《有理数》章节知识点归纳总结
人教版八年级数学上册各章节知识点归纳与总结
第一章:有理数
1. 正数和负数
有理数的概念是数学之中一个非常重要的基础概念,也是数轴上各点的集合。它包括正数、负数和零。其中,正数和负数是相对的概念。正数是指大于零的数,负数是指小于零的数。
2. 有理数的加法和减法
有理数的加法和减法符合交换律和结合律。在进行有理数的加法和减法运算时,首先要对齐小数点,然后按照正数加正数、负数加负数、正数加负数的规律进行运算。
3. 有理数的乘法和除法
有理数的乘法和除法同样也是非常重要的知识点。有理数的乘法遵循交换律、结合律和分配律,而有理数的除法则是乘法的逆运算。
第二章:平方根与立方根
1. 平方根的概念
平方根是指某个数的平方等于给定数的性质,它是一个非负数。在实际生活中,平方根的概念经常被用来求解一些几何问题和物理问题。
2. 平方根的性质
平方根的运算规律包括:非负实数都有唯一的非负实数平方根,平方根的乘法性质等。这些性质在进行平方根的计算时非常重要。
3. 立方根的概念及运算
立方根是指一个数的立方等于给定数的性质,它有唯一的实数解。在实际问题中,立方根的概念常常被用来求解体积和立方体的边长等
问题。
第三章:实数的比较
1. 实数的大小比较
实数的大小比较是指根据实数的大小关系,进行大小比较。在进行实数的大小比较时,首先要明确两个实数的正负情况,然后按照数轴
上的位置进行判断,从而得出大小关系。
2. 实数的绝对值
实数的绝对值是指一个数离开原点的距离,它是一个非负数。在进行实数的比较时,绝对值是一个非常重要的概念。求解绝对值的大小
可以帮助我们更加准确地比较实数的大小关系。
七年级上册《有理数》知识点归纳
七年级上册《有理数》知识点归纳
七年级上册《有理数》知识点归纳
第一章有理数
知识概念
1.有理数:
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 Û a+b=0 Û a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么初中数学知识点总结(初一)的倒数是初中数学知识点总结(初一);若ab=1Û a、
b互为倒数;若ab=-1Û a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
(完整版)初中数学第一章有理数知识点归纳总结
第一章有理数
思维路径:
有理数
数轴 运算
(数)
(形)
1.有理数:
(1)凡能写成)0p q ,p (p q ≠为整数且分数形式的数,都是有理数,整数和分数统称有理数. ▲注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;
(2)有理数的分类: ① ⎪⎪⎩
⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
(3)自然数⇔ 0和正整数;
a >0 ⇔ a 是正数;
a <0 ⇔ a 是负数;
a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;▲
a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:
a-b+c 的相反数是-(a-b+c)= -a+b-c ;
a-b 的相反数是b-a ;
a+b 的相反数是-a-b ;
(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)
0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a
有理数知识点总结归纳
第二章《有理数及其运算》知识梳理
正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:
有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类
⑴按有理数的意义分类⑵按正、负来分
正整数正整数
整数 0 正有理数
负整数正分数
有理数有理数 0 (0不能忽视)
正分数负整数
分数负有理数
负分数负分数
总结:①正整数、0统称为非负整数(也叫自然数)
人教版初中数学中考复习知识点归纳总结全册
人教版初中数学中考复习知识点归纳总结
全册
第一章:有理数
1. 有理数的概念和表示方法
- 有理数是可以表示为两个整数的比例的数,包括整数、分数
和小数。
- 有理数可以用分数的形式表示,也可以用小数的形式表示。
2. 有理数的比较和大小关系
- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。
3. 有理数的加法和减法
- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。
...
第二章:代数式及其计算
1. 代数式的概念和性质
- 代数式是由数、字母和运算符号组成的表达式。
- 代数式可以进行加法、减法、乘法和除法运算。
2. 代数式的加法和减法
- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。...
第三章:方程及其应用
1. 方程的概念和解的概念
- 方程是含有未知数的等式。
- 方程的解是能使方程成立的值。
2. 一元一次方程
- 一元一次方程是一个未知数的一次方程。
- 解一元一次方程的方法包括移项、合并同类项、化简和求解。
...
(继续列举下一章节的内容)
总结
本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。每个章节介绍
了该主题的概念、性质和解题方法。这些知识点是中考数学复习的
重点内容,希望能对同学们的复习提供帮助。
有理数知识点总结归纳
第二章《有理数及其运算》知识梳理
正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:
有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类
⑴按有理数的意义分类⑵按正、负来分
正整数正整数
整数 0 正有理数
负整数正分数
有理数有理数 0 (0不能忽视)
正分数负整数
分数负有理数
负分数负分数
总结:①正整数、0统称为非负整数(也叫自然数)
(完整版)有理数知识点总结
有理数基础知识
正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:
有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类
⑴按有理数的意义分类⑵按正、负来分
正整数正整数
整数 0 正有理数
负整数正分数
有理数有理数 0 (0不能忽视)
正分数负整数
分数负有理数
负分数负分数
总结:①正整数、0统称为非负整数(也叫自然数)
有理数知识点、考点、难点总结归纳
第一章有理数知识点总结归纳
一、正数和负数
⒈正数和负数的概念
负数:比0小的数;正数:比0大的数。
0既不是正数,也不是负数
注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a 表示负数时,-a是正数;当a表示0时,-a仍是0。强调:带正号的数不一定是正数,带负号的数不一定是负数。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量.习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.
比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃
二、有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。①π是
无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
2.数轴
(1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。注意:数轴是一条向两端无限延伸的直线;
原点、正方向、单位长度是数轴的三要素,三者缺一不可;
同一数轴上的单位长度要统一;
数轴的三要素都是根据实际需要规定的。
(2)数轴上的点与有理数的关系
所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
所有的有理数都可以用数轴上的点表示出来。
(3)利用数轴表示两数大小
在数轴上数的大小比较,右边的数总比左边的数大;
有理数知识点总结归纳
正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:
有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类
⑴按有理数的意义分类⑵按正、负来分
正整数正整数
整数 0 正有理数
负整数正分数
有理数有理数 0 (0不能忽视)
正分数负整数
分数负有理数
负分数负分数
总结:①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
有理数知识点总结
有理数基础知识
正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:
有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类
⑴按有理数的意义分类⑵按正、负来分
正整数正整数
整数 0 正有理数
负整数正分数
有理数有理数 0 (0不能忽视)
正分数负整数
分数负有理数
负分数负分数
总结:①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
初一数学知识点《有理数》解析
初一数学知识点《有理数》解析
初一数学知识点《有理数》解析
店铺为大家整理了初一数学知识点《有理数》,希望对大家有所帮助,谢谢。
第一章有理数
1.1正数和负数
以前学过的0以外的数前面加上负号-的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义
1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上-号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0
的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的.顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
《有理数》知识点解读
第1章 有理数
一、正数和负数
1.0既不是正数,也不是负数,0和正数统称为非负数,0和负数统称为非正数。
2.有理数的分类:共有两种不同的分类,如下所示:
注意:①小数属于分数;②圆周率π不是有理数,因此不是整数也不是分数; ③正负数表示具有相反意义的量;④0是最小的自然数。
例1 下列各数,哪些是整数,哪些是分数,哪些是正数,哪些是负数,哪些是有理数?
+7,217,61-,0,0.67,-5,321-,+5.1,4
3,π,2012,-1.8. 解:整数有:+7, 0, -5, 2012; 分数有:217, 61-, 0.67, 321-, +5.1, 4
3,-1.8; 负数有:61-, -5, 3
21-, -1.8; 有理数有:+7, 217, 61-, 0, 0.67, -5, 3
21-, +5.1, 4
3, 2012, -1.8. 二、数轴
1.规定了原点、正方向和单位长度的直线叫做数轴。原点、正方向、单位长度是数轴的三要素。
2.任何一个有理数都可以用数轴上的一个点表示,但数轴上的点表示的数不一定是有理数,有可能是无理数(以后要学习的数)。
3.在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。一个数a 的绝对值记作|a|。正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。任何有理数的绝对值都是大于或等于0,即绝对值是非负数。绝对值最小的数是0,非负数的绝对值等于它的本身,非正数的绝对值等于它的相反数。
4.相反数:
⑴如果两个数符号相反,绝对值相等,那么我们称这两个数互为相反数。 ⑵正数的相反数是负数,负数的相反数是正数,0的相反数是0。a 的相反数是-a 。
有理数知识点总结归纳
第二章
《有理数及其运算》知识梳理
正数和负数
1•正数和负数的概念
负数:比0小的数 正数:比0大的数
0既不是正数,也不是负数
注意:①字母a 可以表示任意数,当 a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表 示0时,-a 仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的, 例如+a,-a 就不能做出简单判断) ② 正数有时也可以在前面加“ +”,有时“ +”省略不写。所以省略“ +”的正数的符号是正号。
2. 具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8C 表示为:+8C ;零下8 C 表示为:-8 C
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,
0既不是正数,也不是负数。如:
有理数
1. 有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①n 是无限不循环小数,不能写成分数形式,不是有理数。② 有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像
-2,-4,-6,-8
…也是偶数,-1,-3,-5…也是奇数。
2. 有理数的分类
⑴按有理数的意义分类
⑵按正、负来分
厂正整数
正分数
(0不能忽视)
正分数
I 负分数
总结:①正整数、0统称为非负整数(也叫自然数)
有理数知识点总结归纳
If you insist, you will shine. Time is an invincible weapon. It can gather arms and sand into towers, making the impossible in life possible.勤学乐施积极进取(页眉可删)
有理数知识点总结归纳
有理数知识点总结归纳
1、正数和负数的有关概念
(1)正数:比0大的数叫做正数;
负数:比0小的数叫做负数;
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类
3、有关数轴
(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
4、绝对值与相反数
(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a 的绝对值,记作:
一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.
初中数学各章节知识点总结(人教版)七上
七年级数学(上)知识点
人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.
第一章、有理数
知识概念
1.有理数:
(1)凡能写成)0p q ,p (p
q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;
(2)有理数的分类: ① ⎪⎪⎩
⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
《有理数》章节知识点归纳总结
《有理数》章节知识点归纳总结
有理数是数学中的一种基本概念,它包括了整数、分数和零。有理数可以用分数形式表示,分子是整数,分母是正整数。
一、有理数的定义和性质
1.有理数的定义:有理数表示为两个整数的比值,其中分母不为零。有理数可以用分数形式表示为a/b的形式,其中a是整数,b是正整数。
2.有理数的四则运算法则:
加法:同号求和,异号作差,结果的符号跟两个有理数的符号相同。
减法:转化为加法运算,将减法问题转化为加法问题。
乘法:同号得正,异号得负。
除法:将除法转化为乘法,取倒数后将除法问题转换为乘法问题。
3.有理数的乘方运算:有理数的乘方运算是将一个有理数乘以自身若干次。有理数的乘方运算的结果仍然是有理数。
4.有理数的比较运算:可以通过比较大小符号来比较有理数的大小,如果两个有理数的大小符号相同,则比较绝对值的大小。
5.有理数的约分:可以将一个有理数化简成最简形式,即将分子和分母互质的形式。
二、有理数的绝对值和相反数
1.有理数的绝对值:绝对值表示有理数距离零的距离,绝对值是非负的。正数的绝对值是它本身,负数的绝对值是它的相反数。
2.有理数的相反数:一个有理数的相反数是与它的绝对值相等但符号
相反的数。
三、有理数的数轴
1.有理数的数轴是一条直线,可以用来表示有理数的大小关系。
2.在数轴上,正数表示为向右的方向,负数表示为向左的方向,原点
为零。
3.数轴上,绝对值越大的数离原点越远,绝对值相同的数离原点的距
离相等。
四、有理数的运算律
1.有理数的加法符合交换律、结合律和分配律。
交换律:a+b=b+a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、下面有四种说法,其中正确的是 ( ) A.一个有理数奇次幂为负,偶次幂为正 B.三数之积为正,则三数一定都是正数
C.两个有理数的加、减、乘、除(除数不为零)、乘方结果仍是有理数
D.一个数倒数的相反数,与它相反数的倒数不相等
3、下列判断错误的是 ( ) (A )任何数的绝对值一定是正数; (B )一个负数的绝对值一定是正数; (C )一个正数的绝对值一定是正数;
(D )任何数的绝对值都不是负数;
4、下列四个命题:(1)任何有理数都有相反数;(2)一个有理数和它的相反数之间至少还有一个有理数;(3)任何有理数都有倒数;(4)一个有理数如果有倒数,则它们之间至少还有一个有理数;(5)数轴上点都表示有理数;(6)任何一个有理数的平方必是正数。上述命题中,说确的是;
5、a 是最小的正整数,b 是最大的负整数的相反数,c 是到数轴上距原点的距离最小的数,求2a b c ++的值
6、下列各数对中,数值相等的是( ) A 、+32
与+23
B 、—23
与(—2)3
C 、—32
与(—3)2
D 、3×22
与(3×2)2
7、按照下面所示的操作步骤,若输入x 的值为-2,则输出的值为___________
8、已知
123112113114
,,,...,
1232323438345415
a a a =
+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =.
9、定义2
*a b a b =-,则(12)3**=______.
10、规定()()a b b a b a --+=⊗,求)5(3-⊗的值。
11、用“”定义新运算:对于任意实数a ,b ,
都有a b=b 2+1。例如,74=42
+1=17,求53的值及当m 为有理数时,m (m 2)的值。
12、现规定一种运算“*”,对于a 、b 两数有:
ab a b a b 2*-=,试计算2*)3(-的值。
13、用“”、“”定义新运算:对于任意实数a ,b ,都有a b=a 和a b=b ,例如32=3,32=2。则(20062005)(20042003)=__________。
二、数的分类
1、 把下列各数填在相应的括号:-16,26,-12,
-0.92, 0, 0.1008,-4.95
正数集合{ }; 负数集合{ }; 整数集合{ };
正分数集合{ }; 负分数集合{ }; 2、 下列各数中:7,-9.25,10
9-
,-301,274
,
31.25,15
7 ,-3.5,0,221
5,-7,1.25,-
37,-3,4
3-。 正整数是{ } 正分数是{ } 负整数是{ } 负分数是{ } 正数是{ } 负数是{ }
三、非负性
()2
输入x
平方
乘以3
减去5
输出
C、若b
a>,则b
a> D、若b
a=,则b
a=
12、如果一个数的平方等于它的绝对值,那么这个
数是()
A、-1
B、0
C、1
D、-1,0,1
13、若5
=
a,2
-
=
b且0
>
ab=
+b
a
14、已知︱a︱=5,︱b︱=8,且︱a+b︱= -(a+b),试
求a+b的值。
15、已知|a|=7,|b|=3,求a+b的值。
16、已知,3
,2
,1=
=
=c
b
a且a>b>c,求a+b
+c的值。
17、若,3
,4
,=
=
-
=
-n
m
m
n
n
m
18、若|a|=4,|b|=7,求(1)a+2b的值;
(2)若ab<0,求|a—b|;
(3)若| a—b |= b—a,求a—2b的值;
(4)若ab>0,| a—b |= b—a,求a—2b+1的
值
19、实数a、b、c在数轴上的位置如图:
化简|a-b|+|b-c|-|c-a|
五、实际问题的应用
1、某粮店出售的三种品牌的面粉袋上分别标有质量
的字样,从中任意拿出两袋,它们的质量最多相差( )
A .0.8kg
B .0.6kg
C .0.5kg
D .0.4kg 2、2008年8月第29届奥运会将在开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么时间2008年8月8日20时应是( ) A .伦敦时间2008年8月8日11时 B .巴黎时间2008年8月8日13时 C .纽约时间2008年8月8日5时 D .汉城时间2008年8月8日19时 3、如图是某只股票
从星期一至星期五每天的最高股价与最低股价的折线统计图,则这五天中最高股价与最低股价之差最大的一天是( )
A.星期二
B.星期三
C.星期四
D.星期五.
4、小明业余时间进行飞镖训练,上周日训练的平均成绩是8.5环,而这一周训练的平均成绩变化如下表:正号表示比前一天提高,负号表示比前一天下降
(1)问本周哪一天的平均成绩最高,它是多少环? (2)问本周哪一天的平均成绩最低,它是多少环? (3)本周日的成绩和上周日的成绩比是提高了,还
是下降了,其变动的环数是多少?
5、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +
6、 -3、-6、 -4、 +10。
发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
6、冷库的室温为2℃,现存入一批食物冷冻,必须使室温保持在-22℃,若冷冻每小时使室温下降5℃,经过多少小时,就可以使冷库达到-22℃的冷冻室温?
7、已知某零件的标准直径是10mm ,超过规定直径长度的数量(单位:mm )记作正数,不足规定直径长度的数量(单位:mm )记作负数,检验员某次抽查了5件样品,检查的结果如下表:
(1)试指出哪件样品的大小最符合要求;
(2)如果规定偏差的绝对值在0.18mm 之是正品,偏差的绝对值在0,18mm —0.22mm 之间是次品,偏差绝对值查过0.22mm 是废品,那么上述5件样品中,哪些是正品,哪些是次品,哪些是废品?
8、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?
9、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准质量的差值
-5 -2 0 1 3 6
序号
1
2
3 4
5
直径长
度(mm )
+0.1 -0.15
+0.2
-0.05 +0.25
北京 汉城
巴黎
伦敦 纽约 5
-01
89
:日最高股价 :日最低股价
股价(元) 星期
9 8
二
四 一
三
五
8.5 9.5 10 10.5 11 11.5