这数列中全体可以作为龙头的项的算术平均数也必定大a 2 + a 22 + a 23于1988.证明:引理:设a k , a k +1, . . . , a k +m−1均可作为龙头,a k +m 不能作为龙头,或k + m − 1 = n , 则a k , a k +1, . . . , a k +m−1的算术平均值大于1988.引理的证明:对m 用数学归纳法,m = 1时,设以a k 为龙头的一条龙为a k , a k +1, . . . , a k +l−1. 若l = 1,a k > 1988,显然成立.否则l > 1,由a k , a k +1, . . . , a k +l−1算术平均值大于1988,a k +1不是龙头, a k +1, . . . , a k +l−1算术平均值不 大于1988,a k > 1988,结论成立. 设小于m 时结论均成立(m 2),设以a k 为龙头的一条龙为a k , a k +1, . . . , a k +l−1.1lm 时,a k , a k +1, . . . , a k +l−1算术平均值大于1988, 由归纳假设a k +l , . . . , a k +m−1算术平均值大于1988,结论成立.l > m 时,由a k +m 不是龙头,a k +m , a k +m +1, . . . , a k +l−1算术平均值不大于1988, a k , a k +1, . . . , a k +l−1算术 平均值大于1988,结论显然也成立. 综上所述,由数学归纳法,引理成立.设所有的龙头为a i 1, a i 1+1, . . . , a i 1+j 1−1, a i 2, a i 2+1, . . . , a i 2+j 2−1, . . . , a i k , a i k +1, . . . , a i k +j k −1, 其中j 1, j 2, . . . , j k1 且i m +1 > i m + j m (m = 1, 2, . . . , k − 1, k1).由引理:a i m , a i m +1, . . . , a i m +j m −1的算术平均值大于1988(m = 1, 2, . . . , k ). 所以所有龙头的算术平均值 也大于1988.证毕.4.(1)设三个正实数a, b, c 满足(a 2 + b 2 + c 2)2 > 2(a 4 + b 4 + c 4).求证:a, b, c 一定是某个三角形的三条边长. (2)设n 个正实数a 1, a 2, · · · , a n 满足(a 21 + a 22 + · · · + a 2n )2 > (n − 1)(a 41 + a 42 + · · · + a 4n )其中n3. 求证:这些数中任何三个一定是某个三角形的三条边长.证明:(1)若不然,不妨设ca +b ,则2(a 4 + b 4 + c 4) − (a 2 + b 2 + c 2)2 = a 4 + b 4 + c 4 − 2a 2b 2 − 2b 2c 2 − 2c 2a 2= −(a + b + c )(a + b − c )(b + c − a )(c + a − b )矛盾.∴ a, b, c 为某个三角形三边长.(2)n = 3即为(1)中的情况,n > 3时,若存在某三个不是某个三角形三条边长,不妨设为a 1, a 2, a 3.则由均 值不等式(n − 1)(a 41 + a 42 + · · · + a 4n ) < (a 21 + a 22 + · · · + a 2n )2=a 21 + a 22 + a 232 + 1 2+ · · · + a 2n 2(n − 1)a 21 + a 22 + a 2322+a 21 + a 22 + a 2322+ · · · + a 4n1, n 奇数2, n = 2k ·m (m 为奇数)所有小于2k +1的正奇数不全整除n可得 12(a 2 + b 2 + c 2)2 > a 4 + b 4 + c 4,(a 2 + b 2 + c 2)2 > 2(a 4 + b 4 + c 4).但由(1),a 1, a 2, a 3为某个三角形三边长,矛盾.所以这些数中任何三个一定是某个三角形的三条边长. 5.给出三个四面体A i B i C i D i (i = 1, 2, 3), 过点B i , C i , D i 作平面αi , βi , γi (i = 1, 2, 3), 分别与棱A i B i , A i C i , A i D i 垂直(i = 1, 2, 3), 如果九个平面αi , βi , γi (i = 1, 2, 3),相交于一点E , 而三点A 1, A 2, A 3在同一直 线l 上, 求三个四面体的外接球面的交集(形状怎样?位置如何?)解: A i B i ⊥ αi 于B i ,而E 在αi 上,∴ A i B i ⊥ B i E, B i 在以A i E 为直径的球上.同理C i , D i 也在以A i E 为直 径的球上,A i B i C i D i 的外接球即为在以A i E 为直径的球.若E 在l 上,显然这三个球的中心也都在l 上,它们必在E 处两两相切,交集为E .否则E 不在l 上,三个球的球心在同一条直线上( EA 1A 2中位线所在直线),且这三个球都过点E ,交集为 一个圆,直径为EE ,其中E 为E 到l 的垂足.6.如n 是不小于3的自然数,以f (n )表示不是n 的因子的最小自然数, 例如f (12) = 5.如果f (n ) 3,又可作f (f (n )). 类似地,如果,f (f (n ))3,又可作f (f (f (n ))),等等. 如果f (f (· · · f (n ) · · · )) = 2, 共有k 个f ,就把k 叫做n 的“长度”. 如果 l n 表示n 的长度,试对任意自然数n (n 解:设n = 2k · m (m 为奇数). 若k = 0,n 为奇数,f (n ) = 2, l n = 1.若k > 0,考虑所有小于2k +1的正奇数,若它们均为n 的因子,由2k +13),求 l n .并证明你的结论.n 且小于2k +1的偶数t = 2p · q (pk, q 为奇数),由q|n, 2p |n, gcd(q, 2p ) = 1,知t|n ,∴ f (n ) = 2k +1,f (f (n )) = 3, f (f (f (n ))) = 2, l n = 3. 否则取最小的t|n ,t 必为奇数,否则t 必有一个奇因子不整除n . ∴ f (n ) = t, f (f (n )) = 2, l n = 2. 综上所述,l n =3, n = 2k · m (m 为奇数)所有小于2k +1的正奇数均整除n段的长度都等于 m , m 是自然数. 用A j 表示将集合A 逆时针方向在圆周上转动 jmπ 弧度所得的集合 2π L (A )L (B ).设b 1, b 2, . . . , b n 为组成B 的弧段,由已知它们两两不交且每段的长度均为 m ,因此有 i i i L (A ∩ (∪2j =1b −j )) m ,所以∪j =1b iL (A ∩ (∪2j =1b −j )) = L (A ).第四届中国数学奥林匹克(1989年)合肥 中国科技大学1.在半径为1的圆周上,任意给定两个点集A, B , 它们都由有限段互不相交的弧组成, 其中B 的每π(j = 1, 2, ...).求证:存在自然数k ,使得L (A j ∩ B )1这里L (X )表示组成点集X 的互不相交的弧的长度之和.证明:我们把圆周上的点集E 沿顺时针方向在圆周上转动 jm π 弧度所得的集合记为E −j ,于是L (A j ∩ B ) = L (A ∩ B −j ).π2mj =1L (A j ∩ B ) ==2mj =1 2mj =1L (A ∩ B −j )L (A ∩ (∪ni =1b −j ))=2mnL (A ∩ b −j )j =1 i =1=n 2mL (A ∩ b −j )i =1 j =1 n=i =1mi因为L (b i ) = π 2m −j恰好是整个圆周,从而有mi ∴2mj =1L (A j ∩ B ) = nL (A ),至少存在一个k, 1k 2m ,使得L (A j ∩ B )n 2mL (A ) =1L (A )L (B ).2.设x 1, x 2, · · · , x n 都是正数(n2).且 x 1 + x 2 + · · · + x n = 1.求证:ni =1√x i1 − x i√ 1n − 1ni =1√x i .证明:不妨设x 1 x 2 ··· x n ,则√1 1 − x 1√1 1 − x 2···√1 1 − x n由Chebyshev 不等式ni =1√x i 1 − x i1nni =1x ini =1√ 11 − x i= 1nni =1√ 11 − x iB n ,又f 1(z ) = z m ,∴ f n (z ) = z m ∴ f n (z ) = z ⇔ z m = z ,又|z| = 1, ∴ z m 由1989 = 3 × 13 × 17,若k|1989,且k < 1989,k 必 整 除3 × 13 × 17, 32 × 13, 32 × 17中 至 少 一 个.由Cauchy 不等式ni =1√1 − x ini =1√1 1 − x in 2又n√ 1 − x inn(1 − x i ) =n (n − 1)i =1i =1ni =1√ x i1 − x i1 n ni =1√ 11 − x ini =1n √1 − x in n (n − 1)=n n − 1而√1 n − 1ni =1 √ x i√1 n − 1n ni =1x i =n n − 1ni =1√ x i1 − x i√1n − 1ni =1√x i .3.设S 为 复 平 面 上 的 单 位 圆 周 (即 模 为1的 复 数 的 集 合),f 为 从S 到S 的 映 射,对 于 任 意 z ∈ S ,定 义f (1)(z ) = f (z ), f (2)(z ) = f (f (z )), · · · , f (k )(z ) = f (f (k−1)(z )). 如果 c ∈ S ,使得f (1)(c ) = c, f (2)(c ) = c, · · · , f (n−1)(c ) = c, f (n )(c ) = c . 则称 c 为f 的n−周期点.设m 是大于1的自然数, f 定义为f (z ) = z m , 试计算f 的1989-周期点的个数.解:记A n = {z ∈ S|z 是f 的n − 周期点},B n = {z ∈ S|f n (z ) = z}为f n 的 不 动 点 集 合,显 然A n ⊆nn n−1= 1, |B n | = m n − 1.我们证明B n , A n 有如下性质: (1)若k|n ,则B k ⊆ B n ;事实上,令n = kq ,若c ∈ B k , f k (c ) = c ,则f n (c ) = f kq (c ) = f k (f k (· · · f k (c ) · · · )) = c . ∴ c ∈ B n , B k ⊆ B n .q 个(2)B k ∩ B n = B gcd(k,n ), gcd(k, n )为k 与n 的最大公约数. 由(1),B gcd(k,n ) ⊆ B k , B gcd(k,n ) ⊆ B n , ∴ B gcd(k,n ) ⊆ B k ∩ B n .反之,设c ∈ B k ∩ B n ,f k (c ) = c, f n (c ) = c ,不妨设k < n . 则f n−k (c ) = f n−k (f k (c )) = f n (c ) = c ,由辗转相 除法知f gcd(k,n )(c ) = c, ∴ c ∈ B gcd(k,n ), B k ∩ B n ⊆ B gcd(k,n ). ∴ B k ∩ B n = B gcd(k,n ). (3)c ∈ B n \ A n ⇔ ∃k < n, k ∈ N ∗,使k|n 且c ∈ B k .充分性是显然的(由(1)),设c ∈ B n \ A n , f n (c ) = c .且存在l < n ,使得f l (c ) = c ,设k = gcd(l, n ),则f k (c ) = c, c ∈ B k ,且kl < n, k|n .证毕.2∴ B k ⊆ B 663 ∪ B 153 ∪ B 117, ∴ A 1989 = B 1989 \ (k|1989k<1989B k ) = B 1989 \ (B 663 ∪ B 153 ∪ B 117).R .∴由容斥原理f 的1989-周期点个数为|A 1989| = |B 1989| − |B 663| − |B 153| − |B 117| + |B 663 ∩ B 153| + |B 663 ∩ B 117| + |B 117 ∩ B 153|−|B 663 ∩ B 153 ∩ B 117|= |B 1989| − |B 663| − |B 153| − |B 117| + |B 51| + |B 39| + |B 9| − |B 3|= (m 1989 − 1) − (m 663 − 1) − (m 153 − 1) − (m 117 − 1) + (m 51 − 1) + (m 39 − 1)+(m 9 − 1) − (m 3 − 1)= m 1989 − m 663 − m 153 − m 117 + m 51 + m 39 + m 9 − m 34.设点D, E, F 分别在 ABC 的三边BC, CA, AB 上, 且 AEF,BF D,CDE 的内切圆有相等的半径r , 又以r 0和R 分别表示 DEF 和 ABC 的内切圆半径. 求证:r + r 0 = R .证明:设 ABC 周长为l ,面积为S ,内切圆为 I , 在各边的切点为P, Q, R , DEF 周长为l ,面积为S . AEF,BF D,CDE 的面积分别为S 1, S 2, S 3,内切圆分别为 I 1, I 2, I 3,在各边的切点为P i , Q i , R i (i = 1, 2, 3). 由面积公式2S = Rl, 2S = r 0l ,2S 1 = r (AE + EF + F A ), 2S 2 = r (BD + DF + F B ), 2S 3 = r (CD + DE + EC ). 又S = S + S 1 + S 2 + S 3, ∴ Rl = r 0l + r (l + l ),即(R − r )l = (r + r 0)l . 又AQ 1 AQ = AR 1AR= BQ 2BQ= BP 2 BP = CP 3CP= CR 3CR = r Rl − Q 1Q 2 − P 2P 3 − R 1R 3l=r R又Q 1Q 2 + P 2P 3 + R 1R 3 = Q 1F + F Q 2 + P 2D + DP 3 + R 3E + ER 1 = P 1F + R 2F + DR 2 + DQ 3 + EQ 3 + EP 1 = l . l l=1 −r(R − r )R = (r + r 0)(R − r ), R = r + r 0.证毕.5.空间中有1989个点,其中任何三点不共线, 把它们分成点数各不相同的30组, 在任何三个不同的组中 各取一点为顶点作三角形, 求三角形个数的最大值.解:由分组情况有限,三角形个数必存在最大值,设分为30组,各组点数为x 1 < x 2 < · · · < x 30, 三角形个 数为f (x 1, x 2, . . . , x 30) =1 i<j<k 30x i x j x k .f (x ) 4u f (y ) 4v . (f (x )) t .∴ f (x t ) = (f (x )) t .设f (e ) = c, c > 1,则f (x ) = f (e ) ln x = c ln x .另外,当f (x ) = c ln x (c > 1)时,f (x u y v ) = c u ln x +v ln y , f (x ) 4u f (y ) 4v = c 4u ln x + 4v ln y . 4v ln y ) 4v ln y . f (x ) 4u f (y ) 4v . 所以所求函数为f (x ) = c ln x (c > 1).若存在i ∈ {1, 2, . . . , 29}, x i +1 − x i3, 则将(x 1, x 2, . . . , x 30)调整为(x 1, . . . , x i + 1, x i +1 − 1, . . . , x 30).f (x 1, . . . , x i + 1, x i +1 − 1, . . . , x 30) − f (x 1, x 2, . . . , x 30) =[(x i + 1 + x i +1 − 1)−[(x i + x i +1)x j x k + (x i + 1)(x i +1 − 1)1 j<k 30 j,k =i,i +1x j x k + x i x i +1x j ]j =i,i +1x j ]1 j<k 30 j,k =i,i +1j =i,i +1= (x i +1 − x i − 1)j =i,i +1x j > 0f 值增大,类似的,若存在i, j ∈ {1, 2, . . . , 29}, i < j, x i +1−x i2, x j +1−x j2, 将x i 调整为x i +1,x j +1调整为x j +1 − 1,f 值增大.所以当f 取最大值时,x 1, x 2, . . . , x 30中相邻两个的差最多有一个是2,其余均为1. 如果所有的均为1,1989 = x 1 + (x 1 + 1) + · · · + (x 1 + 29) = 30x 1 + 435,x 1不是整数,矛盾. 设x t +1 − x t = 2, 1t29,则1989 = x 1 + x 2 + · · · + x 30 = 30x 1 + (1 + 2 + · · · + t − 1) + (t + 1 + · · · + 30) = 30x 1 + 465 − t . 30x 1 − t = 1524, x 1 = 51, t = 6.此时各组的点的个数分别为51,52,. . . ,56,58,59,. . . ,81.6.设f : (1, +∞) → (1, +∞)满足以下条件: 对于任意实数x, y > 1,及u, v > 0,有试确定所有这样的函数f . f (x u y v ) 1 1解:令x = y, u = v = 2t (t > 0),则f (x t ) 1以x t 代x , 1t 代t ,则f (x ) (f (x t ))t .11 11 1 1 1 1 1由Cauchy 不等式,(u ln x + v ln y )( 4u 1ln x +11.∴1u ln x +v ln y1 4u ln x+1∴ f (x u y v )1 11SB .又 SD x t−1 ·· · ·· x 1 ·x 1是t 个大于1的第五届中国数学奥林匹克(1990年)郑州 《中学生数理化》编辑部1.在凸四边形ABCD 中,AB 与CD 不平行,O 1过A ,B 且与边CD 相切于P ,O 2过C ,D 且与边AB 相切于Q ,O 1与 O 2相交于E ,F .求证:EF 平分线段P Q 的充分必要条件是BC AD .证明:分两部分证明结论.(1)EF 平分P Q 的充要条件为P C · P D = QA · QB . 设EF 与P Q 交于K ,直线P Q 于 O 1, O 2分别交于J, I .P C · P D = P I · P Q, QA · QB = P Q · QJ , KQ · KI = KE · KF = KP · KJ . ∴ KQ · (KP + IP ) = KP · (KQ + QJ ), KQ · IP = KP · QJ . ∴ KP = KQ ⇔ IP = QJ ⇔ P C · P D = QA · QB . (2)BCAD 充要条件为P C · P D = QA · QB .设AB 与DC 交于S .BC AD ⇔SDSC=SA 而SP 2 = SA · SB, SQ 2 = SC · SD .∴ P C · P D = QA · QB ⇔ (SC − SP )(SP − SD ) = (SB − SQ )(SQ − SA )⇔ (SC + SD )SP − SP 2 − SC · SD = (SB + SA )SQ − SQ 2 − SA · SB ⇔ (SC + SD )SP = (SB + SA )SQ⇔ (SC + SD )2 · SA · SB = (SA + SB )2 · SC · SD ⇔SCSD+SD SC +2=SA SB+SB SA+2SC < 1,SA SB< 1, ∴ P C · P D = QA · QB ⇔ SD SC=SASB⇔ BC AD .所以EF 平分线段P Q 的充分必要条件是BC AD .2.设x 是一个自然数,若一串自然数x 0 = 1 < x 1 < x 2 < · · · < x l = x 满足x i−1|x i (i = 1, 2, . . . , l ), 则 称{x 0, x 1, . . . , x l }为x 的一条因子链. l 称为该因子链的长度. L (x )与R (x )分别表示 x 的最长因子链的长 度和最长因子链的条数.对于x = 5k × 31m × 1990n ,k, m, n 都是自然数,试求L (x )与R (x ).解:对 于x = p α1 1p α2 2 · · · p αn n ,(p 1, p 2, . . . , p n 为 互 不 相 同 的 质 数,α1, α2, . . . , αn 为 正 整 数). x 的 因 子链{x 0, x 1, . . . , x l }是最长因子链的充要条件是 xx i−i 1 均为质数(i = 1, 2, . . . , l ).事实上,对于因子链{x 0, x 1, . . . , x l },若存在i, (1il ),使得 xx i−i 1 = q 1q 2,其中q 1, q 2均为大于1的正整数, 则{x 0, x 1, . . . , x i−1, q 1x i−1, x i , . . . , x l }是长度为l + 1的因子链, 所以{x 0, x 1, · · · , x l }不是最长因子 链.反 之,若 xx i−i 1 均 为 质 数(i = 1, 2, . . . , l ), 则x = x l =x lx l−1· ·· ·x 2 x 1· x 1(x 0 = 1)为l 个 质 数 的 积.所以l = α1+α2+· · ·+αn . 而对x 的任意一个因子链{x 0, x 1, . . . , x t },x = x t = x t x 2正整数之积,而x 至多写成l = α1 + α2 + · · · + αn 个大于1的正整数之积,所以t最长因子链.l .所以{x 0, x 1, · · · , x l }是(n !)2(n +k )!m !.2 ) > 22 −2n−1x 2(n ∈ N) x .2( 2k )(22 −2k−1x 2)22( 2k ) xx .x > M .2 )(x 2 )(13a ) . 2 ,(1)与(2)等价,不难验证x2 ,则L (x ) = α1 + α2 + · · · + αn .每个最长因子链对应一个排列x 1, xx 21 , . . . , xx l−l 1 , l = L (x ), 为α1个p 1,α2个p 2,. . . ,αn 个p n 的一个排列. ∴ R (x ) =(α1+α2+···+αn )!α1!α2!···αn !.当x = 5k × 31m × 1990n = 2n × 5n +k × 31m × 1990n 时, L (x ) = 3n + k + m ,R (x ) = (3n +k +m )! 3.设函数f (x )对x 0有定义,且满足条件: (1)对任何x, y0, f (x )f (y )y 2f ( x 2 ) + x 2f ( y 2 ); (2)存在常数M > 0,当0 求证:对任意x 0,f (x )x x 2.1时,|f (x )|M .证明:令x = y ,(f (x ))2 2x 2f ( x 2 ). 令x = 0,(f (0))20,∴ f (0) = 0,满足结论.假设存在x > 0,使得f (x ) > x 2,用归纳法证明f (x nnn = 0时显然成立,设n = k 时成立,f ( 2x k ) > 22k−2k−1 2∴ f (x 2k +1)(f ( 2x k ))2x 2>kx 2= 22 k +1−2(k +1)−1 2即n = k + 1时也成立,所以对任意n ∈ N,f ( 2x n ) > 22 又n → +∞时,2n − 2n − 1 → +∞, 21n → 0. n−2n−1 2∴ ∃m 1,当nm 1时,0 <x 2n< 1,∃m 2,当nm 2时,22n−2n−1 2取m = max {m 1, m 2},0 <x2m< 1, f ( 2x m ) > M ,矛盾.所以对任意x0,f (x )x 2.4.设a 是给定的正整数,A 和B 是两个实数,试确定方程组:x 2 + y 2 + z 2 = (13a )2(1)x 2(Ax 2 + By 2) + y 2(Ay 2 + Bz 2) + z 2(Az 2 + Bx 2) =14(2A + B )(13a )4(2)有整数解的充分必要条件(用A, B 的关系式表示,并予以证明).解:(2) − B 2× (1)2,得(A − B 4 + y 4 + z 4) = 12(A − B 4若A = 若A = B B= 3a, y = 4a, z = 12a 为一组解.2(x 4 + y 4 + z 4) = (13a )4(3)∴ 2|a ,设a = 2a 1,x 4 + y 4 + z 4 = 8(13a 1)4.若x, y, z 不全为偶数,则必为两个奇数一个偶数,x 4 + y 4 + z 4 ≡ 2 (mod 4),矛盾.∴ 2|x, 2|y, 2|z .设x = 2x 1, y = 2y 1, z = 2z 1,则若(x, y, z, a )为(3)的解,(x 1, y 1, z 1, a 1)也为(3)的解. 类似可 依次得到(x , y , z , a )也为(3)的解,等等.但这个过程不能一直进行下去,矛盾.所以方程组有整数解的充分必要条件为A = B2 .5.设X是一个有限集合, 法则f使得X的每一个偶子集E(偶数个元素组成的子集)都对应一个实数f(E),满足条件:(1)存在一个偶子集D,使得f(D) > 1990;(2)对于X的任意两个不相交的偶子集A, B,有f(A ∪B) = f(A) + f(B)− 1990.求证:存在X的子集P, Q,满足(1)P ∩ Q =∅,P ∪Q = X;(2)对P的任何非空偶子集S,有f(S) > 1990;(3)对Q的任何偶子集T ,有f(T ) 1990.证明:考虑X的所有偶子集经法则f得到的实数最大的一个为P ,若不止一个,取元素个数最少的一个.Q = X \ P .则P ∩ Q =∅, P ∪Q = X.令A = B =∅,则f(∅) = 1990.对于∀S ⊆ P, S =∅,f(P ) = f(S) + f(P \ S)− 1990,显然f(P \ S) < f(P ),∴f(S) > 1990.对于∀T ⊆ Q,若T =∅,f(T ) = 1990,否则T =∅,由f(P ∪T ) = f(P )+f(T )−1990 f(P ),f(T ) 1990. ∴P, Q满足条件.证毕.6.凸n边形及n − 3条在n边形内不相交的对角线组成的图形称为一个剖分图.求证:当且仅当3|n时,存在一个剖分图是可以一笔划的图(即可以从一个顶点出发,经过图中各线段恰一次,最后回到出发点).证明:因为n − 3条在形内互不相交的对角线将凸n边形分为n − 2个顶点均是n边形顶点的小区域, 每个区域的内角和不小于π,n边形的内角和为(n − 2)π,所以每个小区域都是三角形.先证必要性.用归纳法容易证明可将每个三角形区域涂成黑白两色之一,使得有公共边的三角形不同色. 假设已按照这样的要求染色,由于剖分图为可以一笔画的圈,所以由每个顶点引出的线段都是偶数条. 从而每个顶点都是奇数个三角形的顶点,因此以原多边形外边界为一边的三角形区域有着相同的颜色, 不妨设为黑色;另一方面,剖分图的每条对角线都是两种不同颜色三角形的公共边, 所以设黑三角形有m1个,白三角形有m2个.则n = 3m1− 3m2,所以3|n.再证充分性,设n = 3m,多边形为A1A2 . . . A3m.连接A1A3i, A3i A3i+2, A3i+2A1(i = 1, 2, . . . , m−1)这3m−3条对角线, 形成m − 1个三角形,可由A1出发,依次走过这些三角形,再走过凸多边形即可一笔画并回到初始点.证毕.2S ABCD ,作平行四边形AEDP ,显然P B, P C 均在AP DCB 内.∴ z k−1 = z (k−1) , (k − 1)(k − 2) = 0, k = 1或2.第六届中国数学奥林匹克(1991年)武汉 华中师范大学1.平面上有一凸四边形ABCD .(1).如果平面上存在一点P ,使得 ABP, BCP, CDP, DAP 面积都相等,问四边形ABCD 应满足什么条件?(2).满足(1)的点P ,平面上最多有几个?证明你的结论. 解:(1)(1.1)P 在ABCD 内部,若A, P, C ,B, P, D 分别三点共线, 显然ABCD 为平行四边形,P 为对角线的交点.若A, P, C 不共线,由于 P AB , P AD 等面积,AP 必经过对角线BD 的中点,同理CP 过BD 的中点,必 有P 为BD 的中点,所以 ABD,BCD 面积相等.即一条对角线平分ABCD 的面积,显然也是充分条件.(1.2)P 在ABCD 之外,不妨设P 与B, C 在AD 异侧,P 必与A, B 在CD 同侧,与C, D 在AB 同侧. 由 P AB,P AD 面积相等,P ABD ,同理P DAC .设AC, BD 相交于E ,AEDP 为平行四边形.S AED = S AP D = S ABP + S CDP + S P BC − S ABCD = 3S AP D − S ABCD . ∴ S AED = 21S ABCD .这个条件也是充分条件,若S AED =1∴ S ABP = S AP D = S CDP = S AED , S P BC = S AP D + S ABCD − S ABP − S CDP = S AED .P 满足要求.所以四边形ABCD 有一条对角线平分面积,或者在对角线分成的四个三角形中有一个为四边形面积的 一半.(2)由(1)知,P 在形内,形外都至多有一个,又由充要条件不同时取到,P 最多有一个. 2.设I = [0, 1],G = {(x, y )|x, y ∈ I}.求G 到I 的所有映射f ,使得对任何x, y, z ∈ I 有 (1)f (f (x, y ), z ) = f (x, f (y, z )); (2)f (x, 1) = x, f (1, y ) = y ;(3)f (zx, zy ) = z k f (x, y ).这里,k 是与x, y, z 无关的正数. 解:由(3),f (x, y ) = f (y · xy , y · 1) = y k f ( xy , 1)(0 < x < y ) f (x, y ) = f (x · 1, x · xy ) = y k f (1, xy )(0 < y < x )再由(2),f (x, y ) = y k−1x (0 < x < y ), f (x, y ) = x k−1y (0 < y < x ) 又x = y 时,f (x, x ) = x k f (1, 1) = x k .在(1)中,取0 < x < y < z < 1,x 充分小时,y k−1x < z, x < z k−1y .f (f (x, y ), z ) = f (y k−1x, z ) = z k−1y k−1x ,f (x, f (y, z )) = f (x, z k−1y ) = x (z k−1y )k−1.2k = 1时,f (x, y ) = min {x, y};k = 2时,f (x, y ) = xy .(x > 0, y > 0)又f (x, 0) = f (x · 1, x · 0) = x k f (0, 1) = 0, f (0, y ) = 0, f (0, 0) = z k f (0, 0), f (0, 0) = 0. ∴ k = 1时,f (x, y ) = min {x, y};k = 2时,f (x, y ) = xy .k = 1, k = 2时,无解.。

2019年第10届陈省身杯全国高中数学奥林匹克试题及答案

2019年第10届陈省身杯全国高中数学奥林匹克试题及答案

2019年陈省身高中数学夏令营2019陈省身高中数学夏令营测试评析乙一本文所有题II和答案出自Q群网友的回忆和他们与我的讨论.题1.在等腰MBC中.AB = AC. ^ABC内切惋I为©7. bBIC外按関为0O. D为优弧BC上的•点.E为也上的-•点.证明:若过E所做的HI)平行线可「3相切.那么过E所做的CD rn线也可于0/ +HW.答案1・显然由1.BCD人:恻我们冇EBDI = 180 - IBID - JBD = 180。

-£BID-"BJCBD= 180 -z5/D-z//?C-zC/D = z/Ca M理 zCD/ = "BC. ill f- AB = AC我们易得到L BDI = dCB = dBC = zCD/.即DI是1BDC 的角平分线.A在E点做Ol的两条切线EF. EG.山題II知.EF // BD. iGEl = L FEI=LtiDl = ZCW.则EG // CD.评析1.这个题11应该参加夏令营的所冇人都做出來了吧?似乎没什么特别好评论的.题2.〃是•个大f 1的iE幣数.例・他・・..・心为n个两两互异的正整数.记M = 3・©)皿©] I !</<;<川.求M所倉元素个数的最小值.答案2.对任何仃限iF•整数集A.我们=伽・©).[%如| a,丰a, G川.即题II中的M是弧的简写.固定•个大F I的正整数a,取①=川.则M=⑷......... ©}•此时M的兀索个数为n.下证M的元素卜数不可能小「〃•若“ =2.若|M| < 2,那么\M\只能=1.也就是说(«|.«2)=⑷・“2】・即fl| = “2, L i ""2不相等矛氏若/! = 2.…・R - 1时都成立,在〃=A•时,考股任总a l(i2…心中的素因数p.令s = nuxhsS)},并且定义S =沏I v P(a t) = y|. F = M\S, f*是可以分两种情况: [;了,.〕「1. |S| > 1.于是对任总a,.aj€ S,我们都有%((%©))= ipdflj.nJ) = s. 而对任盘a® € T.我们都有y(a・切))・兮([心①])< $.也就是说M s和M T 互不郴交.由数学I丿」纳法可知|M$| > |S|, \M T\> I几那么M D Ms U M T可知2. |S| = 1.不妨S = g F是对干任总g® € I.我们都有卩,((心©))・*,([如①])< 5.但是%([",])= £,也就是说⑷间< M"即|M| > |M r| + 1 同样山U I 纳法\M T\> ID.那么|M| > \M r\ + 1 >|7|+ I = /».评析2.本題中最开始给的例F町以写成满足血|也1・・・1弘的•列整数.则此时也有・...・亦•但是在证明的过程中必须耍完全摒界这种极端条件的想法.在n = 2时只能等J- 2.而M可以不等F的如・部分同学可能会想在01纳的时候证明•个也强的结论.比如|M| > n井且在n > 3 的时仗• T兮成«q iiL仅“i © I心|...| %这种方法会山採把与工I、•死.因为这个命題虽然很漂亮.但是零实上它是完全错误的.比如考虑M = 4.四个整数为1.2.X6.就没右这种整除的关系.若考虑证明等号成立出且仅半M = ••…a n\.这种方法似乎也不可行(至少我们没讨论出來).任这种想证明漂亮结论的想法行不通的同时我们不妨考世•些不太优雅的数论題的套路想法.比如比较索因数,这样•下就归纳出來r.题3.甲乙两个人由甲先开始轮流将1至2019这些数的某个染红色或好雉色.相邻的两个整数不能染成不冋颜色.若所仃数7均被染成冋•种颜色. 则乙胜.若还有数7:没被染色但是轮到的仁没法继续染色「•则此人输•请问谁冇毕胜策略?答案3.乙有必胜策略.先讲乙的策略・ill » = 1010.则2019 = 2/1 - L M为[至In - 1的中间的那个数'乙每•回介屮先染色•若屮所染的数Z'jnZ间的数7全部被染J'(柑同的)颜色.不妨设i到/都彼染了(相同的)颜色.而/-I 和j+1没存被染颜色,那么弔虑三种恃况:1.1.廿,+ 2”.则乙在/-I染上与”相同的颜色;1.2. T;i七j <2”.则乙在A 1染I儿“相同的颜色(即乙尽中间同色数殷的对称性);1.3.若2;=2/i(即中间的同色数段是对称的情况下),乙任i- 1或./+ 1 I••的某个可以染色的地方染上弓n 相同的颜色即可.廿甲所染的数7 k n之间的数7之间仃未被染色的数7或者异色的数孕,同样不妨设/到都被染F(相同的)颜色.而i-1和/♦ 1 没有被染颜色,则也分三种情况:2.1.若U jH而甲U + 2染了9 〃相同的顾色,则乙任j+ I上染上相同的颜色;22 n i + j = 2/i - 1而甲任2i-2染了—相同的颜色.则乙在/-I I•.染I:相同的颜色(即将k与中间同色数「殳连任•总):2.3.杆以I•两种悄况都没发生.则乙隹5-k (即对称点)上染I:相反的颜色.接若先证明一条引理:引理1.在收盘时若1和2/1-1异色.则乙贏.若1和2//-1同色.则乙高半且仅嗎1至2—1骨同色.引理的证明:苻先我们考察收盘时的染色情况.”某个数「未被染色.那么/-I fili+l异色,占则「可继续染色・9收仮刊1•所以我们可以看出來柱收盘时若不是所有数字皆同色的情况•那么1至2—1中间有很多个区间[ai.bi]….・阪吋(的=1. b t = 2— 1. a可以等F bi), b, g 相差为2•而这/个区间交错染色.所以在收盘时未被染色的数7只有仞+ 1•.…g + 1,J«</- 1个.子是染过色的数字有S个.故如果/是偶数,那么M 后•次染色的人是乙•此时乙贏.2; /是奇数.那么最后•次染色的人是屮. 此时屮嬴.而/是偶数半且仪艸⑷•如与⑷沏]异色,I是奇数半且仅出[仆如4 la h b f]同色.所以若1和2/1-1异色.则乙羸.若1和2//-1同色.而中间还有爪他颜色J!艸贏.引理得证.最后我们用归纳法说明乙的策略是可以保证乙可以赢.对n进行归纳. 若〃 =2.此时我们只在1到3 Z间进行染色.那么若屮第•步在1 I:染色,乙任3 I.染反色.此时屮输.若屮第•步染J'3,则同理屮还是输.若屮6 - 步染了2.则这时乙在1或3处染同•种颜色.那么下•步甲只能隹最后• 个数7 I:染同•种颜色,此时1至3全部同色,屮还是输./; n-\时是这个策略是必胜的,在n我们将2至2〃-2这2/1-2个数对应到//-I的情况中.我们重点考察屮乙在染1和2—1时的行为.苦屮在某•次染色的时候将1染了色,此时我们知道2未被染色或者2与I同色.若此时2号1同色.那么按照乙的操作策喙此百有两种情况.若2/1-2 与2井色.则乙右加-1处染与1郴反的颜色.按!阳I理可知乙BL若2/1-2 4 2同色.払!H乙的策略.这种情况只会任2至2/1-2皆同色的时候出现. 所以乙将2//-1染成■样的颜色.那么全部数字颜色相同.乙齋.若此时2 未被染色,而2n-2也栄被染色或与1异色那么乙将2—1染成与]相反的颜色即可胜利•若加-2被染了£1相冋的颜色,而按照乙的策略,这种悄况只可能在3到2n-2皆同色的情况F发生,那么接下*乙在2〃- 1处染与1相同的颜色.F -步甲只能在2处染牙1相同的颜色・F是全部故字同色,乙贏.若甲某•次先染了2n- I,同理乙会亂若乙先染了1,那么按照乙的策略.此时2到2/1-2皆同色.那么剩F这•步屮只能在2—1 I:染相同的颜色,还是乙範.同理若乙先染F 2n-\的话他还是会贏.所以由归纳法可知乙按照这个策略水远会裱.评析3. II接观察收盘情况很容易得到引理,那么在得到引理的情况下.甲」定想便1和2019同色.乙•定!ft!使1和2019异色.那么在屮乙某人先将这2019个数的•端进行染色的时候.另个人下•步就必须耍将另•端染I •对同色或反色.听以屮和乙的套路中就不能主动地先染边缘.由F甲魁先手,那么按照某种归纳的也法.屮染中间点是战保险的染淤此时乙并不能染对称点•所以甲F •步可以考虑乙的对称同色染法.但是乙也知道屮肯定会世耍这种食路.所以按照胜利规则的第条,乙姒保险的办法就是•步步让屮把所fj的数都染成同色,那么这个时候屮就必须跳出这种套路來染-个异色的点•之后乙就可以按照对称异色染法來套路甲.所以由于胜利规则第•条的保障.乙可以破坏屮的套路井H坚持按照自己的套路*染色.那么乙稳麻.这个題的关键在于怎么去吗.本拎案的药仏罪常长,感兴趣的同学可以 考渥有没有也好更简油也更淸楚的写法.答案4.先证明个引理: 引理2. 口;霊,(1 +宀皿)=(】-(一irr.引理的讦•明:任川=1时川I $ 1在这里取.V 二一1即得证.若m> l t 由于严=m,实际上wjr-l m 加7 剛 1>・1[](1 +^4°) = P 口(I + 严”) = []II (1 心/") = (]_(_])"严AS /s| 側 /*! AN ) 所以我们來考察]1嚮(1 +^).若“ 92019直素.那么%仏2“••…2018« 也是2019的一个完全剩余系,所以山引理可知3)18 2018P] (1 + e 湍)=仃(I + e 巧fiuB Jan*若<1 4 2019不互素・那么山F 2019的因子都是奇数.由引理可得2018 3)18 .・・.;・ 3)18 3018 “・. 20IX [][](1+ 禺)=220*9•仃仃(I + e 诩)二仃 2心叫 Z»=O 4f —I frsO 题 I. ilW所以2018 . 3>I8 r n (i +r^)=n (i />«O \Ill J* 2019 = 3x673.那么 £出论・20⑼= 3x(2019m3-l)+673*(20]g673-1 )+1x(2018-(2019^3-1)-(201X673-I)) = 3x672+ 673x2+ 1344 = 4706. 所以原式■ 2019 + 4706 = 6725. 评析4.题II 中的 严巾在数论研完中被称作•个完全剩余系的乘法待征, 这种乘法特征的操作在数论研究中II :常常见.我佔il 华罗庚先工的《数论导 引》里面都可以找到同样的问题或者引理.题5.已知锐角MBC 三边满足BC>CA> AB. JC-内切關O/ 9边BUCXAB 的切点为Ao.Bo.Co .设^ABC 垂心为H. HA.HB.HC 的中点为A r ,B,.C h 点 A|,B\^C\ 关 J■ B (Q ),G )AoMuBo 的对称点为 A2.B2.C2.证明:A 2.B 2.C 2三点共线,HA tan 鲁^ - tan 丛孕= lan 奉 _ian 如;£ * I w答案5.我们先证明42,B 2,C 2都在山线Ol I K 中o 是 从BC 外接岡闘 心.如图.设/2O 用2<)|S 呢Fl 3)IS =2019+》"BX在AC.AB I••的廉足为B心 h为MB3C3的内心.D为A1与B O C Q的交点.那么昭然AB, = ABcosA・AG = ACcosA.那么L ABC ~ M执C\,且相似比为cos4.另•方阿由f- LAByH = lACyH = 90 .我们冇AByHCy WW.其圆心为AH中点A h即cAByCy的外心为A hIll F /A在砌G的半分线I:,而ZBMG就是zCAB.「•是AJ A J兵线,且显然矗山于&C0.由^ABC ~ MB J G我们有Ah = Al cos A.那么11A = Al - (l-cos/l). ill f* z/^oCo = |z4.我们ff ID = rsin 4.其中r为内切闘半径.但是由内切恻的件质我们ill道Al = -A-.所以II)= 4/sin2 4 = M/(l - cosA).故11A = 2/D. I A为7 关f ft>C0的对称点•则M2= g H. €Z AM2 = /Ml.那么M/0+ Z AM2 = zA/.Si + Z/Mi = 180°?即AJO共线. 同理,B2C2IO线.则A2B2C2共线.由于MftC31 j L ABC的相似比为cosA.所以IAi = I A A I = IO cos A.同理IB: = IO cos B. IC2 = /O cosC.由BC > CA > AB 我们有 /A: < IB2 < IC2. 那么A2B2 _ /O(cosB-cosA) _ sin 学sin 宁_ cos § (sin 4 cos f - cos 4 sin ?) BG /O(cosC - cos B) sin 半sin 学cos 牛(sin £ cos ¥-cos g sin £) tan 4 - tan ?_■ ■ ■tan 5 - tan 5评析5.这个题的关键在于我们耍发现1.0也任这条M线I..同学们考试的时候如果没右•思路的话不奶多腑两个图,甘先就可以发现/在这条宜线I:. 另方而.如果同学们很熟悉三角形丘心的性质的话•可以想到AH = 2AAi应该是0到BC距离的两倍,并且A|4・C|也在九点圆L,而九点恻心应该是HO 的中点.此时会引导我们考暹0,在图I:価惚完全可以作出AuBzXi在OI上的这种猜想.余F的证明比较巧妙地考世了 /关F E)G)的对称点.若没有想到这个方法的同7也完全可以按照三角函数眾力汁只的方法來r[按求IA.JB.JC2的长度,但足这种方法太复朵•我们就不写在这篇答案中了.題6.设& > 1是•个正整数,是否存在无穷冬个正罄数X.使得x可以写为两个匸整数的士次基的并.但是不能写成两个正整補 &次慕的和.答案6.令& = (2计-(2”)\那么心可以写成两个疋整数的k次無的羌. 下而用I丿I纳法证明&都不可以写成两个正熬数的k次幕的和•那么这样的数有无穷多个.'*1 // = 0 时,xo = 2k - 1.若.v()=(, + 从那么(hb < 2.此时a.b = 1.即总=I’ +广=2.才盾. ........ .. ........若 3 不能被歸为两个正整数的k次幕之和,若心 T + #.我们分集中情况讨论:(1) a.b不同奇偶.由于此时“ > 1, .v…为偶数.不对能.⑵仏b同为偶数.设a = la^h = 2你.那么(F - 1)2皿=心=2畑七). 则3 = (2 J 1)2吩皿=朮+处,£01纳假设不府.(3) a.b同为奇数.且k是偶数.那么= 1 (mod 4)•但是2皿> 2. 即4 | s不可能模4余2,矛盾.(4) a.b.k都是奇数.此时 + // = (“ + ")(</」-(f~~b + ... + M-1), Ji “A」_ 严b + ... + M-* 为奇数.那么ill于.V” = (2l - I)2" = S + b)(^ - 十%+ …+ //- *).我们疔2滅 | a + b.则(十:-a^-b + ...+M-*)|2A- 1.那么a+b>2nk > 2* - I 2 丹1-+... + M7即(a + dp > a* + M.不Hi a > b.那么此时4(r > (a + h)2 > </ + // > a k >则a <4.即n S 3. d + b S 2a S 6.但足由于1? | 2川 | (a+b).即a + b> 23 = 8. 才H.评析6.本题也可以考虑升茶定理•比如对于•个奇索数p、a1 j p互素. b = a (mod p).那么v p((f -//) = v p(a -6) + v p(k).接下來我们可以用同余分析的方法选取塑特殊的b使得於- M模p的余数彳、可能是两个k次鄢之和模P的余数.有兴趣的同学不妨•试.题7. A.B.C.D足半面上四个点,任意三点不共线,且四个点形成的六条线段的长度的平方皆为冇理数.i正明:严•为有理数.答案7.设AB中点为M.C.l) (l.AH I.的垂足为E.F•那么我们有:若E任线匸殳AM I: (AM-A/£p + EC2 = AE2+ EC1= AC2€ Q. (BM + ME)2+ EC2= BE- + EC2 = BC-€ Q.所以两式相减得到ME - AB = ^(AE2 - BE2) E Q■两式相加得到ME2 + EC2 = {(AC1 + BC2) - AM2€ Q.若E任线「殳BM I •我们也一样冇ME • AB, ME2 + EC-€ Q.所以MF =理泸€ Q.则AE- = AM2 + ME2 - 2AM - ME€ Q・并H.同理BE2 e Q?另外还仃EC2 = AC2- AE2€ Q.对从 BD同理也冇MF\AF2, BF\ FD~€ Q.列外.ME MF = € Q,而n AE . AF = (AM ±ME) • (AM ±MF) = AM1±AM ME ±AM - MF ± ME-AfF € Q (iH负号取决J;E.F在M 6右的位比但并碑响它们都属于Q).由F CD2= (EC ± FD)2 + (4E - AF)2€ Q (这个iE 负号取决F GD {£ AB的同侧还址并侧).拆开半方项之后我们得到EC FDw Q.则比 = 爲=爵s€ Q.评析7.这个题中.从1角形面积之比想到高之比,所以考虑E.F作帑自然. 那在列方程看AE, BE.AF. BF的有理性的时候也会扳门然地出现AE2+ BE2 和AE2- BE1这种式几所以不妨也占渥•下AH的中点M把这个式J'•改成+ MF或±2ME AB.么余I:的余四毛在住稿纸I角儿个只式就看出來了.题& /』2是-个止粋数•“是个实数,满足0 v“v岩•芟数z满足广| 一岀 + 血一I = 0. i正明:|zl = I.答案&记/(£)=尹I -曲+血- 1 •若• £ = cos Q + i sin b我们f jF" — 1 = cos(” +1)0-1 + /sin( n + 1 )。

数学奥赛高中真题答案解析

数学奥赛高中真题答案解析

数学奥赛高中真题答案解析数学奥赛一直是许多高中生心中的一个梦想和挑战。

作为数学的精英赛事,它不仅考察了学生的知识水平,更要求学生具备逻辑思维和解题能力。

本文将对一些数学奥赛高中真题进行解析和讲解,帮助大家更好地理解问题的解题思路和方法。

第一题:设函数f(x)满足f(1)=1,且对于任意正整数m、n,有f(m+n)=f(m)+f(n)。

求f(2017)。

这是一道充满了数学美感的题目。

我们可以利用递推关系来求解该题。

首先,根据题目已知条件f(1)=1,我们可以得到f(2)=f(1)+f(1)=2,f(3)=f(2)+f(1)=3,以此类推,我们可以得到f(n)=n,其中n为正整数。

因此,f(2017)=2017。

通过实际计算,我们验证了我们的结论。

第二题:已知等差数列{an}中an=2^n+3^n,且a2017=2^2017+3^2017,求此等差数列的公差。

这道题目考查的是等差数列的性质和运算。

我们可以利用等差数列的通项公式来解答这道题目。

已知an=2^n+3^n,我们将其转化为等差数列的通项公式an=a1+(n-1)d,其中a1为首项,d为公差。

根据题目已知条件,我们可以得到等差数列的首项为a1=2^1+3^1=5。

将已知条件代入通项公式,我们得到a2017=5+(2017-1)d。

化简后可得d=3^2017/2016。

通过计算,我们可以得到d的值约为1.4901161193847656×10^605。

第三题:已知2005年1月1日是星期六,求2005年8月8日是星期几。

这道题目考查的是了解闰年和平年的性质。

我们可以通过计算日期之间相差的天数来求解这道题。

首先,我们要求出2005年1月1日到2005年8月8日之间相差的天数。

根据闰年和平年的性质,我们可以知道2005年中有两个闰年,分别是2004年和2008年。

2005年一共有365天。

计算相差的天数,我们可以得到2005年1月1日到2005年8月8日之间相差的天数为220。

第九届陈省身杯全国高中数学奥林匹克竞赛(浙江预赛)试题及解答

第九届陈省身杯全国高中数学奥林匹克竞赛(浙江预赛)试题及解答

令 f x
x
3
x 1
2
x
2
2 1 x 1 x2

x
3
x 1

2
2 1 x 1

0 ,则
x
2
2 1 x 1 x2
2
由于 x
2 1 x 1 0 。 2 1 x 1 0 的判别式小于 0 ,则该方程无实根。
1 1 2 , t
2 2 1 1 2 1 f t 3 2 t 1 2 3 t 0 ,因此函数 f t 为凸函数,由琴生不等 t t t t
L, M , N , K ,则四面体 LMNK 的内切球的半径为


3 2 。 2
设四面体 LMNK 的内切球的半径为 r ,因为 NLK LNM 90 ,所以
1 2 2 。 S LMN S LNK 1 2 2 4
又因为 MLK MNK 90 ,所以 S LMK S MNK
5, 43+19
2 11 14 。
x 1 x 0 x 1 ,若 f x 的最大值为 f x0 x3 x 1
,则 x0

6.设函数 f x 。 答
2 1 2 2 1 。 2
x 4 2 x3 x 2 2 x 1
式可得 f x f y 2 f
3 3
x y 2f 2
1 1 125 。当 x y 时等号成立,因此 4 2 2
125 1 1 。 x y 的最小值为 4 x y

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
2017年全国高中数学联合竞赛(四川初赛)
(5月14日下午14:30—16:30)
题目



总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.

2018陈省身杯第二天

2018陈省身杯第二天

第九届陈省身杯全国高中数学奥林匹克5.已知锐角△ABC 满足AB >AC ,内心为I ,∠A 内的旁心为I 1,BC 的中图11.内的旁切圆为⊙I .ABC 的位似中心,D 1、E 由22AB BC CA BC CA AB BE AB CD +++-=-==,知L 为线段ED 的中点.因此,IL 为△D 1ED 的中位线,即IL ∥D 1E ,则AE ∥IL .类似地,如图2,设EE1为⊙I1的直径,则LI1为△DEE1的中位线,即LI1∥DE1.E图3由引理可得AE∥ML,AD∥NL.由22a CM CL ab CM b ac b CA CE a c b=⇒==+-+- ⇒()b c b AM AC CM a c b-=-=+-.6.已知函数f :Z +→ Z +,满足对任意的x ∈Z +,有f (x )+f (x +2)≤2f (x +1).证明:存在一个无穷正整数集合M ,使得对任意的i 、j 、k ∈M ,有(i -j )f (k )+(j -k )f (i )+(k -i )f (j )=0.证明 考虑点列A n = (n , f (n ))(n ∈Z +).注意到,题目中条件等价于f (x +1)-f (x )≥f (x +2)-f (x +1).则1n n A A k +=f (n +1)-f (n )≥f (n +2)-f (n +1)=12n n A A k ++.故折线A 1A 2…A n …的各段斜率{}1n n A A k +为不升的整数列. 且{}1n n A A k +中不出现负数项,否则,该项后面均为负数项.则折线A 1A 2…A n …必与x 轴相交,这与f (n )>0矛盾.从而,{}1n n A A k +为不升的非负整数列. 故存在n 0,使得当n ≥n 0时,1n n A A k +为常数. 进而,当n ≥n 0时,所有A n 在同一条直线上.取M = Z 0[,)n +∞ .对任意的i 、j 、k ∈M ,由A i 、A j 、A k 共线,设该直线为y =ux +v ,其中u 为非负整数,v 为整数.则f (i )=ui +v , f (j )=uj +v , f (k )=uk +v .故(i -j )f (k )+(j -k )f (i )+(k -i )f (j )=(i -j )(uk +v )+(j -k )(ui +v )+(k -i )(uj +v )=0.综上,原命题成立.7.若n 为完全平方数或n 到距离其最近的完全平方数的距离为完全立方数,23S2N →+∞对于充分大的正整数N,1111(1)()(1)k k S N -+==++<<++,1123()2k k S N +==-<<112()2k k S N +==-<<第九届陈省身杯全国高中数学奥林匹克8.设正整数n ≥2.圆周上放置了n 种颜色的2n 个点,其中每种颜色各两个点.若某段圆弧L 含的色点个数属于[1, 2n -1], 则存在某种颜色使得L 上该颜色的点恰为一个.证明:可以去掉某种颜色的两个点,使得上述性质仍保留.证明 为方便起见,称满足题目条件的2n 个点的放置方案为“好的”.本题中涉及到的弧均为逆时针方向.设A i 、B i (1≤i ≤n )为圆周上的2n 个色点,其中A i 、B i 的颜色均为i .根据题意可知,任给1≤i ≤n ,色点A i 、B i 在圆周上不相邻(否则只包含此两个色点的弧不满足题意),色点A i , B i 将圆周分为两个弧 i iAB 和 i i B A (逆时针走向).根据题意可知,存在j (1≤j ≤n )且j ≠ i 使得闭弧 i iAB 上恰存在一个颜色为j 的点,另一个颜色为j 的点在闭弧 i iB A 上,即弦A i B i 与弦A j B j 相交. 考虑无序两点组C i =(A i , B i )为顶点的n 阶图G :顶点C i 与C j 之间连边当且仅当弦A i B i 与弦A j B j 相交. 根据前面推理可得任给1≤i ≤n ,存在j (1≤j ≤n )且j ≠i 使得顶点C i 与C j 之间连边.当n =2时,满足题意的圆周上的4个色点的颜色只能依次为1, 2, 1, 2,等价于图G 为连通图.下面证明一个引理.引理 设n ≥3,一种放置方案为“好的”等价于对应的图G 为连通图. 证明 若一种放置方案不是好的,则存在一段弧L ,弧L 含的色点数属于[1,2n -1],且不存在某种颜色使得L 上该颜色的点恰为一个.设L 含有k 种色点,不妨设此k 种颜色为1, 2, …, k ,则L 上的色点恰为A 1, B 1, A 2, B 2,…, A k , B k ,其中,1≤k ≤n -1.弧L 的两个端点的连线将圆盘剖分成两个区域:弧L 所在的包含连线的闭区域D 1和不包含连线的另一个区域D 2.则任给1≤i ≤k ,弦A i B i 在区域D 1上,任给k +1≤j ≤n ,弦A j B j 在区域D 2上.因此,弦A i B i 与弦A j B j 不相交,即顶点C i 与顶点C j 之间不连边,即对应的图G 为非连通图.若方案为好的,显然图G 当中存在边.假设G 不是连通图,则存在G 的最大连通子图G *,G *涉及G 的l 个点,其中,2≤l ≤n -1,不妨设此l 个顶点为C 1, C 2, …, C l .设2l 个色点A 1, B 1, A 2, B 2,…, A l , B l 将圆周分成2l 个弧段,其中必有一个弧段含有其它色点,设该弧段为闭弧 PQ (逆时针走向),其中,P 、Q ∈{A 1, B 1, A 2, B 2, …, A l , B l },考虑闭弧 QP (逆时针走向),显然闭弧 QP上的色点数属于[2l , 2n -1].因为方案是好的,所以,存在颜色j ∈{l +1, l +2, …, l +n }使得闭弧 QP恰含一个颜色为j 的点A j ,另一个颜色为j 的点B j 必在开弧 PQ 上. 不妨设1≤i ≤l 时,从Q 点沿闭弧 QP逆时针行走到P 点过程中首次遇到颜色为i 的点为A i ,第二次遇到颜色为i 的点为B i .因为C 1, C 2, …, C l 对应的子图G *为连通图,所以,闭弧 1122l lQP AB A B AB = …(否则,存在点R ∈ QP ,且任给1≤i ≤l ,使得R ∉ i iAB ,即色点A i 、B i 同在 QR 或同在 RP 上.不妨设1≤i ≤m 时,色点A i , B i 均在 QR上,m +1≤j ≤l 时,色点A j 、B j 均在 RP 上,即1≤i ≤m <m +1≤j ≤l 时,弦A i B i 与弦A j B j 不相交,即顶点C i 与顶点C j 之间不连边,与图G *为连通图矛盾),因为A j 属于闭弧 QP,所以存在i ∈{1, 2, …, l }使得A j ∈ i i AB ,显然B j ∉ i iAB ,因此弦A i B i 必与弦A j B j 相交,即顶点C i 与C j 之间有边,即G 必与最大连通子图G *的某个顶点之间有边,与最大性矛盾,即对应的图G 为连通图.综上,引理得证.因为原方案为好的,所以,对应的图G 为连通图,可以去掉G 的一些边,得到G 的生成树 G,树 G 中存在度为1的顶点.不妨设顶点C n 在 G 中的度为1,树 G中去掉顶点C n 后仍为树,于是,连通图G 去掉顶点C n 及其关联的边后仍为连通图,即去掉颜色为n 的色点A n 、B n 后方案仍为好的,原命题得证.。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

第九届陈省身杯全国高中数学奥林匹克

第九届陈省身杯全国高中数学奥林匹克

,o 的 直 径 为
(b "4-c 一n ). 2.由均值不 等式得
3(
)。
= 3 C ·‘ ·’ )J



a + c 0 + D + C a + c + d .
l 1
1 1


丁6丁+c丁d丁≤ (a+b+c)丁(a+c+d)
im
: ?
8.设 正 整 数 n i >2.圆 周 上 放 置 了 / 2种 颜 色的 2 个 点 ,其 中每种颜 色各 两个点.若某 段圆弧 含的色点个数 属于 区间 [1,2凡一1], 则存在某种颜色使得 圆弧 上该颜色 的点恰 为一 个.证 明 :可 以去掉某 种颜 色 的两 个点 , 使得上述性质仍保 留.
5.已知 锐角 △ ABC满 足 AB>AC,内心 为 ,, 内 的旁 心 为 , ,BC的 中点 为 ,直 线 与边 AC交于点 M,直线 ,。 与边 AB交 于点 记 BC=a,CA=b,AB=C.证 明 :
证 明 :存在一个无穷正整数集合 ,使得 对任意 的 i、. 、 ∈ M,均有
1l a-4-c 口+b-4-C a+c+d’
±! :


【a +c a-4-b-4-C a+c+d
§ + = + + = + =zE (o'1) a c a b C a C + d
甘 c= = = ∈(O,1)).
: (1 一 I+I 一 l+I 一 I)
a丁b丁+cTd丁≤ (a+b+C)丁(a+c+d)丁, 并求等号成立 的充分必要条件.
3.已知正 整数 n> 12.若 整数数 列 , , … , 满 足 :
(1)对任意 的 0≤i≤n,均有 l≤n; (2)对任意 的 0≤ < ≤n,均有 ≠ ,; (3)对任意 的 0≤i<. <k≤n,均有 max{l 一 I,I 一 l}

2018年全国高中数学联赛试题及答案详解(B卷)

2018年全国高中数学联赛试题及答案详解(B卷)

说明: 1. 评阅试卷时,请严格按照本评分标准的评分档次给分. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,10 分为一个档次,不得增加其他中间档次.
一、(本题满分 40 分)设 a, b 是实数,函数 f (x) = ax + b + 9 . x
知,满足条件的情况数为 36 × 2 =72 种.从而所求概率为= 72 7= 2 1 . 6! 720 10
4. 在平面直角坐标系 xOy 中,直线 l 通过原点, n (3, 1) 是 l 的一个法向
量.已知数列{an}满足:对任意正整数 n ,点 (an1, an ) 均在 l 上.若 a2 6 ,则
11.(本题满分 20 分)如图所示,在平面直角 坐 标 系 xOy 中 , A 、 B 与 C 、 D 分 别 是 椭 圆
x2 y2 : a2 b2 1 (a b 0) 的左、右顶点与上、下顶 A 点.设 P, Q 是 上且位于第一象限的两点,满足
y
R
P
C
M
Q
O
Bx
OQ ∥ AP , M 是线段 AP 的中点,射线 OM 与椭
是 0 1 2 4 8 16 31 .
2. 已知圆锥的顶点为 P ,底面半径长为 2 ,高为1.在圆锥底面上取一点 Q ,
使得直线 PQ 与底面所成角不大于 45 ,则满足条件的点 Q 所构成的区域的面积


答案: 3 .
解:圆锥顶点 P 在底面上的投影即为底面中心,记之为 O .由条件知, OP tan OQP 1 ,即 OQ 1 ,故所求的区域面积为 22 12 3 . OQ

第一届至第九届(2010-2018年)陈省身杯全国高中数学奥林匹克试题及答案

第一届至第九届(2010-2018年)陈省身杯全国高中数学奥林匹克试题及答案

第九届陈省身杯全国高中数学奥林匹克1.已知锐角△ABC 的外接圆为⊙O ,边BC 、CA 、AB 上的高的垂足分别为D 、E 、F ,直线EF 与⊙O 的 AB 、AC 分别交于点G 、H ,直线DF 与BG 、BH 分别交于点K 、L ,直线DE 与CG 、CH 分别交于点M 、N .证明:K 、L 、M 、N 四点共圆,且该圆的直径为2222()b c a +-,其中,BC =a ,CA =b ,AB =c .证明 如图1,因为B 、C 、E 、F 四点共圆,所以,AFE ACB ∠=∠.图1°°2GB HA AFE 注意到,+∠=, °°°22AB AG GB ACB +∠==. 从而, HA AG =,即AG AH =.因为C 、A 、F 、D 四点共圆,所以,=BFD ACB AFE BFG ∠=∠∠=∠.从而,直线GH 与直线DK 关于直线AB 对称.由 °°AG AH =, 知GBA ABH ∠=∠.从而,直线BK 与直线BH 关于直线AB 对称.因此,点K 、H 关于直线AB 对称,即AK =AH .类似地:点L 、G 关于直线AB 对称,即AL =AG ;G 、N 关于直线AC 对称,即AG =AN ;M 、H 关于直线AC 对称,即AM =AH .综上,AL =AN =AG =AH =AK =AM .因此,K 、L 、M 、N 四点共圆,且圆心为A ,半径为AG ,记该圆为⊙A . 设⊙O 的半径为R ,⊙O 的直径AQ 与GH 交于点P .如图2.图2则∠AGQ=90°,且AP ⊥GH .由射影定理得2AG AQ AP =⋅.注意到,sin =cos sin AP AF AFE AC CAB ACB .=⋅∠⋅∠⋅∠2222222cos sin =22AQ AP R AC CAB ACBb c a b c a AB AC bc 故.⋅=⋅∠⋅∠+-+-=⋅⋅ 因此,2222b c a AG +-=,⊙A 的直径为2222()b c a +-.。

2010年全国高中数学联赛试题及解答

2010年全国高中数学联赛试题及解答
4
10. (20 分)已知抛物线 y 2 6 x 上的两个动点 A x1 , y1 和B x2 , y2 ,其中 x1 x2 且 x1 x2 4 .线段 AB 的垂直平分线与 x 轴交于点 C ,求 ABC 面积的最大值. x x y y2 解法一:设线段 AB 的中点为 M ( x0 , y0 ) ,则 x0 1 2 2, y0 1 , 2 2
答案:
A1 C1 B1
设正三棱柱的棱长为 2, 则 B 1,0,0 , B1 1,0, 2 , A1 1,0, 2 , P 0, 3,1 . 从而,
BA1 2,0, 2 , BP 1, 3,1 , B1 A1 2,0,0 , B1 P 1, 3, 1 .
当 t 0, 1 时(1)总成立;
1 3 对 0 t 1,0 t 2 t 2 ;对 1 t 0, t 2 t 0 .从而可知 a 12 . 4 2
3. 双曲线 x2 y 2 1 的右半支与直线 x 100 围成的区域内部(不含边界)整点(纵横坐标均为整数的 点)的个数是 答案:9800. 解:由对称性知,只要先考虑 x 轴上方的情况,设 y k k 1, 2,
从而
3a 3a 8 b c 1 0 , z 2 2 ,由 0 z 2 1 知 a . 4 4 3 解法二: f x 3ax2 2bx c . 设 g x f x 1 ,则当 0 x 1 时, 0 g x 2 .
k AB y2 y1 y y1 6 3 . 22 y12 y2 y1 y0 x2 x1 y2 6 6
线段 AB 的垂直平分线的方程是

高中数学奥林匹克竞赛全真模拟试题及答案

高中数学奥林匹克竞赛全真模拟试题及答案

高中数学奥林匹克竞赛全真模拟试题及答

这份文档提供了一套完整的高中数学奥林匹克竞赛全真模拟试题及答案。

这些试题旨在帮助参与奥林匹克竞赛的高中学生进行练和复,以提高他们在数学竞赛中的表现。

试题内容
本文档包含多个数学奥林匹克竞赛模拟试题,涵盖了高中数学的各个领域,包括代数、几何、概率与统计等。

试题的难度逐渐增加,以适应不同水平的竞赛参与者。

每个试题都经过精心设计,以鼓励学生思考和运用创造性的解题方法。

试题答案
除了试题本身,本文档还提供了所有试题的答案。

每个题目后面都有详细的解答和步骤,帮助学生理解和掌握解题方法。

答案部分的内容经过仔细验证,确保准确无误。

使用建议
- 学生可以利用这份文档作为练材料,并按照自己的进度逐步完成试题。

- 学生可以尝试独立解答试题,并在查看答案之前,评估自己的解题能力和方法的正确性。

- 学生可以在解答完试题后,对比自己的解答和文档中的答案和解析,以便发现和纠正自己的错误。

参考书目
- 《高中数学奥林匹克竞赛真题及解析》
- 《高中数学竞赛题研究》
- 《数学奥赛理论与实战攻略》
这份文档旨在为高中数学竞赛的学生提供有用的学习资源,帮助他们在竞赛中取得更好的成绩。

祝愿每位使用这份文档的学生都能够在数学奥林匹克竞赛中大放异彩!。

数学奥林匹克高中训练题(02)及答案

数学奥林匹克高中训练题(02)及答案

数学奥林匹克高中训练题(02)第一试一、选择题(本题满分30分,每小题5分)1.(训练题07)十个元素组成的集合{19,93,1,0,25,78,94,1,17,2}M =----.M 的所有非空子集记为(1,2,,1023)i M i =,每一非空子集中所有元素的乘积记为(1,2,,1023)i m i =.则10231i i m ==∑(C ).(A )0 (B )1 (C) -1 (D)以上都不对2.(训练题07)ABC ∆△ABC 的三个内角,,A B C 依次成等差数列,三条边,,a b c 上的高,,a b c h h h 也依次成等差数列.则ABC ∆为(B )(A )等腰但不等边三角形 (B )等边三角形 (C )直角三角形 (D )钝角非等腰三角形3.(训练题07)对一切实数x ,不等式42(1)10x a x +-+≥恒成立.则a 的取值范围是(A )(A )1a ≥- (B) 0a ≥ (C) 3a ≤ (D) 1a ≤4.(训练题07)若空间四点,,,A B C D 满足8,10,13AB CD AC BD AD BC ======,则这样的三棱锥ABCD 共有(A )个.(A )0 (B )1 (C )2 (D )多于25.(训练题07)已知不等式21log 0(0,)2m x x x -<∈在时恒成立,则m 的取值范围是(B )(A )01m << (B)1116m ≤< (C) 1m > (D) 1016m << 6.(训练题07)方程20(,,,0)ax b x c a b c R a ++=∈≠在复数集内根的个数为n .则(C )(A )n 最大是2 (B )n 最大是4 (C )n 最大是6 (D )n 最大是8二、填空题(本题满分30分,每小题5分)1.(训练题07)函数368y x x =+-的值域是___10,210]_____2.(训练题07)已知椭圆22198x y +=,焦点为1F ,2F ,P 为椭圆上任意一点(但P 点不在x 轴上),12PF F ∆的内心为I ,过I 作平行于x 轴的直线交12,PF PF 于,A B .则12PAB PF F S S ∆∆=___916_____. 3.(训练题07),,A B C 为ABC ∆的三个内角,且cot cot cot 2(cot cot cot )222A B C A B C T ++-++≥.则max T =3__. 4.(训练题07)实数,,a b c 满足22223,285a b c a b c c +-=-+++=.则ab 的最小值是__2516__. 5.(训练题07)在一次足球冠赛中,要求每一队都必须同其余的各个队进行一场比赛,每场比赛胜队得2分,平局各得1分,败队得0分.已知有一队得分最多,但它胜的场次比任何一队都少.若至少有n 队参赛,则n =__6____.6.(训练题07)若1013222m ++是一个完全平方数,则自然数m = 14 .三、(训练题07)(本题满分20分)若正三棱锥底面的一个顶点与其所对侧面的重心距离为4,求这个正三棱锥的体积的最大值.(18)四、(训练题07)(本题满分20分)一个点在x 轴上运动的速度为2米/秒,在平面其它地方速度为1米/秒.试求该点由原点出发在1秒钟内所能达到的区域的边界线.五、(训练题07)(本题满分20分)已知x 为虚数,且1x x+是方程210y ay a -++=的实根.求实数的取值范围.(2225a a ≤->或) 第二试一、(训练题07)(本题满分20分)在ABC ∆中,M 为BC 边上的任一点,ME AB ⊥于E ,MF AC ⊥于F ,AN EF ⊥交BC 于N . 求证:AM AN BM BN CM CN AB AC ⋅+⋅⋅⋅=⋅.二、(训练题07)(本题满分35分)用n 个数(允许重复)组成一个长为N 的数列,且2n N ≥.证明:可在这个数列中找出若干个连续的项,它们的乘积是一个完全平方数.三、(训练题07)(本题满分35分)空间中有100个点,其中每四点都不在同一平面上,每三点都不在同一条直线上,每一点都与其它33点连红线,与另33点连黄线,与最后的33点连蓝线.证明:一定会出现一个三边均不同色的三角形.。

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。

自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。

这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。

在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。

1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。

解析:我们可以通过代入不同的整数n来验证这个结论。

当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。

我们可以继续代入更多的整数,发现每次结果都是素数。

虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。

2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。

解析:我们可以通过数学归纳法证明这个不等式。

首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。

假设当n=k时不等式成立,即(1+1/k)^k < 3。

我们需要证明当n=k+1时,不等式也成立。

通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。

而e约等于2.71828,小于3。

因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。

根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。

3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。

第一届陈省身杯全国高中数学奥林匹克

第一届陈省身杯全国高中数学奥林匹克

第一天
第二天
1. 在 ABC 中, D、E 分别为边 AB、AC 的
中 点, BE 与 CD 交 于 点 G, ABE 的 外 接圆与 ACD 的外接圆交于点 P (P A ), AG
的 延 长 线 与 ACD 的 外 接 圆 交 于 点 L
(L A ). 求证: PL CD. 2. 已知集合
M = (x, y ) y
ABC 的 外接 圆 O 交于 点 L、M、N, LD、
ME、NF 分别与 O 交于 点 P、Q、R. 过 P 作
PA 的垂线 lA , 过 Q 作 QB 的垂线 lB, 过 R 作
RC 的垂线 lC. 证明: lA、lB、lC 三线共点. 6. 设正实数 a、b、c满足 a3 + b3 + c3 = 3.
从而, 以点 B 为圆心、r为半径的圆在 T
的内部 (不含边界 ). 于是, 以点 B 为圆心的 内切圆半径大于 r, 矛盾.
因 T 关于点 B 对称, 所以, 其内切圆 B
就是以 B 为圆心与 y = 1 x2 相内切的 B, 设 4
其半径为 r0.

B 与 y=
1 4
x2
切于

C ( a,
b). 则
49| ( 77l+ 14) 7 |( 11l+ 2) 7 |( 4l+ 2), 即 4l+ 2 0( m od 7).
此同余式的解为 l 3(m od 7). 故 p = 2l + 1 0(m od 7). 又 p 为质数, 因此, p 只能为 7. 注意到 37 + 47 = 2 187+ 16 384
b = a2 . 4
y = 1 x2 在点 C 的切线 l方程为 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九届陈省身杯全国高中数学奥林匹克
1.已知锐角△ABC 的外接圆为⊙O ,边BC 、CA 、AB 上的高的垂足分
别为D 、E 、F ,直线EF 与⊙O 的 AB 、
AC 分别交于点G 、H ,直线DF 与BG 、BH 分别交于点K 、L ,直线DE 与CG 、CH 分别交于点M 、N .证明:K 、L 、M 、N 四点共圆,且该圆的直径为2222()b c a +-,其中,BC =a ,CA =b ,AB =c .
证明 如图1,因为B 、C 、E 、F 四点共圆,所以,AFE ACB ∠=∠.
图1
°°2
GB HA AFE 注意到,+∠=, °°°22AB AG GB ACB +∠==. 从而, HA AG =,即AG AH =.
因为C 、A 、F 、D 四点共圆,所以,=BFD ACB AFE BFG ∠=∠∠=∠.
从而,直线GH 与直线DK 关于直线AB 对称.
由 °°AG AH =, 知GBA ABH ∠=∠.
从而,直线BK 与直线BH 关于直线AB 对称.
因此,点K 、H 关于直线AB 对称,即AK =AH .
类似地:点L 、G 关于直线AB 对称,即AL =AG ;
G 、N 关于直线AC 对称,即AG =AN ;
M 、H 关于直线AC 对称,即AM =AH .
综上,AL =AN =AG =AH =AK =AM .
因此,K 、L 、M 、N 四点共圆,且圆心为A ,半径为AG ,记该圆为⊙A . 设⊙O 的半径为R ,⊙O 的直径AQ 与GH 交于点P .如图2.
图2
则∠AGQ=90°,且AP ⊥GH .
由射影定理得2AG AQ AP =⋅.
注意到,sin =cos sin AP AF AFE AC CAB ACB .=⋅∠⋅∠⋅∠
2222222cos sin =22AQ AP R AC CAB ACB
b c a b c a AB AC bc 故.⋅=⋅∠⋅∠+-+-=⋅⋅ 因此,2222
b c a AG +-=,⊙A 的直径为2222()b c a +-.。

相关文档
最新文档