复变函数与积分变换试卷1-答案
复变函数与积分变换习题答案
![复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/ffd84f4cb307e87100f69606.png)
第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。
复变函数与积分变换试题和答案
![复变函数与积分变换试题和答案](https://img.taocdn.com/s3/m/d6abdbb719e8b8f67c1cb98f.png)
复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数与积分变换五套试题及答案
![复变函数与积分变换五套试题及答案](https://img.taocdn.com/s3/m/df630ee3dc3383c4bb4cf7ec4afe04a1b071b01e.png)
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换试题1
![复变函数与积分变换试题1](https://img.taocdn.com/s3/m/4cadaa82dc88d0d233d4b14e852458fb770b380c.png)
)p444p-p2p ppòp pòòzp)3pòòòzz-i z+11z-i第二部分第二部分 非选择题非选择题(共60分)分)二、填空题(本大题共10空,每空2分,共30分)不写解答过程,将正确的答案写在每小题的空格内。
错填或不填均无分。
不写解答过程,将正确的答案写在每小题的空格内。
错填或不填均无分。
2121.复数.复数484z +=i 的模|z|=_____________________。
22.设100i)(1z +=,则Imz =______________________。
23.设z=i2e+,则argz =____________________________。
24.f (z )的可导处为_______________________________。
25.方程Inz=i 3p的解为_________________________。
26.设C 为正向圆周|z|=1,则ò+c )dz z z1(=___________________________。
27.设C 为正向圆周|z -i|=21,则积分òc 2zdz i)-z(z e p =___________________。
28.设C 为正向圆周|ζ |=2,ò=c d z -3sin f(z)z z p,其中|z|<2,则f ′(1)=___________________。
29.幂极数å¥=1n nnz nn!的收敛半径为________________________。
30.函数f(z)=]1)(z 11z 1[1z 15+++++ 在点z=0处的留数为__________________。
三、计算题(本大题共4小题,每小题5分,共20分)31.求22y -2xy x u +=的共轭调和函数v(x,y),并使v(0,0)=1。
复变函数与积分变换习题册(含答案)
![复变函数与积分变换习题册(含答案)](https://img.taocdn.com/s3/m/0c8f3cdb0242a8956bece4c0.png)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
《复变函数与积分变换》试题(一)答案解读
![《复变函数与积分变换》试题(一)答案解读](https://img.taocdn.com/s3/m/e8dd25da2cc58bd63186bdd6.png)
《复变函数与积分变换》试题(一)答案一、单项选择题(本大题共20小题,每小题2分,共40分)1.B2.D3.C4.A5.A6.B7.A8.D9.C 10.A11.D 12.C 13.B 14.B 15.C16.D 17.B 18.D 19.A 20.C二、填空题(本大题共10空,每空2分,共20分)21. 822. 023. 124. z=0 25. z=12133(),+i e i 或π26. 4πi27. -+2ππ()i 28. ππππ23233i i ,cos 或⋅ 29. e30. 6三、计算题(本大题共4小题,每小题5分,共20分)31.解1: ∂∂∂∂u x x y u yx y =+=-2222,, 由C -R 条件,有∂∂∂∂v y u x =,∂∂∂∂v x u y =-, ∴ v v y dy x y dy xy y x ==+=++⎰⎰∂∂ϕ()()2222. 再由∂∂ϕ∂∂v x y x x y u y=+'=-+=-222(), 得'=-=-+ϕϕ(),(),x x x x C 22于是∴ v=2xy+y 2-x 2+C.由v(0,0)=1, 得C=1.故v=2xy+y 2-x 2+1.解2:v(x,y)=∂∂∂∂v x dx v y dy C x y ++⎰(,)(,)00 =()()(,)(,)222200y x dx x y dy C x y -+++⎰=-x 2+2xy+y 2+C以下同解1.32.解1:z z z dz zdz i i d C C +==⋅+-⎰⎰⎰||Re cos (cos sin )12222θθθθππ=4i (cos ).1240+=⎰θθππd i解2:z z z z dz e e ie d C i i i ||||+⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪⎰⎰-2222202θθπθθ =2i(2π+0)=4πi.33.解:因为f ˊ(z)=e z -2=()!()!(||)-=-<+∞=∞=∞∑∑z n n z z n n n n n 20021, 所以由幂级数在收敛圆内逐项求积性质,得 f(z)='=-++=∞∑⎰f d n z n n n n z()()!ζζ1212100 (||z <+∞). 34.解:因在C 内f(z)=e z i z i zπ()()-+223有二阶极点z=i ,所以f z dz i d dzz i f z z i C ()!lim[()()]=-→⎰212π =232323ππππi e z i e z i z izzlim[()()]→+-+ =ππ1612().-+i 四、综合题(下列3个题中,35题必做,36、37题选做一题,需考《积分变换》者做37题,其它考生做36题,两题都做者按37题给分。
复变函数与积分变换习题册(含答案)
![复变函数与积分变换习题册(含答案)](https://img.taocdn.com/s3/m/0c8f3cdb0242a8956bece4c0.png)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数与积分变换模拟试题和答案
![复变函数与积分变换模拟试题和答案](https://img.taocdn.com/s3/m/61fb1da0284ac850ad024238.png)
模拟试卷一一.填空题1. =⎪⎭⎫⎝⎛+-711i i . 2. I=()的正向为其中0,sin >=-⎰a z c dz z ez cz,则I= .3.z1tan 能否在R z <<0内展成Lraurent 级数?4.其中c 为2=z的正向:dz z z c1sin 2⎰=5. 已知()ωωωsin =F ,则()t f =二.选择题 1.()()z z z f Re =在何处解析(A) 0 (B)1 (C)2 (D)无2.沿正向圆周的积分.dz z zz ⎰=-221sin =(A)21sin i π. (B) 0. (C)1sin i π. (D)以上都不对.3.()∑+∞-∞=--n n nz 14的收敛域为(A) .4141<-<z . (B)e z <-<21 (C) 211<-<z . (D)无法确定 4. 设z =a 是()z f 的m 级极点,则()()z f z f '在点z =a 的留数是 .(A) m. (B) -2m. (C) -m. (D) 以上都不对. 三.计算题 1.()iv u z f +=为解析函数,322333y xy y x x v u --+=-,求u2.设函数()z f 与分别以z=a 为m 级与n 级极点,那么函数()()z g z f .在z=a 处极点如何?3.求下列函数在指定点z 0处的Taylor 级数及其收敛半径。
()1,102-==z zz f 4.求拉氏变换()t t f 6sin =(k 为实数)5. 求方程te y y y -=+'+''34满足条件()()100='=y y 的解.四.证明题1.利用e z的Taylor 展式,证明不等式zz ze z e e ≤-≤-112.若()=ϖF ℱ()[]t f (a 为非零常数) 证明:ℱ()[]⎪⎭⎫⎝⎛=a F a at f ϖ1 模拟试卷一答案一.填空题1. i2. 03.否 4.1/6- 5.()0.5,10,10.25,1t f t t t ⎧<⎪=>⎨⎪=⎩二.选择题1. (D)2. (A) 3.(A) 4. (C) 三.计算题1.233u x y y c =-+2.函数()()z g z f 在z=a 处极点为m+n 级3.()()121111n n f z n z R z ∞-===+=∑4.2636s +5.()3371442t t ty t e e te ---=-++.模拟试卷二一.填空题1. C 为1=z 正向,则⎰c dz z =2.()()2323lxy x i y nx my z f +++=为解析函数,则l, m, n 分别为 .3.2Re ,0shz s z ⎡⎤=⎢⎥⎣⎦4. 级数()∑∞=-122n nnz .收敛半径为5. δ-函数的筛选性质是二.选择题 1.()()1-=-t u e t f t ,则ℒ()f t =⎡⎤⎣⎦(A) .()11---s e s (B)()11---s e s (C)2()11---s e s (D) 以上都不对2.ℱ()[]()ωF t f =,则ℱ()()[]=-t f t 2(A)()()ωϖF F 2-' . (B)()()ωϖF F 2-'-.(C)()()ωϖF F i 2-'. (D) 以上都不对3.C 为3=z 的正向,().2103⎰-c zz dz(A) .1 (B)2 (C)0 (D) 以上都不对4. 沿正向圆周的积分dzz zz ⎰=⎪⎭⎫ ⎝⎛-222sin π =(A).0. (B).2 (C).2+i. (D). 以上都不对.三.计算题1. 求sin(3+4i).2.计算()()⎰--cb z a z dz,其中a 、b 为不在简单闭曲线c 上的复常数,a ≠b.3.求函数()1,110=+-=z z z z f 在指定点z 0处的Taylor 级数及其收敛半径。
复变函数与积分变换习题答案
![复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/5e7dfbac51e79b8968022645.png)
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3) 13i +解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7) 11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值 (1) a ib +解:1ar 2ar 2222421ar 22421ar 2242 b b i ctg k i ctg k a a bi ctg abi ctg a a ib a b ea b ea b ea b e ππ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭+=+=+⎧+⎪=⎨⎪-+⎩(2)3i解:62263634632323322322i k i i i i k i e i i eee e iπππππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)ii解:()1/2222ii k k i i e eππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i e e ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=(1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=(1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换练习题带答案(1)
![复变函数与积分变换练习题带答案(1)](https://img.taocdn.com/s3/m/9422faf4a216147916112806.png)
f (t) = 1 + F () eitd 建立的 F () 与 f (t) 之间的对应称作傅里叶逆变换。
2π −
22.傅里叶逆变换是指由表达式 f (t) = 1 + F () eitd 建立起来的 F () 到 f (t) 之间
2π −
的对应.
23.若
f
(t)
= 3t2
+ tet
+ sint ,则函数
z2 − 3z + (z − 4)2
2dz
=
10πi
.
8. 设 C 为单位圆周 z = 1,则 d z 2 Cz
9. 设 C 为从 z = 0到 z =1+ i 的直线段,则 z d z = i 。 C
10. 设 C 为从 (0,1) 到 (1,1) 的直线段,则 z Re(z) d z = 1 + 1 i
|z
+i|=
(√)
3. 设 C 是一条简单正向闭曲线, f (z) 在以 C 为边界的有界闭区域 D 上解析, z0 为 D 内任
一点,那么
C
f (z) z − z0
d
z
=
2 if
( z0
)
;
(√)
4. 设 f (z) 在简单正向闭曲线 C 及其所围区域 D 内处处解析, 那么 f (z) 在 D 内具有 2 阶
解:
C
的方程为
x y
= =
t, t,0
t
1
,即,
z
=
t
+ it,0
t
1
,
dz =(1+i)dt
于是,原式= 1t(1+ i)dt = 1+ i .
(完整版)复变函数与积分变换习题答案
![(完整版)复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/37178cd369eae009581becaa.png)
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换期末考试试卷及答案
![复变函数与积分变换期末考试试卷及答案](https://img.taocdn.com/s3/m/493fb664dd88d0d232d46ac0.png)
一、单项选择题(本大题共15小题,每题2分,共30分) 1.以下复数中,位于第三象限的复数是〔 〕A. 12i +B. 12i --C. 12i -D. 12i -+ 2.以下等式中,不成立的等式是〔 〕4.34arctan3A i π-+-的主辐角为 .arg(3)arg()B i i -=-2.rg(34)2arg(34)C a i i -+=-+2.||D z z z ⋅=3.以下命题中,正确的选项是......〔 〕 A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+以下命题正确的选项是〔 〕 A.0ω=B. ω不存在C.1ω=-D. 1ω=5.以下函数中,在整个复平面上解析的函数是〔 〕.z A z e +2sin .1z B z + .tan z C z e + .sin zD z e +6.在复平面上,以下命题中,正确的选项是......〔 〕A. cos z 是有界函数B. 22Lnz Lnz =.cos sin iz C e z i z =+.||D z =7.在以下复数中,使得ze i =成立的是〔 〕.ln 223iA z i ππ=++.ln 423iB z i ππ=++.ln 226C z i ππ=++.ln 426D z i ππ=++8.已知31z i =+,则以下正确的选项是〔 〕12.iA z e π=34.i B z eπ=712.i C z eπ=3.iD z e π=9.积分||342z dz z =-⎰的值为〔 〕A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于〔 〕 A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的选项是〔 〕A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n i n n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的〔 〕A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为〔 〕A. 0.1B C.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于〔 〕A .2πB .2πiC .0D .-2π15.已知()[()]F f t ω=F ,则以下命题正确的选项是〔 〕 A. 2[(2)]()j f t e F ωω-=⋅F B. 21()[(2)]j e f t F ωω-⋅=+F C. [(2)]2(2)f t F ω=FD. 2[()](2)jt e f t F ω⋅=-F二、填空题〔本大题共5小题,每题2分,共10分〕 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题〔本大题共4小题,每题7分,共28分〕 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,〔2〕求).(z f '24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f = 23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为洛朗级数.25. 计算2||3(1)()(4)z dzz z i z =++-⎰.四、综合题〔共4小题,每题8分,共32分〕 25. 计算201.54cos d πθθ-⎰26. 求分式线性映射()f z ω=,使上半平面映射为单位圆内部并满足条件(2)0f i =,arg (0)1f =.27. 求函数2,10(),010,t f t t t --<≤⎧⎪=<≤⎨⎪⎩其它的傅氏变换。
全国高等教育自学考试复变函数与积分变换真题与答案
![全国高等教育自学考试复变函数与积分变换真题与答案](https://img.taocdn.com/s3/m/4f48cf7b84254b35eefd34f5.png)
全国2011年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n Csin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
复变函数及积分变换试题及答案
![复变函数及积分变换试题及答案](https://img.taocdn.com/s3/m/4b72228ad1f34693daef3eb9.png)
第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。
A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。
2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。
A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。
A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。
A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。
A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。
A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。
A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。
数学物理方法综合试题及答案 ()
![数学物理方法综合试题及答案 ()](https://img.taocdn.com/s3/m/b623f1734b73f242336c5fbf.png)
复变函数与积分变换 综合试题(一)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设cos z i =,则( )A . Im 0z =B .Re z π=C .0z =D .argz π= 2.复数3(cos,sin )55z i ππ=--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .443(cos ,sin )55i ππD .443(cos ,sin )55i ππ--3.设C 为正向圆周|z|=1,则积分⎰c z dz||等于( )A .0B .2πiC .2πD .-2π 4.设函数()0zf z e d ζζζ=⎰,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答:5.1z =-是函数41)(z zcot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4z π<<保角映射成单位圆内部|w|<1的为( )A .4411z w z +=-B .44-11z w z =+C .44z i w z i -=+D .44z iw z i +=-7. 线性变换[]i i z z i z ae z i z i z aθω---==-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<18.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )xv x y e y y x y =+,则(,)uxy=( )A.(cos sin )ye y y x y -)B.(cos sin )xe x y x y -C.(cos sin )xe y y y y - D.(cos sin )xe x y y y -(cos sin )sin (cos sin cos )x x x ve y y x y e y x ve y y y x y y∂=++∂∂=-+∂[][]cos sin cos cos sin sin cos sin cos sin cos sin (1)x x x iy iy iyz w u v v v i i z x x y xe y y y x y iy y ix y i y e y i y x y ix y iy y y y e e xe iye e z ∂∂∂∂∂=+=+∂∂∂∂∂=-++++=++++-⎡⎤=++⎣⎦=+()()()()cos sin cos sin sin cos z x iy x x w ze x iy e e x iy y i y e x y y y i x y y y u iv+==+=++=-++=+⎡⎤⎣⎦()cos sin x u e x y y y =-9.()1(2)(1)f z z z =--在021z <-< 的罗朗展开式是()A.∑∞=-01n nnz )( B.∑∞=-021n nz )z (C.∑∞=-02n n)z ( D .10(1)(2)nn n z ∞-=--∑10.320cos z z dz ⎰=( )A.21sin9 B.21cos9 C.cos9 D.sin9二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《复变函数与积分变换》期末试卷1
参考答案及评分标准
第一题:填空。
1.1; 2. 连通开集; 3. 奇点; 4. 3-; 5. 圆周; 6.解析; 7. 绝对收敛;
8. 本性奇点; 9. 0
0lim()()z z
z z f z →-; 10. 保角性。
第二题:选择。
1:B ;2:A ;3:C ;4:D ;5:B 。
第三题:计算。
1:13(23)13(arctan 2)22
n n L i l i k ππ-+=+-+,k Z ∈; 模2分,辐角4分 2:C 的参数方程为0(02)i z z re θθπ=+≤≤
22(1)10001()i i n n n in n C
dz ire d e d z z r e r θ
ππθθθθ---==-⎰⎰⎰ 221
1
cos(1)sin(1)n n i i n d n d r
r
π
π
θθθθ--=
-+
-⎰
⎰
(4分)
21
01i n n π=⎧=⎨≠⎩。
(2分)
3:1
10
()1n k k n n k S z z z -+==-=-∑。
(1分)
当1z <时,lim 1n n S →∞
=-,故级数收敛于1-; 当1z =时,lim 0n n S →∞
=,故级数收敛于0; 当1z =-时,lim n n S →∞
不唯一,故级数发散; 当1z =而i z e θ=(0)θ≠时,cos sin n z n i n θθ=+,因为cos n θ和sin n θ的极限都不存在,所以lim n n S →∞
不存在,级数发散;
当1z >时,级数显然发散。
(以下讨论每步1分) 4:显然,点ai 是函数的二阶极点。
2
22
2R e [(),]l i m [()]()
ibz z ai d e s f z ai z az dz z a →=-+2
l i m []()ibz
z ai d e dz z ai →=+ (4分) 2321lim
()4ibz ab
z ai ibz ab ab
e i z ai a e →--+==-+。
(2分)
5:0
()()j t
j t
F f t e dt Ae
dt τ
ωωω+∞
---∞==⎰⎰()(1)0j t j t A A e e j j ωωτω
ω--=-=-。
(第一步4分,结果2
分)
第四题:证明
证明:由连续性可知,对任给的0ε>,存在()0δε>,使得当0r δ≤≤时,有 ()()i f re f θωε-<,(02)θπ≤≤,因此(4分)
220
[()(0)][()(0)]2i i f re f d f re f d π
π
θ
θθθπε-≤-≤⎰
⎰
(4分)
即 20
0l i m [()(0)]0i r f r e f d π
θ
θ→-=⎰,(2分) 故 20
0l i m ()2(0
)i r f r e d f π
θθπ→=⎰。
第五题:解答
1:2
4
024[()]30st st st f t e dt e dt e dt +∞
---=+-+⋅⎰⎰⎰ 24
3102st st
e e s
s
--=-+241
(34)s s e e s
--=-+ 2:令()[()]X s x t =,()[()]Y s y t =,对方程两边取拉氏变换得
2222
2
()1()1()()012()2()1()()1s X s s Y s X s Y s s X s s Y s X s Y s s ⎧+++++=⎪⎨+---+=⎪+⎩
, (4分) 求解得
21
()()1
X s Y s s ==-
+ (4分) 取拉氏逆变换得到原方程的解为
()()sin x t y t t ==-。
(2分)。