[ 互感器技术 ] 互感器励磁特性和伏安特性是怎么一回事

合集下载

PT励磁特性分析

PT励磁特性分析
电压互感器励磁特性试验 及分析方法
楚雄供电局变电修试所 刘譞、熊超 2009年1月
探讨内容:
一、电压互感器励磁特性试验目的 和意义 二、电压互感器励磁特性试验方法 三、电压互感器励磁特性实例分析
相关定义概念
1 励磁特性 励磁特性通常也叫伏安特性,电压互感器 励磁特性是把PT一次绕组末端出线端子接地 其他绕组均开路的情况下,在二次绕组施加 电压U,测量出相应的励磁电流I,U和I之间 的关系就是电压互感器励磁特性。以U为横坐 标I为纵坐标做出的曲线就是电压互感器励磁 特性曲线。
2 拐点 在励磁特性曲线中, 当施加的电流值增加50 %,而激励出电压值增 加不大于10%时,则该 点就是该励磁特性曲线 的拐点。
V/V
500
200 100 50
20 10 5
2 1 100 1m 10m 100m 1
I/A
3 铁磁谐振
Leabharlann Baidu
铁磁谐振是自激的 一种形式。是电力系 统中一种特殊形式的 自激振动。
4 实际正弦波 实际波形在任一点与 正弦波形相差不得超过 峰值的5%。
5 额定电压因数 与额定电压值相乘的一个因数,以确定电 压互感器必须满足规定时间内有关热性能要 求和满足有关精确级要求的最高电压。 根据GB1207-2006的要求相关的额定电压因 数规定见下图
额定电压因数 额定时间 1.2 1.2 1.5 1.2 1.9 1.2 1.9 连续 连续 30s 连续 30s 连续 8h

什么是励磁特性以及伏安特性,区别在哪?

什么是励磁特性以及伏安特性,区别在哪?

什么是励磁特性以及伏安特性,区别在哪?

两者没有区别,叫法不同,都是用于测量电流、电压互感器的U和I关系曲线,在二次绕组施加电压U,测量出相应的励磁电流I,U和I之间的关系就是电压互感器励磁特性或者是伏安特性。

伏安特性励磁特性的介绍与测量

一般来说电流互感器和电压互感器都应该做伏安特性或励磁特性,检查电压和电流的关系曲线,有效鉴别互感器的工作性能,避免谐振现象破坏电力系统和电力设施,电压互感器的试验条件一般是在行投运前或者周期性的检查,传统的校验方法大部分是采用调压器,升流器、万用表等电力工具进行手动测试,接线繁琐,效能产出很低,随着电力技术的发展,现阶段大部分采用的是互感器伏安特性测试仪,全自动化的CT、PT特性测试,采用“电流法”,可用于保护类电流、电压互感器的伏安(励磁)特性、变比、极性、一次通流和交流耐压等综合试验,满足GB 1207-2006《电磁式电压互感器》和GB 1208-2006《电流互感器》的技术标准,采用ARM芯片为处理核心,测量精度高,功能性强,试验完成自动绘制曲线和打印数据报告。

互感器的特性试验方法

互感器的特性试验方法

互感器的特性试验方法

互感器的特性试验方法与电力变压器的基本相同。

一、测量互感器绕组的直流电阻

电压互感器一次绕组线径较细,易发生断线、短路或匝间击穿等故障,二次绕组因导线较粗很少发生这种状况,因而交接、大修时应测量电压互感器一次绕组的直流电阻。各种类型的电压互感器一次绕组的直流电阻均在几百欧至几千欧之间,一般采纳直流电阻测试仪进行测量,测量结果应与制造厂或以前测得的数据无明显变化。

有时为了推断电流互感器一次绕组接头有无接触不良等现象,需要采纳压降法和双臂电桥等测量一次绕组的直流电阻;有时为了判别套管型电流互感器分接头的位置,也使用变压器直流电阻测试仪测量绕组的直流电阻。

二、极性试验

电流互感器和电压互感器的极性很重要,极性推断错误会使计量仪表指示错误,更为严峻的是使带有方向性的继电爱护误动作。互感器一、二次绕组间均为减极性。极性试验方法与电力变压器相同,一般采纳直流法。试验时留意电源应加在互感器一次测;测量仪表接在互感器二次侧。

三、变比试验

《规程》规定要检查互感器各分接头的变比,并要求与铭牌相比没有显著差别。

1.电流互感器变比的检查

检查电流互感器的变比,采纳与标注电流互感器相比较的方法。其试验接线如图1-1所示。

图1-1 电流互感器变比检查试验接线图

T1—单相调压器;T2—升流器;

TAN—标准电流互感器;TAX—被试电流互感器试验时,将被试电流互感器与标准电流互感器一次测串联,二次侧各接一只0.5级电流表,用调压器和升流器供应一次侧一合适电流,当电流升至互感器的额定电流值时(或在30%~70%额定电流范围内多选几点),同时记录两只电流表的读数,则被试电流互感器的实际变比为:

(完整版)电流互感器伏安特性试验

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验

阿德

一试验目的

CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法

试验接线如图所示:

SVERKER650

二次

接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。)

试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。

三注意事项

1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。

电流互感器伏安特性及试验

电流互感器伏安特性及试验

电流互感器伏安特性及试验

伏安特性中的“伏”就是电压,“安”就是电流,从字面解释,伏安特性就是电流互感器二次绕组的电压与电流之间的关系。如果从小到大调整电压,将所加电压对应的每一个电流画在一个座标系中(电压为纵坐标,电流为横坐标),所组成的曲线就称为伏安特性曲线。

由于电流互感器铁心具有逐渐饱和的特性,在短路电流下,电流互感器的铁心趋于饱和,励磁电流急剧上升,励磁电流在一次电流中所占的比例大为增加,使比差逐渐移向负值并迅速增大。由于继电器的动作电流一般比额定电流大好几倍,所以作为继电保护用的电流互感器应该保证在比额定电流大好几倍的短路电流下能够使继电器可靠动作。

FA-102 CT伏安特性测试仪可以完成的试验包括: CT伏安特性试验、CT极性试验、CT 变比极性试验。仪器能自动计算CT的任意点误差曲线,CT变比比差等结果参数。

电流互感器伏安特性试验

一、试验目的

CT 伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二、试验方法

试验接线如图所示:

接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达 400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个 PT 读取电压。

试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。

电压互感器励磁曲线

电压互感器励磁曲线

电压互感器励磁曲线

摘要:

1.电流互感器和电压互感器的励磁曲线和伏安特性曲线的基本概念

2.励磁曲线的5% 和10% 曲线的含义

3.电流互感器励磁特性曲线的测量方法和注意事项

4.电压互感器励磁特性曲线的测量方法和注意事项

5.励磁曲线在保护装置和自动装置中的应用

正文:

一、电流互感器和电压互感器的励磁曲线和伏安特性曲线的基本概念

电流互感器和电压互感器是电力系统中常用的测量设备,用于将高电压或大电流转换为低电压或小电流,以便于测量和保护。励磁曲线和伏安特性曲线是描述互感器特性的两种重要曲线。

励磁曲线是指互感器在一次侧电流为额定值时,二次侧电流与磁通密度之间的关系曲线。伏安特性曲线是指互感器在一次侧电流为额定值时,二次侧电压与磁通密度之间的关系曲线。

二、励磁曲线的5% 和10% 曲线的含义

励磁曲线的5% 和10% 曲线是指互感器在一次侧电流增加到额定值的5% 和10% 时,二次侧电流与磁通密度之间的关系曲线。这两个曲线的含义是:当一次侧电流增加到5% 和10% 时,互感器的磁通密度会发生显著变化,从而导致二次侧电流的误差增大。

三、电流互感器励磁特性曲线的测量方法和注意事项

电流互感器励磁特性曲线的测量方法通常采用电流表和电压表进行。在测量过程中,需要注意以下几点:

1.测量电流互感器的一次侧电流时,应确保电流稳定,以保证测量结果的准确性。

2.测量电流互感器的二次侧电流时,应确保电压稳定,以保证测量结果的准确性。

3.在测量过程中,应注意观察励磁曲线的平滑程度和饱和趋势,以判断互感器是否合格。

四、电压互感器励磁特性曲线的测量方法和注意事项

电流互感器伏安特性试验与误差曲线详解-伏安特性测试仪

电流互感器伏安特性试验与误差曲线详解-伏安特性测试仪

电流互感器伏安特性试验与误差曲线详解

王兰芳

武汉市华英电力科技有限公司

1 概述

在电力系统中针对于保护用电流互感器最常见的试验项目是伏安特性试验,在很多地方电力部门还要求对保护用电流互感器绘制误差曲线,并将误差曲线数据上报至相关的管理部门。伏安特性试验对应于国家标准和IEC标准的准确称呼是励磁特性试验,执行励磁特性试验的目的是获取电流互感器励磁特性曲线,并根据励磁特性曲线计算电流互感器的相关参数以判断电流互感器是否能达到要求。

误差曲线是根据励磁特性曲线和电流互感器二次线圈电阻计算而来的曲线,误差曲线建立了电流互感器最大允许误差和所连接二次负荷的关系,只要确保电流互感器所在系统的短路电流和所接二次负荷落在误差曲线的允许区间内,保护用电流互感器就能正常工作,否则电流互感器则可能发生磁饱和而失效

2 励磁特性试验

2.1 励磁曲线的定义

图1 HYVA-405测量的电流互感器励磁特性曲线

在不同的标准中,电流互感器励磁曲线的绘制要求也不同,在IEC60044-1/GB1208中

励磁曲线的Y轴是电流互感器二次端电压有效值,X轴是电流互感器二次端电流有效值;在IEC60044-6/GB16847电流互感器励磁特性试验的Y轴是电流互感器二次电动势有效值,X轴是电流互感器的二次电流的峰值;在IEEE C57.13中电流互感器励磁特性试验的Y轴是电流互感器二次电动势有效值,X轴是电流互感器二次电流有效值取对数后的值。因此针对不同标准的电流互感器,其励磁特性曲线的绘制方法也不同,由于我国的标准遵从与IEC 体系,因此针对我国的保护用电流互感器励磁特性曲线主要有IEC60044-1/GB1208和IEC60044-6.GB16847两种。

电流互感器误差曲线及伏安特性曲线说明

电流互感器误差曲线及伏安特性曲线说明

电流互感器误差曲线及伏安特性曲线说明

Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一、电流互感器10%的误差曲线

实际电流互感器存在励磁电流,所以二次电流I2和一次侧实际电流I1电流存在数值大小和相位角度差,且误差大小和二次侧的负载阻抗有关。在互感器准确度一定即允许的二次负荷S2一定时,其二次侧的负载阻抗是与其一次电流或一次电流的平方称反比的,一次电流越大,允许的二次阻抗应越小,否则就影响精度。电流误差是指测得的电流对实际电流I1的相对误差百分值。

规程规定:用于继电保护的电流互感器的电流误差范围为±10%,相位差角不得大于7°。

电流互感器的10%误差曲线,是指互感器生产厂家给出电流互感器的电流误差最大不超过10%时,一次电流对其额定电流的倍数k=与二次侧负荷阻抗Z2的关系曲线。实际查用步骤通常是按电流互感器所处位置的最大三相短路电流来确定其值,从厂家给出的相应型号电流互感器的10%曲线中找出横坐标上允许的阻抗欧姆数,使电流互感器二次侧的仪表总阻抗不超过此Z2值,可保证互感器的电流误差在10%以内。当然实际Z2与互感器的接线方式有关,各种形式下的电流互感器的Z2可按电路原理方法计算。

在实际的电网线路中,如规定整个电网线路能在短路电流达到20倍的时候,整个电路能正常工作(即这个时候的复合误差小于10%),这个时候就要求二次回路的阻抗小于一定值(在本仪器中倍数对应M10 阻抗

对应Z 例如M10为 Z为这个数值表示短路电流为一次侧额定电压的倍时为保复合误差小于10%二次回路复阻抗必须小于)。这个实验对应的是保护用电流互感器。

电流互感器伏安特性试验

电流互感器伏安特性试验

电流互感器伏安特性试验

阿德

一试验目的

CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法

试验接线如图所示:

SVERKER650

二次

接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须电流互感器二次侧额定电流)升压和一个PT读取电压。(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读

试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止

三注意事项

1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开

3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。

四典型U-I特性曲线

相关主题:

1. 用交流注流法测量电流互感器极性

2. 慎用自耦变直接给电柜内回路加电流(电压)量

3.电流互感器铁芯剩磁的影响与如何使退磁

伏安特性

伏安特性

伏安特性

1.电压互感器伏安特性的目的

电压互感器的伏特性其实就是指铁芯的励磁特性,对电压互感器,通常让一次绕组开路,从二次绕组施加额定频率的交流电压,所加电压最大值按相关规程要求,测量所施加的电压与电流的关系曲线,曲线即是电压互感器的伏安特性曲线。

2.电流互感器伏安特性的目的

电流互感器伏安特性原理

伏安特性中的“伏”就是电压,“安”就是电流,从字面解释,伏安特性就是电流互感器二次绕组的电压与电流之间的关系。如果从小到大调整电压,将所加电压对应的每一个电流画在一个座标系中(电压为纵座标,电流为横座标),所组成的曲线就称为伏安特性曲线。

由于电流互感器铁心具有逐渐饱和的特性,在短路电流下,电流互感器的铁心趋于饱和,励磁电流急剧上升,励磁电流在一次电流中所占的比例大为增加,使比差逐渐移向负值并迅速增大。由于继电器的动作电流一般比额定电流大好几倍,所以作为继电保护用的电流互感器应该保证在比额定电流大好几倍的短路电流下能够使继电器可靠动作。

根据继电保护的运行经验,在实际运行条件下,保护装置所用的电流互感器的电流误差不允许超过10%,而角度误差不超过7度。

为满足上面的要求,在电流互感器使用前,要作“电流互感器的10%误差曲线”,以确定其是否能够投入运行。实际工作中常常采用伏安特性法先测量电流互感器的伏安特性曲线,再绘出“电流互感器的10%误差曲线;同时,通过测量电流互感器的伏安特性曲线,还可以检查二次线圈有没有匝间短路。

试验时将互感器的一次线圈开路,在其二次线圈加电压,用电流表测得在该电压作用下流入二次线圈的电流,就得到电与电压的关系曲线,即为电流互感器的伏安特性曲线。

电流互感器伏安特性测试及其意义

电流互感器伏安特性测试及其意义

电流互感器伏安特性测试及其意义

电流互感器(通常简称CT或TA)是电力系统常用的测量元件之一,在从400V以下的低压系统到10kV、35kV、110kV、220kV乃至750kV、1000kV级别的超高压、特高压电力系统中广泛采用,是可靠隔离高电压,并将一次回路的大电流转换为二次侧可供继电保护、二次仪表测量所需要的安全级别标准小电流所必需的设备之一。其重要性不亚于电力变压器、高压断路器、避雷器、电压互感器等电力系统元件。

其二次电流通常有1A、5A两种规格。一次电流可从通常的100A~5000A直到上万A的级别,通常400V以内的低压系统常用的电流互感器一次电流不超过3000A。

电流互感器的二次侧在运行时严禁开路,并需有一点可靠接地。

电流互感器的伏安特性(也称励磁特性)是电流互感器最重要的交接性试验之一,其与电流互感器的变比、角差、10%误差测试、一次和二次绕组直流电阻、工频耐压试验等项目同样列为GB50150-2016国标要求的必需试验项目。

为一典型的电流互感器的伏安特性曲线,可以看到曲线有明显的拐点,从数学角度看,拐点前后的斜率变化很明显。

电流互感器的伏安特性指的是互感器二次绕组的电压与电流之间的关系。试验时在二次绕组施加交流电压,一次绕组开路,从小到大依次调整电压,记录所加电压对应的每一个电流值,并画在同一个直角座标系中,以电压为纵座标,电流为横座标,各点所连成的曲线称为伏安特性曲线(样条法或拟合法)。试验时电压从零向上依次递升,以电流为基准,读取电压值,直至额定电流。若对特性曲线有特殊要求而需要继续增加电流时,应迅速读数,以免二次绕组过热。

PT励磁特性分析

PT励磁特性分析

4 实际正弦波 实际波形在任一点与 正弦波形相差不得超过 峰值的5%。
5 额定电压因数 与额定电压值相乘的一个因数,以确定电 压互感器必须满足规定时间内有关热性能要 求和满足有关精确级要求的最高电压。 根据GB1207-2006的要求相关的额定电压因 数规定见下图
额定电压因数 额定时间 1.2 1.2 1.5 1.2 1.9 1.2 1.9 连续 连续 30s 连续 30s 连续 8h
一次绕组联结方式和系统接地方式 任一电网的相间 任一电网中的变压器中性点与地之间 中性点有效接地系统中的相与地之间
带有自动切除对地故障装置的中性点非有效 接地系统中的相与地之间 无自动切除对地故障的中性点绝缘系统或无 自动切除对地故障装置的共振接地系统中 的相与地之间
一、试验目的和意义
1试验目的 : 试验目的
② 型式试验的试验方法
按照图2试验原理接线图进行, 试验时,电压施加在二次端子 上,电压波形为实际正弦波。 测量点至少包括额定电压 的20%、50%、80%、100%、 120%及相应于额定电压因数 下的电压值,测量出对应的励 磁电流。做出励磁特性曲线。
③例行试验的试验方法
按照图2试验原理接线图进行,试验时,电压 施加在二次端子上,电压波形为实际正弦波。 测量点包括额定电压及相应于额定电压因数 下的电压值,测量出对应的励磁电流,其结果应 与型式试验对应结果做比较,差异不应大于30%。 同一批生产的同型号互感器,其励磁特性的差异 也不应大于30%。不需要做出励磁特性曲线。

电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验及数据分析

一、CT伏安特性试验概述

CT伏安特性:是指在电流互感器一次侧开路的情况下,电流互感器二次侧励磁电流与电流互感器二次侧所加电压的关系曲线,实际上就是铁芯的磁化曲线,即该曲线在初始阶段表现为线性,当铁芯磁化饱和拐点出现时,该曲线表现为非线性。

试验的主要目的:一是检查新投产互感器的铁芯质量,留下CT原始实验数据;二是运行CT停运检验维护时(通常配合机组大修时进行)通过鉴别磁化曲线的饱和程度即拐点位置,以判断运行一定时期后互感器的绕组有无匝间短路等缺陷,以便及时发现设备缺陷,确保设备安全运行。三是对差动保护CT 精度有要求的进行10%误差曲线校核。

二、原理接线

(1)通常情况下电流互感器的电流加到额定值时,电压已达400V以上,用传统试验设备试验时,调压器无法将220V电源升到试验电压,必须使用一个升压变(其高压侧输出电流需大于电流互感器二次侧额定电流)升压,一个PT或万用表读取电压。由于万用表可测最高交流电压为5000V,故可用它直接读取电压而无需另接PT。

(2)利用CT伏特性测试仪试验时,CT伏安特性测试仪一般电压可升至2500V,且具备数字电压、电流显示功能,部分测试仪具备数据处理功能,可直接打印出CT特性曲线。

三试验过程及注意事项

(1)试验前,应将电流互感器二次绕组引线和CT接地线均应拆除,做好防止接地的可靠安全措施,即保证试验时CT各相别可靠独立于应用设备,否则可能造成设备的损坏。

(2)试验时,一次侧可靠开路,从CT二次侧施加电压,参考CT额定电流预先选取几个电流点,一般取10个电流点,即每10%额定电流为一个电流点,逐点读取记录或储存相应电压值、电流值,每个点必须从零开始升压升流,以消除互感器内的剩磁,保证测量数据的准确性。

电流互感器的伏安特性及测量方法图解

电流互感器的伏安特性及测量方法图解

电流互感器的伏安特性及测量⽅法图解

互感器的伏安特性其实就是指铁芯的励磁特性,互感器使⽤时电流与电压的关系,测量所施加的电压与电流的关系曲线,曲线即是互感器的伏安特性曲线。理论上电流在额定范围内(容量在额定范围内),电压时不会改变的,实际使⽤中会有所偏差。

伏安特性测量⽅法

⾸先我们选择⽤CT伏安特性综合测试仪,进⾏参数设置:

励磁电流:设置范围(0—20A)为仪器输出的最⾼设置电流,如果实验中电流达到设定值,将会⾃动停⽌升流,以免损坏设备。通常电流设置值⼤于等于1A,就可以测试到拐点值。

励磁电压:设置范围(0—1000V)为仪器输出的最⾼设置电压,通常电压设置值稍⼤于拐点电压,这样可以使曲线显⽰的⽐例更加协调,电压设置过⾼,曲线贴近Y轴,电压设置过低,曲线贴近X轴。如果实验中电压达到设定值,将会⾃动停⽌升压,以免损坏设备。

接线⽅法:通常让⼀次绕组开路,从⼆次绕组施加额定频率的交流电压,所加电压最⼤值按相关规程要求。接线⽅法如上图,测试仪的K1、K2为电压输出端,试验时将K1、K2分别接互感器的S1、S2(互感器的所有端⼦的连线都应断开)。接线⽆误后⽅可测量。

试验时,可预先选取⼏个电流点,逐点测量相应的电压值。通⼊的电流或电压不超过制造⼚的规定。当电压稍微增加⼀点⼉电流增⼤很多时,说明铁芯以接近饱和,应极其缓慢的升压或停⽌试验。根据试验数据绘制伏安特性曲线(如下图)。

测量伏安特性主要是检查CT的铁芯质量,通过鉴别铁芯磁化的饱和程度来判断互感器的绕组有⽆匝间短路等缺陷。

来源:电⼯电⽓学习

为什么要测量电流互感器的伏安特性,怎么测量

为什么要测量电流互感器的伏安特性,怎么测量

试验目的

电流互感器的伏安特性(又称励磁特性曲线)是指一次开路,二次侧电流与所加电压的关系试验,实际上就是铁芯的磁化曲线试验,因此,伏安特性又称励磁特性曲线。进行这样试验的主要目的主要是检查电流互感器二次绕组是否有层间短路,并为继电保护提供数据。

检查对象

在继电保护有要求时对P级绕组进行;对0.2、0.5级测量绕组一般不进行此项试验;对TPY级暂态保护绕组,由于其励磁特性曲线饱和点电压一般很高,现场检查时如进行工频试验,则在电压不超过2kV时进行检查性比较,建议创造条件进行降低频率的试验。多抽头的绕组可在使用抽头或最大抽头测量。

使用仪器设备

伏安特性测试仪、调压器、交流电压表(1级以上)、交流电流表(1级以上)、毫安表(1级以上),有些参数的电流互感器试验时还需要小型试验变压器及测量用电流互感器。试验前根据该电流互感器出厂报告数据或参数计算出本试验所需电压、电流,选择适当量程的试验设备和测量仪器。

试验方法

各二次绕组分别进行;待检电流互感器一次及所有二次绕组均开路,将调压器或试

验变压器的电压输出高压端接至待检二次绕组的一端,待检二次绕组另一端通过电流表(或毫安表,视量程需要)接地、试验变压器的高压尾接地,接好测量用电流互感器、电压表,缓慢升压,同时读出并记录各测量点的电压、电流值。

结果判别

与同类型电流互感器励磁特性曲线、制造厂的特性曲线以及自身的历史数据比较,应无明显差异。

注意事项

试验时待检电流互感器一次及所有二次绕组均开路;试验时应先去磁,然后将电压逐渐升至励磁特性曲线的饱和点即可停止,如果该绕组励磁特性的饱和电压高于2 kV,则现场试验时所施加的电压一般应在2 kV截止,避免二次绕组绝缘承受过高电压。试验时记录点

伏安特性方法

伏安特性方法

电流互感器伏安特性试验

一试验目的

CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法

试验接线如图所示:

接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V 以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。

试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。

三注意事项

1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。

3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[ 互感器技术] 互感器励磁特性和伏安特性是怎么一回事

什么是励磁特性

励磁特性是在互感器二次侧励磁电流与所加电压的一种关系,实际上就是铁芯的磁化过程,所以也称为励磁特性,将这种特征按照一定要求绘制成曲线,就是励磁曲线,励磁特性通常也叫伏安特性,电压互感器励磁特性是把PT一次绕组末端出线端子接地其他绕组均开路的情况下,在二次绕组施加电压U,测量出相应的励磁电流I,U和I之间的关系就是电压互感器励磁特性。以U为横坐标I为纵坐标做出的曲线就是电压互感器励磁特性曲线。0806D

什么是伏安特性

在电学中伏就是电压,安就是电流,伏安特性就是电流与电压的特性,也叫做关系,伏安特性曲线图常用纵坐标表示电流I、横坐标表示电压U,以此画出的I-U

图像叫做导体的伏安特性曲线图,伏安特性曲线是针对导体的,也就是耗电元件,用来研究导体电阻的变化规律,这种在实际应用中还是比较多的,只是我们可能有时候没注意到,比如我们在电流互感器二次端施加电压用来测量它的曲线关系,这种就是典型的测量伏安特性,下面我们看下测量过程。

测量过程

测量CT伏安特性时,电流互感器一次侧开路,二次侧施加一定大小的电压信号,观察磁通饱和情况,观察U(电压)与I (电流)的曲线关系,最传统的测量方法使用串并联电压表进行比对、计算,随着技术的进步,目前是采用伏安特性测试仪进行测量,自动调压,自动计算,测量准,效率高。

为什么要测量伏安特性

测量伏安特性或者励磁忒性的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算5%,10%误差曲线,并用以判断互感器的二次绕组有无匝间短路情况。

相关注意事项

一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压PT读取电压。

相关文档
最新文档