高等数学(微分方程)习题及解答

合集下载

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。

为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。

练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。

微分方程(习题及解答)0001

微分方程(习题及解答)0001

2第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2•微分方程5y y xy (A) 1 ; (B) 2 ;3. 下列所给的函数,是微分方程 (A) y C i cosx ;(C) y cosx Csinx ;齐次微分方程2y (3)( x 2(7x(B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ;6y)dx (x y)d y ).(D) 4 ; 0的通解的是( ). C 2 sin x ;G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ;xy x 0 ;(B) xy (D) (x 答(B). 答(C).C 2 si nx 答(D).y)dy 0.答(A).(2y x y)dx答(D).1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是.2 . 微分方程 dx dy0, y x 3 4的解是 .答:2x 2y25 .y x3x2冬C .3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y5 24 . 微分方程 xy y lny 0的通解是 答: yCxe .5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x6. 微分方程 xy y y(ln y ln x)的通解是 . 答: _yxCxe三、解答题y);C .xy a(y 2(x y)d y1•求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解:解:dy 心y⑶ —10 ; ⑷dx解:解:2 . 求下列微分方程满足所给初始条件的特解:(1) 2x yy e ,y x 0 0 ;(2) 解:解:⑶ xdy 2ydx 0, yx 21;⑷解:解:y (y 2 x 3 o.y si nx yl ny2xtf - dt ln 2,求f (x)的非积分表达式. 答:f(x) e x ln2 .0 2§ 一阶线性微分方程、全微分方程23xy xy 的通解.可降阶的高阶微分方程、二阶线性微分方程、单项选择题 1.方程ysinx 的通解是().1.下列所给方程中,是一阶微分方程的是((A)字址dx (C)乎dx 2•微分方程(X (A) 齐次微分方程; (C) 可分离变量的微分方程;23(lnx)y ;(B)(x y)2 ;(D) y 2)dx 2xydy ).dy dx2y x 1(x(x y)dx (x y)dy 答(B).0的方程类型是 (B) 一阶线性微分方程; (D)全微分方程.( ).答(D).二、填空题1 .微分方程xy e 的通解为.答: y Cedx32 .微分方程 (x 2 y)dx xdy 0的通解为.答:x3xy 3 •方程(x y)(dx dy) dx dy 的通解为.答: x y 三、简答题C .ln(x y)1 .求下列微分方程的通解:3.方程xy . x (A)齐次方程;(C)伯努利方程;(B) 一阶线性方程;(D)可分离变量方程.答(A).xxxe(1)ycosx sin xex 竺dx解:⑶ 解:xy3x 解:⑷解:ytanx sin2x ;(5) (y 2 6x)塑 dx 2ye y(xe y 2y)dy 0 ;解:解:(a 22xy y 2)dx (x y)2dy 0 . 解: 2 .求下列微分方程满足所给初始条件的特解. (1)乎 3y 8, y x 0 2 ;dx解:dy dx解:sin x ,y xx3* •设连续函数f (X )、单项选择题 y 2 y 是()• 3* .求伯努利方程— dx解:(A) y cosx (C) y sin x2.微分方程1C 1x 2 C 2x C 3 ; 2 Gx? C 2X C 3 ;2y xy 满足条件y (A) y (x 1)2;(B) y cosx G ; (D) y(B)2sin 2x .答(A) y x2的解是(2).1(C) y -(x3. 对方程y1)21 2 ;y 2,以下做法正确的是 y p 代入求解;(D)答(C).(A)令 y p(x), (C)按可分离变量的方程求解;4. 下列函数组线性相关的 是(2 x2 x(A) e , 3e ;(C) sinx, cosx ;5. 下列方程中,二阶线性微分方程是(A) y (C) y 6. y 1, (A) y (C) y (D) yp(y), yp p 代入求解;答(B).).32y(y)0 ;2 o 2y 3x ; py qy y 2 ; C 2『2,其中C 2『2,其中2x y y 2是yC i y i C i y iG% (B) 2xe 3x ,e ;(D)2xe 2x,xe).(B) y 2yy xy (D) y 2xy2x y则其通解是().(B) yC 1y1C 2 y2 ;(0的两个解, xe ;2e x .((B)令 y(D)按伯努利方程求解. 答(A).答(D).y 1与y 线性相关; y 与y 2线性无关.7.下列函数组线性相关的 是( ).(A) e 2x , 3e 2x ; (C) si nx,、填空题 答(D).1 .微分方程 cosx; (B) (D) 3x2xy x sinx 的通解为 2x : e , e2xe , xe答(A).答:sin x C 1e xC 1x C 2. x C 2.三、简答题 1 •求下列微分方程的通解.2(1) y 1 (y); (2) y 如)2解: 解:2 .求方程y x(y )2 0满足条件y x12,y x 1 1的特解.2 .微分方程 答:y y x 的通解为 解: § 二阶常系数线性齐次微分方程、单项选择题 1.下列函数中,不是微分方程 y y 0的解的是( ).(A) y sin x ; (B) y cosx ; (C) y e x ;(D) y sin x cosx .答(C).x 3 x2.下列微分方程中,通解是 y GeC ?e 的方程是( ).(A) y 2y 3y 0 ;(B) y 2y 5y 0 ; (C) yy 2y 0 ;(D) y 2y y 0 .答(A)3.下列微分方程中, 通解是y C 1e xC 2 x xe 的方程是().(A) y 2y y 0 ;(B) y 2yy 0 ;(C) y2y y 0 ;(D) y 2y4y 0 .答(B)4.下列微分方程中, 通解是y xe (C 1 cos2x C 2sin2x)的方程是().(A) y 2y 4y 0 ;(B) y2y 4y 0(C) y2y5y 0 ;(D)y 2y5y 0 .答(D) 5.若方程 ypyqy 0的系数满足1 p q 0 ,则方程的一个解是( ).(A) x ;(B) x e ;(C) xe(D) sin x . 答(B)6*.设 y f(x)是方程 y 2y 2y 0 的一个解,若 f(X o ) 0, f (xj 0,则 f(x)在 x x 0 处( ).(A) x 0的某邻域内单调减少;(B) X 0的某邻域内单调增加;(C)取极大值;(D)取极小值.答(C).、填空题1 •微分方程的通解为 y 4y 0的通解为. 答: y C 1 C 2e 4x .2 .微分方程y y 2y 0的通解为 答: y C 1e x C 2e 2x .3 .微分方程y4y 4y 0的通解为 答: y Ge 2x C 2xe 2x .4 .微分方程y 4y 0的通解为答: y C 1 cos2x C 2si n2x 5 .方程 y 6y 13y 0 的通解为 __________________________ . 答:y e 3x (C 1 cos2x C 2sin 2x). 三、简答题1 •求下列微分方程的通解:(1) y y 2y 0 ; (2) 4d ^ 20空 25x 0 .dt 2 dt解:解:、单项选择题 1.微分方程 y y2x 的一个特解应具有形式 ( ).(A) Ax 2;(B) Ax 2Bx ;(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C).2.微分方程 y y2x 的一个特解应具有形式 ().(A) Ax 2 ;(B) Ax 2Bx -(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C)3.微分方程y 5y6y xe 2x 的一个特解应具有形式( ).(A) Axe 2x;(B) (Ax 2x B)e(C) (Ax 2Bx C)e 2x ;(D) x(Ax B)e 2x答(B) 4.微分方程y y2 y x 2e x 的一个特解应具有形式().(A) Ax 2e x(B) (Ax 2x Bx)e解:2 •求下列方程满足初始条件的特解.(1) y 4y 3y 0,y x 0 10, y x 06⑵ y 25y 0, y x 05,y x 02.解:§ 二阶常系数线性非齐次微分方程(C) x(Ax2Bx C)e x;(D) (Ax2 Bx C)e x.答(C).5. 微分方程y 2y 3y e x sin x的一个特解应具有形式().(A) e x(AcosxBsinx);(B) Ae x sinx ;(C) xe x (Asin x Bcosx) ;(D) Axe x sinx 答(A). 、填空题1 .微分方程y 4y 3 x x的一个特解形式为答:y*3x x4 82.微分方程y 2y x的一个特解形式为. 答:y* x(Ax B).3 .微分方程y 5y 6y xe x的一个特解形式为.答:y* (Ax B)e x.4.微分方程y 5y 6y xe3x的一个特解形式为.答:y* x(Ax B)e3x.5 .微分方程y y sin x的一个特解形式为. 答:y* Asin x .6 .微分方程y y si n x的一个特解形式为. 答:y* x(Acosx Bsin x)三、简答题1.求下列微分方程的通解•:(1) 2y y y 2e x;(2) y 5y 4y 3 2x ;解:解:⑶y 6y 9y (x 1)e2x.解:。

高中数学微分方程练习题及参考答案2023

高中数学微分方程练习题及参考答案2023

高中数学微分方程练习题及参考答案2023一、填空题1.微分方程 $y'=x^2$ 的通解为 $y=$_____________。

2.微分方程 $y'-2y=\cos x$ 的通解为 $y=$_____________。

3.微分方程 $y''-3y'+2y=0$ 的通解为 $y=$_____________。

4.微分方程 $y''+y=e^x$ 的通解为 $y=$_____________。

5.微分方程 $(x-1)y'-y=3$ 的通解为 $y=$_____________。

二、选择题1.微分方程 $y''-y'-12y=0$ 的解正确的选项是A. $y=c_1e^{4x}+c_2e^{-3x}$B. $y=c_1e^{3x}+c_2e^{-4x}$C. $y=c_1\sinh3x+c_2\cosh4x$D. $y=c_1\sinh4x+c_2\cosh3x$2.对于微分方程 $y''-2y'+y=x^3\mathrm{e}^{2x}$,以下选项正确的是A. 特解应为多项式 $Ax^3+Bx^2+Cx+D$B. 对于其特解应有 $A=0$C. 对于其特解应有 $B=0$D. 对于其特解应有 $B\neq0$3.微分方程 $y''-y'-2y=0$,其中 $y_1(x)=e^{2x}$,$y_2(x)=?$,正确的选项是A. $y_2(x)=e^{-x}$B. $y_2(x)=e^{x}$C. $y_2(x)=e^{-2x}$D. $y_2(x)=\mathrm{e}^{-2x}-4x\mathrm{e}^{-2x}$三、解答题1.求微分方程 $y'+\frac{1}{x}y=2\sin\ln x$ 的通解。

2.求微分方程 $y'-y=x\mathrm{e}^x$ 的通解。

微分方程习题及答案

微分方程习题及答案

微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-;(4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解(1)0 ,sec tan 0==-'=x yx x y y ;(2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xyy +-='§4 可降阶的高阶方程1.求下列方程通解。

微分方程课后习题答案

微分方程课后习题答案

微分方程课后习题答案微分方程是数学中的重要分支,它研究的是描述自然现象中变化规律的方程。

在学习微分方程的过程中,课后习题是巩固知识、提高技能的重要途径。

本文将为大家提供一些微分方程课后习题的答案,希望能够帮助大家更好地理解和掌握微分方程的知识。

1. 一阶线性微分方程题目:求解微分方程 dy/dx + y = 2x解答:这是一个一阶线性微分方程,我们可以使用常数变易法来求解。

首先,将方程改写为 dy/dx = 2x - y设 y = u(x) * v(x),其中 u(x) 是未知函数,v(x) 是待定函数。

将 y = u(x) * v(x) 带入方程,得到 u(x) * v'(x) + u'(x) * v(x) = 2x - u(x) * v(x)整理得 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x根据乘积法则,有 (u(x) * v(x))' = 2x对上式两边同时积分,得到 u(x) * v(x) = x^2 + C,其中 C 是常数。

然后,我们需要求解 u(x) 和 v(x)。

由于 v(x) 是待定函数,我们可以选择 v(x) = e^(-x),这样 v'(x) = -e^(-x)。

将 v(x) = e^(-x) 带入 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x,得到 u'(x) * e^(-x) = 2x对上式两边同时积分,得到 u(x) * e^(-x) = x^2 + C将 u(x) * e^(-x) = x^2 + C 代入 y = u(x) * v(x),得到 y = (x^2 + C) * e^x所以,原微分方程的通解为 y = (x^2 + C) * e^x,其中 C 是常数。

2. 二阶线性常系数齐次微分方程题目:求解微分方程 d^2y/dx^2 + 2dy/dx + 2y = 0解答:这是一个二阶线性常系数齐次微分方程,我们可以使用特征方程法来求解。

《高等数学》第11章 微分方程习题详解

《高等数学》第11章 微分方程习题详解

即 .
再对 求导,得

即 ,
所以 是所给微分方程 的解.
3.确定下列各函数关系式中所含参数,使函数满足所给的初始条件.
(1) , ;(2) , .
解(1)将 , 代入微分方程,得
所以,所求函数为 .
(2) ,将 , 分别代入
和 ,

, ,
所以,所求函数为 .
4.能否适当地选取常数 ,使函数 成为方程 的解.
(*)
这是齐次方程.
设 ,则 , ,于是(*)式可化为



变量分离,得

两端积分,得



将 代入上式,得原方程的通解为

(2)原方程可写成

该方程属于 类型,一般可令 .
令 ,有 ,则原方程可化为



积分得

将 代入上式,得原方程的通解为

习 题 11-3
1.求下列微分方程的通解:
(1) ;(2) ;(3) ;
(2) , ;
(3) , ;
(4) , .
解(1)将 代入所给微分方程的左边,得左边 ,而右边=2 左边,所以 是 的解.
(2)将 , 代入所给微分方程的左边,得左边 右边,所以 是所给微分方程 的解.
(3)将 , , 代入所给微分方程的左边,得
左边 (右边),
所以 不是所给微分方程 的解.
(4)对 的两边关于 求导,得
(2)原方程分离变量,得

两端积分,得



故原方程的通解为.Biblioteka (3)原方程可化成,
分离变量,得

两端积分,得 ,

高等数学微分方程第七章练习题答案

高等数学微分方程第七章练习题答案

第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。

5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。

8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。

(完整版)微分方程试题及部分应用题答案整理版

(完整版)微分方程试题及部分应用题答案整理版

第十章微分方程习题一.填空题:(33)1-1-40、微分方程4233''4''')'(x y x y y 的阶数是 . 1-2-41、微分方程0'2'2xy yy xy 的阶数是 . 1-3-42、微分方程0d d d d 22sxs x s的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(的阶数是 .1-5-44、微分方程xyxy2d d 满足条件1|'0xy 的特解是 .1-6-45、微分方程0d d yxy的通解是 .1-7-46、方程y e y x'的通解是 . 1-8-47、方程y y y ln '的通解是 .1-9-48、方程04'4''y y y 的通解是 . 1-10-49、方程04'4''y y y 的通解是 . 1-11-50、方程013'4''yy y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y ''的通解为 . 1-14-53、微分方程x e y xsin ''2的通解为 .1-15-54、若0d ),(dx ),(yy x Q y x P 是全微分方程, 则Q P,应满足 .1-16-55、与积分方程xy x f yx x d ),(0等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22yxy xx y xy 化为齐次方程是 .1-18-57、通解为21221,(C C e C eC yxx 为任意常数)的微分方程为 .1-19-58、方程yx e y 2'满足条件0xy 的特解是 .1-19-59、方程0dy1dx2x xy 化为可分离变量方程是1-20-60、方程xy y 2'的通解是1-21-61、方程x yxyxy xyd d d d 22化为齐次方程是1-22-62、若t ycos 是微分方程09''yy 的解, 则.1-23-63、若ktCe Q 满足Qdt dQ03.0, 则k.1-24-64、y y 2'的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x 1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、圆222r yx 满足的微分方程是1-27-67、ax ae y满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q yx P x的通解是 .1-29-69、已知特征方程的两个根3,221r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y是微分方程y xy 2'的解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与之和.1-32-72、二阶常系数齐次线性微分方程0'''qypy y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22dyxy xdxy xy写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dxdy 的通解是 ( )A.2x yB.25x y C.2Cx yD.Cxy 2-2-57、微分方程0dy 1dx 2x xy 的通解是 ( ) A.21x eyB.21x CeyC.x C yarcsin D.21xC y 2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2x y xB. 0dy dx x yC.0dy)(1dx)1(xy y xy D.dydx)(22xy y x2-4-59、下列函数组中,线性无关的是 ( ) A.xxe e 32, B.x x 2sin ,2cos C. x x x sin cos ,2sin D.2ln ,ln xx 2-5-60、方程03'2''y y y 的通解是 ( )A.xxe C eC y 321 B. xxeC eC y 321 C.xx eC eC y 321 D.xxeC e C y3212-6-61、方程0''y y 的通解是 ( ) A.x C ysin B.x C ycos C.x C xycos sin D.xC xC ycos sin 212-7-62、下列方程中是可分离变量的方程是( )A.xyyx 33dxdy B.dy 2dx)3(2xy y exC.234dxdy xyyx D.yx xyy321dxdy 2-8-63、微分方程0cot 'x y y 的通解是 ( ) A.x C ycos B.x C ysin C.x C ytan D.xC ycsc2-9-64、已知微分方程0''pyy 的通解为)(212x C C e yx,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'yy 的通解是 ( )A.C x y2sin B.C eyx24 C.xCe y2 D.xCey 2-11-66、方程xy2dx dy的通解是 ( )A.C ex2B.Cxe2C.2CxeD.2)(C x e2-12-67、xe y ''的通解为y( )A.xe B.xe C.21C xC exD.21C x C ex2-13-68、微分方程xe21dxdy满足1xy 的特解为 ( )A.1221xeyB.3221x ey C.C ey x212 D.212121xey2-14-69、微分方程0ydy-dx 3x 的通解是 ( ) A.Cyx2422B.Cyx2422C.2422yxD.12422yx2-15-70、微分方程0ydy-dx 3x 的通解是 ( )A.222yxB.933yxC.133yxD.13333yx2-16-71、过点,0()2的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32xyB.52xy C.53xey D.5xCe y 2-17-72、齐次方程x yxy tandx dy化为可分离变量的方程, 应作变换 ( )A.2ux yB.22x u yC.ux yD.33xu y2-18-73、设方程)()('x Q y x P y 有两个不同的解21,y y ,若21y y 也是方程的解,则( ) A.B.0 C. 1 D.,为任意常数2-19-74、方程dx 2dx dy y x x 的通解是 ( ) A.x Cxy2B. x xC y2sin C.C xy 2cos D.Cxy 22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.xyxy 2'B .xxyy sin 'C .xyy' D.xyy 2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y xy' B.y xy'C.x yy' D.xy y'2-22-77、方程2)3(,0'y yy 的解是 ( )A.xey 32 B.xey 32 C.32x ey D.32x ey 2-23-78、微分方程x y y ln '的通解是 ( ) A.xx eyln B. xx Ceyln C.xx x ey ln D.xx x Cey ln 2-24-79、下列哪个不是方程y y 4''的解 ( )A. xey22 B.xe y2 C.xey 2 D.xey 22-25-80、方程0sin '''653)4(yy y y x xyy的阶是 ( )A. 6B. 5C. 4D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2,则这条曲线是( )A.椭圆 B.抛物线 C.双曲线 D. 圆2-27-82、下列可分离变量的方程是 ( )A.xyy x dxdy33B.2)3(2xydy dxy exC. xy yx dxdy D.yx xyy dxdy 3212-28-83、微分方程0cot 'xy y 的通解是 ( )A.x C ycos B.x C ysin C.x C ytan D.xC y csc 2-29-84、已知微分方程0''pyy 的通解为)(212x C C e yx ,则p 的值( )A. 1B. 0C.21D.41三.计算题:(59)3-1-52、0d tan sec d tan sec 22y x y x y x 3-2-53、0ln 'yy xy 3-3-54、0d sec )2(d tan 32yy e x y e x x3-4-55、yx y y x xy22222')1(3-5-56、yx eye x dxdy3-6-57、0)1()1(xdy y ydxx3-7-58、x x y yy x d sin cos d sin cos ,4|0xy 3-8-59、0)0(,02')1(22y xy y x3-9-60、1)(,ln 2'e y x y y 3-10-61、x x y y y x d sin cos d sin cos ,4|0xy 3-11-62、0y)dx -(x dy)(y x3-12-63、)ln (ln dx d x y y y x 3-13-64、0)2(22dyx dx xy y3-14-65、xy x y xy tan'3-15-66、xyx y x y xy ln)('3-16-67、dxdy xydxdy xy223-17-68、x y yx y', 2|1x y 3-18-69、x y xy y', ey ex|3-19-70、2|,'122xy y xyxy3-20-71、xx yxy sin 1', 1|xy 3-21-72、xex y xy 43'3-22-73、342'xxyy 3-23-74、xyxy ln 11'3-24-75、xeyxxy x21'3-25-76、x xy y sec tan ', 0|0xy 3-26-77、xx yxy sin 1', 1|xy 3-27-78、22112'xy xx y ,|0xy 3-28-79、x x yxy ln ', ey ex|3-29-80、22d dyx xexy x3-30-81、)sin (cos d dy2x xy yx3-31-82、5d dyxyy x3-32-83、02d dy4xyxy x3-33-84、4)21(3131d dy yx yx3-34-85、xyxy x 2d dy23-35-86、xy y '''3-36-87、01)'(''2y yy 3-37-88、01''3y y 3-38-89、y y 3'', 1|0xy , 2|'0xy 3-39-90、223''yy ,1|3xy ,1|'3xy 3-40-91、02''yy 3-41-92、013'4''y y y 3-42-93、0'2''y y y 3-43-94、04'5''y y y 3-44-95、04'3''y y y , 0|0xy , 5|'0xy 3-45-96、029'4''y y y , 0|0x y ,15|'0xy 3-46-97、0'4''4y y y , 2|0x y , 0|'0x y 3-47-98、0'4''4y y y , 2|0xy , 0|'0xy 3-48-99、013'4''y y y , 0|0x y , 3|'0x y 3-49-100、04'4''y y y , 0|0x y , 1|'0xy 3-50-101、xey y y 2'''23-51-102、x eyy xcos ''3-52-103、xex y y y 3)1(9'6''3-53-104、'''22xy y ye3-54-105、123'2''x y y y 3-55-106、''sin 20y yx, 1|xy , 1|xy 3-56-107、52'3''yy y , 1|0xy , 2|'0xy 3-57-108、xe y y y 29'10'',76|0x y ,733|'0x y 3-58-109、xxe yy 4'', 0|0xy , 1|'0xy 3-59-110、xxeyy y 26'5''四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知xxxy t t y tt 03231d )(12, 求函数)(x y 4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x2.4-4-14、试求x y ''的经过点)1;0(M 且在此点与直线12x y相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x 满足xx t t t x x 01d sin )(2cos )(, 求)(x .4-8-10、已知某商品需求量Q 对价格p 的弹性为22pEpEQ, 最大需求量为1000Q, 求需求函数)(p f Q.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为02v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dL L Ak x,(其中0,0Ak), 若不做广告, 即0x时纯利润为0L , 且A L 0, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101,投资额)(t I 是国民收入增长率t d dy的31. 设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w 证明: )(x w 满足方程0)('wx p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x的3个相异特解,证明1213y y y y 为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).解. 设)(t i i, 由回路电压定律tE dtdi LRisin 0, 即tLE LR dtdisin 0]sin [)(0C dt teLE et i t dtLRLR =]sin [0C dt te LE et t LR LR =)cos sin (2220t L t R LRE CetLR将0|0ti 代入通解得222LRLE C)cos sin ()(2220t L t R LeLRE t i t LR488.设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系解:.物体重力为mg w, 阻力为kv R , 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dtdv m ,从而得线性方程gv mk dtdv ,|0tv tmkdtdtCeg km C dt gee v km m k ][, 将0|0tv 代入通解得gkm C)1(t mk eg km v, 再积分得122C gekm gtkm Stmk,将0|0t S 代入求得gkm C 221)1(22t mkeg km gtkm S 489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x yt v y 1'0, 又弧OP 的长度为x tv dxy 0022'1,从以上两式消去t v 0得''121''')1(2y y y y x , 即2'121'')1(y y x 根据题意, 初始条件为0)0(y , 0)0('y 令p y', 原方程化为2121')1(pp x , 它是可分离变量得方程,解得21)1(112x C pp , 即21)1('1'12x C y y 将0)0('y 代入上式得11C , 故21)1('1'2x y y 而21)1(''1'1'122x y y y y , 得2121)1()1(21'x x y 积分得22321)1(31)1(C x x y, 将0)0(y 代入上式得322C ,所以鱼雷的航行曲线为32)1(31)1(2321x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dLL A k x ,(其中0,0Ak ), 若不做广告, 即0x时纯利润为0L , 且AL 0, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL,|L L x, 解可分离变量得微分方程, 得通解kxCeAL , 将00|L L x 代入通解, 得AL C 0, 所以纯利润L 与广告费x 之间的函数关系为kxeA LAx L )()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy的31.设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:yS101,dt dyI31, 解之得通解tCe y103, 将5|0ty 代入通解得5C, 所以国民收入函数为tey 1035492.试建立描述市场价格形成的动态过程的数学模型.解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dtdp,)0(p p , 其中0p 为0t时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kpr p f ),(, d cpp g )(, 则方程为)()(d b k p c k k dtdp ,)0(p p , 其中d c b k ,,,均为正常数, 其解为ckd b eckd b p t p tc k k )(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(p g r p f , 即dpc bpk ,则c kdb p, 从而价格函数pep p t p c k k )(0)()(,取极限:pt p t)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p 0, 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于tc k k ec kk p pdtdp)(0)()(, 所以当p p 0时, 0dtdp,)(t p 单调下降向p 靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。

(完整版)微分方程试题及部分应用题答案整理版

(完整版)微分方程试题及部分应用题答案整理版

第十章 微分方程习题一.填空题:(33)1-1-40、 微分方程4233''4''')'(x y x y y =++的阶数是 . 1-2-41、 微分方程0'2'2=+-xy yy xy 的阶数是 . 1-3-42、 微分方程0d d d d 22=++s x sx s 的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(=-+-的阶数是 . 1-5-44、微分方程xy x y2d d =满足条件1|'0==x y 的特解是 . 1-6-45、微分方程0d d =+y x y的通解是 .1-7-46、方程y e y x='的通解是 . 1-8-47、 方程y y y ln '=的通解是 . 1-9-48、方程04'4''=+-y y y 的通解是 . 1-10-49、方程04'4''=+-y y y 的通解是 . 1-11-50、方程013'4''=+-y y y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221-==r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y =''的通解为 . 1-14-53、微分方程x e y x sin ''2-=的通解为 . 1-15-54、若0d ),(dx ),(=+y y x Q y x P 是全微分方程, 则Q P ,应满足 . 1-16-55、与积分方程xy x f y x x d ),(0⎰=等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22=-++y xy x x y xy 化为齐次方程是 . 1-18-57、通解为21221,(C C e C e C y xx +=为任意常数)的微分方程为 .1-19-58、方程yx e y -=2'满足条件00==x y 的特解是 .1-19-59、方程0dy 1dx 2=-+x xy 化为可分离变量方程是1-20-60、方程xy y 2'=的通解是1-21-61、 方程x y xy x y x y d d d d 22=+化为齐次方程是1-22-62、 若t y ωcos =是微分方程09''=+y y 的解, 则=ω .1-23-63、若ktCe Q =满足Qdt dQ03.0-=, 则=k .1-24-64、y y 2'=的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x -1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、 圆222r y x =+满足的微分方程是1-27-67、 axae y =满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q y x P x =+的通解是 .1-29-69、已知特征方程的两个根3,221-==r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y =是微分方程y xy 2'=的 解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与 之和. 1-32-72、二阶常系数齐次线性微分方程0'''=++qy py y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22=---dy xy x dx y xy 写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dx dy=的通解是 ( )A.2x y = B. 25x y = C. 2Cx y = D.Cx y =2-2-57、 微分方程0dy 1dx 2=-+x xy 的通解是 ( ) A.21x ey -= B.21x Cey -= C.x C y arcsin = D. 21x C y -=2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2=--x y x B. 0dy dx =-x y C. 0dy )(1dx )1(=-++xy y xy D.0dy dx )(22=++xy y x 2-4-59、下列函数组中,线性无关的是 ( )A.x x e e 32,B.x x 2sin ,2cosC. x x x sin cos ,2sinD.2ln ,ln x x2-5-60、方程03'2''=--y y y 的通解是 ( )A.x x e C e C y 321--+=B. x x e C e C y 321+=C. x x e C e C y 321-+=D. x x e C e C y 321+=-2-6-61、方程0''=+y y 的通解是 ( ) A.x C y sin = B.x C y cos = C.x C x y cos sin += D.x C x C y cos sin 21+=2-7-62、 下列方程中是可分离变量的方程是 ( )A. xy y x -=33dx dyB.0dy 2dx )3(2=++xy y e x C. 234dx dy xy y x += D.y x xy y 321dx dy ++= 2-8-63、 微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc =2-9-64、已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'=-y y 的通解是 ( )A.C x y +=2sinB.C e y x +=24C.x Ce y 2=D. xCe y =2-11-66、方程xy 2dx dy=的通解是 ( )A.C e x +2B.Cxe+2C. 2Cx eD. 2)(C x e +2-12-67、 xe y -=''的通解为=y ( )A.x e --B. xe - C. 21C x C ex++- D. 21C x C e x ++--2-13-68、微分方程xe 21dx dy -=满足10-==x y 的特解为 ( )A.1221+-=-x ey B. 3221-=-x ey C. C ey x +-=-212 D.212121--=-xe y2-14-69、微分方程0ydy -dx 3=x 的通解是 ( )A.C y x =-2422B. C y x =+2422C. 02422=-y xD. 12422=+y x2-15-70、 微分方程0ydy -dx 3=x 的通解是 ( )A.222=+y xB. 933=+y xC. 133=+y x D. 13333=+y x2-16-71、 过点,0()2-的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32-=x yB. 52+=x yC.53-=x e yD.5-=x Ce y 2-17-72、齐次方程x yxy tandx dy =化为可分离变量的方程, 应作变换 ( ) A. 2ux y = B. 22x u y = C. ux y = D.33x u y =2-18-73、 设方程)()('x Q y x P y =+有两个不同的解21,y y ,若21y y βα+也是方程的解,则( )A.βα=B. 0=+βαC. 1=+βαD. βα,为任意常数2-19-74、 方程dx 2dx dy y x x =+的通解是 ( )A.x Cx y +=2B. x x C y +=2sinC. C x y +=2cosD.C x y +=22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.x y xy =+2' B .x xy y sin '=+ C .x yy =' D .xy y -=2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y x y -=' B. y x y =' C. x y y -=' D. x y y ='2-22-77、方程2)3(,0'==+y y y 的解是 ( )A.x e y -=32B. x e y --=32C. 32-=x e yD. 32--=x e y2-23-78、 微分方程x y y ln '=的通解是 ( )A.x x e y ln =B. x x Ce y ln =C. x x x e y -=lnD. x x x Ce y -=ln2-24-79、下列哪个不是方程y y 4''=的解 ( )A. x e y 22=B. x e y 2=C. x e y 2-=D. x e y 2=2-25-80、方程0sin '''653)4(=-+++y y y y x xy y 的阶是 ( ) A. 6 B. 5 C. 4 D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2-,则这条曲线是( )A. 椭圆B. 抛物线C. 双曲线D. 圆2-27-82、下列可分离变量的方程是 ( )A. xy y x dx dy-=33 B.02)3(2=++xydy dx y e x C. xy yx dx dy += D.y x xy y dx dy 321++= 2-28-83、微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc = 2-29-84、 已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值( )A. 1B. 0C. 21D. 41三.计算题:(59)3-1-52、0d tan sec d tan sec 22=+y x y x y x 3-2-53、 0ln '=-y y xy3-3-54、0d sec )2(d tan 32=-+y y e x y e x x 3-4-55、y x y y x x y 22222')1(=-+- 3-5-56、 y xe y e x dx dy +-=- 3-6-57、 0)1()1(=-++xdy y ydx x3-7-58、 x x y y y x d sin cos d sin cos =,4|0π==x y3-8-59、0)0(,02')1(22==+-y xy y x 3-9-60、 1)(,ln 2'==e y x y y3-10-61、 x x y y y x d sin cos d sin cos =,4|0π==x y3-11-62、 0y)dx -(x dy )(=++y x3-12-63、 )ln (ln dx d x y y yx-=3-13-64、0)2(22=+-dy x dx xy y 3-14-65、x yx y xy tan'=-3-15-66、x yx y x y xy ++=-ln)('3-16-67、dx dy xy dx dy x y =+223-17-68、x y y x y +=', 2|1==x y3-18-69、x y x y y +=', e y e x ==|3-19-70、2|,'122=-=-=x y y x y xy3-20-71、x x y x y sin 1'=+, 1|==πx y 3-21-72、x e x y x y 43'=-3-22-73、 342'x xy y =-3-23-74、x y x y ln 11'=-3-24-75、x e y x x y x 21'=-+ 3-25-76、 x x y y sec tan '=-,|0==x y3-26-77、x x y x y sin 1'=+, 1|==πx y 3-27-78、22112'x y x xy +=+-, 0|0==x y3-28-79、x xy xy ln '=-, e y e x ==|3-29-80、 22d dyxxe xy x -+=3-30-81、)sin (cos d dy2x x y y x -=+ 3-31-82、5d dyxy y x =- 3-32-83、02d dy4=++xy xy x3-33-84、4)21(3131d dy y x y x -=+3-34-85、xy xy x 2d dy 2-= 3-35-86、x y y +='''3-36-87、01)'(''2=++y yy 3-37-88、01''3=+y y3-38-89、y y 3''=, 1|0==x y , 2|'0==x y3-39-90、223''yy =, 1|3==x y , 1|'3==x y3-40-91、02''=+y y 3-41-92、013'4''=++y y y 3-42-93、0'2''=+-y y y 3-43-94、04'5''=+-y y y 3-44-95、04'3''=--y y y ,|0==x y ,5|'0-==x y 3-45-96、029'4''=++y y y , 0|0==x y ,15|'0==x y3-46-97、0'4''4=++y y y , 2|0==x y , 0|'0==x y 3-47-98、0'4''4=++y y y ,2|0==x y ,|'0==x y 3-48-99、013'4''=+-y y y , 0|0==x y , 3|'0==x y3-49-100、04'4''=+-y y y ,|0==x y ,1|'0==x y3-50-101、xe y y y 2'''2=-+3-51-102、x e y y x cos ''+=+ 3-52-103、x e x y y y 3)1(9'6''+=+-3-53-104、'''22xy y y e --=3-54-105、123'2''+=--x y y y 3-55-106、''sin 20y y x ++=, 1|==πx y , 1|==πx y3-56-107、52'3''=+-y y y ,1|0==x y ,2|'0==x y3-57-108、xe y y y 29'10''=+-,76|0==x y ,733|'0==x y 3-58-109、xxe y y 4''=-, 0|0==x y , 1|'0==x y 3-59-110、xxe y y y 26'5''=+-四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知⎰--=+xx x y t t y t t 03231d )(12, 求函数)(x y4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x =2.4-4-14、试求x y =''的经过点)1;0(M 且在此点与直线12+=xy 相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x ϕ满足⎰+=+xx t t t x x 01d sin )(2cos )(ϕϕ, 求)(x ϕ.4-8-10、已知某商品需求量Q 对价格p 的弹性为22p Ep EQ-=, 最大需求量为1000=Q , 求需求函数)(p f Q =.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰,又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为L , 且AL <<00, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31. 设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''=++y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w -==证明: )(x w 满足方程0)('=+w x p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x =+的3个相异特解,证明 1213y y y y --为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).解. 设)(t i i =, 由回路电压定律tE dt diLRi ωsin 0=+, 即t L E L R dt di ωsin 0=+∴⎰+⎰⎰=-]sin [)(0C dt te L E e t i t dt LR L Rω=⎰+-]sin [0C dt te L E ett L R LR ω=)cos sin (2220t L t R L R E Cet LR ωωωω-++-将|0==t i 代入通解得2220L R LE C ωω+=∴)cos sin ()(2220t L t R Le L R E t i t LR ωωωωω-++=-488. 设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 解:.物体重力为mg w =, 阻力为kv R -=, 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dt dv m-=,从而得线性方程g v m kdt dv =+, 0|0==t v∴ ⎰--+=+⎰⎰=t m kdt dt Ce g k m C dt ge e v km m k ][, 将0|0==t v 代入通解得 g k m C -=∴ )1(tm k e g k m v --=, 再积分得122C ge k m gt k m S t m k++=-,将0|0==t S 代入求得g k m C 221-=∴ )1(22-+=-t m ke g k m gt k m S489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y =, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x y t v y --=1'0, 又弧OP 的长度为⎰=-xtv dx y 0022'1,从以上两式消去tv 0得''121''')1(2y y y y x -+=--, 即2'121'')1(y y x +=-根据题意, 初始条件为0)0(=y , 0)0('=y令p y =', 原方程化为2121')1(p p x +=-, 它是可分离变量得方程,解得21)1(112--=++x C p p , 即21)1('1'12--=++x C y y 将0)0('=y 代入上式得11=C , 故21)1('1'2--=++x y y而21)1(''1'1'122--=-+=++x y y y y , 得2121)1()1(21'x x y -+-=-积分得22321)1(31)1(C x x y +-+--=, 将0)0(=y 代入上式得322=C , 所以鱼雷的航行曲线为32)1(31)1(2321+-+--=x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系 )(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为0L , 且A L <<00, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL-=,00|LL x ==, 解可分离变量得微分方程, 得通解 kx Ce A L -+=, 将00|L L x ==代入通解, 得A L C -=0, 所以纯利润L 与广告费x 之间的函数关系为kxe A L A x L --+=)()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31.设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:y S 101=, dt dy I ⋅=31, 解之得通解t Ce y 103=, 将5|0==t y 代入通解得5=C , 所以国民收入函数为te y 1035=492.试建立描述市场价格形成的动态过程的数学模型. 解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dt dp-=,0)0(pp =, 其中p 为0=t 时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kp r p f +-=),(, d cp p g +=)(, 则方程为)()(d b k p c k k dt dp-++=,0)0(pp =, 其中d c b k ,,,均为正常数, 其解为c k db ec kd b p t p t c k k +-++--=+-)(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(=-p g r p f , 即d p c b p k +=+-,则c k db p +-=, 从而价格函数p e p p t p c k k +-=+-)(0)()(,取极限: p t p t =∞→)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p =0 , 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于t c k k e c k k p p dt dp )(0)()(+-+-=, 所以当p p >0时, 0<dt dp, )(t p 单调下降向p靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。

微积分习题讲解与答案

微积分习题讲解与答案

习题8.11.指出下列微分方程的阶数,并指出哪些方程是线性微分方程: (1)02)(2=+'-'xy y y y x (2) 02=+'-y y x y x (3)0)(sin 42=+''+'''y x y y x (4)θθ2sin d d =+p p解 (1) 1阶 非线性 (2) 1阶 线性 (3) 3阶 线性 (4) 1阶 线性2.验证下列函数是否是所给微分方程的解 (1) xxy x y y x sin ,cos ==+' (2) 2212,2)1(x C y x xy y x -+==+'- (C 为任意常数) (3) xCe y y y y ==+'-'',02 (C 为任意常数) (4) x xe C eC y y y y 21212121,0)(λλλλλλ+==+'+-'' (C 1 ,C 2为任意常数)(5) C y xy x y x y y x =+--='-22,2)2( (C 为任意常数) (6) )ln(,02)(2xy y y y y y x y x xy =='-'+'+''- 解 (1) 是,左=x x xx x x x xcos sin sin cos 2=+-=右(2) 是,左=x x C x x Cx x 2)12(1)1(222=-++---=右(3) 是,左=02=+-xxxCe Ce Ce =右 (4) 是,左=0)())(()(2121212121221121222211=++++-+x x x x x xe C e C e C e C eC e C λλλλλλλλλλλλλλ =右(5) 是,左==-=---y x yx yx y x 222)2(右(6) 是,左=x xy yx xy y y x xy y x x xy xy xy xy x xy ---+-+----2)()(22)(22332=0)())(2()()(222222232=---+-+---x xy x xy y y x xy xy x xy xy xy xy = 右3.求下列微分方程的解(1) 2d d =x y; (2) x xy cos d d 22=;(3) 0d )1(d )1(=--+y y x y (4) yx x y y )1()1(22++=' 解 (1) C x y x y +==⎰⎰2,d 2d (2) 1sin ,d cos d C x y x x x y +='=''⎰⎰211cos ,d )(sin d Cx C x y x C x x y ++-=+='⎰⎰(3)⎰⎰=+-x y y y d d 11 ⎰⎰=+++-x y y y d d 12)1(解得 ⎰⎰⎰=++-x y y y d d 12d即 C x y y +=++-|1|ln 2(4)⎰⎰+=+dx x xdy y y )1(122解得 2122)1ln()1ln(C x y ++=+整理得 22211C xy =++ 4.已知曲线)(x f y =经过原点,并且它在点),(y x 处的切线的斜率等于22x ,试求这条曲线的方程。

大学数学微分方程练习题及答案

大学数学微分方程练习题及答案

大学数学微分方程练习题及答案微分方程是大学数学中重要的一门学科,它在科学和工程领域中有着广泛的应用。

掌握微分方程的求解技巧对于学生来说至关重要。

以下是一些常见的微分方程练习题及详细解答,希望对你的学习有所帮助。

题目一:求解一阶线性常微分方程给定微分方程:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$分别是已知的函数。

求解该微分方程。

解答一:为了求解上述微分方程,我们可以利用一阶线性常微分方程的常数变易法。

首先将方程写成标准形式:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$分别是已知的函数。

设通解为$y=e^{\int P(x)dx}u(x)$,其中$u(x)$是一个待定的函数。

将该通解代入原微分方程中,经过简化后得到:$u(x)=\int e^{-\int P(x)dx}Q(x)dx+C$,其中$C$是常数。

因此,该微分方程的通解为$y=e^{\int P(x)dx}(\int e^{-\intP(x)dx}Q(x)dx+C)$。

题目二:求解分离变量的微分方程给定微分方程:$\frac{dy}{dx}=f(x)g(y)$,其中$f(x)$和$g(y)$是已知的函数。

求解该微分方程。

解答二:为了求解上述微分方程,我们可以利用分离变量的方法。

首先将方程重写为$\frac{dy}{g(y)}=f(x)dx$。

对两边同时积分,得到$\int \frac{dy}{g(y)}=\int f(x)dx$。

经过积分运算后可得到$\int \frac{1}{g(y)}dy=\int f(x)dx+C$,其中$C$是常数。

因此,该微分方程的通解为$\int \frac{1}{g(y)}dy=\int f(x)dx+C$。

题目三:求解二阶常系数齐次线性微分方程给定微分方程:$\frac{d^2y}{dx^2}+a\frac{dy}{dx}+by=0$,其中$a$和$b$是已知的常数。

微分方程习题(附答案)

微分方程习题(附答案)

微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等27. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y(4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。

高等数学课外作业微分方程部分参考解答

高等数学课外作业微分方程部分参考解答

⾼等数学课外作业微分⽅程部分参考解答⾼等数学课外作业微分⽅程部分参考解答4.1-4.2 微分⽅程的基本概念可分离变量的微分⽅程⼀.1.(1)⼆阶微分⽅程;(2)⼀阶微分⽅程;(3)⼀阶微分⽅程;(4) 不是微分⽅程;(5) ⼀阶微分⽅程。

2.(1)是;(2)不是3.(1)arcsin arcsin .s t C =+ (2)(1)(1).y x e e C +-=4.(1)2y x '=;(2)2.yy x '=- ⼆.1.分离变量得:ln sin dy dxy y x=,两边积分得:ln ln ln csc cot ln y x x C =-+,即ln (csc cot ).y C x x =-将,3x y e π==代⼊可得:C =故所求特解为:ln cot ).y x x =-2. 分离变量得:2.4dy dx y x =-两边积分得:12ln ln ln .42xy c x +=+-即y =将4,2x y ==代⼊,解得:c =故y = 3. 两边关于x 求导得:2.xy yy '=故或者0y ≡;或者1,2y x '=即21.4y x c =+ 注意到在原⽅程中令0x =,可得(0)0.y =因此0.c =于是所求微分⽅程的特解为:或者0y ≡;或者21.4三.设t 时刻物体运动速度为()v t ,则由已知条件结合⽜顿运动定律可得:t dvk m v dtv k m v ?====10(10)50,4, 1.(10)这是可分离变量微分⽅程,分离变量并积分可得:v =故所求速度为:v ==(60)/秒。

四.设曲线⽅程为().y y x =则曲线上点(,)x y 处的切线⽅程为:().Y y y X x '-=-由于它在两坐标轴之间的部分被切点平分,因此有:0(2)y y x x '-=-,也即有.y y x '-=分离变量得:dy dxy x=-,两边积分得:ln ln ln .y x c =-+因此 .xy c =由曲线过点(2,3),可知 6.c =因此所求曲线⽅程为 6.xy =五.设()R t 表⽰时刻t 时镭的现有量。

考研微分方程试题及答案

考研微分方程试题及答案

考研微分方程试题及答案1. 已知微分方程 \( y'' - 4y = 0 \),求通解。

答案:通解为 \( y = C_1 \cos(2x) + C_2 \sin(2x) \),其中\( C_1 \) 和 \( C_2 \) 为任意常数。

2. 解微分方程 \( y' + 2xy = 0 \)。

答案:首先分离变量,得到 \( \frac{dy}{dx} = -2xy \),然后两边同时积分,得到 \( \ln|y| = -x^2 + C \),即 \( y = Ce^{-x^2} \)。

3. 求解微分方程 \( y'' + 3y' + 2y = e^{-x} \)。

答案:首先求齐次方程的通解 \( y_h = C_1e^{-2x} + C_2xe^{-2x} \),然后求特解。

设特解为 \( y_p = Axe^{-x} \),代入原方程得到 \( A = 1 \),所以特解为 \( y_p = e^{-x} \)。

因此,通解为\( y = C_1e^{-2x} + C_2xe^{-2x} + e^{-x} \)。

4. 已知 \( y'' - 2y' + y = \sin(x) \),求微分方程的特解。

答案:特解可设为 \( y_p = A\cos(x) + B\sin(x) \),代入原方程得到 \( A = \frac{1}{2} \),\( B = 0 \),所以特解为\( y_p = \frac{1}{2}\cos(x) \)。

5. 求解微分方程 \( y'' - 6y' + 9y = 0 \)。

答案:这是一个特征方程 \( r^2 - 6r + 9 = 0 \) 的齐次方程,解得 \( r = 3 \)(重根),所以通解为 \( y = (C_1 + C_2x)e^{3x} \)。

6. 已知 \( y'' - 4y' + 4y = 0 \),求其通解。

微分方程练习题及解析

微分方程练习题及解析

微分方程练习题及解析微分方程作为数学中的一个重要分支,广泛应用于各个领域,涉及到物理、经济学、生物学等众多科学领域。

掌握微分方程的解析方法和技巧,对于理解和解决实际问题具有重要意义。

本文将为大家提供一些微分方程的练习题,并对其中的解析过程进行详细讲解。

1. 难题1已知微分方程 dy/dx = x * y,求其通解,并求通过点 (1,2) 的特解。

解析:首先对微分方程进行变量分离,将 dy/y 移到方程的右边,将 dx/x 移到方程的左边,得到:dy/y = x * dx对上式两边同时积分,得到:ln|y| = x^2/2 + C1其中,C1 为常数。

接下来,对上式两边同时取指数,得到:|y| = e^(x^2/2 + C1) = e^(C1) * e^(x^2/2)由指数函数的性质可知,e^(C1) 为常数,因此可以将其用 C2 来表示。

于是通解为:y = ± C2 * e^(x^2/2)下面求通过点 (1,2) 的特解,将 x=1 和 y=2 代入通解中,得到:2 = ± C2 * e^(1/2)解得 C2 = ± (2 / e^(1/2))所以通过点 (1,2) 的特解为:y = ± (2 / e^(1/2)) * e^(x^2/2)2. 难题2已知微分方程 d^2y/dx^2 + 4 * dy/dx + 4y = 0,求其通解,并求过点(0,1) 且 y'(0) = -2 的特解。

解析:该微分方程为二阶常系数齐次线性微分方程,首先求其特征方程。

特征方程为:r^2 + 4r + 4 = 0解特征方程可得到两个特征根相等的情况,即 r = -2。

由于存在重根,通解形式为:y = (C1 + C2x) * e^(-2x)下面求过点 (0,1) 且 y'(0) = -2 的特解。

将 x=0 和 y=1 代入通解中,得到:1 = C1 * e^0 = C1将 x=0 和 y'=-2 代入通解的导数中,得到:-2 = C2 * e^0 - 2C1 = C2 - 2解得 C2 = -2 + 2 = 0所以过点 (0,1) 且 y'(0) = -2 的特解为:y = (1 + 0x) * e^(-2x) = e^(-2x)通过以上两个例子,我们可以看到,对于微分方程的求解,我们需要先进行变量分离、恢复变量或代换等操作,然后再通过积分或特征方程求解,最后根据已知条件求得特定的解。

微分方程练习题及解答

微分方程练习题及解答

微分方程练习题一、一阶微分方程1.求 dy dx =2xy 的通解。

2.求微分方程x dy =y +�x 2+y 2 (x >0)满足y (1)=0的特解。

3.求微分方程 y ′−3x y =x 的通解。

4.求微分方程 y ′+y tanx =cosx 的通解。

5.求 x 2y ′+xy =y 2满足初始条件y (1)=1的特解。

6.求微分方程sec 2x coty dx −csc 2y tanx dy =0的通解。

7.求微分方程dy dx −2y x +1=(x +1)52的一个特解。

8.求微分方程xdy =yln y x dx 的通解。

9.求微分方程 dy dx =y x +y 3e y 的通解。

10求微分方程 y ′+y =e −x 的通解。

11.求微分方程xy 2dy =(x 3+y 3)dx 的通解。

12.求微分方程y =�1+(y ′)2 满足条件y (0)=1的特解。

13.求微分方程 xy ′+2y =x lnx 满足初始条件y (1)=−19的特解。

14.求微分方程 xy ′+y =x 2 y 2 lnx 的通解。

15.设f (x )=�f �t 2�dt +ln2,求f (x )的表达式。

2x 0二、高阶微分方程 1.求y ′′=1+(y ′)2的通解。

2.求 y ′′−2y ′−y =0的通解。

3.求 y ′′+2xy ′2=0,y (0)=1,y ′(0)=−12的特解。

4.求 y ′′−2y ′−5y =1的通解。

5.求 y ′′+y ′+y =8的通解。

6.求微分方程d 2y dx 2+w 2y =0的通解。

7.求微分方程 y ′′−3y ′+2y =xe x 的通解。

8.求微分方程 x 2y ′′+4xy ′+2y =x 的通解。

9.求微分方程 yy ′′+y ′2=y ′ 的通解。

10.求微分方程 x 2y ′′+3xy ′−3y =x 3的通解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档