《有理数》章节知识点归纳总结

合集下载

人教版八年级数学上册各章节知识点归纳与总结

人教版八年级数学上册各章节知识点归纳与总结

第一章:有理数

1. 正数和负数

有理数的概念是数学之中一个非常重要的基础概念,也是数轴上各点的集合。它包括正数、负数和零。其中,正数和负数是相对的概念。正数是指大于零的数,负数是指小于零的数。

2. 有理数的加法和减法

有理数的加法和减法符合交换律和结合律。在进行有理数的加法和减法运算时,首先要对齐小数点,然后按照正数加正数、负数加负数、正数加负数的规律进行运算。

3. 有理数的乘法和除法

有理数的乘法和除法同样也是非常重要的知识点。有理数的乘法遵循交换律、结合律和分配律,而有理数的除法则是乘法的逆运算。

第二章:平方根与立方根

1. 平方根的概念

平方根是指某个数的平方等于给定数的性质,它是一个非负数。在实际生活中,平方根的概念经常被用来求解一些几何问题和物理问题。

2. 平方根的性质

平方根的运算规律包括:非负实数都有唯一的非负实数平方根,平方根的乘法性质等。这些性质在进行平方根的计算时非常重要。

3. 立方根的概念及运算

立方根是指一个数的立方等于给定数的性质,它有唯一的实数解。在实际问题中,立方根的概念常常被用来求解体积和立方体的边长等

问题。

第三章:实数的比较

1. 实数的大小比较

实数的大小比较是指根据实数的大小关系,进行大小比较。在进行实数的大小比较时,首先要明确两个实数的正负情况,然后按照数轴

上的位置进行判断,从而得出大小关系。

2. 实数的绝对值

实数的绝对值是指一个数离开原点的距离,它是一个非负数。在进行实数的比较时,绝对值是一个非常重要的概念。求解绝对值的大小

可以帮助我们更加准确地比较实数的大小关系。

七年级上册《有理数》知识点归纳

七年级上册《有理数》知识点归纳

七年级上册《有理数》知识点归纳

七年级上册《有理数》知识点归纳

第一章有理数

知识概念

1.有理数:

(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 Û a+b=0 Û a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么初中数学知识点总结(初一)的倒数是初中数学知识点总结(初一);若ab=1Û a、

b互为倒数;若ab=-1Û a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

(完整版)初中数学第一章有理数知识点归纳总结

(完整版)初中数学第一章有理数知识点归纳总结

第一章有理数

思维路径:

有理数

数轴 运算

(数)

(形)

1.有理数:

(1)凡能写成)0p q ,p (p q ≠为整数且分数形式的数,都是有理数,整数和分数统称有理数. ▲注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;

(2)有理数的分类: ① ⎪⎪⎩

⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数

(3)自然数⇔ 0和正整数;

a >0 ⇔ a 是正数;

a <0 ⇔ a 是负数;

a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;▲

a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.

2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:

a-b+c 的相反数是-(a-b+c)= -a+b-c ;

a-b 的相反数是b-a ;

a+b 的相反数是-a-b ;

(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.

(4)相反数的商为-1.

(5)相反数的绝对值相等

4.绝对值:

(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)

0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a

有理数知识点总结归纳

有理数知识点总结归纳

第二章《有理数及其运算》知识梳理

正数和负数

⒈正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:-8℃

3.0表示的意义

⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:

有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类

⑴按有理数的意义分类⑵按正、负来分

正整数正整数

整数 0 正有理数

负整数正分数

有理数有理数 0 (0不能忽视)

正分数负整数

分数负有理数

负分数负分数

总结:①正整数、0统称为非负整数(也叫自然数)

人教版初中数学中考复习知识点归纳总结全册

人教版初中数学中考复习知识点归纳总结全册

人教版初中数学中考复习知识点归纳总结

全册

第一章:有理数

1. 有理数的概念和表示方法

- 有理数是可以表示为两个整数的比例的数,包括整数、分数

和小数。

- 有理数可以用分数的形式表示,也可以用小数的形式表示。

2. 有理数的比较和大小关系

- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。

3. 有理数的加法和减法

- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。

...

第二章:代数式及其计算

1. 代数式的概念和性质

- 代数式是由数、字母和运算符号组成的表达式。

- 代数式可以进行加法、减法、乘法和除法运算。

2. 代数式的加法和减法

- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。...

第三章:方程及其应用

1. 方程的概念和解的概念

- 方程是含有未知数的等式。

- 方程的解是能使方程成立的值。

2. 一元一次方程

- 一元一次方程是一个未知数的一次方程。

- 解一元一次方程的方法包括移项、合并同类项、化简和求解。

...

(继续列举下一章节的内容)

总结

本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。每个章节介绍

了该主题的概念、性质和解题方法。这些知识点是中考数学复习的

重点内容,希望能对同学们的复习提供帮助。

有理数知识点总结归纳

有理数知识点总结归纳

第二章《有理数及其运算》知识梳理

正数和负数

⒈正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:-8℃

3.0表示的意义

⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:

有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类

⑴按有理数的意义分类⑵按正、负来分

正整数正整数

整数 0 正有理数

负整数正分数

有理数有理数 0 (0不能忽视)

正分数负整数

分数负有理数

负分数负分数

总结:①正整数、0统称为非负整数(也叫自然数)

(完整版)有理数知识点总结

(完整版)有理数知识点总结

有理数基础知识

正数和负数

⒈正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:-8℃

3.0表示的意义

⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:

有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类

⑴按有理数的意义分类⑵按正、负来分

正整数正整数

整数 0 正有理数

负整数正分数

有理数有理数 0 (0不能忽视)

正分数负整数

分数负有理数

负分数负分数

总结:①正整数、0统称为非负整数(也叫自然数)

有理数知识点、考点、难点总结归纳

有理数知识点、考点、难点总结归纳

第一章有理数知识点总结归纳

一、正数和负数

⒈正数和负数的概念

负数:比0小的数;正数:比0大的数。

0既不是正数,也不是负数

注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a 表示负数时,-a是正数;当a表示0时,-a仍是0。强调:带正号的数不一定是正数,带负号的数不一定是负数。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量.习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.

比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃

二、有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。①π是

无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

2.数轴

(1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。注意:数轴是一条向两端无限延伸的直线;

原点、正方向、单位长度是数轴的三要素,三者缺一不可;

同一数轴上的单位长度要统一;

数轴的三要素都是根据实际需要规定的。

(2)数轴上的点与有理数的关系

所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

所有的有理数都可以用数轴上的点表示出来。

(3)利用数轴表示两数大小

在数轴上数的大小比较,右边的数总比左边的数大;

有理数知识点总结归纳

有理数知识点总结归纳

正数和负数

⒈正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:-8℃

3.0表示的意义

⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:

有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类

⑴按有理数的意义分类⑵按正、负来分

正整数正整数

整数 0 正有理数

负整数正分数

有理数有理数 0 (0不能忽视)

正分数负整数

分数负有理数

负分数负分数

总结:①正整数、0统称为非负整数(也叫自然数)

②负整数、0统称为非正整数

有理数知识点总结

有理数知识点总结

有理数基础知识

正数和负数

⒈正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:-8℃

3.0表示的意义

⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:

有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类

⑴按有理数的意义分类⑵按正、负来分

正整数正整数

整数 0 正有理数

负整数正分数

有理数有理数 0 (0不能忽视)

正分数负整数

分数负有理数

负分数负分数

总结:①正整数、0统称为非负整数(也叫自然数)

②负整数、0统称为非正整数

初一数学知识点《有理数》解析

初一数学知识点《有理数》解析

初一数学知识点《有理数》解析

初一数学知识点《有理数》解析

店铺为大家整理了初一数学知识点《有理数》,希望对大家有所帮助,谢谢。

第一章有理数

1.1正数和负数

以前学过的0以外的数前面加上负号-的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上-号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0

的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的.顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

《有理数》知识点解读

《有理数》知识点解读

第1章 有理数

一、正数和负数

1.0既不是正数,也不是负数,0和正数统称为非负数,0和负数统称为非正数。

2.有理数的分类:共有两种不同的分类,如下所示:

注意:①小数属于分数;②圆周率π不是有理数,因此不是整数也不是分数; ③正负数表示具有相反意义的量;④0是最小的自然数。

例1 下列各数,哪些是整数,哪些是分数,哪些是正数,哪些是负数,哪些是有理数?

+7,217,61-,0,0.67,-5,321-,+5.1,4

3,π,2012,-1.8. 解:整数有:+7, 0, -5, 2012; 分数有:217, 61-, 0.67, 321-, +5.1, 4

3,-1.8; 负数有:61-, -5, 3

21-, -1.8; 有理数有:+7, 217, 61-, 0, 0.67, -5, 3

21-, +5.1, 4

3, 2012, -1.8. 二、数轴

1.规定了原点、正方向和单位长度的直线叫做数轴。原点、正方向、单位长度是数轴的三要素。

2.任何一个有理数都可以用数轴上的一个点表示,但数轴上的点表示的数不一定是有理数,有可能是无理数(以后要学习的数)。

3.在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。一个数a 的绝对值记作|a|。正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。任何有理数的绝对值都是大于或等于0,即绝对值是非负数。绝对值最小的数是0,非负数的绝对值等于它的本身,非正数的绝对值等于它的相反数。

4.相反数:

⑴如果两个数符号相反,绝对值相等,那么我们称这两个数互为相反数。 ⑵正数的相反数是负数,负数的相反数是正数,0的相反数是0。a 的相反数是-a 。

有理数知识点总结归纳

有理数知识点总结归纳

第二章

《有理数及其运算》知识梳理

正数和负数

1•正数和负数的概念

负数:比0小的数 正数:比0大的数

0既不是正数,也不是负数

注意:①字母a 可以表示任意数,当 a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表 示0时,-a 仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的, 例如+a,-a 就不能做出简单判断) ② 正数有时也可以在前面加“ +”,有时“ +”省略不写。所以省略“ +”的正数的符号是正号。

2. 具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8C 表示为:+8C ;零下8 C 表示为:-8 C

3.0表示的意义

⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,

0既不是正数,也不是负数。如:

有理数

1. 有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①n 是无限不循环小数,不能写成分数形式,不是有理数。② 有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像

-2,-4,-6,-8

…也是偶数,-1,-3,-5…也是奇数。

2. 有理数的分类

⑴按有理数的意义分类

⑵按正、负来分

厂正整数

正分数

(0不能忽视)

正分数

I 负分数

总结:①正整数、0统称为非负整数(也叫自然数)

有理数知识点总结归纳

有理数知识点总结归纳

If you insist, you will shine. Time is an invincible weapon. It can gather arms and sand into towers, making the impossible in life possible.勤学乐施积极进取(页眉可删)

有理数知识点总结归纳

有理数知识点总结归纳

1、正数和负数的有关概念

(1)正数:比0大的数叫做正数;

负数:比0小的数叫做负数;

0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类

3、有关数轴

(1)数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

4、绝对值与相反数

(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a 的绝对值,记作:

一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;

相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

5、利用绝对值比较大小

两个正数比较:绝对值大的那个数大;

两个负数比较:先算出它们的绝对值,绝对值大的反而小。

6、有理数加法

(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.

初中数学各章节知识点总结(人教版)七上

初中数学各章节知识点总结(人教版)七上

七年级数学(上)知识点

人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.

第一章、有理数

知识概念

1.有理数:

(1)凡能写成)0p q ,p (p

q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;

(2)有理数的分类: ① ⎪⎪⎩

⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

有理数是数学中的一种基本概念,它包括了整数、分数和零。有理数可以用分数形式表示,分子是整数,分母是正整数。

一、有理数的定义和性质

1.有理数的定义:有理数表示为两个整数的比值,其中分母不为零。有理数可以用分数形式表示为a/b的形式,其中a是整数,b是正整数。

2.有理数的四则运算法则:

加法:同号求和,异号作差,结果的符号跟两个有理数的符号相同。

减法:转化为加法运算,将减法问题转化为加法问题。

乘法:同号得正,异号得负。

除法:将除法转化为乘法,取倒数后将除法问题转换为乘法问题。

3.有理数的乘方运算:有理数的乘方运算是将一个有理数乘以自身若干次。有理数的乘方运算的结果仍然是有理数。

4.有理数的比较运算:可以通过比较大小符号来比较有理数的大小,如果两个有理数的大小符号相同,则比较绝对值的大小。

5.有理数的约分:可以将一个有理数化简成最简形式,即将分子和分母互质的形式。

二、有理数的绝对值和相反数

1.有理数的绝对值:绝对值表示有理数距离零的距离,绝对值是非负的。正数的绝对值是它本身,负数的绝对值是它的相反数。

2.有理数的相反数:一个有理数的相反数是与它的绝对值相等但符号

相反的数。

三、有理数的数轴

1.有理数的数轴是一条直线,可以用来表示有理数的大小关系。

2.在数轴上,正数表示为向右的方向,负数表示为向左的方向,原点

为零。

3.数轴上,绝对值越大的数离原点越远,绝对值相同的数离原点的距

离相等。

四、有理数的运算律

1.有理数的加法符合交换律、结合律和分配律。

交换律:a+b=b+a

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、下面有四种说法,其中正确的是 ( ) A.一个有理数奇次幂为负,偶次幂为正 B.三数之积为正,则三数一定都是正数

C.两个有理数的加、减、乘、除(除数不为零)、乘方结果仍是有理数

D.一个数倒数的相反数,与它相反数的倒数不相等

3、下列判断错误的是 ( ) (A )任何数的绝对值一定是正数; (B )一个负数的绝对值一定是正数; (C )一个正数的绝对值一定是正数;

(D )任何数的绝对值都不是负数;

4、下列四个命题:(1)任何有理数都有相反数;(2)一个有理数和它的相反数之间至少还有一个有理数;(3)任何有理数都有倒数;(4)一个有理数如果有倒数,则它们之间至少还有一个有理数;(5)数轴上点都表示有理数;(6)任何一个有理数的平方必是正数。上述命题中,说确的是;

5、a 是最小的正整数,b 是最大的负整数的相反数,c 是到数轴上距原点的距离最小的数,求2a b c ++的值

6、下列各数对中,数值相等的是( ) A 、+32

与+23

B 、—23

与(—2)3

C 、—32

与(—3)2

D 、3×22

与(3×2)2

7、按照下面所示的操作步骤,若输入x 的值为-2,则输出的值为___________

8、已知

123112113114

,,,...,

1232323438345415

a a a =

+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =.

9、定义2

*a b a b =-,则(12)3**=______.

10、规定()()a b b a b a --+=⊗,求)5(3-⊗的值。

11、用“”定义新运算:对于任意实数a ,b ,

都有a b=b 2+1。例如,74=42

+1=17,求53的值及当m 为有理数时,m (m 2)的值。

12、现规定一种运算“*”,对于a 、b 两数有:

ab a b a b 2*-=,试计算2*)3(-的值。

13、用“”、“”定义新运算:对于任意实数a ,b ,都有a b=a 和a b=b ,例如32=3,32=2。则(20062005)(20042003)=__________。

二、数的分类

1、 把下列各数填在相应的括号:-16,26,-12,

-0.92, 0, 0.1008,-4.95

正数集合{ }; 负数集合{ }; 整数集合{ };

正分数集合{ }; 负分数集合{ }; 2、 下列各数中:7,-9.25,10

9-

,-301,274

31.25,15

7 ,-3.5,0,221

5,-7,1.25,-

37,-3,4

3-。 正整数是{ } 正分数是{ } 负整数是{ } 负分数是{ } 正数是{ } 负数是{ }

三、非负性

()2

输入x

平方

乘以3

减去5

输出

C、若b

a>,则b

a> D、若b

a=,则b

a=

12、如果一个数的平方等于它的绝对值,那么这个

数是()

A、-1

B、0

C、1

D、-1,0,1

13、若5

=

a,2

-

=

b且0

>

ab=

+b

a

14、已知︱a︱=5,︱b︱=8,且︱a+b︱= -(a+b),试

求a+b的值。

15、已知|a|=7,|b|=3,求a+b的值。

16、已知,3

,2

,1=

=

=c

b

a且a>b>c,求a+b

+c的值。

17、若,3

,4

,=

=

-

=

-n

m

m

n

n

m

18、若|a|=4,|b|=7,求(1)a+2b的值;

(2)若ab<0,求|a—b|;

(3)若| a—b |= b—a,求a—2b的值;

(4)若ab>0,| a—b |= b—a,求a—2b+1的

19、实数a、b、c在数轴上的位置如图:

化简|a-b|+|b-c|-|c-a|

五、实际问题的应用

1、某粮店出售的三种品牌的面粉袋上分别标有质量

的字样,从中任意拿出两袋,它们的质量最多相差( )

A .0.8kg

B .0.6kg

C .0.5kg

D .0.4kg 2、2008年8月第29届奥运会将在开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么时间2008年8月8日20时应是( ) A .伦敦时间2008年8月8日11时 B .巴黎时间2008年8月8日13时 C .纽约时间2008年8月8日5时 D .汉城时间2008年8月8日19时 3、如图是某只股票

从星期一至星期五每天的最高股价与最低股价的折线统计图,则这五天中最高股价与最低股价之差最大的一天是( )

A.星期二

B.星期三

C.星期四

D.星期五.

4、小明业余时间进行飞镖训练,上周日训练的平均成绩是8.5环,而这一周训练的平均成绩变化如下表:正号表示比前一天提高,负号表示比前一天下降

(1)问本周哪一天的平均成绩最高,它是多少环? (2)问本周哪一天的平均成绩最低,它是多少环? (3)本周日的成绩和上周日的成绩比是提高了,还

是下降了,其变动的环数是多少?

5、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +

6、 -3、-6、 -4、 +10。

发点多远?在鼓楼的什么方向?

(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?

6、冷库的室温为2℃,现存入一批食物冷冻,必须使室温保持在-22℃,若冷冻每小时使室温下降5℃,经过多少小时,就可以使冷库达到-22℃的冷冻室温?

7、已知某零件的标准直径是10mm ,超过规定直径长度的数量(单位:mm )记作正数,不足规定直径长度的数量(单位:mm )记作负数,检验员某次抽查了5件样品,检查的结果如下表:

(1)试指出哪件样品的大小最符合要求;

(2)如果规定偏差的绝对值在0.18mm 之是正品,偏差的绝对值在0,18mm —0.22mm 之间是次品,偏差绝对值查过0.22mm 是废品,那么上述5件样品中,哪些是正品,哪些是次品,哪些是废品?

8、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?

9、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:

与标准质量的差值

-5 -2 0 1 3 6

序号

1

2

3 4

5

直径长

度(mm )

+0.1 -0.15

+0.2

-0.05 +0.25

北京 汉城

巴黎

伦敦 纽约 5

-01

89

:日最高股价 :日最低股价

股价(元) 星期

9 8

四 一

8.5 9.5 10 10.5 11 11.5

相关文档
最新文档