大一微积分期末试卷及答案
(完整版)大一期末考试微积分试题带答案
(完整版)⼤⼀期末考试微积分试题带答案第⼀学期期末考试试卷⼀、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每⼩题3分,共15分.)1. =→xx x 1sin lim 0___0_____.2. 设1)1(lim )(2+-=∞→nx xn x f n ,则)(x f 的间断点是___x=0_____.3. 已知(1)2f =,41)1('-=f ,则12()x df x dx -== _______.4. ()ax x '=_______.5. 函数434)(x x x f -=的极⼤值点为________.⼆、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每⼩题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.2. 设对任意的x ,总有)()()(x g x f x ≤≤?,使lim[()()]0x g x x ?→∞-=,则lim ()x f x →∞______.A.存在且⼀定等于零B. 存在但不⼀定等于零C.不⼀定存在D. ⼀定存在. 3. 极限=-→xx x xe 21lim0________.A. 2eB. 2-eC. eD.不存在.4. 设0)0(=f ,1)0(='f ,则=-+→xx f x f x tan )2()3(lim0________.A.0B. 1C. 2D. 5.5. 曲线221xy x=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.)求20sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)求21lim(cos )x x x +→. 五、(请写出主要计算步骤及结果,8分.)确定常数,a b , 使函数2(sec )0()0x x x x f x ax b x -?>=?+≤?处处可导.六、(请写出主要计算步骤及结果,8分.)设21()arctan ln(1)2f x x x x =-+,求dy .dy=arctanxdx七、(请写出主要计算步骤及结果,8分.)已知2326x xy y -+=确定y 是x 的函数,求y ''. ⼋、(请写出主要计算步骤及结果,8分.)列表求曲线523333152y x x =-+的凹向区间及拐点.九、证明题(请写出推理步骤及结果,共6+6=12分.)1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内⾄少存在⼀点ξ,使()f ξξ=.2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:⾄少存在⼀点)1,0(∈ξ,使得3'()()0f f ξξξ+=.第⼀学期期末考试参考答案与评分标准⼀、填空题(3×5=15)2、 0x = 3 、4- 4、()1ln 1ax a x x a x -?+ 5、3x = ⼆、单项选择题(3×5=15)1、C2、C3、A4、B5、D三、(8×1=8)220000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822x x x x x x x x e x e x x x e x xe x →→→→----=-=+==分分分四、(8×1=8)()200ln cos 1lim1sin cos lim 112lim (cos )268x x x x x x x xx e e e+→++→→---===分分分五、(8×1=8)因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。
大一上学期微积分期末试卷及答案
大一上学期微积分期末试卷及答案微积分期末试卷1,cossinxx.()2,()()1设在区间(fxgx,,0,)内( )。
22,是增函数,是减函数fxgx()()B()()fxgx是减函数,是增函数 C二者都是增函数D二者都是减函数2x20cossin、x,,时,与相比是( )exx,高阶无穷小,低阶无穷小,等价无穷小,同阶但不等价无价小1x,、,=,是函数,=(,-sinx)的( ),连续点,可去间断点,跳跃间断点,无穷型间断点,、下列数列有极限并且极限为,的选项为( ),1nnA X(1) B Xsin,,,,nnn211 Xcos,C X(1) ,,aDnnnna5"()、若在处取得最大值,则必有( )fxX0,f,() ()XoBXo,,f,00CXXXXf,且()0''( )<0 D''()'()0,,ff不存在或f00001()2x6、曲线( )yxe, ,仅有水平渐近线,仅有铅直渐近线,既有铅直又有水平渐近线,既有铅直渐近线1~6 DDBDBD一、填空题1,、( ),dxd,+112、求过点(,,,)的一条直线,使它与曲线,,相切。
这条直线方程为:,,,,、函数,,的反函数及其定义域与值域分别是: ,,,,,,、,,,的拐点为:,,,,axb,,、若则的值分别为:lim2,,ab,x,,,,2x-3x32yxx,,21 ; 2 ; 3 ; 4(0,0) In1x,yR,log,(0,1),21,x(1)()1mxxmxm,,,,limlim2,,,xx,,115解:原式= (1)(3)34xxx,,,?,?,,,mba77,6 二、判断题1、无穷多个无穷小的和是无穷小( )sinx2、在区间(,)是连续函数(),,,,limx,0xf"(x)=0一定为f(x)的拐点()3、 0xx处取得极值,则必有f(x)在处连续不可导( ) 4、若f(X)在005、设函数,(x)在上二阶可导且0,1,,fxffCff'()0A'0B'(1),(1)(0),A>B>C( ),,,,,令(),则必有 1~5 FFFFT三、计算题122x1用洛必达法则求极限 limxe,x011221,3xxeex(2),2x解:原式= limlimlim,,,,,e,3xxx,,,0001,2x2x 34fxxf()(10),''(0),,求2 若解:332233,,,,,fxxx'()4(10)xx312(10)33232233432,,,,,,,,,,,,,fxxx''()24(1xxxx0)12xxx3(10)324(10)108(10)f'0?,x'()42x求极限lim(cos)x3 ,x044IcosnxIcosnx2lim2xxx,0解:原式=limee,x,01(sin),x4costanInxxx,,cosxlimcoslimlimlimlim2Inx,,,,,,22xxxxx,,,,,00 000xxxxx2224,2?,原式e5x,13求的导数yx,,(31)4 x,2511解:I3112nyInxInxInx,,,,,,3221531111 y',,,,,,yxxx3312122,,,5,,x,15113yx'(31),,,,,,xxxx,,,,2312(1)2(2),,3tanxdx5 ,22解:原式=tantansec1)tanxxdxxxdx,,(,,2 =sectantanxxdxxdx,,,sinx =tantanxdxdx,,,cosx1 =tantancosxdxdx,,,cosx12 =tancosxInxc,,2求xxdxarctan,611222解:原式=arctan()(arctanarctan)xdxxxxdx,,,,222111x,,2 =(arctan)xxdx,2,21,x11,,2 =xxdxarctan(1),,2,,,21,x,,21,xx =arctanxc,,22四、证明题。
大一微积分期末试卷及答案
微积分期末试卷选择题(6X2)1•设f(x) 2cosx,g(x) (1严在区间(0,—)内()。
2 2A f (x)是增函数,g (x)是减函数Bf (x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x 0时,e2x cosx与sinx相比是()A高阶无穷小E低阶无穷小C等价无穷小D同阶但不等价无价小13、x = 0 是函数y = (1 -sinx)紺勺()A连续点E可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 nA X n ( 1)nB X n si n -n n 21 1C X n-(a 1)D X n cosa n5、若f "(x)在X0处取得最大值,则必有()A f /(X。
)o Bf /(X。
)oCf /(X。
)0且f''( X o)<O Df''(X o)不存在或f'(X o) 0、4)6、曲线y xe x( )A仅有水平渐近线E仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD一、填空题1、d ) = -^― dxx +12、求过点(2,0 )的一条直线,使它与曲线y= -相切。
这条直线方程为:x2x3、函数y=二一的反函数及其定义域与值域分别是:2x+14、y=匹的拐点为:2 ,5、若lim X2a2,则a,b的值分别为:1 x+ 2x-3x1 In x 1 ;2 y x3 2x 2x;3 y也厂,©1)^ 4©0)lim (x 1)(x m) 5 解:原式=x 1 (x 1)(x 3) m 7 b limU 」2 x 1 x 3 4 7,a 6 1、 2、 、判断题 无穷多个无穷小的和是无穷小 lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、若f(X)在X o 处取得极值,则必有 f(x)在X 0处连续不可导( )5、 (x) 在 0,1 f '(x) 0令 A f'(0) f'(1),C f(1) f (0),则必有 A>B>C()1~5 FFFFT 二、计算题 1用洛必达法则求极限 x im 01e x2解:原式=lim x 0 1 x lime x2( 2x x 0J 2x 31 lim e xx 02 若 f (x)(x 3 10)4,求f ''(0) 解: 4( x 3 24x f'(x) f ''(x) f ''(x) 0 3 2 2 , 3 10) 3x 12x (x.3 3 2 3(x 10) 12x 3 (x 10) 3x 10)33 . 3 34 , 3 224x (x 10)108x (x 10)4I o 2 3 求极限 lim(cos x)xx 04 ,2I ncosx解:原式=lim e xx 05 tan3xdx2=sec x tan xdx tan xdx6 求xarctanxdxQ lim p Incosxx 0x2原式e2I>解:In y5ln3x11 Jx 1cosxI>yy1 5 3 11y 2 x 212(x 1)12(x 2)1cosx(sin x)tanxlim lim xx x 0 x x 0 x2224Incosxlim / e x 0解:原式=tan2xtanxdx2(sec x 1)tanxdx=tan xd tan x=tan xd tan xsin x , dxcosx1 . dcosxcosx= -ta n2x In cosx c解:原式=1 arcta nxd(x 2)1(x 2 arcta nx2 22arcta nx四、证明题。
大一微积分期末试卷及答案
微积分期末试卷cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD 一、 填空题1d12lim2,,xd xax ba b→++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In1x+; 2 322y x x=-; 3 2log,(0,1),1xy Rx=-; 4(0,0)5解:原式=11(1)()1mlim lim2(1)(3)3477,6x xx x m x mx x xm b a→→-+++===-++∴=∴=-=二、判断题1、无穷多个无穷小的和是无穷小()2、sinlimxxx→-∞+∞在区间(,)是连续函数()3、f"(x)=0一定为f(x)的拐点()4、若f(X)在x处取得极值,则必有f(x)在0x处连续不可导()5、设函数f(x)在[]0,1上二阶可导且'()0A'0B'(1),(1)(0),A>B>C( )f x f f C f f<===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限212lim xxx e→解:原式=111330002(2)lim lim lim12x xxx x xe e xexx--→→→-===+∞-2 若34()(10),''(0)f x x f=+求解:333'(''''f xf xf x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴=3 24lim(cos )x x x →求极限 4I cos 224I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xx e →→→→→→→-=---=====-∴= 解:原式=原式4 (3y x =-求511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:5 3tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx xxd x dx x xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =四、 证明题。
大一上学期微积分期末试卷
微积分期末试卷1兀、.设f(x)=2cos x,g(x)=(—)sin x在区间(0,)内()。
22A f(x)是增函数,g(x)是减函数B f(x)是减函数,g(x)是增函数C二者都是增函数口二者都是减函数2、T0时,e2x-cos x与sin x相比是()A高阶无穷小B低阶无穷小C等价无穷小D同阶但不等价无价小3、x0是函数y(1x的()A连续点B可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为()I n冗AX=(-1)n-—BX=sinn-n n n2IICX=(a>1)D X=cos—n n nn a5、若f"(x)在X处取得最大值,则必有()0A'(X)=oB f X)<o00C f X)=0且''(X)<0D''(X)不存在或'(X)=000006、曲线y=xe(x2)()A仅有水平渐近线B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6DDBDBD一、填空题1、()=-^―d xx1相切。
这条直线方程为:x 2、求过点(2,0)的一条直线,使它与曲线y=2x3、函数y=,^的反函数及其定义域与值域分别是:2x+14、y=&X的拐点为:5、若lim-:ax>"=2,则a/的值分别为:x-1X2+x2y—x3-2x2;3y=log--,(0,1),R;4(0,0)21-x(x-1)(x+m)x+m1+mlim=lim==25解:原式=彳-1(x-1)(x+3)x-1x+34m=7b=—7,a=6二、判断题1、无穷多个无穷小的和是无穷小()2、limsi吧在区间(-如+8)是连续函数()x f 0x3、f”(x )一定为的拐点()04、若f(X)在x 处取得极值,则必有f(x)在x 处连续不可导()005、设函数f (x)在[0,1]上二阶可导且f '(x )<0令A =f '(0),B =f '(1),C =f (1)-f (0),则必有A>B>C()1~5FFFFT三、计算题-11用洛必达法则求极限lim x 2e x2x f 0ex2e x 2(-2x -3)1.一解:原式=lim 丁=lim =lim e x 2=+8x f 0x f 0-2x -3x f 0x 22若f (x )=(x 3+10)4,求"(0)解:f '(x )=4(x 3+10)3•3x 2=12x 2(x 3+10)3f "(x )=24x -(x 3+10)3+12x 2・3•(x 3+10)2•3x 2=24x •(x 3+10)3+108x 4(x 3+10)2・•.f "(x )=03求极限lim(cos x )x 2x f044,解:原式lim e ;2历cos x=e x —0x 21n cos xx —04In cos xlim_In cos x =lim x ―0x2x —0x 21 (-sin x ) =lim cos x x —0x=lim x —0一tan x =lim x =-2x —o x 24求y =(3x -1);:士1的导数x -2 解:I 〃y = —In3x —1+—Inx —1一y ,1=5y 3 331—十2 113x 一12x 一122Inx-2J tan 3xdx5解:原式J tan 2x tan xdx =J(sec 2x -1)tan xdx=J sec 2x tan xdx -Jtan xdxsin x tan xd tan x - cos xJJ1tan xd tan x - dxd cos xltan 2x +In cos x +c 2求J x arctan xdxy'=(3x -1)x 一213x -12(x -1)2(x 一2)5 3BM +解:原式1J arctan xd (x 2)=1(x 2arctan x -J x 2d arctan x )221,J x 2+1-1,、 (x 2arctan x -dx ) 21+x 21 x 2arctan x -J(1-)dx 1+x 21+x 2x arctan x --+c四、证明题。
大一微积分期末试卷及答案汇编
微积分期末试卷选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD一、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In 1x + ;2 322y x x =-; 3 2log ,(0,1),1xy R x=-; 4(0,0) 5解:原式=11(1)()1mlimlim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限212lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x--→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 324lim(cos )xx x →求极限4I cos 224I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xxe →→→→→→→-=---=====-∴=解:原式=原式4 (3y x =-求 511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:53tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx xxd x dx x xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =四、证明题。
大学微积分试题及答案
大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。
答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。
答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。
答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。
答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。
答案:函数f(x)的导数为f'(x)=3x^2-6x+4。
令f'(x)=0,解得x=1, 2。
在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。
因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。
在区间端点处,f(0)=-2,f(3)=1。
所以,函数在区间[0,3]上的最大值为1,最小值为-2。
2. 求由曲线y=x^2与直线y=4x-3围成的面积。
大一上学期微积分期末试卷及答案
微积分期末试卷1.设 f ( x) 2cosx , g (x) ( 1 )sin x 在区间( 0, )内( )。
2 2A f ( x)是增函数, g ( x)是减函数 Bf ( x)是减函数, g( x)是增函数 C 两者都是增函数 D 两者都是减函数、 x时, 2x与对比是()2ecosxsin xA高阶无量小 B低阶无量小C等价无量小D同阶但不等价无价小13、x =0是函数y =(1 -sinx) x 的( )A连续点B可去中断点 C跳跃中断点 D无量型中断点4、以下数列有极限而且极限为1的选项为( )A X n( 1)n1 B X n sinnn2C X n1n (a 1) D X ncos1an5、若 f "( x)在 X 0处获得最大值,则必有( )A f ' o B f ' o(X 0) (X 0)C f ' 且f ''( X 0 )<0 f ''(X 0 ) 不存在或 f'(X 0) 0 (X 0 ) 0 D 、曲线( 1 ))y xe x 2(6A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD 一、填空题1、(d)=1dxx +12、求过点(2,0)的一条直线,使它与曲线y=1相切。
这条直线方程为:xx3、函数y= 2的反函数及其定义域与值域分别是: x2+14、y= 3 x的拐点为:2 ax b5、若 limx 则 a, b 的值分别为:22, x 1x+ 2x-31 In x1 ;2 yx 3 2x 2 ; 3 ylog 2 x x ,(0,1), R ; 4(0,0)1lim( x1)( x m )limxm1m 2( x1)( x 3)x 345 解:原式 = x1x1m7b7, a6二、判断题1、 无量多个无量小的和是无量小()2、 limsin x在区间(, )是连续函数()x 0x3、 f"(x 0) =0必定为 f(x) 的拐点()4、 若 f(X) 在 x 0 处获得极值,则必有 f(x) 在 x 0 处连续不行导( )5、 设函数f(x)在0,1上 二阶可 导 且f '( x)0令 Af ('0), Bf '(1), Cf (1)f (0), 则必有 A>B>C( )1~5 FFFFT三、计算题11 用洛必达法例求极限 lim x2 e x 2x 0111ex 22 ( 2x3 )解:原式 = lime xlim ex21lim2x3x 0xx 0x 22 若 f ( x) (x3 10)4 , 求 f ''(0)解:f '(x)4( x 3 10) 3 3x 212 x 2 ( x 3 10) 3f ''( x)24 x ( x 3 10) 3 12 x 2 3 ( x 3 10) 2 3x 224 x ( x 3 10) 3 108 x 4 ( x 3 10) 2f ''( x)43 求极限 lim(cos x) x2x 04lim 4I n cosx解:原式 =lim ex2 I ncos xx 2e x 0x 01sin x)Q lim4lim In cos x( tan xxIn cosxlim cosxlimlim 2 x 0x2x 0x 2 x 0x x 0x x 0 x4222原式e 25x1的导数4 求 y (3x 1)3x 2解: In y5In 3x 11In x 1 1In x 232 2y '15 3 1 1 1 1 1 y3 3x 12 x 2 x 25x 1511y '(3x 1)3x2 3x 1 2(x 1) 2(x 2)5tan 3xdx解:原式 = tan 2x tan xdx(sec 2x 1) tan xdx = sec 2 x tan xdx tan xdx = tan xd tan xsin x dxcos x= tan xd tan x1 d cos xcos x12= tan x In cosxc6 求x arctanxdx解:原式 =1arctanxd( x 2)1(x 2 arctanx x 2 d arctanx)2x 22=1( x 2arctanx1 12 1 x 2 dx)=1x 2arctanx(1 12 1 x 2 )dx=1x 2 arctanx x c22四、证明题。
最新大一期末考试微积分试题带答案
第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1. =→xx x 1sin lim 0___0_____.2. 设1)1(lim )(2+-=∞→nx xn x f n ,则)(x f 的间断点是___x=0_____.3. 已知(1)2f =,41)1('-=f ,则12()x df x dx -== _______.4. ()ax x '=_______.5. 函数434)(x x x f -=的极大值点为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.2. 设对任意的x ,总有)()()(x g x f x ≤≤ϕ,使lim[()()]0x g x x ϕ→∞-=,则lim ()x f x →∞______.A.存在且一定等于零B. 存在但不一定等于零C.不一定存在D. 一定存在. 3. 极限=-→xx x xe 21lim0________.A. 2eB. 2-eC. eD.不存在.4. 设0)0(=f ,1)0(='f ,则=-+→xx f x f x tan )2()3(lim0________.A.0B. 1C. 2D. 5.5. 曲线221xy x=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求20sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)求21lim(cos )x x x +→. 五、(请写出主要计算步骤及结果,8分.)确定常数,a b , 使函数2(sec )0()0x x x x f x ax b x -⎧>=⎨+≤⎩处处可导.六、(请写出主要计算步骤及结果,8分.)设21()arctan ln(1)2f x x x x =-+,求dy .dy=arctanxdx七、(请写出主要计算步骤及结果,8分.) 已知2326x xy y -+=确定y 是x 的函数,求y ''. 八、(请写出主要计算步骤及结果,8分.)列表求曲线523333152y x x =-+的凹向区间及拐点.九、证明题(请写出推理步骤及结果,共6+6=12分.)1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内至少存在一点ξ,使()f ξξ=.2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:至少存在一点)1,0(∈ξ,使得3'()()0f f ξξξ+=.第一学期期末考试参考答案与评分标准一、填空题(3×5=15)1、02、 0x = 3 、4- 4、()1ln 1ax a x x a x -⋅+ 5、3x = 二、单项选择题(3×5=15)1、C2、C3、A4、B5、D三、(8×1=8)220000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822x x x x x x x x e x e x x x e x xe x →→→→----=-=+==分分分四、(8×1=8)()200ln cos 1lim1sin cos lim 112lim (cos )268x x x x x x x xx e e e+→++→→-⋅--===分分分五、(8×1=8)因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。
大一微积分期末试卷及答案.doc
微积分期末试卷1TTL设/⑴=2*"(]) = (土)血在区间(0,#)内()。
2 2A/'(x)是增函数,g⑴是减函数B/Cx)是减函数,g(i)是增函数C二者都是增函数D二者都是减函数2> x — Otl'j,疽* _cosx与sinMfl比是()A高阶无穷小B低阶无穷小C等价无穷小D同阶但不等价无价小£3、x = 0 是函数y = ( 1 -sinx)v的()A连续点B可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为()AX=(-l)n-- BX=sin —11〃n 2CX n= —(a>l)D X n =cos-a n5、都”⑴在X。
处取得最大值,贝IJ必有()Af,(X°) = o Bf‘(X())voCf,(X o) = O_ar( X°)vO Df”(x°)不存在或f'(Xo)= O(±)6^ 曲线y = xe x2()A仅有水平渐近线B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1 〜6DDBDBD填空题=2,则以的值分别为:5解: 1、 d ( ) =—^—dxx+12、 求过点(2,0)的一条直线,使它与曲线y =-相切。
这条直线方程为:X2X_ 3、 函数y =——的反函数及其定义域与值域分别是:2X4- 1 4、 y =Vxf|<J 拐点为:2止,. x + ax+ b gm —- n x +2x~31 Inx + l| ;2 y = x 3-2x 2;3 y = log,工,(0,1), R ; 4(0,0)■(x-l)(x +77?) x^m 1 + m c b hm ---- --------- = hm =-------------------- = 2 原式=ATI (X-l)(% + 3) XTl x + 3 4/• m = 7 :.b — —7, a = 6 二、判断题 1、无穷多个无穷小的和是无穷小()2、 lim —在区间(-8,+ 8)是连续函数() K ) X3、r (x 0)二o 一定为f (x )的拐点()4、 若f (X )在X 。
大学微积分考试题及答案
大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 1D. 2答案:A2. 曲线y=x^3在x=1处的切线斜率是:A. 0B. 1C. 3D. 2答案:C3. 定积分∫(0到1) x dx的值是:A. 0B. 0.5C. 1D. 2答案:B4. 函数f(x)=sin(x)的不定积分是:A. cos(x)B. -cos(x)C. xD. -x答案:B5. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. ∞答案:B6. 曲线y=e^x与直线x=1所围成的面积是:A. e-1B. 1-eC. 1D. e答案:A7. 函数f(x)=ln(x)的反函数是:A. e^xB. x^eC. 10^xD. x^2答案:A8. 函数f(x)=x^3-3x+2的极值点是:A. 1B. -1C. 2D. 0答案:A9. 函数f(x)=x^2-4x+3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:A10. 曲线y=x^2与x轴的交点坐标是:A. (0, 0)B. (2, 0)C. (-2, 0)D. (0, 2)答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的拐点是______。
答案:(2, -2)2. 曲线y=x^2-4x+3与y轴的交点坐标是______。
答案:(0, 3)3. 函数f(x)=x/(x^2+1)的不定积分是______。
答案:(1/2)*ln(x^2+1)+C4. 函数f(x)=cos(x)的泰勒展开式(仅考虑x=0处的前三项)是______。
答案:1 - (x^2)/2! + (x^4)/4!5. 曲线y=ln(x)在x=e处的切线方程是______。
答案:y=1/e*x-1/e三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2x-1在区间[0, 2]上的最大值和最小值。
高等数学微积分期末试卷及答案
大一高等数学微积分期末试卷 选择题(6×2)1~6 DDBDBD一、填空题 1 In 1x + ; 2 322y x x =-; 3 2log ,(0,1),1xy R x =-; 4(0,0)5解:原式=11(1)()1mlim lim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限2120lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求四、证明题。
1、 证明方程310x x +-=有且仅有一正实根。
证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 五、应用题1、 描绘下列函数的图形3.4.补充点7179(2,).(,).(1,2).(2,)2222---50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值 由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。
微积分期末试题及答案
微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。
2. 求函数 f(x) = e^x 的不定积分。
3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。
4. 设函数 f(x) = ln(x),求 f'(x)。
5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。
6. 设函数f(x) = √(x^2 + 1),求 f'(x)。
7. 求函数 f(x) = 3x^2 - 6 的不定积分。
8. 计算定积分∫(0 to π/2) cos(x) dx 的值。
9. 设函数 f(x) = e^(2x),求 f'(x)。
10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。
11. 计算定积分∫(0 to 1) x^2 dx 的值。
12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。
13. 求函数 f(x) = 2e^x 的不定积分。
14. 计算定积分∫(1 to e) ln(x) dx 的值。
15. 设函数 f(x) = x^2e^x,求 f'(x)。
16. 求函数 f(x) = ln(2x + 1) 的不定积分。
17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。
18. 设函数 f(x) = e^(3x),求 f'(x)。
19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。
20. 计算定积分∫(0 to π) sin^2(x) dx 的值。
第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。
大学期末数学试卷微积分
考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 下列函数中,在区间(0,+∞)上连续且可导的是()。
A. \( f(x) = x^2 \)B. \( f(x) = |x| \)C. \( f(x) = \frac{1}{x} \)D. \( f(x) = e^x \)2. 函数 \( f(x) = x^3 - 3x \) 在点 \( x = 0 \) 处的导数是()。
A. 0B. 1C. -1D. 33. 已知函数 \( f(x) = 2x^3 - 3x^2 + 4x - 1 \),则 \( f'(2) \) 等于()。
A. 2B. 8C. 12D. 164. 若 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则 \( \lim_{x \to 0}\frac{\tan x}{x} \) 等于()。
A. 1B. 2C. 3D. 无穷大5. 设 \( f(x) = x^2 + 2x + 1 \),则 \( f'(x) \) 等于()。
A. \( 2x + 2 \)B. \( 2x + 1 \)C. \( 2x - 2 \)D. \( 2x - 1 \)二、填空题(每题5分,共20分)1. 函数 \( f(x) = e^x \) 的导数是 _______。
2. 若 \( f'(x) = 2x + 1 \),则 \( f(x) = \) _______。
3. \( \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \) _______。
4. 函数 \( f(x) = x^3 - 3x^2 + 4x - 1 \) 的二阶导数是 _______。
5. \( \int (x^2 + 2x + 1) \, dx = \) _______。
三、解答题(每题20分,共40分)1. 已知函数 \( f(x) = x^3 - 3x^2 + 4x - 1 \),求 \( f(x) \) 在区间 [1, 3] 上的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分期末试卷 一、选择题(6×2)
cos sin 1.()2,()()22
()()B ()()D x x f x g x f x g x f x g x C π
==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数
2x 1
n n n n 20cos sin 1n A X (1) B X sin
21C X (1) x
n e x x n a D a π
→-=--==>、x 时,与相比是( )
A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )
A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )
n 1
X cos
n
=
2
00000001(
)
5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o
C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )
A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线
1~6 DDBDBD
二、填空题
1d 1
2lim 2,,x d x
ax b
a b →++=xx2
211、( )=x+1
、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:
x
2
3、函数y=的反函数及其定义域与值域分别是:2+1
x5、若则的值分别为:
x+2x-3
1 In 1x + ;
2 322y x x =-;
3 2
log ,(0,1),1x
y R x
=-; 4(0,0) 5解:原式=11(1)()1m
lim
lim 2
(1)(3)3477,6
x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 三、判断题
1、无穷多个无穷小的和是无穷小( )
2、0sin lim
x x
x
→-∞+∞在区间(,)是连续函数()
3、0f"(x )=0一定为f(x)的拐点()
4、若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )
5、设
函
数
f
(x)
在
[]
0,1上二阶可导且
'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有
1~5 FFFFT
四、计算题
1用洛必达法则求极限2
1
20lim x x x e →
解:原式=2
2
2
1
1
1
330002(2)lim lim lim 12x x x x x x e e x e x x
--→→→-===+∞- 2 若34()(10),''(0)f x x f =+求
解:332233
33232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0
f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴=
3 2
4
lim(cos )x
x x →求极限
4
I cos 22
4
I cos lim 0
22000002
lim 1
(sin )
4
cos tan cos lim cos lim lim lim lim 22224
n x
x x n x x
x x x x x x e e x In x x x x In x x x x x
x
e →→→→→→→-=---=====-∴=解:原式=原式
4 (3y x =-求 511
I 3112
322
1531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅
---⎤
=-+-⎥---⎦
解:
5 3tan xdx ⎰
2222tan tan sec 1)tan sec tan tan sin tan tan cos 1
tan tan cos cos 1
tan cos 2x xdx x xdx x xdx xdx x
xd x dx x xd x d x
x
x In x c
=----++⎰⎰⎰⎰⎰⎰
⎰⎰解:原式=( = = = =
6
arctan x xdx ⎰求
2
22222
22211arctan ()(arctan arctan )
22111
(arctan )2111arctan (1)211arctan 22
xd x x x x d x x x x dx x x x dx x x x
x c
=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =
五、证明题。
1、证明方程310x x +-=有且仅有一正实根。
证明:设3()1f x x x =+-
[][]1221
222212222(0)10,(1)10,()0,10,1),'(0
()01)()00()00,,(),,()()0
,()0'()31f f f x f f x f x f x x x x f x x x x x f x f x x x f f ξξξξξξ=-<=>∴∈==+∞=+∞>==∴∃∈⋅==+且在上连续至少存在(使得)即在(,内至少有一根,即在(,)内至少有一实根假设在(,)有两不同实根x 在上连续,在()内可导且至少(),s t 而3110x x ≥∴+-=与假设相矛盾方程有且只有一个正实根
2、arcsin arccos 1x 12
x x π
+=-≤≤证明()
[][]
22
()arcsin arccos '()0,1,111()(0)arcsin 0arccos 02
(1)arcsin1arccos12
(1)arcsin(1)arccos(1)2
()arcsin arccos 1,12
f x x x
f x x x x f x c f f f f x x x x π
π
π
π
=+=-=∈---∴===+==+=
-=-+-=
∴=+=
∈-证明:设综上所述,,
六、应用题
1、描绘下列函数的图形
21y x x
=+
322
3
3
.Dy=(-,0)(0,+)121
2.y'=2x-1
'022
''2''0,1x x x y x y x
y x ∞⋃∞-=
===+==-解:1令得令得
3.
4.补充点7179
(2,).(,).(1,2).(2,)2222
---
5
lim(),()0
x
f x f x x
→
=∞∴=
有铅直渐近线
6如图所示:
2.讨论函数22
()
f x x Inx
=-的单调区间并求极值
12
()
22(1)(1)
'()2(0)
'()0,1,1
Df x R
x x
f x x x
x x
f x x x
=
-+
=-=≠
==-=
解:
令得
由上表可知f(x)的单调递减区间为(,1)(0,1)
-∞-和
单调递增区间为(1,0)1
-+∞
和(,)
且f(x)的极小值为f(-1)=f(1)=1。