电磁场与电磁波基础知识

合集下载

电磁场与电磁波基础知识总结

电磁场与电磁波基础知识总结

电磁场与电磁波基础知识总结静电场是指电场和电荷之间关系稳定不变的情况下的电磁场。

在静电场中,电场的强度由电荷及其分布决定,遵循库仑定律。

静磁场是指磁场和磁荷之间关系稳定不变的情况下的电磁场。

在静磁场中,磁场的强度由磁荷及其分布决定,遵循比奥-萨伐尔定律。

静电场和静磁场所产生的相互作用称为电磁感应。

变化电磁场是指电荷和磁荷随时间变化而产生的电磁场。

在变化电磁场中,电场和磁场相互作用、相互产生、相互影响,遵循麦克斯韦方程组。

电场和磁场的变化会引起彼此的变化,形成电磁波的传播。

电磁波是电磁场的一种特殊表现形式,它是由电场和磁场相互作用而产生的一种能量传播方式。

电磁波是横波,垂直于电磁场传播方向的振动方向,传播速度等于真空中光速,约为3×10^8米/秒。

在电磁波中,电场和磁场的振幅相等、相位差为90°,并且电场和磁场的变化存在一定的关系,它们之间满足麦克斯韦方程组的关系式。

根据电磁波的频率范围,可以将电磁波分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等。

不同频率的电磁波所具有的性质和应用也不同,例如,微波可以用于通讯和加热食物,红外线可用于夜视和遥控等。

电磁场和电磁波在现代科学技术中有广泛的应用。

电磁波的发现和应用是无线通信、雷达、卫星通信、数字电视、手机等现代通讯技术的基础。

电磁波对物质的作用和能量的传递是放射治疗、医学诊断以及无线能量传输的基础。

电磁波与物质相互作用和散射形成了X射线检查、光电子学、红外光谱学等现代科学技术的核心原理。

总结起来,电磁场与电磁波是电磁学的基础知识。

电磁场是电场和磁场的总和,根据静态和动态特性可以分为静电场、静磁场和变化电磁场。

电磁波是电磁场的一种特殊表现形式,是由变化电磁场产生的能量传播方式。

电磁场和电磁波在现代科学技术中有广泛的应用。

深入理解和应用电磁场与电磁波的原理,对于掌握电磁学的基础知识和发展现代科学技术具有重要意义。

电磁场与电磁波技术

电磁场与电磁波技术
气象观测:利用电磁波对气象目标的散射和折射特性,观测气象信息
雷达测距:利用电磁波的反射和传播特性,测量目标距离
雷达测速:通过分析电磁波的多普勒效应,测量目标速度
无线电导航:利用无线电信号确定船只、飞机等物体的位置和航向
卫星导航系统:利用电磁波信号实现定位和导航
雷达导航:利用电磁波探测目标并进行定位
汇报人:
电磁场与电磁波技术
目录
添加目录标题
电磁场与电磁波的基本概念
电磁场与电磁波的应用
电磁场与电磁波的危害与防护
电磁场与电磁波的未来发展
添加章节标题
电磁场与电磁波的基本概念
电磁场是由电荷和电流产生的空间区域
电磁场包含电场和磁场两个分量
电磁波是电磁场中的波动现象,具有能量和动量
电磁波的传播速度等于光速
电磁波的传播速度等于光速
电磁波是由电磁场中的振荡电场和振荡磁场相互激发产生的
电磁波的传播不需要介质,可以在真空中传播
电磁波的频率越高,传播速度越接近于光速
波动性:电磁波具有波动性质,可以像水波一样传播。
粒子性:电磁波具有粒子性质,可以像光子一样传播。
传播速度:电磁波在真空中的传播速度为光速。
频率范围:电磁波的频率范围非常广泛,从低频到高频都有应用。
合理布局:合理规划电磁波发射源和接收器的布局,避免形成有害的电磁辐射环境。
电磁场与电磁波的未来发展
新型电磁材料的发展趋势:高效能、环保等
新型电磁材料的应用领域:通信、雷达、导航等
新型电磁材料的特点:高导电性、高磁导率等
新型电磁材料的种类:铁氧体、碳纳米管等
简介:高效电磁波吸收与反射材料在电磁场与电磁波技术中具有重要应用,能够有效地吸收和反射电磁波,降低电磁干扰和电磁辐射。

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=∙=∙∇=∙=∙∇∙∂∂-=∙∂∂-=⨯∇∙∂∂+=∙∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=∙=∙∇=∙=∙∇=∙=⨯∇=∙=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-∙=-=-⨯=-=-∙==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-∙==-⨯==-∙==-⨯(((1)基本方程0022=∙==∇-=∇=∙=∙∇=∙=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。

(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是物理学中重要的概念,它们对于我们理解和应用电磁现象具有重要意义。

本文将介绍电磁场和电磁波的基本概念,阐述它们之间的关系,以及它们在日常生活和科学研究中的应用。

一、电磁场的概念和特性电磁场是指由电荷或电流产生的空间中的物理场。

电磁场可分为静电场和磁场两种。

静电场是由静止电荷产生的场,其特点是强度随距离的增加而减小,并且与电荷的性质有关。

磁场是由电流或者变化的电场产生的场,其特点是有磁感应强度和磁场线的方向。

电磁场具有几个重要特性。

首先,电磁场是无穷远的,即电荷或电流所产生的电磁场可以传播到无穷远的地方。

其次,电磁场具有向外辐射的特点,就像水波一样,可以向周围传播。

第三,电磁场是叠加的,即不同的电荷或电流所产生的电磁场可以在同一点上叠加,形成合成场。

二、电磁波的概念和特性电磁波是由电磁场的振荡传播产生的波动现象。

电磁波包括了电场和磁场的变化,是以光速传播的横波。

根据波长的不同,电磁波可以分为不同的频段,包括无线电波、微波、红外线、可见光、紫外线、X 射线和γ射线。

其中,可见光是人眼能够感知的电磁波。

电磁波具有几个重要特性。

首先,电磁波能够传播在真空中,其速度与真空中的光速相等,约为3×10^8米/秒。

其次,不同频段的电磁波具有不同的波长和能量,频率越高,波长越短,能量越大。

第三,电磁波可以被反射、折射、散射和吸收等现象。

这些特性使得电磁波在通信、遥感、医学影像等领域有着广泛的应用。

三、电磁场和电磁波的关系电磁场和电磁波之间存在着密切的关系。

电磁波是电磁场的传播方式,电磁场是电磁波的基础。

在电磁波传播的过程中,电场和磁场相互作用,互相转换,形成电磁波的传播。

同时,电磁波的传播也会产生电场和磁场的变化。

这种相互作用使得电磁场和电磁波具有相似的特性,例如传播速度相同、可以被反射和折射等。

四、电磁场与电磁波的应用电磁场和电磁波在日常生活和科学研究中有着广泛的应用。

在通信领域,无线电波和微波被用于无线通信和卫星通信,可见光被用于光纤通信和激光通信。

高二电磁场与电磁波知识点

高二电磁场与电磁波知识点

高二电磁场与电磁波知识点电磁场和电磁波是物理学中非常重要的概念和内容。

在高二物理学习中,电磁场与电磁波的理论和实践知识是必不可少的。

本文将对高二电磁场与电磁波的知识点进行全面的介绍和解析。

1. 电磁场的概念电磁场是指空间中存在的物质对电荷和电流产生相互作用的力场。

它包括静电场和磁场两个部分。

静电场是由电荷产生的,而磁场是由电流产生的。

电磁场以场线形式存在,用于描述力的大小和方向。

2. 静电场的性质与计算静电场的性质是指电场所具有的特点和规律。

其中包括电场强度、电势、电场线、电场能等。

电场强度表示单位正电荷在电场中所受到的力的大小和方向。

电势则表示单位正电荷在某一点处所具有的电场能。

静电场还可以通过库仑定律进行计算,即F =k(q1q2/r^2),其中F为电场力,k为库仑常量,q1和q2为电荷量,r为两个电荷之间的距离。

3. 磁场的性质与计算磁场的性质包括磁场强度、磁感应强度、磁场线等。

磁场强度表示单位磁极在磁场中所受到的力的大小和方向。

磁感应强度则表示在某点的磁场中单位面积上垂直于磁场方向的磁感线数目。

磁场可以使用安培环路定理进行计算,即B = μ₀I/2πr,其中B为磁感应强度,μ₀为真空中的磁导率,I为电流强度,r为电流所形成的环路与要计算的点之间的距离。

4. 电磁感应与电磁感应定律电磁感应是指导体中的磁感线发生变化时,导体中会产生感应电动势。

电磁感应定律描述了感应电动势的大小和方向。

如果一个导体环路内的磁感线数目发生变化,就会在导体中产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁感线的变化率成正比。

5. 波动光学的基本原理波动光学是电磁场与光学的关系,主要探讨光的传播、衍射、干涉、偏振等问题。

根据光的波动性质,波动光学理论解释了光的传播方向、波长和频率等特性。

波动光学中的重要概念还包括光的干涉、衍射和偏振现象。

6. 电磁波的性质与分类电磁波是由电场和磁场交替变化产生的一种能量传播形式。

电磁场与电磁波知识点

电磁场与电磁波知识点

电磁场与电磁波知识点
首先是电磁场。

电磁场是在空间中存在电荷时所产生的一种物理场,
具有电力作用和磁力作用。

电场是指电荷周围由电荷产生的力场,它的作
用力对电荷大小和正负有关,与电荷距离的平方成反比。

磁场是由电荷的
运动而产生的,它的作用力是与电荷运动速度的方向垂直的力,且大小与
速度成正比。

电场和磁场之间有非常重要的关系,即电磁场的统一性。

当电荷运动时,除了产生静电场外,还会产生磁场;而当电荷加速度变化时,则还会
产生电磁波。

这就是电场和磁场之间相互转换的过程,即麦克斯韦方程组
所描述的过程。

电磁场的统一性是电磁学的基础,它解释了电磁现象的统
一规律。

在电磁场和电磁波的研究和应用中,需要特别关注的几个重要现象和
原理。

首先是电磁感应现象,即由磁场变化所产生的感应电流和感应电动势。

电磁感应是电磁学中的重要基本原理,它解释了电磁感应现象的规律,应用于电磁能转换和电磁设备的设计中。

其次是电磁波的发射和接收原理,无线电、雷达和通信设备等都是基于电磁波的发射和接收原理工作的。


次是电磁波的干涉和衍射现象,它们是光学领域的重要现象,也是波动光
学的重要基础。

最后是电磁辐射和电磁波的传播特性,它们与物质的吸收、反射和透射现象相关,也是光学和电磁波通信的重要内容。

总之,电磁场和电磁波是电磁学的重要内容,它们解释了电磁现象的
统一规律,广泛应用于现代科技和通信领域。

了解电磁场和电磁波的知识
点有助于我们对电磁学的深入理解和应用。

电磁场与电磁波的基本概念.

电磁场与电磁波的基本概念.

边界处的波
当电场的极化方向垂 直于入射面时
Rv
=
Z2 Z2
cosθ1 − Z1 cosθ1 cosθ1 + Z1 cosθ2
Tv
=
Z2
2Z2
cosθ1
cosθ1 + Z1 cosθ2
当电场的极化方向位 于入射面时
Rv
=
Z2 Z2
cosθ2 cosθ2
− +
Z1 Z1
cosθ1 cosθ1
Tv
=
Z2
B1t = B2t
边界处的波
• 斯耐尔定律
– 当入射波照射到边界上时,一部分反射而另一部分透射所示。 – 根据斯耐尔定律,反射角等于入射角。 – 入射角θ1与折射角θ2的关系:
k1 sinθ1 = k2 sinθ2
边界处的波
• 反射系数和折射系数
反射系数定义 R = Er Ei
折射系数定义 T = Et Ei
化的大小。
• 波矢量 k
– 波数表示成与电磁波传播方向一致的矢量
简谐电磁波的特征
• E和H的横电磁波 • E和H相互垂直 • E和H均垂直于传播方向 • 传播速度在真空中为光速 • 波长λ=c/f • E和H之比为波阻抗, 在真空中
为377欧 • 功率流密度=功率/面积 • 功率与场强的平方成正比 • k垂直的平面内,E可以任意取
G B

G ds
=
0

G E⋅ G
G dl =
G

∂ ∂t

G B

G ds
=

∂Φ ∂t
∫ H ⋅ dl = 闭合电流
材料的电磁参数

公共基础知识电磁场与电磁波基础知识概述

公共基础知识电磁场与电磁波基础知识概述

《电磁场与电磁波基础知识概述》一、引言电磁场与电磁波是现代物理学的重要组成部分,在通信、电子、电力等众多领域都有着广泛的应用。

从无线电广播到手机通信,从雷达探测到卫星导航,电磁场与电磁波无处不在。

深入了解电磁场与电磁波的基础知识,对于理解现代科技的发展和应用具有重要意义。

二、电磁场的基本概念(一)电场1. 定义电场是电荷及变化磁场周围空间里存在的一种特殊物质。

电场对放入其中的电荷有作用力,这种力称为电场力。

2. 电场强度电场强度是描述电场强弱和方向的物理量,用 E 表示。

它的定义是单位正电荷在电场中所受的电场力。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

3. 电场线电场线是为了形象地描述电场而引入的假想曲线。

电场线上每一点的切线方向表示该点电场强度的方向,电场线的疏密程度表示电场强度的大小。

(二)磁场1. 定义磁场是一种看不见、摸不着的特殊物质,它存在于磁体、电流和运动电荷周围。

磁场对放入其中的磁体、电流和运动电荷有力的作用。

2. 磁感应强度磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。

它的定义是在磁场中垂直于磁场方向的通电导线,所受的磁场力 F 与电流 I 和导线长度 L 的乘积 IL 的比值。

磁感应强度是矢量,其方向与小磁针在该点静止时 N 极所指的方向相同。

3. 磁感线磁感线是为了形象地描述磁场而引入的假想曲线。

磁感线上每一点的切线方向表示该点磁感应强度的方向,磁感线的疏密程度表示磁感应强度的大小。

(三)电磁场1. 定义电磁场是有内在联系、相互依存的电场和磁场的统一体和总称。

变化的电场产生磁场,变化的磁场产生电场,两者相互激发,形成电磁场。

2. 麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,由四个方程组成。

它揭示了电场和磁场之间的内在联系,以及电磁波的产生和传播规律。

三、电磁波的基本概念(一)定义电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波,是以波动的形式传播的电磁场。

电磁场与电磁波基础知识

电磁场与电磁波基础知识

雨的类 型
毛毛雨 小雨 中雨 大雨 暴雨 倾雨盆大
各种强度雨的主要特性
雨的强 度mm/h
雨滴半径 1 m3内的 雨滴间
mm 雨滴数 平均距 离cm
含水量 g/m3
0.25
0.1
0.092
1
0.225
0.14
4
0.5
530Biblioteka 120.2815
0.75
450
0.83
40
1
1.9
100 1.5-2.5 400
14
5.4
路径衰减γд与雨的强度I的关系
1 – 30 GHz 2 – 40 GHz 3 – 80 GHz 4 – 100 GHz 5-250 GHz
雪的衰减
a)图:1 – 35 GHz, 2 – 95 GHz,3 – 140 GHz,4 – 217 GHz上的路径 衰减γ与降雪ρ的关系;
b)图:1-140 GHz频率上的路径衰减γ与等效降雪强度(I)的关系; 2-毫米波在140 GHz频率上的路径衰减γ与降雨强度(I)的关系
电磁场的概念源于麦克斯韦的预言
1862年,英国科学家在总结前人研究电磁现象 基础上,建立了完整的电磁波理论,通过数学 推导建立了麦克斯韦方程,进而预言:
• 如果在空间某区域中有周期性变化的电场,那 么,这个变化的电场就在它周围空间产生周期 性变化的磁场;
• 这个变化的磁场又在它周围空间产生新的周期 性变化的电场……如此周而复始;
◆大气气体的吸收具有双重特性:
非谐振吸收和谐振吸收— 在10 GHz频率以 上尤为明显。
雨、雾、云和冰雹的衰减
雾依其形成条件也分为三种 — 辐射雾、平流雾、汽化雾。
◆辐射雾形成的主要原因是来自地表和空气 下层的自由辐射,空气因此变冷凝结。 ◆平流雾在湿热空气流经较冷的表面时产生, 其持续时间最长。 ◆汽化雾在冷空气流经热水面时出现。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是我们生活中经常接触到的物理现象。

本文将以通俗易懂的方式,详细介绍电磁场和电磁波的基本概念、特性及应用。

一、电磁场的概念与特性电磁场是由电荷所产生的力场和磁荷所产生的磁场组成的物理场。

它包括电场和磁场两个方面。

电场是由静止电荷所产生的场,具有方向和大小;磁场是由运动电荷所产生的场,同样也具有方向和大小。

电磁场具有以下特性:1. 空间的任何一点都存在电场和磁场;2. 电场和磁场相互作用,相互转换;3. 电场和磁场都遵循相应的物理规律,如库仑定律和安培定律;4. 电场和磁场的强度与产生它们的电荷和电流的大小有关。

二、电磁波的概念与特性电磁波是一种能够在真空中传播的无线电波,它是电磁场的一种表现形式。

电磁波具有电场和磁场的振荡,并且垂直于传播方向。

通常将电磁波按照频率分成不同的波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的特性如下:1. 电磁波具有波长和频率的关系,波长和频率互为倒数;2. 不同频率的电磁波在介质中传播的速度是相同的,即为光速;3. 电磁波可以在真空中传播,不需要介质媒质;4. 电磁波的能量和强度与其频率有关。

三、电磁场与电磁波的应用电磁场和电磁波在生活中有着广泛的应用。

以下是其中几个重要的应用领域:1. 通信技术:无线电通信、卫星通信、手机通信等都是基于电磁波传播原理进行的。

2. 电磁辐射与医学:医学影像学中的X射线和核磁共振都是利用电磁波进行的影像诊断。

3. 电磁感应:电磁感应是电动机、发电机和变压器等电器工作原理的基础。

4. 光学技术:光学仪器和光通信等利用了可见光的电磁波特性。

5. 无人驾驶和雷达系统:雷达系统利用电磁波的反射与接收原理,实现物体的探测与定位。

总结:电磁场与电磁波是我们日常生活中不可或缺的物理现象。

电磁场是由电场和磁场组成的物理场,而电磁波则是电磁场在真空中的一种传播形式。

电磁场和电磁波在通信技术、医学、电气工程、光学技术、雷达系统等方面都有广泛应用。

电磁场与电磁波知识点

电磁场与电磁波知识点

电磁场与电磁波知识点(一) 矢量分析和场论基础1、理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

点积 cos A B AB结果为标量x x y y z z A e A e A e A ,x x y y z z B e B e B e B ++x x y y z z A B A B A B A BP4 1.2.4叉积 sin n A B e AB结果为矢量x y zxy z xyze e e A B A A A B B BP4 1.2.5 矢量A 在矢量B 的投影 B A eB B e B2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(直角坐标系)。

(,,)u u x y z梯度:x y z u u uu x y ze e e , 结果为矢量 P12 1.3.7 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。

方向导数: u 沿方向l 的方向导数 P11x x y y z z l e l e l e l 大小l单位矢量=l x y z l l e e e e l方向导数 ()l u u e l通量 SA dS结果为标量 P16 1.4.5通量的意义 判断闭合曲面内的通量源 P17散度:单位空间体积中的通量源,有时也简称为通量密度,x x y y z z A e A e A e Ay x zA A A x y zA P19 1.4.8散度定理(高斯定理)的意义 高斯定理: ()()V S dV dA A S , P19 1.4.12环流(环量) =CA dl结果为标量 P20 1.5.1环量的意义 描述矢量场的漩涡源 P21旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。

P21xy zy y x x z z x y z xyzA A A A A A x y z y z z x x y A A Ae e e A e e e P23 1.5.7 斯托克斯定理:()()S L d d A S A l P24 1.5.12数学恒等式:()0u ,梯度的旋度恒等于0()0 A , 旋度的散度恒等于0无旋场 0F散度源产生,静电场 P25 无散场 0F漩涡源产生,恒定磁场 P26哈密顿算符,矢性微分算符 =xy z e e e x y z拉普拉斯算符 2222222u u uu x y z3、理解亥姆霍兹定理的重要意义: P29 1.8.1若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

电磁场与电磁波

电磁场与电磁波
至失效
电磁辐射的安全防护 措施:包括屏蔽、滤 波、接地等方法,以 降低电磁辐射的危害
电磁波的防护措施
滤波:使用滤波器,滤除有 害电磁波
屏蔽:使用金属材料或电磁 屏蔽材料,阻挡电磁波的传 播
接地:将设备外壳接地,减 少电磁波的辐射
距离:保持与电磁波源的距 离,减少电磁波的影响
电磁波的安全标准与法规
科研领域: 电磁波在科 学研究中的 应用,如天 文观测、粒 子加速器等
未来电磁波的发展趋势与挑战
发展趋势:高速、大容量、低功耗
发展趋势:集成化、小型化、智能 化
添加标题
添加标题
添加标题
添加标题
挑战:电磁波干扰、信息安全、电 磁兼容
挑战:电磁波传播、接收、处理技 术的突破
THANKS
汇报人:XX
伽马射线:波长小于0.01nm,具有极强的穿透力,能穿透人体组织,常用于放射治疗和核物理研究等。
4
电磁波的应用
通信技术
电磁波的发现 和应用:无线 电通信、电视 广播、卫星通
信等
通信技术的发 展历程:从模 拟通信到数字 通信,从有线 通信到无线通

通信技术的应 用领域:军事、 航天、医疗、 交通、教育等
医疗设备:利用电磁波进行无 创检测和治疗
电磁波与其他领域的交叉发展
通信领域: 电磁波在无 线通信中的 应用,如5G、 6G等
医疗领域: 电磁波在医 疗设备中的 应用,如微 波治疗、射 频消融等
军事领域: 电磁波在军 事装备中的 应用,如雷 达、电子战 等
环保领域: 电磁波在环 保监测中的 应用,如电 磁波污染监 测、电磁波 消毒等
电磁场与电磁波
XX,a click to unlimited possibilities

初识电磁场与电磁波知识点

初识电磁场与电磁波知识点

初识电磁场与电磁波知识点
电磁场和电磁波是物理学中非常重要的概念,涉及到电场、磁场、电磁波的传播等多个方面。

以下是一些关于电磁场与电磁波的基本知识点:
1. 电磁场:由变化的电场和磁场组成,是相互联系、相互作用的统一场。

电磁场的变化会产生电磁波。

2. 电磁波:是电磁场的一种波动状态,可以传播能量。

电磁波由电场和磁场组成,它们的相互垂直并且都与波的传播方向垂直。

3. 电磁波的传播:电磁波可以在真空中传播,也可以在介质中传播。

在介质中传播时,电磁波的传播速度、频率和波长等特性会受到影响。

4. 电磁波的性质:具有波动性和粒子性,即具有能量和动量。

电磁波的频率、波长和能量之间存在关系,即E=hν,其中E为能量,ν为频率,h为普朗
克常数。

5. 电磁波谱:根据频率从低到高的顺序,电磁波谱包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

6. 电磁辐射:指能量以电磁波形式发射到空间的现象。

电磁辐射包括无线电波、红外线、可见光、紫外线等。

7. 电磁感应:当导体处于变化的磁场中时,导体中会产生感应电动势。

这种现象称为电磁感应。

8. 磁场强度和电场强度:描述磁场和电场强弱的物理量,单位分别为安培/米2(A/m)和伏特/米(V/m)。

这些知识点为初步了解电磁场与电磁波的概念提供了基础,但实际应用和研究涉及更多深入的内容。

如需更多信息,建议查阅相关文献或咨询物理学专家。

电磁场与电磁波-知识点总结

电磁场与电磁波-知识点总结

电磁场与电磁波-知识点总结已经将文本间距加为24磅,第18章:电磁场与电磁波一、知识网络LC 回路中电磁振荡过程中电荷、电场。

电路电流与磁场的变化规律、LC T π2=电磁麦克变化的电场产生磁场 特点:为横波,在真空中电磁电磁场与发接应用:电视、雷达。

目的:传递信息 调制:调幅和调频 原理:电磁波遇到导体会在导体中激起同频率感应电流二、重、难点知识归纳1.振荡电流和振荡电路(1)大小和方向都随时间做周期性变化的电流叫振荡电流。

能够产生振荡电流的电路叫振荡电路。

自由感线圈和电容器组成的电路,是一种简单的振荡电路,简称LC 回路。

在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。

(2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小(3) LC 电路中能量的转化 :a 、电磁振荡的过程是能量转化和守恒的过程.电流变大时,电场能转化为磁场能,电流变小时,磁场能转化为电场能。

b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大.c 、理想的LC 回路中电场能E 电和磁场机械能 定义:机械能是指动能和势能的总和。

能E 磁在转化过程中的总和不变。

回路中电流越大时,L 中的磁场能越大。

极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。

(4) LC 电路的周期公式及其应用LC 回路的固有周期和固有频率,与电容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L 及电容器的电容C 。

2、电磁场麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。

(完整word版)电磁场与电磁波课程知识点总结和公式

(完整word版)电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖρ本构关系: E J HB ED ϖϖϖϖϖϖσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ2 边界条件(1)一般情况的边界条件nn n sT t t s n s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖϖ((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖ(((1)基本方程0022=•==∇-=∇=•=•∇=•=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρϖϖϖϖϖϖϖϖ本构关系: E D ϖϖε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。

电磁场与电磁波基础知识总结.

电磁场与电磁波基础知识总结.

第一章一、矢量代数 A ∙B =AB cos θA B⨯=ABe AB sin θ A ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ + e ϕr sin θ d ϕ矢量面元d S = e r r 2sin θ d θ d ϕ体积元ϕθθd d r r dV sin 2= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r rr θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()zA A A zϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(s i n )s i n s i n ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z ∂∂∂∇⨯=∂∂∂e e e A x y zx y z A A A1z zz A A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A21sin sin rr zr rA r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y z u u u u u n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u uu zρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e ru u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A 2. 无旋场 ()0∇⨯∇=u -u =∇F六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y z u u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理)d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε ==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场电荷守恒定律:⎰⎰-=-=⋅Vsdv dtddt dq ds J ρ 0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σ ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ (安培环路定理)d 0⋅=⎰SB S 0∇⨯=BJ μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:=-BH M μ m 00(1)=+B H =H =H r χμμμμ m =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lCdv B dldt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t tρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性em e m em e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体: 112ne iii W qφ==∑ 连续分布: 12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ 边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩n n φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E S SSU R G I d d σ (L R =σS) 4. 静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE l S S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lSS d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E lE lS S d d q C Ud d ε定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ 连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ(2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

电磁场与电磁波_知识点总结

电磁场与电磁波_知识点总结

已经将文本间距加为24磅,第18章:电磁场与电磁波一、知识网络二、重、难点知识归纳1.振荡电流和振荡电路(1)大小和方向都随时间做周期性变化的电流叫振荡电流。

能够产生振荡电流的电路叫振荡电路。

自由感线圈和电容器组成的电路,是一种简单的振荡电路,简称LC 回路。

在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。

(2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小(3)LC 电路中能量的转化 :a 、电磁振荡的过程是能量转化和守恒的过程.电流变大时,电场能转化为磁场能,LC 回路中电磁振荡过程中电荷、电场。

电路电流与磁场的变化规律、电场能与磁场能相互变化。

分类:阻尼振动和无阻尼振动。

振荡周期:LC T π2=。

改变L 或C 就可以改变T 。

电磁振荡 麦克斯韦电磁场理论 变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为3.0×108m/s 电磁波 电磁场与电磁波 发射接收 应用:电视、雷达。

目的:传递信息 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。

原理:电磁波遇到导体会在导体中激起同频率感应电流 选台:电谐振 检波:从接收到的电磁波中“检”出需要的信号。

接收电路:接收天线、调谐电路和检波电路电流变小时,磁场能转化为电场能。

b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大.c 、理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。

回路中电流越大时,L 中的磁场能越大。

极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理

0limt q tFE q →=vv 第二章.电磁学基本理论本章以麦克斯韦方程组为核心,揭示电磁场和电荷,电流之间互相联系的规律。

我们研究电磁场问题都是以麦克斯韦方程组为出发点。

一.场量的定义和计算 2.1 电场的定义这种存在于电荷周围,能对其他电荷产生作用力的特殊的物质称为电场。

可见电荷是产生电场的源。

2.2 电场强度的定义单位正电荷在电场中某点受到的作用力称为该点的电场强度电场强度严格的数学表达式为: 在此要求实验电荷足够小,以使该电荷产生的电场不致使原电场发生畸变。

2.3 库仑定律: 其中: 为真空中介电常数。

2.4 电场强度的计算其中: 是源电荷指向场点的方向。

点电荷周围电场强度的计算公式: (2) 连续分布的电荷源产生的电场a.线电荷分布:线电荷密度定义:单位长度上的电荷量。

上所带的电荷量:2112212021ˆ4πR q q F a R ε=v1q 2q 21R v91201108.851036πε--=⨯=⨯F/m0ε2200ˆˆ4π4πt R R t qq qE a a q R Rεε==v ˆR a 20ˆ4πR q E aRε=v0d lim d l l q ql l ρ∆→∆=='∆d l 'd d l q l ρ'=该线电荷在空间产生的电场强度: b.面电荷分布:电荷沿空间曲面连续分布。

该面电荷在空间产生的电场强度:c.体电荷分布: 电荷在某空间体积内连续分布 。

该体电荷在空间产生的电场强度:二.电位(1)电位定义:外力将单位正电荷是由无穷远处移到A 点,则A 点和无穷远处的电位差称为A 点的电位。

(以无穷远处为零电位参考点。

为电荷源到A 点的距离)(2)电位差定义:单位正电荷由P 点移动到A 点,外力所做的功称为A 点和P 点之间的电位差。

电位差数学表达式: (三) 磁场产生磁场的源:a.永久磁铁b.变化的电场 c.电流周围(运动的电荷) 1. 什么是磁场?存在于载流回路或永久磁铁周围空间,能对运动电荷施力的特殊物质称为磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档