第8章 假设检验
第8章假设检验
二、两均数比较的u检验
完全随机设计中两组计量资料的比较
观察性研究中分别从两个总体中随机抽取两个计 量资料样本进行比较,且两组的样本含量n1和n2要 求等于或大于30 基本原理:在H0成立的条件下,即两样本是从 同一总体随机抽取的,其均数之差可以大于0,或小 于0,围绕0分布。 差值 X1 X 2 服从均数为 1 2 0,标准差(两均数 差的标准误)为 S X X 的正态分布
0
所代表的未知总体均数记作μ;检验的目的是推断μ与μ0
是否有差别
u
X 0 S/ n
例 8 –2
n 85
S 5.3cm
X 171.2cm
168.5cm
1. 建立假设、确定检验水准α。
H 0 : 168.5 (与1995年相比,2003年当地20岁应征男青年的身 高没有变化)
2
p
的正态分布
统计量:
u p 0 p 0 0 (1 0 ) / n
p
例8 – 4
π0 =8.5% ,n=1000,p=5.5%
1.建立假设,确定检验水准。 H0:π=8.5% H1:π< 8.5% 单侧检验,α=0.05。 2.计算检验统计量u值
0.055 0.085 u 3.402 0.085(1 0.085) /1000
2. 样本数据不要求一定服从正态分布总体。
2. 两总体方差相等(方差齐性,即 12 22 )。
3. 理论上要求:单样本是从总体中随机抽取,两样本为随 机分组资料;观察性资料要求组间具有可比性,保证因果 推论的合理性。
一、单样本均数的u检验
样本均数与总体均数比较,总体均数指已知的理论值、 标准值或经过大量观察所得到的稳定值,记作 ;样本
现代心理与教育统计学 第八章-假设检验(张厚粲)
p值 >0.05 ≤0.05 ≤0.01
显著性 不显著 显著 极显著
符号表示
* **
虽然我们比较习惯取α=0.05和α=0.01,但也可以取其 它的显著性水平值,如0.005或0.001。
三、假设检验中的两类错误
(一)定义
错误(I型错误): H0为真时却被拒绝,弃真错误; 错误是 指虚无假设本身是正确的,但由于抽样的随机性而使 检验值落入了拒绝虚无假设的区域,致使我们作出了 拒绝虚无假设的结论,
正解:
1、提出零假设和备择假设 备择假设:用H1表示,即研究假设,希望证实的假设。 H1 : 1 0 (该班智力水平确实与常模有差异) 1100 零假设:用H0表示,即虚无假设、原假设、无差异假 设。 H0: 1=0 1 =100
2、确定适当的检验统计量
用于假设检验问题的统计量称为检验统计量。与参数 估计相同,需要考虑:
又或者是样本统计量与总体参数之间存在真实的差异, 是一种有差假设,用H1表示。 3.表达方式,如:
H1: X 0 或 X ;1 2 或 1 2 0 。
(二)虚无假设
1.研究人员为了证实研究假设是真的而利用概率论的 反证法所进行的假设,即从研究假设的反面进行假设。
第八章 假设检验
李金德
第一节 假设检验的原理 第二节 平均数的显著性检验 第三节 平均数差异的显著性检验 第四节 方差的差异检验 第五节 相关系数的显著性检验 第六节比率的显著性检验
第一节 假设检验的原理
在统计学中,通过样本统计量得出的差异做出一般性 结论,判断总体参数之间是否存在差异,这种推论过 程称作假设检验(hypothesis testing)
β μ0
第八章 假设检验
(一)问题的提出
例1.1 体重指数BMI是目前国际上常用的衡量人体胖 瘦程度以及是否健康的一个标准. 专家指出, 健康 成年人的BMI 取值应在 18.55- 24.99 之间.某种 减肥药广告宣称, 连续使用该种减肥药一个星期便 可达到减肥的效果.为了检验其说法是否可靠,随机 抽取9位试验者(要求BMI 指数超过25,年龄在20-25 岁女生),
x 0.522 0.465, 依然拒绝H0;
那么,拒绝H0的最小的值 是多少?最小的显 著水平又是多少?
(一)问题的提出
先让每位女生记录没有服用减肥药前的体重, 然后 让每位女生服用该减肥药, 服药期间, 要求每位女 生保持正常的饮食习惯, 连续服用该减肥药1周后, 再次记录各自的体重.测得服减肥药前后的体重差 值X(服药前体重-服药后体重) (单位: kg): 1.5,0.6,-0.3,1.1,-0.8,0,2.2,-1.0,1.4 设X~N(μ,0.36), μ未知,根据目前的样本资料能否 认为该减肥药广告中的宣称是可靠的?
n i1
Xi
~
N(,
1 ), n
H0 : 0, H1 : 1( 0 ), 拒绝域:X c.
P1 (X c)
P0 (X c)
0
c
1
犯两类错误的 概率相互制约
11
例1.1中,犯第I类错误的概率
(c) P{拒绝H0|H0是真的} P{X c| 0}
P{ X c | 0} / n / n
例1.2 一种饼干的包装盒上标注净重200g,假 设包装盒的重量为定值,且设饼干净重服从N (μ,σ2), μ, σ2均未知.现从货架上取来3盒,称 得毛重(单位:g)为 233,215,221,根据这 些数据是否可以认为这种包装饼干的标准差超 过6g?
概率论与数理统计第八章假设检验
为判断所作的假设是否正确, 从总体中抽取 样本, 根据样本的取值, 按一定的原则进行检 验, 然后, 作出接受或拒绝所作假设的决定.
整理课件
2
我们主要讨论的假设检验的内容有
参数检验 总体均值、均值差的检验 总体方差、方差比的检验
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W|H0)
此时称W为拒绝域,整为理课检件 验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
于是, 我们判断正确的概率是1-0.043=95.7%
整理课件
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设
再作一个备择假设
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们
之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧
道南的概率是
P= 0.353 ≈ 0.043.
统计学-第八章 假设检验
假设 原假设
双侧检验
单侧检验
左侧检验 右侧检验
H0 : m =m0 H0 : m m0 H0 : m m0
备择假设 H1 : m ≠m0 H1 : m <m0 H1 : m >m0
三、假设检验的程序---
4.例题分析
[例8.1] 某品牌洗衣粉在它的产品说明书中声称:平 均净含量不少于1250克。从消费者的利益出发,有关研 究人员要通过抽检其中的一批产品来验证该产品制造商 的说明是否属实。试写出用于检验的原假设与备择假设。
2.接受域:概率P>的区域,为大概率区域,称之 为原假设的接受区域。
3.拒绝域:概率P≤的区域,为小概率区域,称之 为原假设的拒绝区域。
三、假设检验的程序---
1.拒绝原假设H1 原则:临界值
2.接受原假设H0 原则:临界值
检验统计值的绝 对值大于临界值;
检验统计值的绝 对值小于临界值;
假设 H0为真实 H0为不真实
接受H0 判断正确
采伪错误()
拒绝H0 弃真错误()
判断正确
四、假设检验中的两类错误
第I类()错误和第II类()错误的关系
和的关系就像 翘翘板,小就 大, 大就小。
你要同时减少两类 错误的惟一办法是 增加样本容量!
关乎决策:三个与其
与其,人为地把显著性水平固定按某一水平上,不 如干脆选取检验统计量的P值;
第二节 一个正态总体的假设检验
二、均值m的假设检验
3.给出显著性水平(0.01、0.05或0.1)
4.确定接受域和拒绝域(以双侧检验为例)
2已知:当Z Z 2
,则拒绝原假设,反之则接受H0;
第八章 假设检验
x z2
x z2 /
s n
上例,我们用求置信区间的方法,来判断 原假设是否合理。 大样本下满足中心极限定理,样本均值的 抽样分布服从正态分布,从而有置信区间:
x z2 s 24 =986 1.96 n 40
假设检验的步骤
1.确定原假设和备选假设 2.选择检验统计量 3.指定检验的显著性水平 4.建立拒绝原假设的规则 5.收集样本数据,计算检验统计量的值 6.将检验统计量的值域拒绝规则的临界值比较, 以决定是否拒绝原假设。或者,由检验统计量 的值计算p值,利用p值确定是否拒绝原假设。
x 2.92 3 z 2.67 / n 0.18 / 6
x z ~ N (0,1) / n
根据显著性水平α=0.01,对应的拒绝域面积为 0.01,临界值为-2.33 Z<-2.33,所以拒绝H0,即可认为没听咖啡的容量 不足3磅。 统计证据支持对HILLTOP咖啡重量不足采取投诉措 施。
(978.56,993.44)该区间不包含u0=1000, 因此我们拒绝原假设H0.检验表明,该包 装机未能正常工作。
总体均值的检验:小样本情形
小样本下,已知总体为正态分布,我们考 虑以下两种情况: 1.总体方差已知 2.总体方差未知 在总体方差已知的情况下,即使样本容量 较小,但样本平均数的抽样分布总是以平 均值 为均值,以 x 为标准差的正态分 布。因此其检验过程和检验统计量同大样 本情形。
拒绝域为α/2 拒绝域为α/2
z / 2
拒绝域
0
z / 2
统计学第8章假设检验
市场调查中常用的假设检验方法包括T检验、Z检验和卡方 检验等。选择合适的检验方法需要考虑数据的类型、分布 和调查目的。例如,对于连续变量,T检验更为适用;对于 分类变量,卡方检验更为合适。
医学研究中假设检验的应用
临床试验
在医学研究中,假设检验被广泛应用于临床试验。研究 人员通过设立对照组和实验组,对不同组别的患者进行 不同的治疗,然后收集数据并使用假设检验来分析不同 治疗方法的疗效。
03 假设检验的统计方法
z检验
总结词
z检验是一种常用的参数检验方法,用于检验总体均值的假设。
详细描述
z检验基于正态分布理论,通过计算z分数对总体均值进行检验。它适用于大样本 数据,要求数据服从正态分布。z检验的优点是简单易懂,计算方便,但前提假 设较为严格。
t检验
总结词
t检验是一种常用的参数检验方法,用于检验两组数据之间的差异。
卡方检验
总结词
卡方检验是一种非参数检验方法,用于 比较实际观测频数与期望频数之间的差 异。
VS
详细描述
卡方检验通过计算卡方统计量来比较实际 观测频数与期望频数之间的差异程度。它 适用于分类数据的比较,可以检验不同分 类之间的关联性。卡方检验的优点是不需 要严格的假设前提,但结果解释需谨慎。
04 假设检验的解读与报告
详细描述
t检验分为独立样本t检验和配对样本t检验,分别用于比较两组独立数据和同一组数据在不同条件下的 差异。t检验的前提假设是小样本数据近似服从正态分布。t检验的优点是简单易行,但前提假设需满 足。
方差分析
总结词
方差分析是一种统计方法,用于比较两个或多个总体的差异。
详细描述
方差分析通过分析不同组数据的方差来比较各组之间的差异。它适用于多组数据的比较,可以检验不同因素对总 体均值的影响。方差分析的前提假设是各组数据服从正态分布,且方差齐性。
管理定量分析课程第8章:假设检验
判决
无罪 有罪
陪审团审判
真实的情况
无罪
有罪
判决正确
判决错误
判决错误
判决正确
结论
未拒绝原假设 拒绝原假设
假设检验 总体参数的实际情况
原假设为真 备择假设为真 结论正确 第二类错误 第一类错误 结论正确
11
假设检验中犯Ⅰ型错误的概率,称为显著性水平(level of significance),即指当零假设实际上是正确时,检验统计量落
7
又如:教育部要检验2012年录取的大学新生平均身高是否 达到了170cm标准,这样需要提出原假设(H0):2012
年大学新生(总体)的平均身高(µ )是170cm。为了检
验这个假设是否正确,需要根据随机取样的原则,从2012 年的大学新生总体中选取样本并计算样本的平均高度,以 此来检验原假设的正确性。
8
假设检验一般分为参数假设检验和非参数假设检验两种类型。参 数假设检验对变量的要求较为严格,适合于等距变量和比率变量 ,非参数假设检验对变量的要求较为自由,既适合于等距变量和 比率变量,也适用于类别变量和顺序变量。
变量测量层次
分类(nominal)变 量
数学性(interval)变量
4
一、假设与假设检验
假设是科学研究中广泛应用的方法,它是根据已知理 论与事实对研究对象所作的假定性说明。统计学中的 假设一般专指用统计学术语对总体参数所做的假定性 说明。在进行任何一项研究时,都需要根据已有的理 论和经验事先对研究结果作出一种预想的假设。这种 假设叫科学假设,在统计学上称为研究假设。对这种 研究假设进行证实或证伪的过程叫假设检验。
非参数检验是一种与总体分布状况无关的检验方法,它不 依赖于总体分布的形式。
概率论与数理统计第八章假设检验
对于(a)小概率P{X 0 u }
u是所选取合适的统计量 U 的分位点
1
单侧检验
P{ X 0 u } x 0 u为拒绝区域
其含义是依这样本x所推断的
小
概率
事
件H
发生
0
了
,
拒
绝H
0
u
拒绝
1
u 拒绝
对于(b)小概率P{X 0 u } (密度函数为对称时)
由 经 验 知 0.015公 斤 , 为 了 检 验 某 天 机器 工 作 是 否 正 常 , 抽 取其 所
包 装 的9袋 称 得 重 量 分 别 为0:.497,0.506,0.518,0.524,0.488,0.511,0.510,0.515,0.519; 问这天机器正常否?
现在另一天任然抽取9袋得样本均值x 0.511公斤,推断这天机器是否工作正常?
小 概 率 事 件 是: 样 本 均 值X与 所 假 设 的 期 望0相 差 X 0
不 能 太 大, 若 相 差 太 大 则 拒 绝H0
小概率事件P{ X 0 u }
u
是
2
所
选
取
合
适
的
统
计
量U
2
的
2
分
位
点
1
P{ X 0 u } x 0 u 为拒绝区域 2
较大、较小是一个相对的概念,合理的界限在何 处?应由什么原则来确定?
问题是:如何给出这个量的界限? 这里用到人们在实践中普遍采用的一个原则:
小概率事件在一次试验 中基本上不会发生(若发 生了则认为假设是错 )
在假设检验中,称这个小概率为显著性水平,用 表示.
第8章假设检验
24
6.假设检验的统计结论是根据原假设进行阐述的,
要么拒绝原假设,要么不拒绝原假设 • 当我们不能拒绝原假设时,我们不能说“接受 原假设”,因为我们没有证明原假设是真(如 果用“接受”则意味证明了原假设是正确的), 只不过我们没有足够的证据拒绝原假设,因此 不能拒绝原假设。当我们拒绝原假设时,得出 结论是清楚的。
拒绝原假设
小概率原理:小概率事件在一次试验中几乎不会发生 小概率的标准:与一个显著性水平a 有关, 0<a <1
13
四、假设检验的过程
提出假设 确定适当的检验统计量 规定显著性水平 计算检验统计量的值 作出统计决策
14
五、 原假设和备则假设
15
五、 原假设和备择假设
(一)原假设(null hypothesis)
我认为这种新药比原有 的药物更有效!
总体参数包括总体均 值、比例、方差等 分析之前必需陈述
如 产品合格率在80%以 上等。
9
二、什么是假设检验?
1.
2.
3.
一个假设的提出总是以一定的理由为基础,但 这些理由是不是完全充分的,要进行检验,即 进行判断。如在某种新药的研发中,研究者要 判断新药是否比原有药物更有效;海关人员对 进口货物进行检验,判断该批货物的属性是否 与申报的相一致。 假设检验就是先对总体的参数提出某种假设(原 假设和备择假设),然后利用样本信息判断假设 是否成立的过程 逻辑上运用反证法,统计上依据小概率原理
绝的却是一个真实的假设,采取的是错误行为。
31
二、显著性水平a
(significant level)
1.
2.
3.
4.
第8章 假设检验
例 孟德尔遗传理论断言,当两个品种的豆杂交时,圆的 和黄的、起皱的和黄的、圆的和绿的、起皱的和绿的豆的 频数将以比例9:3:3:1发生。在检验这个理论时,孟德 尔分别得到频数315、101、108、32、这些数据提供充分 证据拒绝该理论吗?
P PH0 | Z || z0 | 2PH0 Z | z0 | 2(1 (| z0 |))
(即z0代替了拒绝域式中的z 2 )
判断:当P小于显著水平时,拒绝原假设,
否则,接受: 0, H1 : 0 , 其中0是已知的常数
以X 作为的参考, 若H0为真,X比0大些,但
这个批次清漆的干燥时间构成的总体方差可设 2 0.36 而其均值是要求我们检验的!
经计算,现抽取的9个数据的平均值x 6.4小时,
现在的问题是,我们能否认为 "6.4 6.0 0" ?
即,接受以下哪个假设?
原假设 H0 : 0 6.0, 备择假设 H1 : 0 6.0
4
原假设 H0 : 0 6.0, 备择假设 H1 : 0 6.0
16
*另外方法:若给定显著性水平, 当原假设成立时
( 0),总体X ~ N (0, 2 ),因此,X ~ N (0, 2 n )
P0 ( X 0
k)
P 0
(
X
0
n
k
设
)
n
k
n z /2
k z/2 n
1
一般,H
的拒绝域写为:
第8章假设检验
完成生产线上某件工作的平均时间为15.5分钟,标准差为3分 钟。对随机抽选的9名职工讲授一种新方法,训练期结束后这9名 职工完成此项工作的平均时间为13.5分钟。这个结果是否说明用 新方法所需时间比老方法所需时间短?设������ = 0.05,并假定完成 这件工作的时间服从正态分布。
①建立假设:������0 : ������ = 15.5, ������1 : ������ < 15.5 ②因为正态总体,方差已知,故可选用������ 检验,选择检验统计 ¯ −������0 √ ;当������0 成立时,������ ∼ ������ (0, 1)。 量������ = ������ ������/ ������ ③根据对立假设及显著性水平������ = 0.05知:拒绝域 为{������ < −������������ } = {������ < −������0.05 } = {������ < −1.64} ¯ = 13.5,������0 = 15.5, ������ = 3, ������ = 9, 因此 ④由样本信息,得到������ ������ = ¯ − ������0 13.5 − 15.5 ������ √ = √ = −2. ������/ ������ 3/ 9
������0 : ������1 = ������2 , ������1 : ������1 < ������2 Excel计算结果如下:
������ = −2.41347279,拒绝域 为{������ < −������0.05 (33) = −1.692360258}。
例3-1-5:“多吃谷物,将有助于减肥。”为了验证这个假设, 随机抽取了35人,询问他们早餐和午餐的通常食谱,根据他们的 食谱,将其分为二类,一类为经常的谷类食用者(总体1),一类 为非经常谷类食用者(总体2)。然后测度每人午餐的大卡摄取 量。经过一段时间的实验,得到如下结果。假设总体正态,试 以������ = 0.05 的显著性水平进行检验,数据见工作表“3-1-5”。 ������0 : ������1 = ������2 , ������1 : ������1 < ������2
第八章假设检验_0
第八章假设检验作为统计推断的重要组成部分,假设检验也称为显著性检验,就是对所估计的总体先提出一个假设,然后再根据样本信息来检验对总体所做的假设是否成立。
假设检验可分为参数检验和非参数检验,对总体分布中未知参数的假设检验称为参数检验,而对未知分布函数的类型或其某些特征提出的假设称为非参数检验。
第一节假设检验概述在实际生活中,许多事例都可以归结为假设检验问题。
为了便于理解,下面我们结合具体实例来说明假设检验的思想方法。
例8.1 某厂生产中药地黄丸,药丸的重量服从正态分布N( , 2),按规定每丸的标准重量为10克。
根据以往经验得知,生产药丸的标准差为 3.2克。
现从一批药丸中随机抽取100个,其平均重量为9.6克,试问这批药丸重量是否符合标准?从直观上来看,这批药丸重量不符合标准,两者差异显著。
但能否仅凭100个药丸的平均重量比标准重量小0.4克,而立即得出这批药丸不符合标准的结论呢?从统计学上来看,这样得出的结论是不可靠的。
这是因为,差异可能是这批药丸品质所造成的,也可能是由于抽样的随机性所造成的。
如果我们再随机抽取100个药丸进行检测重量,又可得到一个样本资料。
由于抽样误差的随机性,样本平均数(100个药丸的平均重量)就不一定是9.6克。
那么,我们对样本进行分析时,必须判断样本的差异是抽样误差造成的,还是因本质不同而引起的。
如何区分两类性质的差异?怎样通过样本来推断总体?这正是假设检验要解决的问题。
在假设检验中,先要根据问题的需要建立检验假设,假设有两种,一种是原假设或零假设,用H0表示,通常就是将要进行检验的假设;另一种是备择假设- 1 -或对立假设,用H1表示,是原假设H0相对立的假设。
例8.1中,如果将该批药丸的重量记作总体X,该问题就是检验总体X的均值 的变化情况。
那么,可以设原假设H0: 10( 0),即认为这批药丸重量是符合标准的;而备择假设,即认为这批药丸重量是符合标准的 10( 0),即认为这批药丸重量不H1:10( 0)符合标准的。
第八章假设检验
需要考虑因素
1. 总体方差是否已知
2. 总体分布是否正态
3. 样本容量大小
4. 双侧检验还是单侧检验 5. 右侧还是左侧
二、平均数的显著性检验的种类
• (一)总体正态分布,总体方差已知(Z)
• (二)总体正态,总体方差未知(t) • (三)总体非正态分布,大样本(Z′)
(一)总体正态分布,总体方差已知
H:1 0 新的教学法与原来的教学法无显著差异 0 H:1 0 新的教学法比原来的教学法差 0 H:1 0 新的教学法比原来的教学法好 0
假设检验的原理
• 费舍:“可以说,每一实验的存在,仅仅 是为了给事实一个反驳虚无假设的机会。”
二、假设检验中的小概率事件
• 样本统计量的值(随机事件)在其抽样分 布上出现的概率小于或等于事先规定的水 平,这时,就认为小概率事件发生了。
差异原因——误差
• 偶然误差:由于随机抽样引起的差异。
• 系统误差 :的确存在差异。
如何检验
Z X 0
X
N (0,1)
11 X 2.008 n 30 Z X 0
0
X
84 79 2.49 2.008
2
0.05, Z 0.05 1.96 0.01, Z 0.01 2.58
SE X
0
n
X 0 Z SE X
例1
• 某小学采用一种实验教材,使用一年以后, 随机抽取10名学生进行测试,得到平均成 绩82分。而过去使用旧教材的全体学生的 平均成绩为77分,标准差为5分,问实验教 材与旧教材的效果有无显著性差异?
例2
• 某地区统考数学,假设该统考数学成绩服 从正态分布,已知其总平均分为50分,标 准差为12分。从该地区随机选择一个班作 为样本,该班有学生50人,经计算该班平 均成绩为53分,试问该班成绩与总成绩的 差异是否显著。
第8章假设检验
是正确的,也可以是不正确的
定义8.1.1:所谓假设检验,是先对总体的分布函数 形式或分布的某些参数作出某些可能的假设,然后 根据所得的样本数据,对假设的正确性作出判断
假
§8.1 基本概念
设
检
例8.1.1:检验一批产品的废品率是否超过0.03, 验
把“ p 0.03 ”作为一个假设,从这批产品中抽取
若干个样品,记其中所含废品数为 X
➢ 当 X 较小时,认为假设正确,或“接受”假设
➢ 当 X 较大时,则认为假设是不正确,“拒绝”
或“否定”假设
假
§8.1 基本概念
设
检
例8.1.2:判断一个硬币是否均匀,即投掷时出现 验
正面的概率是否为
1
2,
把“ p
1 2
”作为一个假设,
将硬币投掷100次,以 X 记正面出现的次数
原假设,而将新方法优于原方法取为对立假设
假
§8.1 基本概念
设
检
➢ 或者说对立假设可能是我们真正感兴趣的,接受 验
对立假设可能意味着得到某种有特别意义的结论,
或意味着采取某种重要决断
➢ 因此对统计假设作判断前,在处理原假设时总是 偏于保守,在没有充分证据时,不应轻易拒绝原假 设,或者说在没有充分的证据时不能轻易接受对立 假设
➢
例8.1.2的统计假设为:H0
:
p
1 2
H1
:
p
1 2
假
§8.1 基本概念
设
检
注:当根据抽样结果接受或拒绝一个假设时,只 验
是表明我们的一种判断;由于样本的随机性,这
样作出的判断就有可能犯错误
➢ 例如:一批产品的废品率只有0.01,因为0.01<
第8章 假设检验
关于建立假设的几点认识:
❖ 1.原假设和备择假设是一个完备事件组,且相互对 立,即必有一个成立,而且只有一个成立。
❖ 2.在假设检验中,通常将符号≤ ≥ =放在原假设上。 ❖ 3. 不同的研究者出于不同的研究目的或角度,可能
根据计算的检验统计 量与临界值进行比较, 得出拒绝或不拒绝原 假设的结论
检验统计量与拒绝域
拒绝原假设的检验统计量的所有可能取 值的集合,称为拒绝域。
若 绝对值Z临界值,拒绝原假设
拒绝域的大小与我们事先选定的显著性 水平有关。
根据选定的显著性水平确定的拒绝域的 边界值,称为临界值。
选定的显著性水平后,查阅书后的附表 就可以得到具体的临界值,将检验统计 量与之比较,就可以作出拒绝或接受原 假设的决策。
H0 H1
研究的问题 双侧检验 左侧检验 右侧检验
= 0
8.1.4 用P 值进行假设检验
❖ P 值是一个概率值(194页) 左侧检验时,P值为曲线左边小于等于检
验统计量部分的面积
右侧检验时,P值为曲线右边大于等于检
验统计量部分的面积
双侧检验时P值为曲线两边大于等于或小于 等于检验统计量部分的面积检验统计量部
什么是原假设?
1. 待检验的假设,又称“0假设”
为什么叫0 假设?
2. 研究者想收集证据予以反对的假设
3. 总是有等号 , 或
4. 表示为 H0 例如, H0: 3190(克)
什么是备择假设?
1. 与原假设对立的假设,也称“研究假设”
2. 研究者想收集证据予以支持的假设,总 是有不等号: , 或
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 假设检验三、选择题1.某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为1.40。
某天测得25根纤维的纤度的均值39.1=x ,检验与原来设计的标准均值相比是否有所变化,要求的显著性水平为05.0=α,则下列正确的假设形式是( )。
A. 0H :μ=1.40,1H :μ≠1.40 B. 0H : μ≤1.40,1H :μ>1.40C. 0H :μ<1.40,1H :μ≥1.40 D. 0H :μ≥1.40,1H :μ<1.402.某一贫困地区估计营养不良人数高达20%,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为( )。
A. 0H :π≤0.2,1H :π>0.2 B. 0H :π=0.2,1H :π≠0.2C. 0H :π≥0.3,1H :π<0.3 D. 0H :π≥0.3,1H :π<0.33.一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅。
随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为3.2磅,则其原假设和备择假设是( )。
A. 0H :μ≤8,1H : μ>8 B. 0H :μ≥8,1H :μ<8C. 0H :μ≤7,1H :μ>7 D. 0H :μ≥7,1H :μ<74.在假设检验中,不拒绝原假设意味着( )。
A. 原假设肯定是正确的 B. 原假设肯定是错误的C. 没有证据证明原假设是正确的 D. 没有证据证明原假设是错误的5.在假设检验中,原假设和备择假设( )。
A. 都有可能成立 B. 都有可能不成立C. 只有一个成立而且必有一个成立 D. 原假设一定成立,备择假设不一定成立6.在假设检验中,第一类错误是指( )。
A. 当原假设正确时拒绝原假设 B. 当原假设错误时拒绝原假设C. 当备择假设正确时拒绝备择假设 D. 当备择假设不正确时未拒绝备择假设7.在假设检验中,第二类错误是指( )。
A. 当原假设正确时拒绝原假设 B. 当原假设错误时未拒绝原假设C. 当备择假设正确时未拒绝备择假设 D. 当备择假设不正确时拒绝备择假设8.指出下列假设检验哪一个属于右侧检验( )。
A. 0H :μ=0μ,1H :μ≠0μ B. 0H :μ≥0μ,1H :μ<0μC. 0H :μ≤0μ,1H :μ>0μ D. 0H :μ>0μ,1H :μ≤0μ9.指出下列假设检验哪一个属于左侧检验( )。
A. 0H :μ=0μ,1H :μ≠0μ B. 0H :μ≥0μ,1H :μ<0μC. 0H :μ≤0μ,1H :μ>0μ D. 0H :μ>0μ,1H :μ≤0μ10.指出下列假设检验哪一个属于双侧检验( )。
A. 0H :μ=0μ,1H :μ≠0μ B. 0H :μ≥0μ,1H :μ<0μC. 0H :μ≤0μ,1H :μ>0μ D. 0H :μ>0μ,1H :μ≤0μ11.指出下列假设检验形式的写法哪一个是错误的( )。
A. 0H :μ=0μ,1H :μ≠0μ B. 0H :μ≥0μ,1H :μ<0μC. 0H :μ≤0μ,1H :μ>0μ D. 0H :μ>0μ,1H :μ≤0μ12.如果原假设0H 为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率称为( )。
A. 临界值 B. 统计量C. P值 D. 事先给定的显著性水平13.P值越小( )。
A. 拒绝原假设的可能性越小 B. 拒绝原假设的可能性越大C. 拒绝备择假设的可能性越大 D. 不拒绝备择假设的可能性越小14.对于给定的显著性水平α,根据P值拒绝原假设的准则是( )。
A. P=α B. P<α C. P>α D. P=α=015.在假设检验中,如果所计算出的P值越小,说明检验的结果( )。
A. 越显著 B. 越不显著 C. 越真实 D. 越不真实16.在大样本情况下, 总体方差未知时,检验总体均值所使用的统计量是( )。
A. z=n x σμ0- B. z=n x 20σμ- C. t=n s x 0μ- D. z=ns x 0μ- 17.在小样本情况下,当总体方差未知时,检验总体均值所使用的统计量是( )。
A. z=n x σμ0- B. z=n x 20σμ- C. t=n s x 0μ- D. z=ns x 0μ- 18.在小样本情况下,当总体方差已知时,检验总体均值所使用的统计量是( )。
A. z=n x σμ0- B. z=n x 20σμ- C. t=n s x 0μ- D. z=ns x 0μ- 19.检验一个正态总体的方差时所使用的分布为( )。
A. 正态分布 B. t分布 C. 2χ分布 D. F分布20.一种零件的标准长度5cm,要检验某天生产的零件是否符合标准要求,建立的原假设和备择假设应为( )。
A. 0H :μ=5,1H :μ≠5 B. 0H :μ≠5,1H :μ=5C. 0H :μ≤5,1H :μ>5 D. 0H :μ≥5,1H :μ<521.一项研究表明,中学生中吸烟的比例高达30%,为检验这一说法是否属实,建立的原假设和备择假设应为( )。
A.0H :μ=30%,1H :μ≠30% B.0H π=30%,1H :π≠30%C.0H :π≥30%,1H :π<30% D.0H π≤30%,1H :π>30%22.一项研究表明,司机驾车时因接打手机而发生事故的比例超过20%,用来检验这一结论的原假设和备择假设应为( )。
A.0H :π=20%,1H :π≠20% B.0H :π≠20%,1H :π=20%C.0H :π≥20%,1H :π<20% D.0H :π≤20%,1H :π>20%23.某企业每月发生事故的平均次数为5次,企业准备制定一项新的安全生产计划,希望新计划能减少事故次数。
用来检验这一计划有效性的原假设和备择假设应为( )。
A.0H :μ=5,1H :μ≠5 B.0H :μ≠5,1H :μ=5C.0H :μ≤5,1H :μ>5 D.0H :μ≥5,1H :μ<524.环保部门想检验餐馆一天所用的快餐盒平均是否超过600个,建立的原假设和备择假设应为( )。
A.0H :μ=600,1H :μ≠600 B.0H :μ≠600,1H :μ=600C.0H :μ≤600,1H :μ>600 D.0H :μ≥600,1H :μ<60025.随机抽取一个n=100的样本,计算得到x =60,s=15,要检验假设0H :μ=65,1H :μ≠65,检验的统计量为( )。
A. -3.33 B.3.33 C.-2.36 D.2.3626.随机抽取一个 n=50的样本,计算得到 x =60,s=15,要检验假设0H :μ=65,1H :μ≠65,检验的统计量为( )。
A. -3.33 B. 3.33 C. -2.36 D. 2.3627.若检验的假设为0H :μ=0μ,1H :μ≠0μ,则拒绝域为( )。
A.z >αz B. z <-αzC. z >2αz 或z <-2αz D.z >αz 或z <-αz28.若检验的假设为0H :μ≥0μ,1H :μ<0μ,则拒绝域为( )。
A. z >αz B. z <-αzC. z >2αz 或z <-2αz D. z >αz 或z <-αz29.若检验的假设为0H :μ≤0μ,1H :μ>0μ,则拒绝域为( )。
A. z >αz B. z <-αzC. z >2αz 或z <-2αz D. z >αz 或z <-αz30.设c z 为检验统计量的计算值,检验的假设为0H :μ≤0μ,1H :μ>0μ,当c z =1.645时,计算出的P值为( )。
A. 0.025 B. 0.05 C. 0.01 D. 0.002531.设c z 为检验统计量的计算值,检验的假设为0H :μ≤0μ,1H :μ>0μ,当c z =2.67时,计算出的P值为( )。
A. 0.025 B. 0.05 C. 0.0038 D. 0.002532.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
假定这位经销商要检验假设0H :μ≤24000,1H :μ>24000,取显著性水平为α=0.01,并假设为大样本,则此项检验的拒绝域为( )。
A.z >2.33 B.z <-2.33 C.|z |>2.33 D.z =2.3333.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
假定这位经销商要检验假设0H :μ≤24000,1H :μ>24000,抽取容量n=32个车主的一个随机样本,计算出两年行驶里程的平均值x =24517公里,标准差为s=1866公里,计算出的检验统计量为( )。
A.z=1.57 B.z=-1.57 C.z=2.33 D.z=-2.3334.由49个观测数据组成的随机样本得到的计算结果为x ∑= 50.3,2x ∑=68,取显著性水平α=0.01,检验假设0H :μ≥1.18,1H :μ<1.18,得到的检验结论是( )。
A. 拒绝原假设 B. 不拒绝原假设C. 可以拒绝也可以不拒绝原假设 D. 可能拒绝也可能不拒绝原假设35.一项研究发现,2000年新购买小汽车的人中有40%是女性,在2005年所作的一项调查中,随机抽取120个新车主中有57人为女性,在α=0.05的显著性水平下,检验2005年新车主中女性的比例是否有显著增加,建立的原假设和备择假设为0H :π≤40%,1H :π>40%,检验的结论是( )。
A. 拒绝原假设 B. 不拒绝原假设C. 可以拒绝也可以不拒绝原假设 D. 可能拒绝也可能不拒绝原假设36.从一个二项总体中随机抽出一个n=125的样本,得到p=0.73,在α=0.01的显著性水平下,检验假设0H :π=0.73,1H :π≠0.73,所得的结论是( )。
A. 拒绝原假设 B. 不拒绝原假设C. 可以拒绝也可以不拒绝原假设 D. 可能拒绝也可能不拒绝原假设37.从正态总体中随机抽取一个n=25的随机样本,计算得到x =17,2s =8,假定20σ=10,要检验假设0H :2σ=20σ,则检验统计量的值为( )。
A.2χ=19.2 B.2χ=18.7 C.2χ=30.38 D.2χ=39.638.从正态总体中随机抽取一个n=10的随机样本,计算得到x =231.7,s=15.5,假定 20σ=50,在α=0.05的显著性水平下,检验假设0H :2σ≥20,1H :2σ<20,得到的结论是( )。