激光干涉仪操作规程

合集下载

激光干涉仪测量步骤

激光干涉仪测量步骤

激光干涉仪线性测量步骤一、做以下准备:(1)将云台所有旋钮(仰俯、摆动、平移)调至中间位置;(2)将三角架支座脚调至中间位置;(3)带5m长接线板;(4)带百分表、磁力表座、直角尺;(5)带两块水平仪,看机床工作台安装水平;(6)电脑提前开机,并打开测量软件;(7)补偿装置带进场之前提前接好;(8)两个人调光路的同时,一个人输入测量程序。

二、光路调整1. 将激光头置于三角架上,放在机床的右侧。

接电源线预热5分钟左右(激光头指示灯,红灯常亮或闪烁 绿灯常亮),预热时将激光头与电脑之间相连的数据线连接上,之后调节三角架的高低,并用水平仪将激光头调水平。

技巧:(1)大调调三角架支架腿,微调调脚架支座脚。

2)目测激光头相对于反光镜的高低,此时调整可用三角架中间升降摇把。

2. 将反射镜固定在工作台左侧。

注:(1)提前综合布局干涉镜、反光镜与激光头的位置,使它们上下左右对齐,并且反射镜尽量靠近干涉镜。

反射镜红点朝下安装。

(2)反射镜架设应满足全行程(例如:450mm)要求,并且不能和干涉镜相撞。

(3)将激光头尽可能接近工作台右侧行程限位。

技巧:(1)用直角尺将反射镜磁力表座与工作台T型槽调平行;2)用百分表将反射镜磁力表座与工作台T型槽拉平行。

3. 调整反光镜和激光头之间的光路。

(1)旋转激光器的光靶,白点朝下,使激光器发出较小的光束;(2)将机床工作台移动到激光器最近处,将一个光靶置于前端,白点朝上;(3)搬动激光头三角架,并调节三角架中间升降摇把,使激光束打到反射镜光靶白点中心;(4)移动机床X轴,使其逐渐远离激光头,观察反射镜光靶白点上的激光束,看其是否偏移出中心位置,一旦偏移出白点,则暂停机床,调整激光头云台上的水平摆动旋钮(左后侧小旋钮),使光束移动到以光靶白点为中心的水平对称位置,再调整激光头云台上的平移旋钮(左前侧大旋钮),使光束移动到光靶白点中轴线位置,然后调整三角架中间升降摇把,使光束移动到光靶白点中心位置。

干涉仪的使用教程详解

干涉仪的使用教程详解

干涉仪的使用教程详解干涉仪是一种重要的科学研究工具,它能够根据光的干涉现象来进行精密测量。

干涉仪广泛应用于光学、物理、天文等领域,具有优良的测量精度和灵敏度。

本文将详细介绍干涉仪的使用方法和注意事项。

一、基本原理干涉仪的基本原理是利用光的干涉现象进行测量。

光的干涉是指光波的相遇和叠加,分为相长干涉和相消干涉两种情况。

相长干涉时,光波叠加后得到的干涉条纹亮度增强;相消干涉时,叠加后的干涉条纹则呈现暗纹。

通过观察和分析干涉条纹的形态和变化,可以得到待测物体的特性参数。

二、使用步骤1. 设置实验装置:首先将干涉仪放置在稳定的台架上,并垂直于水平方向。

保证光源稳定,并对其进行准直处理,以获得单色、平行光。

2. 调整反射镜:根据干涉仪的类型不同,调整反射镜的位置和角度,确保光线能够正确地通过干涉仪的光程差调节装置。

3. 干涉条纹的观察:将待测物体放置在干涉仪的光程差调节装置上,通过调整该装置的位置或者改变待测物体的位置,观察和记录干涉条纹的形态和变化。

4. 数据处理与分析:根据记录的干涉条纹数据,利用干涉仪的相关公式进行计算和分析,得出待测物体的参数。

三、注意事项1. 实验环境的稳定:干涉仪对实验环境的稳定性要求较高,应确保光源的稳定性、噪声的减小以及实验装置的固定。

2. 防止光源污染:在进行干涉仪实验时,要注意保持光源的洁净,避免灰尘或其他污染物对光的质量和干涉条纹的观察造成干扰。

3. 干涉仪仪器的校准:定期对干涉仪的仪器进行校准,以确保其测量结果的准确性和可靠性。

4. 干涉条纹的观察技巧:观察和记录干涉条纹时,应利用光学仪器和图像处理软件等工具,以提高观察和分析的精度。

四、应用领域1. 光学研究:干涉仪被广泛应用于光学相关的实验研究中,如光学材料的折射率测量、光学组件的表面形貌检测等。

2. 物理实验:干涉仪可用于测量物体的形变、位移等参数,如材料的热膨胀系数、振动的频率和幅度等。

3. 天文观测:干涉仪在天文观测中有着重要的地位,例如进行星际介质的研究、天体形貌的探测等。

激光干涉仪检测与调整过程讲解

激光干涉仪检测与调整过程讲解

激光干涉仪检测与调整过程7.1 检测前工作7.1.1 检测前应该设置什么参数、检测程序怎么生成?一、目标位置:当选择目标位置以进行机床轴的校准时,目标位置通常应横跨该轴的工作区域。

下面我们以目标为从0到450MM,并使间隔为30MM为间距如图所示:在软件中如下设置目标:选择目标点中的等距定义目标,如下图所示图1 →图2接着弹出如图2的窗口接着我们在内部设置数据如图三所示图3到这里的时候我们将目标点设置完毕,接下来我们要上生成。

二、生成检测程序:激光干涉仪在检测的时候时按照我们在第一步设定的目标点运动的,即从0到450MM每30MM为一个点,因此机床在运动的时候必须和软件设置的一致,所以我们必须生成检测程序。

程序的生成方法图下:选择定义工具栏下的零件程序下的产生按键,如下图所示:图1 →图2在弹出的窗口中输入文件名,并且选择程的序存放路径按保存,会弹出下图:图1 →图2在图1中需要我们选择的为:数控系统的型号。

我们针对我们当前检测机床的数控系统型号作正确的选择,接着弹出图2的窗口,这个窗口要求我们填写与程序相关的数据,我们如下图所示填写:程序号:0001轴名为:Y运行次数为:3选择方向为:双向暂停周期为:4秒越程为:4.0000毫米零件程序类型:线性进给量:1500 ;轴方式为:普通名词解释:程序号:该程序的序号轴名:待校准轴的名称这里记住是大写运行次数:我们希望该程序运行多少次选择方向:在轴上行走的方向时一来一回的间隔点还是只去这样走回时不走暂停周期:等待软件记录数据的时间,这里要根据电脑的性能作调整越程:这里是为了消除方向间隙而设置的,一般选择默认,也可以自行设置零件程序类型:选择运行的方式,因为我们是走直线的所以我们选择线性进给量:机床运动的速度到这里的时候我们已经完成了程序的生成,我们使用文本格式打开文件可以看到程序如下:一定能用得上,所以我们统一使用以下修改过的程序作为标准:机床,但它在系统中的适应度比较强。

激光干涉仪说明书Microsoft Word 文档

激光干涉仪说明书Microsoft Word 文档

前言一、本次我们主要研究:如何检测机床的螺距误差。

因此我们主要的任务在于:1.应该使用什么仪器进行测量2.怎么使用测量仪器3.怎么进行数据分析4.怎么将测量所得的数据输入对应的数控系统二、根据第一点的要求,我们选择的仪器为:Renishaw 激光器测量系统,此仪器检测的范围包括:1.线性测量2.角度测量3.平面度测量4.直线度测量5.垂直度测量6.平行度测量线性测量:是激光器最常见的一种测量。

激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。

三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。

因此,我们此次使用的检测方法——线性测量。

总结以上我们的核心在于:如何操作Renishaw 激光器测量系统结合线性测量的方法进行检测,之后将检测得到的数据进行分析,最后将分析得到的数据存放到数控系统中。

这样做的目的在于——提高机床的精度。

第二章、基础知识2.1 什么是螺距误差?开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。

但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。

由上面的原因可以得知:螺距误差是指由螺距累积误差引起的常值系统性定位误差。

2.2 为什么要检测螺距误差?根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。

2.3 怎么检测螺距误差?(1)安装高精度位移检测装置。

(2)编制简单的程序,在整个行程中顺序定位于一些位置点上。

所选点的数目及距离则受数控系统的限制。

(3)记录运动到这些点的实际精确位置。

(4)将各点处的误差标出,形成不同指令位置处的误差表。

(5)多次测量,取平均值。

(6)将该表输入数控系统,数控系统将按此表进行补偿。

2.4 什么是增量型误差、绝对型误差?①增量型误差增量型误差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5 螺距误差补偿的原理是什么?螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将误差以表格的形式输入数控系统中。

实验技术中的激光干涉技术的实验流程与注意事项的激光束对准与稳定技巧

实验技术中的激光干涉技术的实验流程与注意事项的激光束对准与稳定技巧

实验技术中的激光干涉技术的实验流程与注意事项的激光束对准与稳定技巧随着科技的快速发展,激光干涉技术在工程、医学、科学研究等领域中得到了广泛的应用。

在进行激光干涉实验时,激光束的对准与稳定对实验结果的准确性起到了至关重要的作用。

本文将介绍激光干涉技术的实验流程以及对激光束对准与稳定的一些技巧和注意事项。

一、实验流程1. 准备实验装置和材料:首先,检查所需的仪器设备是否齐全,包括激光器、反射镜、分束器、干涉仪等。

同时,确保材料的选择符合实验要求,例如选择透明度高、稳定性好的材料。

2. 激光器的调试:接下来,对激光器进行调试。

首先,检查激光器的工作状态和参数,确保激光器处于正常工作状态。

然后,根据实验需求,调节激光器的能量、波长和脉冲宽度等参数。

3. 激光束的对准:接下来是激光束的对准。

首先,使用调节器件将激光束调整到垂直方向。

然后,使用波前传感器或功率计等设备,调整激光束的位置和方向,使其尽量与光学轴线平行。

4. 干涉仪的调整:将激光束调整到干涉仪的入口后,调整干涉仪以获得干涉图样。

首先,调整干涉仪的两个反射镜,使得两束激光在干涉仪内产生干涉。

然后,使用细微调整器调整反射镜的位置,以获得清晰的干涉条纹。

5. 实验数据的记录和分析:在实验过程中,及时记录和分析实验数据。

注意保存实验数据和观察结果,以备后续的数据分析和结果讨论。

二、激光束对准与稳定技巧1. 使用稳定的支架:在进行激光束对准和干涉实验时,使用稳定的支架来支撑激光器和干涉仪等设备是非常重要的。

稳定的支架可以避免设备晃动和震动对实验结果的干扰。

2. 使用功率计进行实时监测:激光束的稳定性对实验结果的准确性影响很大。

因此,在实验过程中使用功率计进行实时监测,确保激光束的功率稳定在设定范围内。

3. 定期检查和校准设备:定期检查和校准设备对于保持激光束的稳定和对准非常重要。

特别是对于反射镜、分束器等关键器件,定期检查并进行必要的校准是必须的。

4. 注意环境因素:在进行激光干涉实验时,环境因素也需要考虑。

雷尼绍XL80激光干涉仪操作手册

雷尼绍XL80激光干涉仪操作手册

镭射干涉仪操作手册手册内容一.RENISHAW 公司简介 1二.镭射干涉仪原理 2(1)波的速度 3(2)干涉量测原理 3(3)镭射干涉仪 4(4)镭射干涉仪一般量测项目 4三.注意事项 5四.镭射干涉仪防止误差及保养 5(1)镭射干涉仪防止误差 5(2)镭射干涉仪保养方法 6五.安全及注意事项 6六.镭射光原理及特性7七.镭射硬件介绍8八.镭射架设流程图15九.定位量测原理及操作16(1)线性定位量测原理16(2)量测方式17十.镭射易发生之人为架设误差20(1)死径误差20(2)余弦误差21(3)阿倍平移误差21 十一.镭射操作之步骤22(1)软件安装之步骤22(2)执行量测软件22(3)定位量测硬件架设之操作23(4)镜组架设前之注意事项24(5)镜组架设之步骤24 十二.定位量测之程序范例29 十三.定位量测之软件操作步骤30 热漂移量测38 快速功能键44 十四.动态软件量测之操作45(1)动态量测硬件之架设45(2)执行量测之软件46(3)位移与时间48(4)速度与时间49(5)加速度与时间50 十五.角度量设之操作52(1)注意事项52(2)镜组架设的种类53(3)镜组架测之步骤54(4)角度量测之软件操作步骤57 十六.RX10旋转轴之量测62(1)说明62(2)硬件配件之介绍62(3)硬件操作之步骤64(4)软件操作之步骤67 十七.直度量测之操作75(1)直度之分类75(2)直度量测之硬件架设75(3)镜组架设之步骤75(4)直度软件之操作步骤80 十八.Z轴直度镜组织架设方法85 十九.垂直度量测之操作89(1)垂直度镜组架设之步骤89(2)软件操作之步骤95 二十.平面度量测之原理与操作101(1)硬设备101(2)操作之原理102(3)镜组架设之步骤102(4)软件操作之步骤110RENISHAW 公司简介RENISHAW为一家英国公司,产品营销全世界,主要产品有三次元量床之测头、测针、BALLBAR循圆测试仪、镭射干涉仪・・・・・・・・等等及产品经NPL(英国国家标准)认证为ISO 9001之合格厂商RENISHAW公司为机器设备制造商提供量测检验系统的仪器,提供各种用于机器精度检定的量测设备进而改善机器的精度RENISHAW XL80 高性能镭射干涉仪是机床、三次元坐标量床及其它定位装置精度校准用的高性能仪器,由于最新电子技术的应用,使其镭射波长非常稳定并保持了低成本高效率的工作流程RENISHAW 产品介绍:镭射干涉仪量测系统循圆测试仪器(BALLBAR)量测系统三次元测头测针系列黏贴式光学尺系列镭射干涉仪量测原理MICHELSON E0 干涉原理两个频率振幅波长相同的镭射光波因相位变化而发生不同程度的干涉a.相长干涉(建设性干涉)b.相消干涉(破坏性干涉)相长干涉相消干涉1.波的速度V=fλ 若f,λ const . 则V const2.干涉量测原理3.镭射干涉仪:一般镭射干涉仪均为氦氖镭射,其镭射光为红色波长0.6329μm长期稳定误差0.05ppm以下(10个波长相差0.5个波)其优点:a.测量范围大b.简化以往光学仪器结构c.测量速度快缺点:易受大气环境影响因波长常会随温度、气压、湿度而变化(因镭射光以空气为传递介质)4.镭射干涉仪一般量测项目:(一)定位精度、距离量测、重复性(二)速度、加速度、动态量测(三)角度量测:a.垂直方向角度(pitch)b.水平方向角度(yaw)(四)真直度量测:a.垂直方向b.水平方向(五)直角度量测(六)平面度量测(七)平行度量测(八)旋转角度量测注意事项:(1)三脚架置于待测物适当位置,地基稳固不可摇晃及避免人员和机器碰触的地方(2)三脚架之水平气泡调至中央位置固定(3)信号线之插头,红点表示向上,各线接头缺口部份确实吻合方可插入(4)各电源线、信号线连接或拔除时,各仪器需均在OFF状态,否则会对仪器造成伤害(5)给予稳定独立电源,确实不漏电环境中使用(6)短距离量测(50mm内)亦产生余弦误差,先校直度再作定位(6)对焦时避免反射回来的镭射光打在镭射光射出口处(7)镭射先热机稳定后,再做镭射量测(8)操作中确认XC80(环境补偿系统)是监控中,每7秒各侦测一项,以42秒为一次循环(9)镭射干涉仪设备存放地点尽量保持干燥镭射干涉仪防止误差及保养1﹒镭射干涉仪防止误差(1)量测周围环境应尽量避免太阳光直接照射或突然流动的风产生扰流现象(2)装设干涉镜及反射镜在被测机台上时,必须牢固,否则机台移动会造成不可预期的量测误差(3)环境侦测感应器与材料温度感应器是否作动,必须于量测前确实检查,以免造成不必要的误差(4)要获得最佳精度并减少误差,建议遵守下列规定:a﹒在校验环境条件中执行量测b﹒激光束需作确实校直c﹒需注意量测时的周围条件d﹒牢固地装设镜组(3)在量测执行中不可因其它因素而中断,量测必须一次完成检验,若发生量测中断情形,必须重新执行检验2﹒镭射干涉仪保养方法(1)使用时应防止碰撞及震动(2)工作完毕应循操作方法反顺序逐一拆卸并且擦拭干净置回仪器盒内(3)金属平台在使用完后应擦拭干净(4)干涉镜及反射镜片应使用光学镜片专用擦拭纸做圆形回转擦拭(注意严禁使用酒精或具有挥化性及腐蚀性之清洁液擦拭,请干擦,因镜面有镀一层蓝色薄墨,而激光束是靠此薄墨产生折射与反射,如果使用具有挥化性或腐蚀性之清洁液会将此薄墨破坏,如果镜面没有薄墨折射率既减弱而影响光强,且无法再镀上此薄墨,请注意小心使用)(5)应小心搬运尤其对镜片类应有适当防护与防震,暂不用时以干净东西覆盖安全注意事项1.镭射光属二级镭射,建议勿长时间直视镭射光2.镭射预热时可将镭射光闸暂时关闭,镜组对焦时再予以打开3.对焦时尽量避免反射之镭射光打在镭射头的镭射发射出口处,以免镭射造成不良影响4.架设镜组前,先将机器欲测轴全行程来回移动,观察机器移动空间并决定镜组架设位置,当镜组架设至机台后,使用手动慢速移动机器确定移动空间无其它干涉物后,机器才可改为自动移动5.架设或操作镭射干涉仪时,闲杂人等避免靠近,以免拌到电源线或传输线6.确认电压伏特是否正确,并且所使用的电力来源尽量能够独立,并加稳压器.镭射光原理及特性1.光的相关原理光为一种无质量的微粒子(牛顿)光为一种电磁波(马克士威尔)光具有粒子与波动的性质2.光的特性方向性直线性波动性3.波的基本物理量频率f、周期T、振幅A、波长λ、其中波长是长度单位4.何谓镭射光对某种元素施予能量,使其原来稳定的基态(低能阶)变为不稳定的激态(高能阶),元素会由激态(高能阶)释放出能量后变回原来的基态(低能阶) 再释放能量的过程中会产生一种光,我们谓之镭射光5.镭射光之特性A.高单频性:光的频率即是色,高纯频率即是高单色,一般可见光包含红、澄、黄、绿、蓝、靛、紫、频率纯度较低B.高方向性:镭射光配合聚光镜的发散角度非常小,而一般光线其扩散角度都非常大C.高亮度性:其光线亮度比一般光线亮度大数倍(视镭射而定)硬件介绍XL80 镭射头XC80 环境补偿系统8XC80 环境补偿系统插槽示意图夹持器组线性定位量测镜组角度量测镜组Z轴直度量测镜组及附件垂直度量测镜平坦度量测镜组旋转轴量测系统镭射头微调平台重负荷三脚架镭射架设联机流程图1﹒镭射架设及量测流程表15定位量测原理及操作1﹒线性定位量测原理:(一)架设方式:干涉镜不动,移动反射镜反射镜不动,移动干涉镜(二)何谓线性定位精度:CNC机器执行时,程序之坐标点未必是机器的坐标点,程序坐标点为理想值,机器坐标点为实际值,两者之间差为机器的定位精度(三)线性定位误差原因:误差原因可能是导程误差、控制器误差、机器几何误差及震动等原因(四)线性定位量测的目的:量测出机台可能因零件和组装所造成的误差,可利用机器参数补偿或重新组装改进机器加工机精度,确保机器加工的质量(五)镭射干涉仪定位量测发生误差的原因:a﹒空气、温度、湿度、气压等影响b﹒待测物之热膨胀系数c﹒电子误差d﹒死径误差(图一)e﹒阿倍(ABBE)误差(图二)f﹒余弦(COS)误差(图三)g﹒震动误差h﹒镜组热膨胀飘移镭射干涉仪量测数据是以数值方式显示,并没有一般量测时有人为读值判定所产生的误差162﹒量测方式a﹒线性(linear)方式---单向---2次b﹒线性(linear)方式---双向---2次17C﹒朝圣(pilgrim)方式---单向---2次d﹒朝圣(pilgrim)方式---双向---2次18e﹒钟摆(pendulum)方式---单向---2次f﹒钟摆(pendulum)方式---单向---2次镭射架设易发生之误差1﹒死径误差(如图一所示)˙死径误差是一种与使用XC80 自动补偿的线性量测过程中的环境因子变化有关的误差。

激光干涉仪使用手册8.24

激光干涉仪使用手册8.24

激光干涉仪使用手册目录第一单元 激光干涉仪的应用第一节 激光干涉仪的光路第二节 激光干涉仪的基本使用方法第二单元 FANUC 0iMC系统有关螺距误差补偿的参数第一节数控系统的相关操作画面提示第二节与数控机床轴限位相关的参数的应用第三节与螺距误差补偿相关的参数的应用第三单元 检测机床螺距误差的运行程序第一节检测加工中心X轴螺距误差的运行程序第二节检测加工中心Y轴螺距误差的运行程序第三节检测加工中心Z轴螺距误差的运行程序第四节机床预热程序第五节测得反向间隙的运行程序第六节二次检测的机床运行程序第四单元 Agilent5529激光干涉仪测量零部件的组装及运用 第一节 Agilent5529激光干涉仪测量零部件介绍第二节 Agilent5529激光干涉仪测量零部件的组装第三节干涉镜和反射镜的组装及光束的调节方法第五单元 Agilent5529/5530检测软件的应用第一节 Agilent5529/5530检测软件的界面介绍第二节 Agilent5529/5530检测软件的案例第六单元 VMC650加工中心螺距误差补偿案例第一单元激光干涉仪的应用提示:因Agilent5529/5530激光干涉仪为双频检测,所以本单元节重点介绍双频检测的原理1.什么是激光干涉仪?激光干涉仪(laser interferometer)以激光波长为已知长度利用迈克耳逊干涉系统测量位移的通用长度测量.工具激光干涉仪有单频的和双频的两种。

激光具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。

目前常用来测量长度的干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。

激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。

2.什么是干涉?干涉(interference)为两波重叠时组成新合成波的现象。

高精度激光干涉仪的调试步骤与测量结果分析方法

高精度激光干涉仪的调试步骤与测量结果分析方法

高精度激光干涉仪的调试步骤与测量结果分析方法激光干涉仪是一种用于测量光程差的精密仪器,在科研、工业制造和生物医学等领域得到了广泛应用。

高精度激光干涉仪能够实现亚纳米级的测量精度,因此其调试步骤和测量结果分析方法非常关键。

一、激光干涉仪的调试步骤1. 光学路径的校准:激光干涉仪中最重要的部分是干涉仪的光路。

首先要保证光源的稳定性和亮度,通常使用氦氖激光器作为光源,并使用聚焦透镜获得平行光。

然后要调整两束光线的平行度,使用准直器或像差调节器进行调整。

最后,通过调整反射镜和平行板的位置,使两束光线相互平行,保证光束之间的光程差为零。

2. 干涉图案的调试:将两束光线合并后,会出现一条干涉条纹。

通过调节平行板的角度或物镜的位置,可以调整干涉条纹的间距和亮度。

要使条纹清晰且对称,可以适当调整反射镜的位置。

3. 线性度和非线性度的校准:利用参考杆来测试激光干涉仪的线性度和非线性度。

将参考杆平行放置在干涉仪的测量平台上,测量不同位置处光程差与参考杆长度的关系。

通过分析这些数据,可以得到激光干涉仪的线性度和非线性度,并进行校准。

4. 测量系统误差的校正:激光干涉仪在实际测量中可能存在系统误差,如温度变化、机械振动等。

通过在实验中引入补偿措施,可以对这些误差进行校正。

例如,可以在实验过程中保持温度稳定,使用防振设备减小机械振动对测量的影响。

5. 预处理与信号分析:在测量过程中,激光干涉仪会产生一系列干涉信号。

这些信号需要进行预处理和信号分析,以获得最终的测量结果。

常用的方法包括锁相放大器、频谱分析仪等。

二、测量结果分析方法1. 干涉条纹解析:干涉仪产生的干涉条纹是通过测量光程差得到的。

根据不同的应用需求,可以利用不同的方法对条纹进行解析,如三角法、Fourier变换等。

解析干涉条纹可以得到物体的形貌信息和变形分布等。

2. 测量结果精度评估:对于高精度激光干涉仪的测量结果,需要进行精度评估来判断测量结果的可靠性。

常用的方法包括误差分析、重复性测试和对比实验等。

XL-80型激光干涉仪操作规程

XL-80型激光干涉仪操作规程

激光干涉仪操作规程1、本规程适用范围适用于专职从事激光干涉仪测量工作的作业指导。

2、作业目的2.1 对仪器设备操作人员的具体操作进行正确的理论指导;2.2 对该仪器设备操作的初学人员的培训提供正确的指导规范;3、作业前的准备3.1 熟悉激光干涉仪的正确操作步骤;3.2 检查激光干涉仪机箱中的各个部件、相关配套装置和所需工具是否齐全;4、作业过程4.1 三脚架安装。

将三脚架从箱中取出,三条支撑腿撑开,中间一节拉出、旋紧,放在被测元素前方平整位置,如地面不平,将地面进行处理。

用钥匙打开仪器箱,从机箱中取出云台自锁螺母旋到三脚架上。

4.2 XL-80激光头的安装、调整。

4.2.1 用右手拇指与其余四指分开,正确抓住XL-80激光头,左手配合将激光头和云台从机箱中取出,左手将云台下方自锁手柄推到松开位置后,置于三脚架的云台自锁螺母上,慢慢转动激光头,使自锁手柄与云台自锁螺母正确结合,锁紧手柄自锁。

要求:激光头射出的光束应与被测元素相对运动方向平行或一致。

4.2.2 释放云台所有旋紧螺钉,使云台各方向行程处于中间位置,锁紧4.2.3 从机箱中拿出微型水平仪,置于激光头中间位置,通过三脚架调节激光头的整体水平。

4.3 预热激光头。

从机箱中取出激光头电源线和一条XL-LC XC USB电缆组件数据线,将其正确插入相应接口,电源插头插入电源,数据线另一端口插入电脑USB接口。

打开电源开关,激光头进入预热状态。

将激光头的镜头光闸旋转到找正光源状态位置。

激光头发射出激光束,但此时的激光束是频闪不稳定状态。

4.4安装补偿单元:4.4.1 从箱中取出强磁力吸盘,将其安装在被测元素固定部位处(安装时注意安全,防止吸盘磁力夹手)。

4.4.2取出材料温度传感器(M)和空气温度传感器(A);4.4.3将材料温度传感器(M)带有传感器一端通过永磁体固定到被测元素的被测材料上,另一端接口通过XC-80补偿器的第二、第三或第四个接口与XC-80补偿器相连接,接口插孔一定要正确对正再慢慢旋入。

激光干涉仪对光操作指南讲解

激光干涉仪对光操作指南讲解

激光干涉仪对光操作指南6.1 使用前的工作6.1.1 为什么要对光?对光的目的是为了让检测的光线能准确返回激光干涉仪上,让激光干涉仪得到最强的反馈信息,以便计算实际的行程数值。

6.1.2 影像线性测量精度的因素包括哪些?①、死程误差死程误差是在线性测量过程中与环境因素改变有关的误差,这时已采用 EC10 自动补偿功能。

在正常状况下,死程误差并不大,而且只会发生在定标后以及测量过程中的环境改变。

路径 L2的激光测量死程误差与两个光学元件间的距离有关,此时系统定标为 L1,请参阅图 1。

若干涉镜及反射镜之间没有动作,且激光束四周的环境状况有所改变,整个路径(L I + L2)的波长(空气中)都会改变,但激光测量系统只会对 L2距离进行补偿。

因此,死程测量误差会由于光束路径 L1没有获得补偿而产生。

图 1 - 死程误差不过,若当设定定标时固定和移动镜组彼此邻接,死程误差就可忽略不计。

如下图 2 所示。

图 2 - 死程误差可不计时的正确设置如果可能,定标激光器时使镜组互相靠近。

若定标激光器时镜组彼此相隔不到 10 mm,则正常状况下的死程误差就可忽略。

机床几何显示当移动镜组位于轴的零点位置,这两个镜组彼此分得最开,此时可用预置功能来避免与定标激光干涉镜系统有关的潜在死程误差。

②、余弦误差激光束路径与运动轴之间存在的任何未准直都会造成测得的距离和实际的运动距离之间有差异,如图 1 所示。

图 1 - 余弦误差.此未准直误差通常被称为余弦误差。

此误差的大小与激光束和运动轴间的未准直角度有关,如图 1 中的。

当激光测量系统与运动轴未准直时,余弦误差会使得测量的距离比实际距离要短。

随着角度未准直的增加,误差也跟着显著增加,如下表所示:角度( mm/metre) 角度(弧分)误差( ppm)0.451.001.403.204.50 10.001.533.434.8710.8715.3935.390.10.51.05.010.050.0要使余弦误差达到最小,测量激光束必须准直,并与运动轴平行。

激光干涉仪使用技巧讲解

激光干涉仪使用技巧讲解

激光干涉仪使用技巧讲解激光干涉仪是一种在科学和工业中常用的精密测量仪器,广泛应用于光学、电子、机械等领域。

随着技术的不断发展,激光干涉仪的测量精度和稳定性不断提高,但在实际使用中仍然需要注意一些技巧才能获得较好的测量效果。

一、使用前准备在使用激光干涉仪之前,需要进行一些必要的准备工作:1.检查仪器在使用前,应检查仪器是否完好无损,各部件是否牢固,电路是否连接正确,激光是否正常发出等。

如果存在问题,应及时修理或更换。

2.校准仪器在进行精密测量之前,需要对激光干涉仪进行校准。

一般需要校准的包括:•激光输出功率•干涉仪干涉条纹数目•干涉仪光程差校准的目的是保证测量结果的准确性。

3.环境准备为了保证测量的准确性,需要将测量环境尽可能的控制在稳定状态,避免振动、温度变化等干扰。

二、使用技巧在进行实际测量时,需要注意以下几点:1.避免干扰激光干涉仪对环境干扰比较敏感,因此需要避免一些潜在的干扰源,如:•光源的影响•地震、微震等地面振动•温度变化等如果遇到上述干扰,应及时采取措施进行处理。

2.保持仪器稳定在进行测量时,需要保持激光干涉仪的稳定性,避免因振动、移动等因素导致测量误差。

可以采用以下措施:•固定仪器底座•采用抗震支架或振动隔离器•保持室内空气流通3.控制测量误差在使用激光干涉仪进行精密测量时,需要注意控制误差,包括:•误差源的分析和消除•测量数据的处理和分析•测量过程中的观察和记录通过对误差的控制,可以获得更加准确可靠的测量结果。

三、注意事项在使用激光干涉仪时,还需要注意以下事项:1.安全问题激光干涉仪使用的是激光光源,需要注意安全问题。

在使用时应佩戴适当的个人防护装备,防止激光对眼睛等部位造成伤害。

2.红外光问题部分激光干涉仪使用的是红外光源,需要注意该光源对照相机等摄像设备的影响,避免损坏这些设备。

3.维护问题激光干涉仪使用后应及时进行维护和保养,包括:•清洁仪器外壳•更换磨损的部件•校准仪器通过维护和保养,可以延长仪器的使用寿命,保证测量的准确性。

XL-30 激光干涉仪基本操作说明

XL-30 激光干涉仪基本操作说明

XL-30 激光干涉仪基本操作说明1、安装环境补偿单元:(1)取出补偿单元,将材料温度传感器和环境温度传感器连接到补偿单元;(2)将材料温度传感器放置到被测机床的工作台或导轨上,注意远离电机、排风扇等部位,将环境温度传感器放置到被测机床工作台或激光光路附近,利用安装磁力吸板,将环境补偿单元放置到激光光路附近。

2、安装激光头:(1)取出三脚架,根据被测机床的高度,将三脚架调至适当的高度;(2)将激光头安装到三脚架上,将水平调节、俯仰、扭摆等调节旋钮调至中间位置;(3)将激光头调节与被测机床基本垂直或平行,用水平泡调整激光头至水平;(4)连接匹配的电源至激光头;(5)打开激光头电源开关,激光头预热。

3、安装测量镜组:(1)根据需要测量的项目,用相应的镜组;(2)根据需要测量的轴线,如X、Y、Z等,将安装组件和镜组进行相应的联结;(3)根据测量内容,将镜组安装到被测机床上,安装镜组的位置要特别注意,移动镜组必须要安装到被测机床被测轴线的行程的极限位置,以保证即使在被测机床被测轴线全行程范围内移动时,镜组之间、镜组于被测机床不会产生碰撞,保护镜组的安全。

4、调光:(1)口诀:近调镜组,远调激光;(2)上述步骤完成后,测量光和参考光不一定重合,也不一定会回到激光头的接受孔内,所以需要微小调整镜组的位置和激光头左右、俯仰、扭摆的位置,保证测量光和参考光基本重合,同时都回到激光头接受孔内;(3)镜组位置调整利用机床的移动或直接将镜组移动,激光头的调整利用激光头(云台)的相应调整旋钮进行;(4)调整光路后,保证在被测机床被测轴的全行程范围内,回到激光头接受孔的激光强度足够。

5、激光头、补偿单元和电脑连接:(1)用随机专用USB数据线将激光头、补偿单元和电脑连接上;(2)打开相应的测量软件,确认激光头和补偿单元是否正确连接;6、测量设置:(1)上述步骤完成并无误后,根据测量要求,进行软件设置;、(2)线性测量时首先要设置物体膨胀效应补偿系数,根据被测机床的基体材料和位置控制方式,输入相应的系数;(3)根据测量的具体项目和要求,设置测量参数等内容。

双频激光干涉使用仪操作说明

双频激光干涉使用仪操作说明

双频激光干涉仪使用操作说明一、操作步骤1.系统的相互连接(如图1所示)a.通过PCM20接口,用通讯电缆将IBM thinkPad笔记本电脑与ML10 激光干涉仪连接。

b.通过PCM20接口,用通讯电缆将IBM thinkPad笔记本电脑与EC10 环境补偿单元连接,并将空气及材料温度传感器放置在机床适当位置。

c.用通讯电缆将IBM thinkPad笔记本电脑与HP1180c打印机连接。

d.将PC10、ML10、EC10分别接上电源线,再接到电源插板上。

e.通过稳压电源,将总电源线接到220V接地电源上。

2.激光的预热闭合激光干涉仪开关,使激光预热大约15~20分钟,等激光指示灯出现绿色后,表明激光已稳定。

3.测量软件的启动a.打开笔记本电脑,启动“Renishaw Laser10”测量软件b.双击“线性测长”进入“Renishaw Laser10 Capture”测量子软件。

4.光学镜的安装(如图1所示)a.将ML10激光干涉仪固装在测量三脚架上。

b.将反射镜用夹紧块、安装杆、磁性表座固定在机床运动部件上。

c.将反射镜和分光镜组合组成干涉镜;将干涉镜用夹紧块、安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。

图1 用于测量定位的典型系统设置。

5.激光器、干涉镜及反射镜的调整①.线性干涉镜及反射镜的定位a.放置三脚架及激光器,使其垂直指向测量镜组。

利用机架作为瞄准线,使激光器大略与运动轴准直。

b.旋转光闸,以便激光器发出图2中所示的直径变小的光束。

光束的直径越小,越容易看出光路是否准直。

c.移动机床,使线性反射镜靠近激光器,并将一个光靶置于前端,白点在上。

平移激光器或机床,直到光束击中光靶上的白点,如图3所示。

此时线性干涉镜不应置于激光器及线性反射镜之间。

图2 图3d.取下光靶,并检查从反射镜返回的激光束是否击中 ML10 光闸上的光靶中心。

如果没有,则平移激光器或机床,直到激光束击中光靶的中心,如图4所示。

API激光干涉仪操作步骤

API激光干涉仪操作步骤

API激光干涉仪使用介绍(一)硬件的安装连接及调光A.安装步骤首先将激光干涉仪放置于所需测量机器的工作平台,让激光照射的方向大致与所测轴运动方向平行。

打开激光干涉仪下面的磁力座开关(如平台非铁件,需安装一铁板以便磁力座更好的吸附)。

将机器所测量轴移动至近处软限位位置。

将1D/3D反射镜镜面朝向干涉仪方向并安装在机器运动状态下稳定不会晃动的零部件上。

(反射镜与干涉仪均可作为运动测量) 激光干涉仪与反射镜安装完毕后,检测测量轴在做全程运动时能有效的接收激光照射且不会碰到反射镜及机器的任意部件。

B.硬件连接注意事项在做硬件连接前请将电源开关置于关闭状态气象站接口(weather)在连接前请务必注意方向性,拔出时请捏住根部弹簧接口拔出,对野蛮插拔导致接口损坏,API不予保修 电源线接口(DC IN 12V)有螺旋扣,在连接时需注意。

在安装好激光干涉仪后将水平与垂直方向的旋钮调整至中间位置,以确保在光路调整过程中两个方向均有可调节的余量。

气象站材料温度传感器和空气温度传感器以及大气压力传感器请放置于机器的工作台面上。

C.光路调节步骤1.将反射镜前面的旋转盖进行旋转,让旋转盖上的白点置于下方2.移动机器测量轴将干涉仪(或反射镜)移动至两者最近端3.借助机器的控制手柄或手轮移动其他两个轴,让激光干涉仪的光线照射在反射镜的白点位置,如无控制手柄可借助的情况下请调节反射镜处的磁力座或十字插接件上的连接杆进行移动调节4.移动机器测量轴将干涉仪(或反射镜)移动至两者最远端5.如果激光照射在白点水平位置距离偏差过大致使调节旋钮超越可调范围,请松开激光干涉仪下方的磁力座开关,移动干涉仪适量角度确保激光照射在白点垂直线上6.此时调节激光干涉仪主机右侧及下方的调节旋钮,使激光光线照射在反射镜白点的中心位置7.重复2、3、4、6步骤,来回往返数次,让激光全程照射在反射镜白点中心,此刻初次调光完成,将反射镜前端的旋转盖进行90度或-90度旋转致使白点置于左右两侧8.打开软件主界面,线性光强窗口条幅深绿色,数值100%(机器测量轴全程运动时),1D的配置的激光干涉仪即可有效的测量线性精度9.3D配置的激光干涉仪相对于1D配置的激光干涉仪拥有的测量线性精度功能的同时,还增加了XX(水平方向)和YY(垂直方向)的直线度测量。

激光干涉仪的使用步骤与技巧

激光干涉仪的使用步骤与技巧

激光干涉仪的使用步骤与技巧激光干涉仪是一种非常常见且广泛应用于科研实验和工程测量中的仪器。

它利用激光干涉的原理,可以高精度地测量出光程差的变化,从而得到被测物体的形状、表面的平整程度以及物体的位移等信息。

本文将介绍激光干涉仪的使用步骤和技巧,帮助读者更好地理解和运用这一仪器。

首先,使用激光干涉仪前必须先进行仔细的调试和校准。

在仪器调试时,一般需要调节激光器的输出光功率和光束的方向,确保激光器正常工作并能够稳定输出。

将光束引导至光路系统后,需要使用调平板将光束分成两个相干光束,这两个光束将会产生干涉现象。

因此,合理放置调平板和调节调平板的角度非常重要,可以通过移动和旋转平板,观察干涉图案的变化来判断是否调至最佳状态。

在干涉仪的使用过程中,还需要重视环境的控制。

由于激光干涉仪对振动、空气流动等外界因素非常敏感,因此需要保持测量环境的稳定性。

可以使用防振台来减小设备受到的外振动的影响,同时,确保实验室内空气流动平稳,以避免悬浮微尘对测量结果的影响。

此外,在实验过程中还需避免阳光直射测量区域,并注意光路系统的清洁,以免灰尘和污染物对光束的传输产生干扰。

随后,需要注意对于激光干涉仪的观测。

将干涉仪调整至最佳状态后,我们可以观察到干涉图像。

这些图像往往是明暗条纹或者彩色条纹,我们可以通过观察和分析这些干涉条纹的变化来得到我们需要的测量结果。

在观察时,需要保持视线与光路平行,并使用适当的干涉仪配套的调节装置对光路进行微调,以获得清晰可辨的干涉图案。

此外,观测时还需注意调整照明条件,以提高对干涉条纹的清晰度。

除了基本的观测,激光干涉仪还可以进行定量测量。

在进行测量时,要仔细选择合适的测量方法。

对于平面形状的测量,可以使用扫描测量法,通过转动被测物体或者移动测量仪器,获取形状曲线。

对于非平面形状的测量,可以使用相位测量法,通过分析干涉图案的相位变化,得到被测物体的高度或位移信息。

在进行定量测量时,校正和去除误差是非常重要的,需要综合考虑系统误差和环境误差等因素,并进行合理的数据处理和分析。

双频激光干涉仪

双频激光干涉仪

(培训前)2..线性测量:1、测量简要步骤1. 激光头安装在三脚架上并放在被检机床附近。

2. 把激光头、遥控器、传感器(空气传感器、材料温度传感器)连接安装在计算机上的10886A和10887A电路板上的连接头上。

(连接头在计算机的背面或侧面)3. 插上所有设备并打开电源4. 启动测量软件,并在测量软件菜单上选择“线性”(或者可以在主菜单上选择“重取数据”从数据库中打开一个已存在的线性测量设置文件)。

5. 完成“设置激光:线性”屏幕上的栏位(有必要,请用联机帮助)6. 选择“环境”在“设置环境补偿”屏幕上,有电路板设置、环境参数单位、环境补偿、材料补偿四个设置项目(其中环境补偿和材料补偿有系统自动补偿的设置)。

若使用了传感器,则系统自动补偿导致的测量误差将直接进入“放置和使用传感器”。

若不使用传感器,则必须手动输入补偿测量误差的值。

7. 在“设置环境补偿”手动设置的项目环境补偿:空气温度、空气压力、相对湿度材料补偿:平均材料温度、膨胀系数系统会保存最后一次输入的值(除非又输入新的值或选择“自动”),系统会一直使用这些值进行所有的线性测量。

8. 完成“设置环境补偿”点击确认,回到“设置激光:线性”屏幕。

现在可以安装并校准被检机床上的光学组件。

进入“安装和调准目标机床上的光学组件”。

传感器的放置与使用工作环境会影响(空气温度、空气压力、相对湿度、材料温度)线性测量的精度,HP5529A可选择空气传感器、材料温度传感器进行相应的调整测量。

注意事项:1. 空气传感器要尽量放在靠近实际测量路径近的地方,但不能直接放在激光束底下,因为传感器是一个热源,能导致测量误差。

2. 把空气传感器上的温湿度设置与工作环境最接近的数值。

3. 材料温度传感器放置在校准标准推荐的位置,一般放在机床台面上。

4. 在“设置环境补偿”中的“环境补偿”和“材料补偿”选择“自动”选项即可。

光学组件及安装:1. 装在有底座和支柱的高度调节器上的可移动反光镜2. 装在主轴上的干涉仪3. 装在主轴上的可移动反射镜4. 装在一个底座和支柱的高度调节器上的干涉仪组件5. 激光头X轴:1、2、5水平成一条直线放置Y轴:1、2、5水平垂直放置Z轴:3、4、5竖直垂直放置干涉仪与可移动放光经用滚花螺丝固定形成“干涉仪组件”。

雷妮绍激光干涉仪的使用

雷妮绍激光干涉仪的使用

4) 弹出误差补偿表格窗口:图表类型选择“均值补偿”、补偿分辨率设为1、 正负符号转换选择“补偿值”、参考点位置为0.0000mm、补偿起点和补 偿终点依情况而定、补偿间隔为20.0000mm,点击“绘制误差补偿图表”。
5) 按照均值补偿值对机床进行补偿,若发现补偿值中有数据大于8,则需修 改第4)步的补偿分辨率进行调整,同时,机床参数3623也要做相同修改, 重新生成补偿值再补入机床。补偿时,注意-20mm对应位置,按照均值补 偿表从下往上依次补入,补完即可。(参考参数3620)
移动三脚架使激光头的光源穿过干涉镜,此时能够看到2个光点; 微调方式下,调整机床侧使2个光点重合;
6)
7)
转动激光头,观察激光头上方的LED灯点亮情况(5个全亮最好)
微调方式下,将测量轴远离干涉镜,直到LED灯只剩一个时停 止移动,此时调整激光头的各个微调旋钮等,直到将光路再次 调整到5个LED灯全亮;
(子程序2)
雷尼绍激光干涉仪的使用
设备部:杜康
第一步:激光干涉仪的安装
1) 2) 3)
三脚架的固定; 激光头的安装与固定; 补偿器XC(包括环境空气温度传感器 和工作台表面温度传感器)的安装与 固定;
激光头和补偿器通过数据线与计算机 的连接; 5) 激光头电源线的连接; (现场演示) 6) 按下激光头电源按钮,预热5~6分钟, 直到指示灯变为红色表示预热完成; 7) 找到“开始Renishaw LaserXL线 性测长”,单击打开雷尼绍测量软件。
8)
微调方式下,将测量轴再次远离干涉镜,重复第7)步,直到测 量终点处,此时,反向摇回来,观察LED灯,保证到起点处均 保持5个LED灯全亮,若不能满足,则继续调整至全亮。
第三步:机床程序编制及参数设定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光干涉仪操作规程
一、操作步骤
1.系统的相互连接
·将PC10计算机系统与ML10 激光干涉仪用通讯电缆连接。

·如果需要,将PC10计算机系统与EC10 环境补偿单元用通讯电缆连接。

·将PC10、ML10、EC10分别接上电源线,再接到电源插板上。

·通过稳压电源,将总电源线接到220V接地电源上。

2.激光的预热
闭合激光干涉仪开关,使激光预热大约15~20分钟,等激光指示灯出现绿色后,表明激光已稳定。

3.测量软件的启动
打开计算机,在“C”提示符下依次键入:
·CD/RENISHAW (RETURN)
·RCS (RETURN)
·a (RETURN)
·b (RETURN)
完成以上步骤后,测量软件已被启动。

4.光学镜的安装
·将反射镜用夹紧块、安装杆、磁性表座固定在机床运动部件上。

·将反射镜和分光镜组合组成干涉镜;将干涉镜用夹紧块、安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。

5.激光调整
·调整激光,使其与测量方向一致。

调整时,首先用粗光束调,然后用细光束调,保证信号强度达到测量精度要求并恒定(由计算机上信号强度指示确定)。

·调整透射光线和折射光线重合。

6.目标值设定
根据测量要求,设定目标值,目标值的设定应尽可能的覆盖整个行程范围。

7.数据采集
·按目标值设定要求编制数控测量程序,在每个测量点必须有足够的延时设定(由机床操作人员完成)。

·设定数据采集参数,主要包括;线性/圆周、测量次数、单向/双向、测量信息等。

·按“ALI+D”进行数据采集。

·数据采集完后,按“ESC”终止采集过程。

8.数据分析
选择“数据分析”菜单,按相关标准要求进行数据分析,分别给出双向定位精度、重复性、反向偏差等精度指标。

9.计算机系统的退出
按以下步骤退出系统:
·按“ALT+X”退回到“主菜单
·按“x”退出本软件
·按“CD\”退出子目录
·关机
10. 测量完成后的工作
·关闭ML10。

·关闭EC10。

·关闭电源插板开关。

·拆掉所有电源线及电缆线。

·拆掉光学镜、夹紧块、安装杆、磁性表座。

·按附件表所列项目清点所有附件,并放入附件箱。

二、注意事项
1.搬运仪器附件箱时,应轻拉轻放,防止振坏激光干涉仪或其它附件。

2.三角架在使用时,应将各紧固螺钉固紧,防止意外事故的发生。

3.激光干涉仪在使用时,应用两松紧带固紧。

4.安装光学镜时,要小心谨慎,防止摔坏或碰坏光学镜,特别禁止“悬空”安装光学镜。

5.严禁用手触摸光学镜镜面,保持镜面干净。

6.必须确保电源线有地线,并且地线必须在电源线供电端接地,否则,会有触电(电击伤)的危险。

7.眼睛不能对准输出光束直视,否则会伤害眼睛。

8.在测量现场操作人员不得随意离开,以防意外事件的可能发生。

若有事确需离开,应有其它计量人员在现场看护仪器。

9.测量完后,应将电源线、连接电缆、电源插板及电缆线等擦拭干净。

10.测量完毕后,应仔细清点仪器所有附件,防止丢失。

11.本规程未涉及到的其它常识性的、基本的注意事项。

质量检查处
2004年元月6日。

相关文档
最新文档