不等式恒成立问题的基本类型及常用解法 - 副本
关于不等式恒成立问题的几种求解方法
关于不等式恒成立问题的几种求解方法不等式恒成立问题,在高中数学中较为常见。
这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。
下面我们一起来探讨其中一些典型的问题一、一次函数型——利用单调性求解例1、若不等式对满足的所有实数m都成立,求x的取值范围。
若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。
这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。
能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。
分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。
解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立,设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有:此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。
给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于ⅰ),或ⅱ)可合并成同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;若改为:,构造函数,画出图象,得a<3利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围。
恒成立问题题型大全(详解详析)
不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f (1)当>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
恒成立问题常见类型及其解法
4 令 t x 2, y t (t 2) t
2Leabharlann 函数 y t 4 在 [ 2, ) 上为增函数 t
y y1=(x-1)2 y y1=(x-1)2 y2=logax
例6:当 x 1, 2 时,不等式 x 1 log a x 恒成立,求a 2的范围.
2
1 o 1 2 x y2=logax
1 o 1 2 x
0 a 1
a 1
y 显然 a 1 , 要使对一切 x 1, 2, 1 y2 恒成立,
2
x 1 0
2
则
x 2 x 1 x 1 4 x 1 4 4 p x 1 4 x 1 x 1 x 1
令t=x-1>0,则p>-[t+4+4/t]∈(-∞,-8]
p 8
例4:设 lg x 3 x 7 a 0 ,如果 x R 恒成立, a 的范围. 求 解:原不等式等价于lg x 3 x 7 a
m - 2 0 0 (5) 4m ,解得1 m 2 2( m - 2) 0 f ( 0) 0 y
y
m - 2 0 (6) ,无解 f (0) 0
综上所述, a 3 1
O
x
x
4.已知函数f ( x) (m - 2) x 2 - 4mx 2m - 6的图像与 x轴的负半轴有交点,求 实数m的取值范围 .
归纳
不等式恒成立问题的十种解法
一、判别式法若能把所给不等式转化为某个一元二次不等式,并且该一元二次不等式是对于一切实数x都恒成立,则可优先考虑判别式法.例l 设不等式,对于一切实数x都恒成立,求实数m的取值范围.解:因为所以原不等式可变为:因为该不等式对一切实数x都成立,必有整理得说明:若所给的区间并非一切实数时,切记不能使用判别式法.二、三角换元法通过适当的三角换元,把所给问题转化为含有的形式,再利用正弦函数的有界性来求出它的最值,从而使问题得到解决.例2 已知实数x、y满足时恒成立,则实数d的取值范围是( ))],则y的最大值为,要使x+y+d≥O恒成立,必须有d大于等于y的最大值,即d≥,故选择答案(A).三、分离参数对于含有参数的不等式,若能把所求的参数分离出来,应优先考虑实行参数分离,然后再在不等式的另一边进行其它变换,如使用均值不等式,或通过函数的单调性来求出它的最值,最后再通过参数与这个最值的关系来使问题得到解决.例3 对于任意恒成立,求实数m的取值范围.四、图象法如果所给不等式能够化为一边是我们熟悉的函数,那么我们可以通过它的图象,结合函数的单调性来求出它在所给区间上的最值,从而使问题得到解决.例4 若关于x的不等式对任意x∈[0,1]恒成立,则m的取值范围是( )(A)m≤一3 (B)m≥一3 (C)一3≤m≤0 (D)m≥一4解:考察函数的图象,当x∈[0,1]时,其函数的值域为y∈[一3,0],若使不等式对任意x∈[0,1]恒成立,则m必须小于等于它的最小值3,即m≤一3,故选择答案(A).五、变更主元法主元的选择要因题而异,在有些问题中一旦克服心理定势,标新立异地另选主元,那么问题的解决就会有峰回路转、柳暗花明的效果.例5 对于任意a∈[一l,1],函数的函数值恒为正数,则实数x的取值范围是( ) (A) (B) (C)分析:由a的取值范围恒成立,可采用分类讨论去寻找 x 的的取值范围,但是这是比较麻烦的,再看a 的取值范围已经知道了,变a为主元,x为参数,反其道而行之.六、几何法含有绝对值的不等式,可利用绝对值的几何意义这一直观使问题加以解决.例6 若不等式恒成立,求实数d的取值范围.解:设由绝对值的几何意义可知,d表示数轴上的点到实数l、4所对应两点距离的和,所以d≥3,要使恒成立,必须有a于等于d的最小值,即a≤3.七、均值不等式法运用均值不等式求出所给代数式的最值,然后再用所给的值与这个最值进行比较.例7 (第l1届希望杯试题)设a>b>c,恒成立,则自然数n的最大值为( ) (A)2 (B)3 (C)4 (D)5八、数学归纳法当不等式中含有自然数凡时,应优先考虑用数学归纳法来探求.由上可得:存在最大的自然数m=13.使不意大于等于2的自然数n都恒成立.九、放缩法把所给不等式进行适当的放缩,从而使问题得到解决.对所有的正整数恒成立.十、二项式定理展开法当不等式中含有所给数的凡次方时,可试着考虑使用二项式定理,通过二项式定理的展开式有选择地选取几项进行放缩,从而使问题得到解决.例l0 求证.对于任意大于等于2的自然数不等式恒成立.。
基本不等式的恒成立问题
基本不等式的恒成立问题一、基本不等式1. 基本不等式的形式- 对于正实数a,b,有a + b≥2√(ab),当且仅当a = b时等号成立。
- 变形形式:ab≤((a + b)/(2))^2。
2. 基本不等式成立的条件- a>0,b>0。
二、基本不等式恒成立问题的常见类型及解法1. 类型一:求参数的取值范围使得不等式恒成立- 例1:已知x>0,y>0,若x + y+ (1)/(x)+(1)/(y)≥ m恒成立,求m的取值范围。
- 解析:- 因为x>0,y>0,根据基本不等式x+(1)/(x)≥2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时等号成立;同理y+(1)/(y)≥2,当且仅当y = 1时等号成立。
- 所以x + y+(1)/(x)+(1)/(y)=(x+(1)/(x))+(y+(1)/(y))≥2 + 2=4。
- 因为x + y+(1)/(x)+(1)/(y)≥ m恒成立,所以m≤4。
2. 类型二:已知不等式恒成立,求代数式的最值- 例2:若对于任意x>0,(x)/(x^2)+3x + 1≤ a恒成立,求a的最小值。
- 解析:- 因为x>0,则(x)/(x^2)+3x + 1=(1)/(x+frac{1){x}+3}。
- 根据基本不等式x+(1)/(x)≥2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时等号成立。
- 所以x+(1)/(x)+3≥2 + 3=5,则0<(1)/(x+frac{1){x}+3}≤(1)/(5),即0<(x)/(x^2)+3x + 1≤(1)/(5)。
- 因为(x)/(x^2)+3x + 1≤ a恒成立,所以a≥(1)/(5),a的最小值为(1)/(5)。
3. 类型三:含有多个变量的基本不等式恒成立问题- 例3:已知x,y∈ R^+,若2x + y = 1,且(1)/(x)+(a)/(y)≥8恒成立,求正实数a 的值。
微专题不等式恒成立问题常见类型及解法
恒成立问题常见类型及解法恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。
一、一次函数型给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的图象(线段)可得①0()0>⎧⎨>⎩k f m 或②0()0<⎧⎨>⎩k f n ,也可合并成f (m)0f (n)0>⎧⎨>⎩,同理,若在[,]m n 内恒有()0<f x ,则有f (m)0f (n)0<⎧⎨<⎩.典例1.若不等式2x -1>()21-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。
【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数=y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。
考察区间端点,只要(2)(2)-⎧⎨⎩<0,<0f x f 即x的取值范围是(12,12). 二、二次函数型若二次函数2(0,)=++≠∈y ax bx ca x R 的函数值大于(或小于)0恒成立,则有a 00>⎧⎨∆<⎩(或00a ì<ïïíïD <ïî),若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及二次函数的图象求解。
典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。
【解析】方法1(利用韦达定理)设3x=t,则t>0.那么原方程有解即方程t 2+(4+a )t+4=0有正根。
1212Δ0(4)040≥⎧⎪∴+=-+>⎨⎪=>⎩g x x a x x ,即2(4a)160a 4⎧+-≥⎨<-⎩,a 0a 8a 4≥≤-⎧∴⎨<-⎩或,解得a ≤-8.方法2(利用根与系数的分布知识)即要求t 2+(4+a )t+4=0有正根。
高一不等式恒成立问题3种基本方法
高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。
学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。
本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。
1. 方法一:代数法我们来介绍代数法。
这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。
代数法通常包括加减变形、乘除变形以及平方去根等技巧。
以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。
代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。
2. 方法二:图像法我们介绍图像法。
图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。
对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。
图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。
3. 方法三:参数法我们介绍参数法。
参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。
参数法的典型应用包括辅助角法、二次函数法等。
以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。
参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。
总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。
代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。
个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。
不等式恒成立问题的基本类型及常用解法-推荐下载
说明:①.只适用于一元二次不等式
例 3.不等式
x0 3x 2
②.若未指明二次项系数不等于 0,注意分类讨论.
2x 2 2mx m
4x2 6x 3
0
2
x
3
0
0
0
.
) x2 ax <( 1 ) 2xa1 恒成立的 x 的取值范围。
例 2.
f f
(log
(2) 0 (2) 0
(log 2
2
x)2 x)2
0<x< 1 或 x>8。 2
1
故实数 x 的取值范围是(0, )∪(8,+∞)。
2
对于
1
-1≤a≤1,求使不等式(
解:原不等式等价于 x2+ax<2x+a-1 在 a∈[-1,1]上恒成立.
x
a<f(x) 恒成立 a<f(x) min .
x2+2x+a>0 对 x∈ 1,恒成立。
a>-(x2+2x)对 x∈ 1,恒成立。
设 (x)= -(x2+2x) x∈ 1,
问题转化为:a> (x) max (x)= -(x2+2x)=-(x+1)2+1
∴ (x)在 1,上是减函数。
x2 2x a
例 4.(2000.上海)已知 f(x)=
x
分析 1:当 x∈ 1,时,f(x) >0 恒成立,等价于 x2+2x+a>0 恒成立,只需求出
>0 在 x∈ 1,上恒成立,求实数 a 的取值范围。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
不等式恒成立问题3种基本方法
不等式恒成立问题3种基本方法不等式恒成立问题是指在数学中有特定条件下,当不等式满足某些条件时,就能证明不等式恒成立。
一般来说,要证明不等式恒成立,都是采用一定的技巧和方法,其中,最常用的三种方法包括把不等式化简为等式、归纳法或组合法以及图解法。
1.不等式化简为等式最常用的一种方法是将不等式化简为等式,这种方法最为直观,也是最容易的方法,也就是利用数学语言,利用数学公式将不等式化为等式,然后利用数学推论让等式恒成立。
例1:y+2除以3大于9,则y大于17令y+2=3x得3x除以3大于9化简得 x大于9代入y+2=3x,y大于17所以y+2除以3大于9时,y大于17。
2.纳法或组合法归纳法或组合法是比较常用的一种方法,也称为反演法。
特别是在分析比较复杂的不等式时,往往可以借助这种方法。
归纳法或组合法的步骤是:1首先分析不等式的全部特性,然后根据不等式的特性进行分析,把这些特性分为若干步,每步解决一个特殊问题;2)然后利用反演法,逐步推出最后的结论。
例 2:y>8,则9-y<1第一步: y>8明 y>8成立的第二步:y>8带入y-8>0,即可推出y-8的值大于0第三步:y-8>0带入9-y<1,即可推出9-y的值小于1第四步:以上四步推出,若y>8,则9-y<13.解法图解法是把问题的定义,公式,结果等用图示表示出来,从而把问题用图形化的方式来分析。
例 3:|x-2|≤3,则-1≤x≤5由于|x-2|≤3,即x-2≤3 x-2≥-3,因此可以把上述问题用图形化的方式来分析,即x-2=3时表示x-2≤3,x-2=-3时表示x-2≥-3,两条线在x=5和x=-1的位置相交,由此可以推出-1≤x≤5。
通过以上三种方法可以解决许多不等式恒成立的问题,它们各有优缺点,需要在实际操作中根据不等式本身的特点来选择最合适的方法,以达到最好的解决效果。
但是,无论如何,从本质上来讲,学习和掌握数学,尤其是求解不等式恒成立问题,关键在于不断积累知识,勤加练习,加强技巧。
不等式恒成立问题的处理
不等式恒成立问题的处理王 婷恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③ 其他类不等式恒成立一、一次函数型给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于⎨⎧>0)(m f 同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例1.对任意]1,1[-∈a ,不等式)4(2-+x a x 分析:题中的不等式是关于x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题。
解:令44)2()(2+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立(]1,1[-∈a )。
当2=x 时,可得0)(=a f ,不合题意。
当2≠x 时,应有⎩⎨⎧>->0)1(0)1(f f 解之得31><x x 或。
故x 的取值范围为),3()1,(+∞-∞ 。
注:一般地,一次函数)0()(≠+=k b kx x f 在],[βα上恒有0)(>x f 的充要条件为⎩⎨⎧>>0)(0)(βαf f 。
练习:对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围。
解:原不等式转化为(x-1)a+x 2-2x+1>0,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3.二、 二次函数型(1)当二次函数的定义域为R 时: 若二次函数y=ax 2+bx+c (a ≠0)大于0恒成立,则有⎩⎨⎧<∆>00a 若二次函数y=ax 2+bx+c (a ≠0)小于0恒成立,则有⎩⎨⎧<∆<00a例1.若函数y =R 上恒成立,求m 的取值范围。
谈不等式恒成立问题的基本类型和常见解法
2013.NO19 2学,都很有兴趣地、积极地、独立地、较好地去完成;通过对作业的完成,他们都能清楚地把握当前身边的——些个体商贩盈利或亏损的原因,并且在讲评课上,他们都能有理有据地说出自己设计的经营方案盈利的可能性。
这—方面利于学生掌握数学知识,同时对他们对生活认识的加深、数学学习兴趣的增强、自信心的养成等等的作用都是不言而喻的。
三、改变数学课外作业的评价方式,发展学生的情感态度和个性品质学生是发展的人,是教育活动的主体,其身心发展具有巨大的发展潜能。
如何去开发学生数学学习的潜能,培养学生积极的态度和情感是一项复杂的工程。
前面所述的各种形式的数学课外作业都能有效地培养学生的态度和情感,但老师对数学课外作业的评价对学生态度、情感的培养,乃至个性品质的形成更为重要。
因为,评价是学生认识自我,建立自信心的最主要的因素。
斯金纳的教学理论就指出“要充分运用积极有效的强化手段,要及时总结,及时讲评,使学生及时知道自己的学习效果,强化正确的学习行为。
传统的数学课外作业的评价方式是采用分数或等级来甄别学生学习的优劣,这种简单的方式不能达到有效强化的目的,容易使那些原来充满学习热情的学生开始怀疑起自己的能力,变得越来越不自信。
长此以往,容易造成部分学生原有的学习热情和愿望一点点消失。
因此,必须改变评价方式。
在对学生数学课外作业的评价时,我不仅仅关注某次学生作业的结果或作品的优劣,更关注他们在整个学习过程中表现出来的情感和态度,努力去发现他们的“好”的方面,通过变化多样的教师个性评语;教师评价与学生自评、互评相结合;书面材料与对学生口头报告、活动、展示的评价相结合;定性评价与定量评价相结合;以定性评价为主等形式加以鼓励、表扬和肯定,让学生看到自己的长处和进步,帮助学生认识自我,建立自信,使学生认识到数学有趣,使他们在数学学习的过程中逐步对数学产生积极的情感和态度,并从中悟出一些对做人和生活有帮助的道理,进而形成良好的个性品质。
求解不等式恒成立问题的三种途径
考点透视不等式恒成立问题的常见命题形式有:(1)证明某个不等式恒成立;(2)根据恒成立的不等式求参数的取值范围.求解不等式恒成立问题的常用思路有:构造函数、分离参数、数形结合等.对于不同的不等式,往往需采用不同的途径进行求解.下面结合实例来进行探究.一、构造函数在求解不等式恒成立问题时,我们可先将不等式左右两边的式子移项、变形;然后将不等式构造成函数式,将问题转化为函数最值问题,通过研究函数的单调性,求得函数的最值,来证明不等式恒成立.在求函数的最值时,可根据函数单调性的定义,或导函数与函数单调性之间的关系来判断函数的单调性;也可以利用简单基本函数的单调性来求得函数的最大、最小值,建立使不等式恒成立的式子,即可解题.例1.求证:当x >-1时,1-1x +1≤ln ()x +1≤x 恒成立.证明:设f ()x =ln ()x +1-x ,求导可得f ′()x =1x +1-1=-x x +1,因为当-1<x <0时,f ′()x >0,当x >0时,f ′()x <0,所以函数f ()x 在()-1,0上单调递增,在()0,+∞上单调递减,即f ()x ≤f ()0=0,故f ()x =ln ()x +1-x ≤0,即ln ()x +1≤x .令g ()x =ln ()x +1+1x +1-1,则g ′()x =1x +1-1()x +12=x ()x +12,因为当-1<x <0时,g ′()x <0,当x >0时,g ′()x >0,所以函数g ()x 在()-1,0上单调递减,在()0,+∞上单调递增,可知g ()x ≥g ()0=0,故ln ()x +1+1x +1-1≥0,ln ()x +1≥1-1x +1,综上可知,当x >-1时,不等式1-1x +1≤ln ()x +1≤x 恒成立.要证明目标不等式恒成立,需分两步进行,先证明ln ()x +1≤x ,再证明ln ()x +1≥1-1x +1.在证明这两个不等式时,都需要先将不等式左右两边的式子作差、移项,构造出新函数f ()x =ln ()x +1-x 、g ()x =ln ()x +1+1x +1-1;然后对函数求导,分析导函数与0之间的大小关系,判断出函数的单调性,进而求得函数的极值,从而得出f ()x min =0、g ()x max =0,即可证明f ()x ≤0、g ()x ≥0.例2.设函数f ()x =e x ln x +2e x -1x,曲线y =f ()x 在点()1,f ()1处的切线方程为y =e ()x -1+2,证明:不等式f ()x >1恒成立.证明:由f ()x >1可得x ln x >xe -x -2e,令g ()x =x ln x ,可得g ′()x =ln x +1,∵当x ∈æèöø0,1e 时,g ′()x <0;当x ∈æèöø1e ,+∞时,g ′()x >0,∴函数g ()x 在æèöø0,1e 上单调递减,在æèöø1e ,+∞上单调递增,∴g ()x ≥g æèöø1e =-1e ,令h ()x =xe -x -2e,则h ′()x =e -x ()1-x ,∵当x ∈()0,1时,h ′()x >0;当x ∈()1,+∞时,h ′()x <0,∴函数h ()x 在()0,1上单调递增,在()1,+∞上单调递减,∴h ()x ≤h ()1=-1e,∴当x >0时,g ()x >h ()x ,即不等式f ()x >1成立.由于不等式x ln x >xe -x -2e左右两侧的式子分别含有对数式、指数式,于是分别令g ()x =x ln x 、h ()x =xe -x -2e,那么只要证明g ()x min >h ()x max ,即可证明不等式恒成立.利用导数法求出函数g ()x 、h ()x 在定义域内的最值,即可证明不等式成立.在构造函数时,要注意观察不等式的结构特点,将其进行合理的变形,以便构造出合适的函数模型,从而顺利证明不等式.二、分离参数对于含参不等式恒成立问题,我们通常要采用分离参数法,将不等式中的参数、变量分离,即使不等式一侧的式子中含有参数、另一侧的式子中含有变量,得到形如a ≥f ()x 、a ≤f ()x 的不等式.探讨函数f ()x 在定义域内的最值与参数a 的大小关系,即可求得问赵瑛琦37考点透视题的答案.例3.已知函数f ()x =ln 2()1+x -x 21+x.(1)求函数f ()x 的单调区间;(2)若对于任意n ∈N ∗,不等式æèöø1+1n n +a≤e 恒成立,求参数a 的最大值.解:(1)函数f ()x 的单调递增区间为()-1,0,单调递减区间为()0,+∞;(过程略)(2)不等式æèöø1+1n n +a≤e 等价于()n +a ln æèöø1+1n ≤1,因为1+1n ≥1,所以a ≤1ln æèöø1+1n -n,设g ()x =1ln ()1+x -1x ,x ∈(]0,1,则g ′()x =-1()1+x ln 2()1+x +1x 2=()1+x ln 2()1+x -x 2x 2()1+x ln 2()1+x ,由(1)可得ln 2()1+x -x 21+x≤0,即()1+x ln 2()1+x -x 2≤0,故当x ∈(]0,1时,g ′()x ≤0,函数g ()x 单调递减,即g ()x 在(]0,1上的最小值为g ()1=1ln 2-1,故a 的最大值为1ln 2-1.由于参数a 为指数,所以考虑对不等式左右两边的式子取对数,以将参数分离,得到a ≤1ln æèöø1+1n -n .只要求得1ln æèöø1+1n -n的最小值,即可求得a 的最大值.于是构造函数g ()x =1ln ()1+x -1x ,利用导数法求得函数的最小值,即可解题.在分离参数时,可通过移项、取对数、取倒数等方式,使参数与变量分离.例4.已知函数f ()x =-x ln x +a ()x +1,若f ()x ≤2a 在[)2,+∞上恒成立,求实数a 的取值范围.解:当x ≥2时,由f ()x ≤2a 可得a ≤x ln xx -1,令g ()x =x ln x x -1,x ≥2,∴g ′()x =ln x -x +1()x -12,令h ()x =ln x -x +1,x ≥2,∴h ′()x =1x-1,∵当x ≥2时,h ′()x <0,函数h ()x 单调递减,∴h ()x ≤h ()2=ln 2+1>0,∴g ′()x >0,函数g ()x 在[)2,+∞上单调递增,∴g ()x ≥g ()2=2ln 2,∴a ≤g ()x min =g ()2=2ln 2,∴实数a 的取值范围为(]-∞,2ln 2.先将不等式变形,使参数a 单独在不等式的左边,得到不等式a ≤x ln xx -1;然后在定义域[)2,+∞内求不含参函数式的最小值,即可求得参数a 的取值范围.三、数形结合有时不等式中的代数式可用几何图形表示出来,如y =kx 表示的是一条直线;y =a x 、y =x a 表示的是两条曲线;x 2+y 2=1表示的是一个圆,此时就可以采用数形结合法,根据代数式的几何意义画出图形,通过分析图形中曲线、直线之间的位置关系,研究图形的性质,来证明不等式成立.例5.若不等式e x ≥kx 对任意x 恒成立,则实数k 的取值范围为_____.解:设过原点的直线与y =e x相切于点()x 0,ex 0,∵y ′=e x,∴由几何导数的意义可知切线的斜率为k =e x,∴切线的方程为y -e x 0=e x 0()x -x 0,∵切线经过点()0,0,可得x 0=1,∴切线的斜率k =e .由图可知,要使等式e x ≥kx 恒成立,需使y =e x的图象始终在直线y =kx 的上方,∴0≤k ≤e .根据不等式两侧式子的几何意义画出图形,即可将不等式问题看作函数y =e x 和直线y =kx 的位置关系问题.结合图形讨论函数y =e x 和直线y =kx 的位置关系,并根据导函数的几何意义求得切线的方程,即可得到关于参数的新不等式.运用数形结合法解题,需密切关注直线、曲线之间的临界情形,如相切、相交的情形,从而确定参数的临界值.可见,解答不等式恒成立问题,需注意以下几点:(1)仔细观察不等式的结构特点,并将其进行合理的变形,如作差、移项、分离参数;(2)合理构造函数模型,将问题转化为函数最值问题,以便利用导数法、函数的单调性求得最值;(3)灵活运用数形结合思想,以直观、便捷的方式来解题.(作者单位:江苏省泗洪姜堰高级中学)38。
恒成立问题常见类型及解法
【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m) 在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
范围是______.
【解题提示】将恒成立问题转化为最值问题.
【解析】因为x>0 ,所以 x 1 2(当且仅当x=1时取等
x
号),所以有
x2
x 3x
1
x
1 1
3
2
1
3
1 5
,即
x x2 3x 1
的最大值为 1,故a≥1 .
x
5
5
【方法技巧】不等式恒成立问题的解题方法 1.不等式的恒成立问题与函数最值有密切的关系,解决不等 式恒成立问题,通常先分离参数,再转化为最值问题来解: c≥f(x)恒成立 c≥f(x)max; c≤f(x)恒成立 c≤f(x)min. 2.高次函数或非基本初等函数的最值问题,通常采用导数法 解决.
x
恒成立, 2k , 4k k Z ,所以 k 不可能为 6。
2
五、 把不等式恒成立问题转化为函数图象问题
【理论阐释】 若把不等式进行合理的变形后,能非常容易地画出不等
号两边对应函数的图象,这样就把一个很难解决的不等式的 问题转化为利用函数图象解决的问题,然后从图象中寻找条 件,就能解决问题。
典例5
若不等式
loga
x
sin
2x
(a
0且a
1)
对于任意
x
∈
(0,
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
高三专题复习不等式恒成立问题
高三数学 第一讲 不等式恒成立问题在近些年的数学高考题及高考模拟题中经常出现不等式恒成立问题,此类问题一般综合性强,既含参数又含变量,往往与函数、数列、方程、几何等有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点.高考往往通过此类问题考查学生分析问题、解决问题、综合驾驭知识的能力。
此类问题常见解法:一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.例2:在R 上定义运算⊗:x ⊗y =x(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D) 3122a -<< 例3:若不等式x 2-2mx+2m+1>0对满足0≤x ≤1的所有实数x 都成立,求m 的取值范围。
二、分离参数法在题目中分离出参数,化成a>f(x) (a<f(x))型恒成立问题,再利用a>f max (x) (a<f min (x))求出参数范围。
例4.(2012•杭州一模)不等式x 2﹣3>ax ﹣a 对一切3≤x ≤4恒成立,则实数a 的取值范围是 .例5:设a 0为常数,数列{a n }的通项公式为a n =51[3n +(-1)n-1·2n ]+(-1)n ·2n ·a 0(n ∈N * )若对任意n ≥1,n ∈N *,不等式a n >a n-1恒成立,求a 0的取值范围。
例6.(2012•安徽模拟)若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 . 例7.(2011•深圳二模)如果对于任意的正实数x ,不等式恒成立,则a 的取值范围是 .例8.(2013•闵行区一模)已知不等式|x ﹣a|>x ﹣1对任意x ∈[0,2]恒成立,则实数a 的取值范围是 .三、数型结合法例9:如果对任意实数x ,不等式kx 1x ≥+恒成立,则实数k 的取值范围是例10:已知a>0且a ≠1,当x ∈(-1,1)时,不等式x 2-a x <21恒成立,则a 的取值范围 例11、 已知函数若不等式恒成立,则实数的取值范围是 .例12、(2009•上海)当时,不等式sin πx ≥kx 恒成立.则实数k 的取值范围是 .例13、若不等式log a x >sin2x (a >0,a ≠1)对任意都成立,则a 的取值范围是( )A .B .C .D . (0,1)四、利用函数的最值(或值域)求解(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。
恒成立问题的类型和方法处理
恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立 例1:若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范围。
分析:习惯上把x 当作自变量,记函数m x mx y -+-=122,于是问题转化为当22≤≤-m 时,0<y 恒成立,求x 的范围。
解决这个问题需要应用二次函数以及二次方程实根分布原理,这是比较复杂的。
若把x 与m 两个量互换一下角色,即将m 视为变量,x 为常量即“反客为主”,则上述问题可转化为关于m 的一次函数在[]4,0内大于0恒成立的问题。
解析:将不等式化为:0)12()1(2<---x x m , 构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式恒成立问题基本类型及常用解法
类型1:设f(x)=ax+b
f(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0
)(0)( n f m f
f(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨
⎧0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。
例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(2
1)12-+a x 恒成立的x 的取值范围。
类型2:设f(x)=ax 2+bx+c (a ≠0)
f(x) >0在x ∈R 上恒成立⇔a >0 且△<0;
f(x) <0在x ∈R 上恒成立⇔a <0 且△<0.
说明:①.只适用于一元二次不等式
②.若未指明二次项系数不等于0,注意分类讨论.
例3.不等式3
642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。
类型3:设f(x)=ax 2+bx+c (a ≠0)
(1) 当a >0时
① f(x) >0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0
)(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立⇔⎩
⎨⎧0)(0)( n f m f . (2) 当a <0时
① f(x) >0在x ∈[]n m ,上恒成立⇔ ⎩
⎨
⎧0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0
)(2 n f n a b . 说明:只适用于一元二次不等式.
类型4:a >f(x) 恒成立对x ∈D 恒成立⇔a >f(x)m ax ,
a <f(x)对x ∈D 恒成立⇔ a <f(x)m in .
说明:①. f(x) 可以是任意函数
②.这种思路是:首先是---分离变量,其次用---极端值原理。
把问题转化为求函数的最值,若f(x)不存
在最值,可求出f(x)的范围,问题同样可以解出。
例4.(2000.上海)已知f(x)=x
a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。
例5.已知x ∈(]1,∞-时,不等式1+2x +(a-a 2).4x
>0恒成立,求实数a 的取值范围。
类型5:①.f(x)>g(x) 对任意x ∈D 恒成立
②. f (x 1)>g(x 2) 对任意x 1、x 2∈D 恒成立
例6.已知两个函数f(x)=8x 2+16x-k,g(x)=x 2+4x,其中k ∈R
(1) 若对任意的x ∈[-3,3],都有f(x)≤g(x)成立,求k 的取值范围;
(2) 若对任意的x 21,x ∈[-3,3],都有f(x 1)≤g(x 2),求k 的取值范围。
方法:①.“f(x)>g(x) 对任意x ∈D 恒成立”可通过分离变量,极端值原理可求得。
②.“ f (x 1)>g(x 2) 对任意x 1、x 2∈D 恒成立” ⇔ f(x)m in >max )(x g。