《有理数》章节知识点归纳总结

合集下载

《有理数》的知识点汇总

《有理数》的知识点汇总

第一章有理数1.1 正数与负数1.正数和负数的概念①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:(3) 0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

第一章 有理数知识点、考点、难点总结归纳

第一章 有理数知识点、考点、难点总结归纳

第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。

本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。

一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。

有理数的表示形式为分数或整数。

二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。

2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。

三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。

四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。

2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。

五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。

在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。

六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。

分数形式适用于精确计算,而小数形式便于运算和比较大小。

七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。

通过寻找最大公约数,可以将有理数化简为最简形式。

八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。

在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。

九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。

通过将实际问题转化为有理数运算,可以得出准确的答案。

总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。

本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。

有理数知识点总结归纳

有理数知识点总结归纳

有理数知识点总结归纳一、有理数的定义有理数是可以表示为两个整数的商的数,形式为a/b,其中a和b是整数,且b不为零。

有理数集合包括所有整数、分数和它们的负数。

二、有理数的性质1. 封闭性:有理数集合在加法、减法、乘法和除法(除数不为零)运算下是封闭的。

2. 有序性:任何两个有理数都可以比较大小。

3. 稠密性:任何两个有理数之间都存在另一个有理数。

4. 可数性:有理数集合是可数的,即存在一种方法可以将所有有理数列成一个序列。

三、有理数的分类1. 正有理数:大于零的有理数。

2. 负有理数:小于零的有理数。

3. 零:唯一的一个既不是正数也不是负数的有理数。

4. 自然数:用于计数的数,包括0和所有正整数。

5. 整数:包括正整数、负整数和零。

6. 分数:表示为a/b的形式,其中a和b是整数,b不为零。

四、有理数的运算规则1. 加法:- 同号相加,取相同的符号,并将绝对值相加。

- 异号相加,取绝对值较大的数的符号,并将绝对值相减。

- 任何数与零相加,结果为该数本身。

2. 减法:- 减去一个数等于加上它的相反数。

3. 乘法:- 正数乘以正数得正数。

- 负数乘以负数得正数。

- 正数乘以负数得负数。

- 任何数乘以零得零。

4. 除法:- 除以一个不等于零的数,等于乘以它的倒数。

- 零除以任何非零的数都得零。

五、有理数的比较1. 正数都大于零。

2. 负数都小于零。

3. 正数大于所有负数。

4. 两个负数比较大小,绝对值大的反而小。

六、有理数的简化1. 分数的简化是将分子和分母除以它们的最大公约数。

2. 简化后的分数分子和分母互质。

七、有理数的实际应用有理数在日常生活中有广泛的应用,如计算价格、测量距离、统计数据等。

八、有理数与无理数的区别1. 无理数不能表示为两个整数的商。

2. 无理数是无限不循环小数,而有理数可以表示为有限小数或无限循环小数。

九、有理数的例题解析1. 计算:(3/4) + (-1/2)解:首先找到公共分母,然后将分数相加。

有理数知识点总结

有理数知识点总结

有理数知识点总结1. 有理数的定义和性质1.1 有理数的定义有理数是可以表示为两个整数的比的数,包括整数、分数和零。

1.2 有理数的性质•有理数可以进行加、减、乘、除运算,并仍为有理数。

•有理数的加法和乘法满足交换律、结合律和分配律。

2. 有理数的表示和分类2.1 有理数的表示有理数可以用分数的形式表示,即分子和分母都是整数,并且分母不为零。

2.2 有理数的分类有理数可以分为以下几类: - 正数:大于零的有理数。

- 负数:小于零的有理数。

- 零:既不大于零也不小于零的有理数。

3. 有理数的比较和大小关系3.1 有理数的比较•对于同号的两个有理数,绝对值大的数较大。

•对于异号的两个有理数,正数较大。

3.2 有理数的大小关系•两个正数比较大小,数值大的较大。

•两个负数比较大小,数值小的较大。

•正数大于零,零大于负数。

4. 有理数的运算4.1 加法和减法有理数的加法和减法满足交换律和结合律,可以通过以下步骤进行: - 对于同号的两个有理数,将它们的绝对值相加(减),并保持符号不变。

- 对于异号的两个有理数,将它们的绝对值相减,结果的符号由绝对值较大的数决定。

4.2 乘法和除法有理数的乘法和除法满足交换律、结合律和分配律,可以通过以下步骤进行: -两个有理数的乘积的符号由乘数的符号决定。

- 两个有理数的商的符号由被除数和除数的符号决定。

5. 有理数的进一步思考5.1 有理数的无穷性有理数是无穷的,可以无限接近但无法达到某些无理数,如圆周率π和自然对数的底数e。

5.2 有理数的应用有理数在实际生活中有广泛的应用,如计算、测量、金融等领域。

在金融中,有理数可以表示货币的数量,进行利息计算等。

5.3 有理数的拓展有理数是数的一个重要分支,还有其他类型的数如无理数、实数、复数等。

无理数是无法表示为两个整数的比的数,实数是有理数和无理数的统称,而复数是实数和虚数的组合。

结论有理数是可以表示为两个整数的比的数,包括整数、分数和零。

《有理数》知识点整理

《有理数》知识点整理

第一章《有理数》知识点整理1 和统称有理数,有理数又可以分为,,.2. 0既不是,也不是,它是和的分界点。

3. 规定了,和的直线叫数轴。

有理数和无理数都可以用数轴上的点来表示,反过来,数轴上的任意一点都表示一个或,正数用原点边的点表示,负数用原点边的点来表示。

4 (1)数轴上表示的两个数,边的数总比边的数大。

(2)正数0,负数0,正数负数。

(3)两个正数,绝对值大的数值。

两个负数,绝对值大的数值。

5 数轴上表示的一个数的点与叫做这个数的绝对值,绝对值是数。

6 相反数的概念:(1)从“图形”的角度:在数轴上原点的,且到原点的距离的两个点表示的数互为相反数。

(2)从“数”的角度:不同,相同的两个数互为相反数,0的相反数是。

(3)若a,b互为相反数,则a+b= (常用于整体带入求值)7 多重符号的化简,要关注的个数,当的个数为奇数个时,结果仍,当的个数为偶数个时,结果。

8 正数的绝对值等于,0的绝对值等于,负数的绝对值等于。

概述,的绝对值等于它本身,有个,的绝对值等于它相反数,有个。

9 有理数的加法法则:(1)同号两数相加,取的符号,并把绝对值。

(2)异号两数相加:当绝对值相等时,和为。

即两个互为数相加和为;当绝对值不等时,取的符号,并用较大的绝对值较小的绝对值。

(3)一个数与0相加,仍得。

10 有理数的减法法则:减去一个数,等于这个数的。

11 有理数的乘法法则(1)两数相乘,同号得,异号得,并把相乘。

(2)0与任何数相乘都得。

(3)几个不为0的有理数相乘,积的符号可以由的个数决定,当它的个数为奇数个时,积的符号为,当它的个数为偶数个时,积的符号为。

几个数相乘,有一个因数为0,积为。

12 乘积为的两个数互为倒数。

13 有理数的除法法则:除以一个的数,等于这个数的。

14 求的运算叫做乘方,乘方的结果叫做。

表示乘方是要注意底数是和,对底数加括号。

求幂时看清底数,分清是底数中的符号还是幂前负号。

正数的任何次幂都是数,负数的次幂是数,负数的次幂是数,0的次幂得。

有理数章节知识点总结

有理数章节知识点总结

有理数章节知识点总结有理数的表示形式有理数可以用分数表示,分子为整数,分母为非零整数。

有理数也可以用小数表示,可以是有限小数,也可以是循环小数。

有理数的运算1. 加法和减法有理数的加法和减法遵循数轴的移动规律,即同号相加为绝对值相加,异号相加取绝对值相减,并且结果的符号和绝对值相加减后的符号相同。

2. 乘法和除法有理数的乘法是正数与正数相乘为正,正数与负数相乘为负,负数与负数相乘为正;除法是乘法的逆运算,即被除数乘以除数的倒数。

需要注意的是除数不能为零。

3. 混合运算有理数的混合运算是指加、减、乘、除四则运算的组合,根据运算法则进行逐步计算,并注意特殊情况的处理。

有理数的性质1. 封闭性有理数的加、减、乘、除运算结果仍然是有理数。

即有理数集合对加、减、乘、除运算封闭。

2. 对称性对于有理数a,其相反数为-a。

即有理数a和-a是数轴上以原点为中心的对称点。

3. 传递性对于任意有理数a、b、c,如果a>b,b>c,则a>c。

即有理数的大小关系具有传递性。

4. 0的特殊性0是除数,不能作为除数;0和任何非零有理数相乘结果为0;0与任何有理数相加减仍然为原来的数。

有理数的大小比较1. 同号比较两个正数比较大小时,绝对值越大,数值越大;两个负数比较大小时,绝对值越大,数值越小。

2. 异号比较正数和负数比较大小时,正数大于负数。

3. 绝对值比较对于有理数a、b,若|a|>|b|,则a>b;若|a|<|b|,则a<b。

有理数的应用1. 有理数在实际生活中有着广泛的应用,比如金融领域的利息计算、温度计算中的正负值表示等等。

2. 在几何中,有理数也有着重要的作用,可以表示点的坐标,直线方程等。

3. 有理数也常用于解决生活中的实际问题,比如物品价格的计算、家庭开支的统计等。

总结:有理数是数学中一个基础且重要的概念,它在数学中以及实际生活中有着广泛的应用。

有理数具有封闭性、对称性、传递性等性质,通过加减乘除等运算可以进行混合运算,有理数的大小比较也有一定的规则。

有理数十五大知识点总结

有理数十五大知识点总结

有理数十五大知识点总结一、有理数的定义及性质有理数是可以表示为分数形式的数,包括整数、负整数和分数。

有理数的加、减、乘、除法满足封闭性,即两个有理数进行这四种运算得到的仍然是有理数。

二、有理数的比较有理数的大小可以通过绝对值的大小来比较。

对于两个有理数a和b,如果|a| > |b|,则a > b;如果|a| < |b|,则a < b。

三、有理数的运算1. 有理数的加法对于有理数a和b,它们的加法运算是将它们的分子通分后进行相加,然后化简得到结果。

2. 有理数的减法对于有理数a和b,它们的减法运算可以转化为加法的形式,即a - b = a + (-b)。

3. 有理数的乘法有理数a和b的乘法运算是将它们的分子和分母分别相乘得到结果。

4. 有理数的除法有理数a和b的除法运算可以转化为乘法的形式,即a ÷ b = a × (1/b)。

四、有理数的绝对值有理数a的绝对值(|a|)是a到0的距离,并且它具有非负性、单调性和三角不等式等性质。

五、有理数的乘方有理数的n次方是将这个有理数连续乘以自身n次,其中n是自然数。

六、有理数的逆运算有理数a的逆数是1/a,它满足乘法逆元的性质,即a × (1/a) = 1。

七、有理数的分数化简对于有理数的分数形式,我们可以通过化简得到最简形式,即分子和分母没有共同因子。

八、有理数的混合运算有理数的混合运算包括加减乘除等多种运算,我们需要根据具体的题目进行分析和解决。

九、有理数的小数有理数可以表示为有限小数和无限循环小数两种形式,我们可以通过逐步除以10或乘以10将有理数转化为小数形式。

十、有理数的比例对于含有有理数的比例,我们可以通过交叉乘积法则或取十法则等方法进行比例的计算和推导。

十一、有理数的线性方程对于含有有理数的线性方程,我们可以通过整理方程、去分母和解方程的方法进行求解。

十二、有理数的实际应用有理数在实际生活中应用非常广泛,涉及到金融、商业、科学等各个领域。

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。

整数可以看作是分母为 1 的分数。

例如,5 可以写成 5/1。

分数是指把单位“1”平均分成若干份,表示这样一份或几份的数。

例如 1/2、3/4 等。

二、有理数的分类1、按定义分类有理数可以分为整数和分数。

整数包括正整数、0、负整数。

例如:3、0、-5 等。

分数包括正分数和负分数。

例如:1/2、-3/4 等。

2、按性质分类有理数可以分为正有理数、0、负有理数。

正有理数包括正整数和正分数。

例如:2、3/5 等。

负有理数包括负整数和负分数。

例如:-3、-7/8 等。

三、数轴1、数轴的定义规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴的三要素原点、正方向、单位长度,缺一不可。

3、有理数与数轴的关系任何一个有理数都可以用数轴上的一个点来表示。

数轴上的点所表示的数,右边的总比左边的大。

正数都大于 0,负数都小于 0,正数大于负数。

四、相反数1、相反数的定义只有符号不同的两个数叫做互为相反数。

例如,5 和-5 互为相反数,0 的相反数是 0。

2、相反数的性质互为相反数的两个数之和为 0。

即:若 a 和 b 互为相反数,则 a + b = 0 。

3、求一个数的相反数在一个数前面加上“”号,就得到这个数的相反数。

例如,7 的相反数是-7 ;-3 的相反数是 3 。

五、绝对值1、绝对值的定义数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a| 。

2、绝对值的性质正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0 。

即:若 a > 0 ,则|a| = a ;若 a = 0 ,则|a| = 0 ;若 a < 0 ,则|a| = a 。

3、绝对值的非负性任何有理数的绝对值都是非负数,即|a| ≥ 0 。

六、有理数的比较大小1、正数大于 0 , 0 大于负数,正数大于负数。

2、两个负数比较大小,绝对值大的反而小。

(完整版)有理数知识点总结

(完整版)有理数知识点总结

有理数知识点总结(2016)第一章有理数1.1正数和负数一、概念1、正数:大于零的数,有时根据需要在正数前面加“+”(正号)2、负数:在正数前面加上“—”(负号)的数说明:一个数前面的“+”“—”叫做它的号,其中“+”有时可以省略,但仍然表示正数,有时“+”是为了强调它是正数,但“—”号是绝对不能省略的。

3、0既不是正数也不是负数,它是正负数的分界。

说明:关于0的总结——实数,自然数,有理数,整数,非正数,非负数,偶数,相反数是本身,没有倒数,绝对值是本身,正负数分界二、实际应用在解决一些实际问题时,可以认为规定具有相反意义的量的正负。

例如:收入为正,支出为负,收支平衡为0 零上为正,零下为负,分界为0 向北(东)走为正,向南(西)走为负,原地不动为0 加分为正,扣分为负,不加不扣为0 逆时针为正,顺时针为负超标为正,低标为负,标准为0 地上为正,地下为负,地面基准为0 盈余为正,亏空为负,收支平衡为0 水位上升为正,水位下降为负,水平面为0 高于平均分为正,低于平均分为负增加为正,减少为负,不增不减为0 海平面以上为正,以下为负,海平面记为0三、易错易误点1、-a一定是负数么?答案:不一定,需要分类分析解析:当a大于0时,-a就是负数;当a等于0时,-a为0;当a小于0时,-a是正数因此,a不一定是正数也不一定是负数,判断字母的正负时,需要分类讨论,也不能忽略0的存在。

2、海拔0米并不表示没有海拔,而是说海拔中海平面的平均高度为0米。

3、非正数:0和负数非负数:0和正数1.2 有理数1、概念1、有理数:正整数,0,负整数,正分数,负分数都可以写成分数(含有限小数和无限循环小数)的形式,这样的数称为有理数。

2、无理数:既不是正数也不是分数,就一定不是有理数。

如无限不循环小数π=3.1415926…它不能化成分数形式。

2、分类1、按定义分类;有理数分为整数(正整数、0、负整数);分数(正分数、负分数)2、按性质符号分类;有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)三、数轴1、定义:数轴是一条可以向两端无限延伸的直线规定三要素——原点,正方向,单位长度注意“规定”二字,是说三要素是根据实际需要认为规定的。

(完整版)有理数知识点总结.doc

(完整版)有理数知识点总结.doc

有理数知识点总结(2016 )第一章有理数1.1正数和数一、概念1 、正数:大于零的数,有根据需要在正数前面加“+”(正号)2 、数:在正数前面加上“—(” 号)的数明:一个数前面的“+”“—叫”做它的号,其中“+”有可以省略,但仍然表示正数,有“+”是了它是正数,但“—”号是不能省略的。

3 、0 既不是正数也不是数,它是正数的分界。

明:关于0 的——数,自然数,有理数,整数,非正数,非数,偶数,相反数是本身,没有倒数,是本身,正数分界二、用在解决一些,可以定具有相反意的量的正。

例如:收入正,支出,收支平衡0 零上正,零下,分界 0 向北()走正,向南(西)走,原地不0 加分正,扣分,不加不扣0 逆正,超正,低,准0 地上正,地下,地面基准0 盈余正,空,收支平衡0 水位上升正,水位下降,水平面0 高于平均分正,低于平均分增加正,减少,不增不减0 海平面以上正,以下,海平面0三、易易点1 、-a 一定是数么?答案:不一定,需要分分析解析:当a大于0,-a就是数;当 a 等于 0 , -a0 ;当 a 小于 0 ,-a 是正数因此,a不一定是正数也不一定是数,判断字母的正,需要分,也不能忽略0 的存在。

2 、海拔 0 米并不表示没有海拔,而是海拔中海平面的平均高度0 米。

3、非正数:0和数非数:0和正数1.2有理数一、概念1 、有理数:正整数,0,整数,正分数,分数都可以写成分数(含有限小数和无限循小数)的形式,的数称有理数。

2 、无理数:既不是正数也不是分数,就一定不是有理数。

如无限不循小数π=3.1415926⋯它不能化成分数形式。

二、分1 、按定分;有理数分整数(正整数、0、整数);分数(正分数、分数)2 、按性符号分;有理数分正有理数(正整数、正分数)、0、有理数(整数、分数)三、数1 、定:数是一条可以向两端无限延伸的直定三要素——原点,正方向,位度注意“ 定”二字,是三要素是根据需要定的。

人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数(1)、大于0的数叫做正数。

(2)、在正数前面加上负号“-”的数叫做负数。

(3)、数0既不是正数,也不是负数,0是正数与负数的分界。

(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,如:-(-2)=4,这个时候的a=-2。

π不是有理数;(2)有理数的分类:①②⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数0和正整数; a >0 a 是正数;⇔⇔ a <0 a 是负数;a≥0a 是正数或 0是非负数;⇔⇔⇔ a≤0a 是负数或0a 是非正数.⇔⇔3、数轴【重点】(1)、用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点;②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…(2)、数轴的三要素:原点、正方向、单位长度。

(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

4、相反数(1)、只有符号不同的两个数叫做互为相反数。

①注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;②非零数的相反数的商为-1;③相反数的绝对值相等。

(完整版)《有理数》章节知识点归纳总结

(完整版)《有理数》章节知识点归纳总结

有理数章节知识点归纳总结一、基本运算和基本概念本身之迷①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0⑦相反数是它本身的数是0数之最①最小的正整数是1②最大的负整数是-1③绝对值最小的数是0 ④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0⑦没有最大和最小的有理数⑧没有最大的正数和最小的负数例、填空:①两个互为相反数的数的和是_____; ②____与它绝对值的差为0;③两个互为相反数的数的商是___;(0除外)④ ____的倒数等于它本身;⑤____的绝对值与它本身互为相反数; ⑥ ____的平方与它的立方互为相反数;⑦_ __的倒数与它的平方相等;⑧____的平方是4,_____的绝对值是4;1、(1)、 ,___)9()6(=-++(2)、,___)9()6(=--+(3)、,(4)、___)9()6(=-⨯+, ___)14()56(=-÷-(5)、,(6)、___4716=-,___46=+-(7)、,(8)、____)3(3=-,____)2(4=-(9)、,(10)、____24=-,____)1(2008=-(11)、,(12)、____)2(3=--,___565=--(13)、,(14)、___2131=-, ___)103()65(=-⨯-(15)、,(16)、___8325.0=÷-,____5.04=(17)、,(18)、___55=+-,___1020=--(19)、, ___)1.6()9.5(=---(20)、。

___)13(0)56()7(=-÷⨯-⨯-(21)、=-------------- (22)、 =---------2)2(-23-----(23)、 =--------------(24)、 =----------2)32(-22-----(25)、 =-------------- ( 26)、 =-----32322----------”b=b4=43(2二、数的分类1、把下列各数填在相应的括号内:-16,26,-12,-0.92, 0, 0.1008,-4.95正数集合{ }; 负数集合{ };整数集合{ };正分数集合{ };负分数集合{ };2、下列各数中:7,-9.25,,-301,109-274,31.25, ,-1573.5,0,2,-7,1.25,-,-3,2153743-。

有理数章知识点总结

有理数章知识点总结

有理数章知识点总结一、有理数的概念有理数是指可以表示为两个整数的比值的数,包括有限小数、无限循环小数和整数。

有理数的特点是可以表示为分数形式,即p/q的形式,其中p和q都是整数,且q不能为0。

有理数用符号Q表示,其中Q={a/b|a∈Z, b∈Z*, b≠0}。

有理数的分类:1. 正有理数:大于0的有理数,如1/2、3/4等;2. 负有理数:小于0的有理数,如-1/3、-5/6等;3. 零:0也是一个有理数。

二、有理数的性质1. 有理数的比较对于任意两个不相等的有理数a和b,有以下性质:(1)如果a>b,则-a<-b;(2)如果a<b,则-a>-b。

这表明有理数的大小可以相互比较,且有明确的大小关系。

2. 有理数的加法性质对于任意三个有理数a、b、c,有以下加法性质:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)存在零元素:a+0=a;(4)存在相反元素:a+(-a)=0。

这些性质表明有理数的加法操作满足基本的性质。

3. 有理数的乘法性质对于任意三个有理数a、b、c,有以下乘法性质:(1)交换律:a×b=b×a;(2)结合律:(a×b)×c=a×(b×c);(3)存在单位元素:a×1=a;(4)存在倒数元素:a×(1/a)=1,其中a≠0。

这些性质表明有理数的乘法操作也满足基本的性质。

4. 有理数的除法性质对于任意两个有理数a和b,其中b≠0,有以下除法性质:(1)存在商:a/b是一个有理数;(2)零除不合法:a/0是不合法的;(3)乘法逆元:a/1=a;(4)除法逆元:a/(1/a)=a×a。

5. 有理数的分配律对于任意三个有理数a、b、c,有以下分配律:a×(b+c)=a×b+a×c三、有理数的运算1. 有理数的加法两个有理数a和b相加,可以通过以下步骤完成:(1)如果a和b的符号相同,则它们的绝对值相加,并保留原来的符号;(2)如果a和b的符号不同,则它们的绝对值相减,并以绝对值大的符号为结果的符号。

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结有理数是数学中的一种基本概念,它包括了整数、分数和零。

有理数可以用分数形式表示,分子是整数,分母是正整数。

一、有理数的定义和性质1.有理数的定义:有理数表示为两个整数的比值,其中分母不为零。

有理数可以用分数形式表示为a/b的形式,其中a是整数,b是正整数。

2.有理数的四则运算法则:加法:同号求和,异号作差,结果的符号跟两个有理数的符号相同。

减法:转化为加法运算,将减法问题转化为加法问题。

乘法:同号得正,异号得负。

除法:将除法转化为乘法,取倒数后将除法问题转换为乘法问题。

3.有理数的乘方运算:有理数的乘方运算是将一个有理数乘以自身若干次。

有理数的乘方运算的结果仍然是有理数。

4.有理数的比较运算:可以通过比较大小符号来比较有理数的大小,如果两个有理数的大小符号相同,则比较绝对值的大小。

5.有理数的约分:可以将一个有理数化简成最简形式,即将分子和分母互质的形式。

二、有理数的绝对值和相反数1.有理数的绝对值:绝对值表示有理数距离零的距离,绝对值是非负的。

正数的绝对值是它本身,负数的绝对值是它的相反数。

2.有理数的相反数:一个有理数的相反数是与它的绝对值相等但符号相反的数。

三、有理数的数轴1.有理数的数轴是一条直线,可以用来表示有理数的大小关系。

2.在数轴上,正数表示为向右的方向,负数表示为向左的方向,原点为零。

3.数轴上,绝对值越大的数离原点越远,绝对值相同的数离原点的距离相等。

四、有理数的运算律1.有理数的加法符合交换律、结合律和分配律。

交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)分配律:a×(b+c)=a×b+a×c2.有理数的乘法符合交换律、结合律和分配律。

交换律:a×b=b×a结合律:(a×b)×c=a×(b×c)分配律:(a+b)×c=a×c+b×c五、有理数的应用1.有理数可以用来表示一些具体问题中的数值,比如表示温度、长度、质量等。

有理数章节知识点

有理数章节知识点

11:正数和负数描述:1、在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号。

2、0既不是正数也不是负数。

0是正负数的分界点,正数是大于0的数,负数是小于0的数。

3、用正负数表示两种具有相反意义的量。

具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量。

12:有理数描述:1、有理数的概念:正数和分数统称为有理数。

2、有理数的分类:①按整数、分数的关系分类;、②按正数、负数与0的关系分类。

有理数{整数{正整数0负整数分数{正分数负分数、有理数{正数{正整数正分数负数{负整数负分数注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数。

13:数轴描述:(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。

(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。

)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

14:相反数描述:(1)相反数的概念:只有符号不同的两个数叫做互为相反数。

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“-”号结果为负,有偶数个“-”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“-”,如a的相反数是-a,m+n的相反数是-(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

15:绝对值描述:(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值。

有理数有理数知识点归纳

有理数有理数知识点归纳

0000<=>⎪⎩⎪⎨⎧-=a a a a a a一、有理数1. 0和正整数叫做自然数,也叫非负整数.2. 有理数的分类: (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数负整数正整数正有理数有理数0二、数轴1.规个定了原点、正方向和单位长度的直线叫做数轴.2. 任意一个有理数,都可以用数轴上的一个点表示,但数轴上的任意一点却不一定表示一个有理数,正有理数用原点右边的点表示,负有理数用原点左边的点表示.3. 利用数轴比较有理数的大小,数轴上右边的点表示的数总大于左边的点表示的数.三、相反数1. 只有符号不同的两个数叫做互为相反数.0的相反数仍是0.2. 在数轴上,表示一对相反数的点分别位于原点两侧,并且到原点的距离相等,它们关于原点对称.3. 互为相反数的两个数的和为0,即a 与b 互为相反数.四、绝对值1. 数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a .2. 绝对值的性质:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(2)绝对值具有非负性,即有理数a 的绝对值a >0.(3)利用绝对值可以比较两个 负数的大小,两个负数绝对 值大的反而小. 五、倒数乘积是1的两个数互为倒数.倒数是成对的,互为倒数的两个数同号;0没有倒数.六、乘方求n 个相同的因数的积的运算,叫做乘方,乘方的结果叫做幂.在na 中,a 叫做底数,n 叫 做指数.乘方的运算法则:(1)负数的奇次幂是负数,负数的偶次幂是正数.(2)正数的任何次幂都是正数,0的任何任何正整数次幂都是0.七、科学记数法1. 把一个大于10的数表示成n a 10⨯的形式(其中a 的整数数位只有一位的数,n 是正整数). 有理数知识点归纳2. 精确度:近似数四舍五人到哪一位,就精确到哪一位.3. 有效数字: 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效 数字.4. (1)科学记数法中a 应满足101<≤a ,n 等于原数的整数位数减1,一个负数的科学记数法只 要在n a 10⨯前面加上“一”即可.(2) 用科学记数法表示的数na 10⨯,精确度由还原后的数字中a 的末位字所在的数位决定.(3) 用科学记数法表示的数n a 10⨯,有效数字与n 10无关,只与a 有关,当近似数后面有单位是,有效数字与单位无关,只与单位前面的数有关.八、有理数的混合运算(1)先乘方,在乘除,最后加减.(2)同级运算,从做到右进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.考点分析1. 用正负数表示具有相反意义的量;2. 有理数相关概念;3. 数轴、相反数、绝对值、倒数;4.有理数的大小比较及运算;5. 有理数的乘方;6. 科学记数法.两个负数比较大小有两个步骤:①先分别求出这两个负数的绝对值,并比较绝对值大小.②根据“两个负数,绝对值大的反而小”得出结论.。

有理数知识点汇总

有理数知识点汇总

有理数知识点汇总一、有理数的概念和性质有理数是指可以表示为两个整数之比(分母不为零)的数。

有理数包括正整数、负整数、零以及正分数和负分数。

有理数的性质主要有以下几点:1. 有理数的加法和减法:有理数相加减时,可以先化简为同分母,然后对分子进行相应的运算。

同号数相加减,结果符号不变,异号数相加减,结果取绝对值较大的数的符号。

2. 有理数的乘法和除法:有理数相乘除时,先对分子分母分别进行相应的运算,然后再化简为最简形式。

同号数相乘除,结果为正数,异号数相乘除,结果为负数。

3. 有理数的比较:有理数大小的比较可以转化为同号数的比较。

对于两个同号数,绝对值较大的数较大;对于两个异号数,负数较大。

4. 有理数的绝对值:有理数的绝对值是该数去掉符号的值,即正数的绝对值还是正数,负数的绝对值就是对应的正数。

5. 有理数的倒数:非零有理数的倒数,是指该数的分子与分母互换位置所得的有理数。

二、有理数的运算法则1. 有理数的加法法则:同号数相加,保持符号,将绝对值相加;异号数相加,结果取绝对值较大的数的符号,将绝对值较小的数从绝对值较大的数上减去。

2. 有理数的减法法则:可以通过加法法则化简为加法运算。

3. 有理数的乘法法则:同号数相乘,结果为正,将绝对值相乘;异号数相乘,结果为负,将绝对值相乘。

4. 有理数的除法法则:除法可以通过乘法的倒数来计算,即将被除数乘以除数的倒数。

三、有理数的应用有理数在日常生活和实际问题中有广泛的应用,例如:1. 温度的表示:正数表示高温,负数表示低温,零表示冰点或零度。

2. 货币的计算:正数表示收入或盈利,负数表示支出或亏损。

3. 钱的存取:正数表示存钱,负数表示取钱。

4. 海拔的高低:正数表示海拔高,负数表示海拔低。

5. 游戏得分:正数表示得分,负数表示扣分或失分。

四、有理数的运算技巧在进行有理数的运算时,有一些技巧可以简化计算,例如:1. 加法与减法混合运算时,可以先合并同号数进行运算,再对异号数进行运算。

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结有理数是数学中的一种数,包括整数、分数和小数。

这篇文章将对《有理数》这个章节的知识点进行归纳总结。

首先,我们先来了解一下有理数的概念。

有理数是可以表示为两个整数的比值的数,即可以写成分数形式的数。

有理数可以是正数、负数或零。

零、正整数、负整数、正分数和负分数统称为有理数。

那么,有理数的基本性质有哪些呢?1.有理数的加法和减法有理数的加法规则是:同号相加,异号相减。

例如:同号相加:2/3+4/3=6/3=2异号相减:2/3-4/3=-2/3有理数的减法是加法的逆运算,同样遵循同号相加,异号相减的规则。

2.有理数的乘法和除法有理数的乘法规则是:同号相乘得正,异号相乘得负。

例如:同号相乘:2/3*4/3=8/9异号相乘:-2/3*4/3=-8/9有理数的除法是乘法的逆运算,同样遵循同号相乘得正,异号相乘得负的规则。

3.有理数的绝对值和相反数有理数的绝对值是一个非负数,表示有理数到0的距离。

例如:,-5,=5,,1/2,=1/2有理数的相反数是指与该数绝对值相等,但符号相反的数。

例如:-5的相反数是5,1/2的相反数是-1/24.有理数的大小比较两个有理数相等的条件是它们的分子、分母相等或它们互为相反数。

例如:2/3和4/6是相等的,-1/5和1/(-5)是相等的。

当两个有理数的分母相同,并且它们的分子比较,较大的分子对应的有理数较大。

如果两个有理数的分母不同,可以通过通分来进行比较。

例如:3/4与5/4进行比较,可以通过通分,变为6/8与5/4进行比较。

此外,有理数与0的大小比较是通过绝对值进行的,绝对值大的有理数较大。

5.有理数的约分有理数可以进行约分,即将分子和分母的公因数约去。

例如:4/6可以约分为2/3,12/16可以约分为3/46.有理数的四则运算和整除性质有理数的四则运算遵循一些基本性质,例如加法和乘法满足交换律、结合律和分配律;乘法满足零乘法等。

有理数的整除性质是指,对于任意非零有理数a和b,存在整数q和r,使得a = bq + r,并且r的绝对值小于b的绝对值。

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结有理数是数学中的一个重要分支,它是数轴上所有的整数、分数以及它们的相反数所组成的集合。

在现实生活中,有理数广泛应用于商业、经济、金融、科学、工程等领域。

了解有理数的基本概念、性质、运算规律等知识点,可以帮助我们更好地理解数学中的相关问题。

下面进行有理数章节知识点归纳总结。

一、有理数的基本概念1. 有理数的定义:有理数是指可以表示为两个整数的比值的数。

其中,分母不为零。

2. 有理数的分类:(1)正有理数:大于零的有理数,如1/2、3、7.8等。

(2)负有理数:小于零的有理数,如-1/2、-3、-7.8等。

(3)零:0既不是正有理数也不是负有理数,它是唯一的一个既是整数又是分数的数。

3. 有理数的表示方法:有理数可以用分数的形式表示,也可以用小数的形式表示。

对于有限不循环小数,可以用有限小数的形式表示;对于无限循环小数,可以用循环小数的形式表示。

二、有理数的性质1. 有理数的比较:对于任意两个不相等的有理数a和b,它们之间只有三种关系:a>b、a<b或a=b。

2. 有理数的绝对值:一个有理数a的绝对值是它到原点的距离,记作|a|。

其中,若a>0,则|a|=a;若a<0,则|a|=-a。

3. 有理数的反数:对于任意一个有理数a,它的相反数是一个数-b,使得a+b=0。

其中,a被称为-b的相反数,-a也被称为b的相反数。

4. 有理数的倒数:对于任意一个非零有理数a,它的倒数是一个数1/a,使得a×(1/a)=1。

5. 有理数的运算律:(1)加法交换律:a+b=b+a。

(2)加法结合律:(a+b)+c=a+(b+c)。

(3)乘法交换律:ab=ba。

(4)乘法结合律:(ab)c=a(bc)。

(5)分配律:a(b+c)=ab+ac。

三、有理数的运算1. 有理数加法:对于任意两个有理数a和b,它们的和记作a+b。

若a和b符号相同,则将它们的绝对值相加,并加上公共符号;若a和b符号不同,则将它们的绝对值相减,并取它们的绝对值的较大者,再加上符号。

有理数全章总结

有理数全章总结

第一章《有理数》知识点有理数的分类分数:有限小数,无限循环小数,百分数。

特别的,π不是有理数。

一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量:上升5米记为5; -8则表示下降8米。

③带“-”号的数并不都是负数,如-a可以是正数、负数或0.④0既不是正数也不是负数。

0是整数,也是自然数。

例.某圆形零件的直径要求是(30±0.1mm),下表中6个已生产出来的零件圆孔直径的检测结(2)哪些零件的误差最小?2、数轴(1)三要素:原点、正方向、单位长度;(2)数轴上的点与有理数:①数轴上的点与有理数一一对应②右边的数>左边的数;例1:数轴上的两点A、B分别表示-6和-3,那么A、B两点间的距离是()A、-6+(-3)B、-6-(-3)C、|-6+(-3)|D、|-3-(-6)|例2数轴上表示整数的点称为整点某数轴的单位长度为1cm,若在数轴上随意画出一条长2005cm长的线段AB,则线段AB盖住的的整点有()个A、2003或2004B、2004或2005;C、2005或2006;D、2006或20073、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a的相反数-a③a与b互为相反数:a+b=0 ④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b ⑥求一个数的相反数方法:在这个数的前面加“-”号.⎧⎨⎩⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

例:(- 2)2004+(- 2)2005=4、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。

几何意义:从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

a (a ≥0) 绝对值是它本身的数是非负数(正数和0)②|a |= -a (a ≤0) 绝对值是它相反的数是非正数(负数和0) 其它简单变形:|a+b |=a+b,则a+b 为正数 例 若|-2a |=-2a,则a 为:③|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|;例1:若ab ≠0,则b a a b +的取值不可能是( )A 0B 1C 2D -2例2:如果有理数a,b 满足∣ab -2∣+(1-b)2=0,试求1111(1)(1)(2)(2)(2007)(2007)ab a b a b a b ++++++++++的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、下面有四种说法,其中正确的是 ( ) A.一个有理数奇次幂为负,偶次幂为正 B.三数之积为正,则三数一定都是正数C.两个有理数的加、减、乘、除(除数不为零)、乘方结果仍是有理数D.一个数倒数的相反数,与它相反数的倒数不相等3、下列判断错误的是 ( ) (A )任何数的绝对值一定是正数; (B )一个负数的绝对值一定是正数; (C )一个正数的绝对值一定是正数;(D )任何数的绝对值都不是负数;4、下列四个命题:(1)任何有理数都有相反数;(2)一个有理数和它的相反数之间至少还有一个有理数;(3)任何有理数都有倒数;(4)一个有理数如果有倒数,则它们之间至少还有一个有理数;(5)数轴上点都表示有理数;(6)任何一个有理数的平方必是正数。

上述命题中,说确的是;5、a 是最小的正整数,b 是最大的负整数的相反数,c 是到数轴上距原点的距离最小的数,求2a b c ++的值6、下列各数对中,数值相等的是( ) A 、+32与+23B 、—23与(—2)3C 、—32与(—3)2D 、3×22与(3×2)27、按照下面所示的操作步骤,若输入x 的值为-2,则输出的值为___________8、已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =.9、定义2*a b a b =-,则(12)3**=______.10、规定()()a b b a b a --+=⊗,求)5(3-⊗的值。

11、用“”定义新运算:对于任意实数a ,b ,都有a b=b 2+1。

例如,74=42+1=17,求53的值及当m 为有理数时,m (m 2)的值。

12、现规定一种运算“*”,对于a 、b 两数有:ab a b a b 2*-=,试计算2*)3(-的值。

13、用“”、“”定义新运算:对于任意实数a ,b ,都有a b=a 和a b=b ,例如32=3,32=2。

则(20062005)(20042003)=__________。

二、数的分类1、 把下列各数填在相应的括号:-16,26,-12,-0.92, 0, 0.1008,-4.95正数集合{ }; 负数集合{ }; 整数集合{ };正分数集合{ }; 负分数集合{ }; 2、 下列各数中:7,-9.25,109-,-301,274,31.25,157 ,-3.5,0,2215,-7,1.25,-37,-3,43-。

正整数是{ } 正分数是{ } 负整数是{ } 负分数是{ } 正数是{ } 负数是{ }三、非负性()2输入x平方乘以3减去5输出C、若ba>,则ba> D、若ba=,则ba=12、如果一个数的平方等于它的绝对值,那么这个数是()A、-1B、0C、1D、-1,0,113、若5=a,2-=b且0>ab=+ba14、已知︱a︱=5,︱b︱=8,且︱a+b︱= -(a+b),试求a+b的值。

15、已知|a|=7,|b|=3,求a+b的值。

16、已知,3,2,1===cba且a>b>c,求a+b+c的值。

17、若,3,4,==-=-nmmnnm18、若|a|=4,|b|=7,求(1)a+2b的值;(2)若ab<0,求|a—b|;(3)若| a—b |= b—a,求a—2b的值;(4)若ab>0,| a—b |= b—a,求a—2b+1的值19、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|五、实际问题的应用1、某粮店出售的三种品牌的面粉袋上分别标有质量的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 2、2008年8月第29届奥运会将在开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么时间2008年8月8日20时应是( ) A .伦敦时间2008年8月8日11时 B .巴黎时间2008年8月8日13时 C .纽约时间2008年8月8日5时 D .汉城时间2008年8月8日19时 3、如图是某只股票从星期一至星期五每天的最高股价与最低股价的折线统计图,则这五天中最高股价与最低股价之差最大的一天是( )A.星期二B.星期三C.星期四D.星期五.4、小明业余时间进行飞镖训练,上周日训练的平均成绩是8.5环,而这一周训练的平均成绩变化如下表:正号表示比前一天提高,负号表示比前一天下降(1)问本周哪一天的平均成绩最高,它是多少环? (2)问本周哪一天的平均成绩最低,它是多少环? (3)本周日的成绩和上周日的成绩比是提高了,还是下降了,其变动的环数是多少?5、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +6、 -3、-6、 -4、 +10。

发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?6、冷库的室温为2℃,现存入一批食物冷冻,必须使室温保持在-22℃,若冷冻每小时使室温下降5℃,经过多少小时,就可以使冷库达到-22℃的冷冻室温?7、已知某零件的标准直径是10mm ,超过规定直径长度的数量(单位:mm )记作正数,不足规定直径长度的数量(单位:mm )记作负数,检验员某次抽查了5件样品,检查的结果如下表:(1)试指出哪件样品的大小最符合要求;(2)如果规定偏差的绝对值在0.18mm 之是正品,偏差的绝对值在0,18mm —0.22mm 之间是次品,偏差绝对值查过0.22mm 是废品,那么上述5件样品中,哪些是正品,哪些是次品,哪些是废品?8、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。

红星队在4场比赛中总的净胜球数是多少?9、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值-5 -2 0 1 3 6序号123 45直径长度(mm )+0.1 -0.15+0.2-0.05 +0.25北京 汉城巴黎伦敦 纽约 5-0189:日最高股价 :日最低股价股价(元) 星期9 8二四 一三五8.5 9.5 10 10.5 11 11.5000元用科学记数法可表示为( )(保留三位有效数字).A .2.34×108元B .2.35×108元 C .2.35×109元 D .2.34×109元3、光的传播速度约为300000 km/s ,太照射到地球上大约需要500s ,则太阳到地球的距离用科学记数法可表示为( )(A )km 71015⨯ (B )km 9105.1⨯ (C )km 8105.1⨯ (D )km 81015⨯ 4、据统计,2009年市人均GDP 约为4.49×104元,比上年增长7.7%,其中,近似数4.49×104有_______个有效数字.5、温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为.七、近似数1、用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.05(精确到百分位)C .0.05(保留两个有效数字)D .0.0502(精确到0.0001)2、近似数1.23×105精确到________位,有_______个有效数字.3、列各个数据中,哪些数是准确数?哪些是近似数? (1)小琳称得体重为38千克; (2)现在的气温是-2℃; (3)1m 等于100cm ;(4)东风汽车厂2000年生产汽车14500辆.4、(1)近似数7. 9万精确到______,有______个有效数字,分别是______(2)近似数5. 08 X 106精确到_____,有______个有效数字,分别是______(3)近似数0. 080 900精确到_______,有______个有效数字,分别是______5、用四舍五入法,将下列各数按括号中的要求取近似数.(1)0.6328 (精确到0.01); (2)7.9122 (精确到个位); (3)47155 (精确到百位); (4)130.06 (保留4个有效数字); (5)460215 (保留3个有效数字).6、下列说确的是( )A 、近似数32与32.0的精确度相同B 、近似数32与32.0的有效数字相同C 、近似数5万与近似数5000的精确度相同D 、近似数0108.0有3个有效数字八、字母运算中符号的确定1、有理数a 、b 在数轴上的位置如图所示,则b a +的值( )A .大于0B .小于0C .小于aD .大于b 2、如果ab<0,那么下列判断正确的是( )A .a<0,b<0B .a>0,b>0C .a ≥0,b ≤0D .a<0,b>0或a>0,b<03、已知,其中有三个负数,则( )A .大于0B .小于0C .大于或等于0D .小于或等于0 4、若,其a 、b 、c ( )A .都大于0B .都小于0C .至少有一个大于0D .至少有一个小于0 5、如果两个数的积为负数,和也为负数,那么这两个数( )(A) 都是负数 (B) 都是正数 (C) 一正一负,且负数的绝对值大 (D) 一正一负,且正数的绝对值大6、两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,这两个数一定是 ( ) (A) 相等 (B) 互为相反数 (C) 互为倒数 (D) 相等或互为相反数7、下列结论错误的是( )A 、若b a ,异号,则b a ⋅<0,b a<0 B 、若b a ,同号,则b a ⋅>0,ba>0C 、b ab a b a -=-=- D 、bab a -=-- 九、相反数、倒数、绝对值的应用1、已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5.试求下式的值:199919982)()()(cd b a cd b a x -+++++-2、若m ,n 互为相反数,则│m-1+n │=_________.3、如果a 、b 互为倒数,c 、d 互为相反数,且m=-1,则代数式2ab-(c+d )+m 2=_______。

4、已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm ab mn --++-2的值5、若正数a 的倒数等于其本身,负数b 的绝对值等于 3,且c a <,236c =,求代数式22(2)5a b c--的值。

相关文档
最新文档