高中物理问题详解弹簧类模型中的最值问题

合集下载

三弹簧问题分析

三弹簧问题分析

三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。

分析这类题型对训练学生的分析综合能力很有好处。

例题分析:例1:劲度系数为K的弹簧悬挂在天花板的O点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a由静止开始匀加速下降,求物体匀加速下降的时间。

分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G–KX=maX=1/2at2解以上两式得:t=ka agm)(2例2:一质量为M 的塑料球形容器,在A处与水平面接触。

它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。

在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。

分析:由题意知弹簧正好在原长时小球恰好速度最大,所以:对小球 qE=mg (1)小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时: 对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得:小球的加速度为:a=mMg由振动的对称性可知:小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N=Mg+Kx=2Mg例3:已知弹簧劲度系数为K,物块重G,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。

现给物块一向下的压力F,当物块静止时,撤去外力。

在运动过程中,物块正好不离开盘,求:(1)给物块的向下的压力F 。

(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1)由对称性,在最低点时:kx-mg=ma (2)A qEkx mg物块被压到最低点时有:F+mg=Kx (3)由以上三式得: F=mg(2)在最低点时盘对物块的支持力最大,此时有:F N-mg=ma 所以:F N=2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。

高中物理弹簧模型详解

高中物理弹簧模型详解

高中物理弹簧模型详解弹簧是我们在日常生活中经常接触到的一个物体,而在物理学中,弹簧也是一种非常重要的模型,能够帮助我们更好地理解力学性质。

本文将详细介绍高中物理中弹簧模型的相关知识,包括弹簧的基本概念、弹簧的力学性质以及弹簧在物理学中的应用。

一、弹簧的基本概念弹簧是一种具有自身形状恢复能力的物体,当外力作用在弹簧上时,会产生形变,当外力消失时,弹簧会恢复原来的形状。

弹簧通常是由金属或塑料等材料制成,形状多样,能够用于各种领域。

在物理学中,我们通常将弹簧视为一个理想模型,即认为弹簧具有以下特点:弹性系数恒定、无质量等。

弹簧的弹性系数(弹簧常数)用k表示,是衡量弹簧的硬度和形变能力的重要参数。

二、弹簧的力学性质1. 弹簧的伸长和弹性力当外力作用在弹簧上时,弹簧会发生形变,使长度发生变化,此时称为弹簧的伸长。

根据胡克定律,弹簧伸长的长度与作用力成正比,即F=kx,其中F为外力,k为弹簧的弹性系数,x为伸长的长度。

弹簧的弹性力也叫胡克力,是指弹簧对外力做出的响应,方向与伸长的方向相反。

当外力消失时,弹簧会产生一个恢复力,使形状恢复原状。

2. 弹簧振动在物理学中,弹簧振动是一种重要的现象,可以用简谐振动的原理进行描述。

当弹簧受到外力作用时,会产生振动,频率与质量和弹簧的弹性系数相关。

弹簧振动的频率用f表示,与弹簧的弹性系数k和振动体的质量m有关,可以用以下公式表示:f=1/(2π) * √(k/m)。

三、弹簧在物理学中的应用1. 弹簧振子弹簧振子是物理学中常见的实验器材,由一根弹簧和一个质点组成。

通过对弹簧振子的研究,可以了解振动的基本特性,包括振幅、频率、周期等。

2. 弹簧力学弹簧力学在实际生活中有着广泛的应用,例如弹簧秤、弹簧减震器等。

通过对弹簧力学的研究,可以更好地设计和制造各种弹簧产品,满足不同领域的需求。

3. 彩虹弹簧彩虹弹簧是一种特殊形状的弹簧玩具,通过不同颜色的环形弹簧组成。

彩虹弹簧不仅具有较强的伸缩性能,还有着独特的视觉效果,深受孩子们的喜爱。

高中物理专题复习之弹簧模型中的极值问题

高中物理专题复习之弹簧模型中的极值问题

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

一、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。

求此过程中所加外力的最大和最小值。

图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。

刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。

二、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。

一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得:E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥ 解①~⑥式可得h x =02。

物理模型--弹簧类问题分析(解析)

物理模型--弹簧类问题分析(解析)

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g /k 2.此题若求m l 移动的距离又当如何求解?参考答案:C2.S 1和S 2表示劲度系数分别为k 1,和k 2两根轻质弹簧,k 1>k 2;A 和B 表示质量分别为m A 和m B 的两个小物块,m A >m B ,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S 1在上,A 在上B.S 1在上,B 在上C.S 2在上,A 在上D.S 2在上,B 在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M 的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( )参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

29模型组合讲解:弹簧最值模型

29模型组合讲解:弹簧最值模型

.模型弹簧最值”: “模型组合讲解姚维明太原市第十二中学模型建构:由于弹簧总是与其他物体直接或间接地”问题,“在高考复习中,常常遇到有关弹簧最值联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

【模型】弹簧及其关联体【特点】①研究力与速度的最值,往往建立动力学方程、能量守恒方程;②研究高度的最值,往往建立能量守恒、运动学方程;③简谐运动的最值,往往用到对称点,两端点。

模型典案:一、最大、最小拉力问题的轻弹簧,两端分别连接着=600N/m【典案1】一个劲度系数为k,将它们竖直静止地放在水平地面上,、B=15kg的物体A质量均为m开始向上,使物体AF在物体A如图1所示,现加一竖直向上的外力物体刚离开地面(设整个加速过程弹簧都,B上做匀加速运动,经0.5s2)。

求此过程中所加外力的最大和最小10m/s处于弹性限度内,且g=值。

的重力,弹簧压缩量〖解析〗开始时弹簧弹力恰等于Amg?l25m??0.此时弹簧弹力恰等于物体刚要离开地面,,0.5s末B1 图k122s/?4maatl?2?m?025.??l'?l。

刚开A物体有的重力,,代入数据得,故对B2N?N60?15×4F?ma为最大且有为最小且物体刚要离开地面时,F,B始时F min N?360mg?maFmg?mg?ma?2F?。

,解得maxmax二、最大高度问题的钢板与直立弹簧的上端连接,弹簧下端固定在地m如图2所示,质量为【典案2】处自由下落打在钢板A x的。

面上,平衡时弹簧的压缩量为x一物体从钢板正上方距离为300上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。

已知物块质量处自由下落,则物块与钢板回到A2m仍从m时,它们恰能回到O点;若物体质量为也为O点的距离。

O点时还有向上的速度,求物块向上运动到达的最高点与v表示物块与钢板设〖解析〗物块碰撞钢板前作自由落体运动,0gx6v?碰撞时的速度,则:①00碰速度向下运动,因碰撞时间极短,物块与钢板碰撞后一起以v 1mv2mv?撞时遵循动量守恒,即:②10E点时,弹簧O,当它们一起回到刚碰完时弹簧的弹性势能为2 图p..12mgx2m?)vE?2(,根据机械能守恒有:③无形变,弹性势能为001p2v的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:设2m表示质量为2mv32mv?④20,由机械能守恒定律得:O点时具有一定速度v 碰撞后,当它们回到1122vm)3mgx?E?(3(3m)v?⑤02p22其竖直上升,物块以v2m的物块与钢板一起回到O点时两者分离,分离后,当质量为上升的最大高度:2v?h⑥g2x0?h。

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。

其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。

还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。

根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。

一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。

2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。

同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。

弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。

在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。

分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。

高考物理弹簧模型例题解析

高考物理弹簧模型例题解析

高考物理弹簧模型例题解析 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,如果你感到困难,本文就此类问题逐一归类分析。

最大、最小拉力问题 例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

最大高度问题2019-12-07高中物理最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m的平板B相连而处于静止状态。

今有另一质量为m的物块A从B的正上方h高处自由下落,与B发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v。

最大转速和最小转速问题 最大加速度问题 例6. 两木块A、B质量分别为m、M,用劲度系数为k的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A压下一段距离静止,释放后A做简谐运动,在A振动过程中,木块B刚好始终未离开地面,求木块A的最大加速度。

最大振幅 例7. 如图7所示,小车质量为M,木块质量为m,它们之间静摩擦力最大值为Ff,轻质弹簧劲度系数为k,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少?最大势能问题 例8. 如图8所示,质量为2m的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k的轻质弹簧,弹簧的自由端到小车右端的距离为L0,一个质量为m的小木块从板的右端以初速度v0开始沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为ц,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。

高中物理模型-弹簧模型(动力学问题)

高中物理模型-弹簧模型(动力学问题)

模型组合讲解——弹簧模型(动力学问题)李涛[模型概述]弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

[模型讲解]一. 正确理解弹簧的弹力例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。

②中弹簧的左端受大小也为F 的拉力作用。

③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。

④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )① ②③④图1A. l l 21>B. l l 43>C. l l 13>D. l l 24= 解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。

当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a 为多少,仍然可以得到弹簧两端受力大小相等。

由于弹簧弹力F 弹与施加在弹簧上的外力F 是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。

在题目所述四种情况中,由于弹簧的右端受到大小皆为F 的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F ,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D 。

二. 双弹簧系统例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。

该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。

用两根相同的轻弹簧夹着一个质量为2.0kg 的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a 、b 上,其压力大小可直接从传感器的液晶显示屏上读出。

高考经典物理模型:弹簧类问题(一)

高考经典物理模型:弹簧类问题(一)

弹簧类问题〔一〕——常见弹簧类问题分析轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考察力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题打破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧〔尤其是软质弹簧〕其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进展计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-〔21kx 22-21kx 12E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进展分析。

一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚分开上面弹簧.在这过程中下面木块挪动的间隔 为( )1g/k 12g/k 2 C.m 1g/k 22g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间间隔 的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1分开上面的弹簧.开场时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚分开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因此m2挪动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2.此题假设求m l挪动的间隔又当如何求解?参考答案:Ck1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为1和S2表示劲度系数分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大那么应使( ).1在上,A在上1在上,B在上2在上,A在上2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长,它们的一端固定,另一端自由,如下图,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如下图,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2程度拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)假设将图中的细线L l改为长度一样、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全一样,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如下图,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的互相作用)那么M与m之间的关系必定为 ( )参考答案:B6.如下图,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,那么重物将被弹簧弹射出去,那么在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进展准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者别离.7.如下图,一轻质弹簧竖直放在程度地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开场压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的选项是( ) 参考答案:C(试分析小球在最低点的加速度与重力加速度的大小关系)8.如下图,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与程度地面间的动摩擦因数恒定,试判断以下说法正确的选项是 ( )A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动参考答案:C9.如下图,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型 高考分析: 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视. 弹簧类命题突破要点:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式E p =21kx 2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为F ,另一端受力一定也为F 。

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。

如图7所示。

现让木板由静止开始以加速度a(a <g =匀加速向下移动。

求经过多长时间木板开始与物体分离。

分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。

据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。

2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。

现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。

.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。

此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。

在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。

物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。

最新7-高中物理弹簧类模型中的最值问题资料

最新7-高中物理弹簧类模型中的最值问题资料

弹簧类模型一、最大、最小拉力问题例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。

求此过程中所加外力的最大和最小值。

解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。

刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。

二、最大高度问题例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。

一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ① 物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④ 碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥ 解①~⑥式可得h x =02。

高考物理 弹簧模型解析

高考物理 弹簧模型解析

弹簧模型如图甲所示,质量分别为m =1 kg 、M =2 kg 的A 、B 两个 小物块用轻弹簧相连而静止在光滑水平面上,在A 的左侧 某处另有一个质量也为m =1 kg 的小物块C 以v 0=4 m/s 的 速度向右正对A 匀速运动,一旦与A 接触后就将黏合在一起运动.若在C 与A 接触前对A 施加一个水平向右的瞬时冲量I ,从A 获得瞬时冲量作用的时刻开始计时,取向右为正方向,其速度随时间变化的图象如图乙所示(C 与A 未接触前),弹簧始终未超出弹性限度.求: (1)对A 施加的瞬时冲量I 的大小;(2)在C 与A 接触前,当A 的速度分别为6 m/s 、2 m/s 、-2 m/s 时,求对应状态下B 的速度,并在此基础上粗略画出B 的速度随时间变化的图象;(3)若C 分别在A 的速度为v A 1=4 m/s 、v A 2=-2 m/s 时与A 接触,试分析这两种情况下在接触后的运动过程中弹性势能最大值E pm1和E pm2. 答案 (1)6 N ·S (2)0 2 m/s 、4 m/s(如图)(3)13.5 J 4.5 J质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求弹簧的这个过程中做的总功. 答案32mv 0211.如图所示,在一个倾角为 的光滑斜面底端有一个挡板,物体B 和物体C 用劲度 系数为k 的轻弹簧连接,静止在斜面上.将一个物体A 从距离物体B 为H 处由静 止释放,沿斜面下落后与物体B 碰撞,碰撞后A 与B 黏合在一起并立刻向下运动, 在以后的运动中A 、B 不再分离.已知物体A 、B 、C 的质量均为M ,重力加速度为g ,忽略各物体自身的大小及空气阻力.求: (1)A 与B 碰撞后瞬间的速度大小.(2)A 和B 一起运动达到最大速度时,物体C 对挡板的压力为多大?(3)开始时,物体A 从距B 多大距离由静止释放时,在以后的运动中才能使物体C 恰好ABCv离开挡板? 答案 (1)2sin 2θgH(2)3Mg sin θ(3)kMg θsin 4两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。

高中物理问题详解弹簧类模型中的最值问题

高中物理问题详解弹簧类模型中的最值问题

弹簧类模型中的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

一、最大、最小拉力问题例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。

求此过程中所加外力的最大和最小值。

图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。

刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。

二、最大高度问题例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。

一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度: h v g=22 ⑥ 解①~⑥式可得h x =02。

高考物理弹簧模型知识点

高考物理弹簧模型知识点

2019高考物理弹簧模型知识点2019高考物理弹簧模型知识点弹簧模型是以轻质弹簧为载体,与具体实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。

有关弹簧的知识,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种理想化的物理模型,分析问题时不需要考虑弹簧本身的质量和重力.处理弹簧模型时,需要掌握以下知识点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变化而变化,同时还与弹簧的劲度系数有关。

2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变化,弹簧的弹力相应地发生变化;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变化,这与绳子的受力情况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种情况下,弹力的方向相反.在分析弹簧弹力的方向时,一定要全面考虑,如果题目没有说明是哪种形变,那么就需要考虑两种情况.(4)根据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在高中阶段不需要掌握该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的情况下,弹性势能是相等的;一般情况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)判断弹簧与连接体的位置,分析物体的受力情况;(2)判断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变化情况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)根据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的改变需要一定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区别的,不要混淆两者的区别,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.如果弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。

与弹簧有关的最值问题

与弹簧有关的最值问题
时 , 为 最 大 , 有 F一 一m F 且 T g—rg=ta, 得 Fl =2 g a n 解 一 a r
十 it n2=3 0 N. 6



一 l
《=

从 B 的 正 上 方 高 处 自 由下 落 , 与 B 发 生 碰 撞 而 粘 在 一 起 . 知 它 们 已 共 同 向 下 运 动 到 速 度 最 大 时 , 统 系 增 加 的 弹 性 势 能 与 动 能 相 等 , 系 求
() 4
A 、 将 它 们 竖 直 静 止 地 放 在 水 B,
平 地 面 上 , 图 1 示 . 加 一 竖 如 所 现
碰 撞 后 , 它 们 回到 。 点 时 具 有 一 定 速 度 , 当 由机 械 能 守 恒 定 律 得
直 向上 的外力 F在物 体A 上 , 使 物体 A 开 始 向上 做匀 加速 运动 ,
弹 力 恰 等 于 B 的重 力 , Al= =0 2 故 对 A 物 体 而 .5m,
口T

有 2 ! 口 代人数 据得 口=4m . A : £, 刚开始 时 F为 最
小 , 有 F = 2 5 且 =1 ×4N=6 B 物 体 刚要 离 开 地 面 0N.
第 3 2卷 第 6期 21 0 1年




V0 . 2 No. 13 6
PH Y SI CS TE ACHE R
(0 1 2 1)
与 弹 簧有 关 的最 值 问题
黎 梅秀
( 江西省 临川第二 中学 , 江西 抚州
在 高 中物 理 学 习 中 , 常遇 到有 关 “ 经 弹簧 类 ” 问题 . 于 由
解 ( ) 6 式可得 h=-- 1 ~( ) ~. - 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧类模型中的最值问题
在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。

求此过程中所加外力的最大和最小值。

图1
解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg k
m ==025.,末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有212
2∆l at =,代入数据得a m s =42/。

刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有
F mg mg ma max --=,解得F mg ma N max =+=2360。

二、最大高度问题
例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。

一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。


图2
解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①
物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②
刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=12
22120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④
碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得:
E m v mgx m v p +
=+12331232202()() ⑤ 、
当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:
h v g
=2
2 ⑥ 解①~⑥式可得h x =02。

三、最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3
解析:A 下落到与B 碰前的速度v 1为:
v gh 12=
① ]
A 、
B 碰后的共同速度v 2为:mv m m v 12=+() ②
B 静止在弹簧上时,弹簧的压缩量为x 0,且:
mg kx =0 ③
A 、
B 一起向下运动到最大速度v 时的位移为x ,此时A 、B 的加速度为0,即有:20mg k x x =+() ④
由机械能守恒得:
212212
2222mgx m v m v E p +
=+()()∆ ⑤ ∆E m v p =1222() ⑥ 解①~⑥得:v mg k gh =+214
\
例4. 在光滑水平面内,有A 、B 两个质量相等的木块,m m kg A B ==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

图4
解析:当撤除恒力F 后,A 做加速度越来越小的加速运动,弹簧等于原长时,加速度
等于零,A 的速度最大,此后弹簧压缩到最大,当弹簧再次回复原长时速度最小,根据动量守恒得:2mv mv mv A B =+ ①
根据机械能守恒得:1001212
22=+mv mv A B ② 由以上两式解得木块A 的最小速度v =0。

四、最大转速和最小转速问题
例5. 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为F fm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图5所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少

图5
解析:当转速n 较大时,静摩擦力与弹簧弹力同向,即:
k L F m n L L fm ∆∆+=+()()212
π ① n k L F m L L fm
112=++π∆∆()
当转速n 较小时,静摩擦力与弹簧弹力反向,即:
k L F m n L L fm ∆∆-=+()()222π ② n k L F m L L fm 212=-+π
∆∆() …
所以圆盘转速n 的最大值和最小值分别为:
12πk L F m L L fm ∆∆++()和12πk L F m L L fm ∆∆-+()。

五、最大加速度问题
例6. 两木块A 、B 质量分别为m 、M ,用劲度系数为k 的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A 压下一段距离静止,释放后A 做简谐运动,在A 振动过程中,木块B 刚好始终未离开地面,求木块A 的最大加速度。

图6
解析:撤去外力后,A 以未加外力时的位置为平衡位置作简谐运动,当A 运动到平衡位置上方最大位移处时,B 恰好对地面压力为零,此时A 的加速度最大,设为a m 。


对A :由牛顿第二定律有k x x mg ma m ()-+=0
对B :k x x Mg ()-=0
所以a M m g m
m =
+(),方向向下。

六、最大振幅
例7. 如图7所示,小车质量为M ,木块质量为m ,它们之间静摩擦力最大值为F f ,轻质弹簧劲度系数为k ,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少
图7
解析:在最大位移处,M 和m 相对静止,它们具有相同的加速度,所以对整体有:kA M m a =+() ①

对m 有: F ma f = ②
所以由①②解得:A F M m km f =
+()。

七、最大势能问题
例8. 如图8所示,质量为2m 的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k 的轻质弹簧,弹簧的自由端到小车右端的距离为L 0,一个质量为m 的小木块从板的右端以初速度v 0开始沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为μ,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。

图8
解:弹簧被压缩至最短时,具有最大弹性势能E pm ,设m 在M 上运动时,摩擦力做的总功产生内能为2E ,从初状态到弹簧具有最大弹性势能及从初状态到末状态,系统均满足动量守恒定律,即: mv m m v 02=+() ①
由初状态到弹簧具有最大弹性势能,系统满足能量守恒:
1212
3022mv m v E E pm =++() ② 由初状态到末状态,系统也满足能量守恒且有:
1212
32022mv m v E =+() ③ 由①②③求得:E mv pm =1602 从以上各例可以看出,尽管弹簧类问题综合性很强,物理情景复杂,物理过程较多,但只要我们仔细分析物理过程,找出每一现象所对应的物理规律,正确判断各物理量之间的关系,此类问题一定会迎刃而解。

相关文档
最新文档