直线与圆锥曲线的综合问题专题二
直线与圆锥曲线的综合问题
直线与圆锥曲线的综合问题适用学科高中数学适用年级高二适用区域陕西西安课时时长(分钟)60分钟知识点范围问题对称问题定点、定值、最值等问题教学目标进一步理解圆锥曲线的定义、标准方程和几何性质,体会“解析法”思想,会从代数与几何两个角度分析和解决曲线的最值问题,并会进行合理的选择.教学重点能利用解析法研究圆锥曲线中的范围问题、对称问题和最值问题.教学难点定点、定值、最值等问题的探究过程.教学过程一、复习预习圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.二、知识讲解考点1范围问题求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题代数方法:建立目标函数,再求目标函数的最值.考点2对称问题要抓住对称包含的三个条件:(1)中点在对称轴上(2)两个对称点的连线与轴垂直(3)两点连线与曲线有两个交点(0>∆),通过该不等式求范围考点/易错点3定点、定值、最值等问题定点与定值问题的处理一般有两种方法:(1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值).三、例题精析【例题1】【题干】已知椭圆1:22221=+by a x C (0>>b a )与直线01=-+y x 相交于两点A 、B .当椭圆的离心率e 满足2223≤≤e ,且0=⋅OB OA (O 为坐标原点)时,求椭圆长轴长的取值范围. 【答案】[]6,5【解析】由⎩⎨⎧=-+=+01222222y x b a y a x b ,得()()012222222=-+-+b a x a x b a由()0122222>-+=∆b a b a ,得122>+b a此时222212b a a x x +=+,()2222211ba b a x x +-=由0=⋅OB OA ,得02121=+y y x x ,∴()0122121=++-x x x x即022222=-+b a b a ,故12222-=a a b由222222ab a ac e -==,得2222e a a b -= ∴221112ea -+= 由2223≤≤e 得23452≤≤a ,∴625≤≤a 所以椭圆长轴长的取值范围为[]6,5【例题2】【题干】已知椭圆132:22=+y x C ,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同两点关于这条直线对称. 【答案】522522<<-m 【解析】解法一:设存在两点()11,y x A 、()22,y x B 关于l 对称,中点为()00,y x C ,则AB 所在直线为b x y +-=41.与椭圆联立得:06282522=-+-b bx x , ∴ ⎪⎪⎩⎪⎪⎨⎧=+⨯-=+==+=25242544122542210210b b b y y y b x x x∵C 在m x y +=4上, ∴m b b +⨯=42542524, 825m b =.又∵ ()062825422>-⨯-=∆b b ,故8252<b ,即8258252<⎪⎭⎫ ⎝⎛m ,解得:522522<<-m . 由上可知: 当 522522<<-m 时,椭圆C 上有不同两点关于直线m x y +=4对称. 解法二:设存在两点()11,y x A 、()22,y x B 关于l 对称,中点为()00,y x C ,则⎪⎩⎪⎨⎧=+=+62362322222121y x y x , 得 ()()4123230021212121-=-=++-=--y x y y x x x x y y , ∴ 006x y =联立m x y +=004,解的20mx =,m y 30=, ∵M 在椭圆内部,∴()1332222<+⎪⎭⎫ ⎝⎛m m 即522522<<-m 由上可知: 当522522<<-m 时,椭圆C 上有不同两点关于直线m x y +=4对称.【例题3】【题干】已知P 、Q 是椭圆124:22=+y x C 上的两个动点,⎪⎪⎭⎫ ⎝⎛26,1M 是椭圆上一定点,F 是其左焦点,且PF 、MF 、QF 成等差数列.求证:线段PQ 的垂直平分线经过一个定点A ;【解析】证明:设()11,y x P 、()22,y x Q ,由椭圆的标准方程为12422=+y x 知 ()()1212121212222222x x x y x PF +=-++=++=同理2222x OF +=,222+=MF . ∵QF PF MF +=2,∴()212242222x x ++=⎪⎪⎭⎫ ⎝⎛+,∴221=+x x ①当21x x ≠时,由⎪⎩⎪⎨⎧=+=+424222222121y x y x ,得()()0222212221=-+-y y x x ,从而有2121212121y y x x x x y y ++-=-- 设线段PQ 的中点为()n N ,1,由nx x y y k PQ 212121-=--=,得线段PQ 的中垂线方程为()12-=-x n n y ∴()012=--y n x ,该直线恒过一定点⎪⎭⎫ ⎝⎛0,21A .②当21x x =时,⎪⎪⎭⎫ ⎝⎛-26,1P ,⎪⎪⎭⎫ ⎝⎛26,1Q ,或⎪⎪⎭⎫ ⎝⎛-26,1Q ,⎪⎪⎭⎫ ⎝⎛26,1P 线段PQ 的中垂线是x 轴,也过点⎪⎭⎫ ⎝⎛0,21A ,∴线段PQ 的中垂线恒过定点⎪⎭⎫ ⎝⎛0,21A .四、课堂运用【基础】1.已知A 、B 、C 三点在曲线x y =上,其横坐标依次为1,m ,4(41<<m ),当ABC∆的面积最大时,m 等于( )A.3B.49 C.25 D.23 【答案】B【解析】由题意知()1,1A ,()m m B ,,()2,4C .直线AC 所在方程为023=+-y x ,点B 到该直线的距离为10|23|+-=m m d .|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC ∵()4,1∈m ,∴当23=m 时,ABC S ∆有最大值,此时49=m . 2.设R v u ∈,,且2≤u ,0>v ,则()22292⎪⎭⎫ ⎝⎛--+-v u v u 的最小值为( )A.4B.2C.8D.22【答案】C【解析】考虑式子的几何意义,转化为求圆222=+y x 上的点与双曲线9=xy 上的点的距离的最小值.3.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使2π=∠OPA ,则椭圆离心率的范围是_________. 【答案】122<<e【解析】设椭圆方程为12222=+b y a x (0>>b a ),以OA 为直径的圆:022=+-y ax x ,两式联立消y 得022222=+--b ax x ab a .即0222=+-b ax x e ,该方程有一解2x ,一解为a ,由韦达定理x 2=a eax -=22,a x <<20,即12202<<⇒<-<e a a e a . 4.一辆卡车高3米,宽6.1米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________. 【答案】13【解析】由题意可设抛物线方程为ay x -=2,当2a x =时,4ay -=;当8.0=x 时,a y 64.0-=.由题意知364.04≥-aa ,即056.2122≥--a a .解得a 的最小整数为13.【巩固】1.已知抛物线12-=x y 上一定点()0,1-B 和两个动点P 、Q ,当P 在抛物线上运动时,PQ BP ⊥,则Q 点的横坐标的取值范围是_________.【答案】(][)+∞-∞-,13,【解析】设()1,2-t t P ,()1,2-s s Q∵PQ BP ⊥,∴1)1()1(11222-=----⋅+-ts t s t t , 即()0112=+--+s t s t∵R t ∈,∴必须有()()01412≥-+-=∆s s .即0322≥-+s s ,解得3-≤s 或1≥s .2.已知直线1-=kx y 与双曲线122=-y x 的左支交于A 、B 两点,若另一条直线l 经过点()0,2-P 及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.【答案】22+>b 或2-<b【解析】设()11,y x A ,()22,y x B .由⎩⎨⎧=--=1122y x kx y ,得()022122=-+-kx x k , 又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k解得12-<<-k ,设()00,y x Q ,则221012k k x x x +-=+=,111200-=-=k kx y . l 的斜率为22121112022200-+=+--=+-k k k k k x y . ∴l 的方程为()22212+-+=x k k y . 令0=x ,则2222-+=k k b ,又()1,2--∈k , ∴()22,1222--∈-+k k ,即22+>b 或2-<b3.已知抛物线x y C 4:2=.(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若()0,m M 是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问MQ 有无最小值?若有,求出其值;若没有,说明理由.【答案】⑴12-=x y (1>x );⑵45m in-=m MQ【解析】由抛物线x y 42=,得焦点()0,1F ,准线1:-=x l .(1)设()y x P ,,则()y x B 2,12-,椭圆中心O ',则e BF O F =':,又设点B 到l 的距离为d ,则e d BF =:,∴d BF BF O F ::=',即()()()22222222-=+-x x y x ,化简得P 点轨迹方程为12-=x y (1>x ).(2)设()y x Q ,,则()45211)(2222-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---+-=+-=m m x x m x y m x MQ (1>x )(ⅰ)当121≤-m ,即23≤m 时,函数45212-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=m m x t 在()+∞,1上递增,故t 无最小值,亦即MQ 无最小值.(ⅱ)当121>-m ,即23>m 时,函数45212-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=m m x t 在21-=m x 处有最小值45-m ,∴45m in -=m MQ .【拔高】1.如图,ADB 为半圆,AB 为半圆直径,O 为半圆圆心,且AB OD ⊥,Q 为线段OD 的中点,已知4=AB ,曲线C 过Q 点,动点P 在曲线C 上运动且保持PB PA +的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设λ=DNDM,求λ的取值范围. 【答案】(1)1522=+y x ;(2)⎪⎭⎫⎢⎣⎡∈1,31λ. 【解析】(1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系, ∵45212222=>=+=+=+AB QB QA PB PA . ∴曲线C 为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a ,短半轴为b ,半焦距为c ,则522=a ,∴5=a ,2=c ,1=b .∴曲线C 的方程为1522=+y x . (2)设直线l 的方程为2+=kx y ,代入1522=+y x ,得()015205122=+++kx x k . ()()0511542022>+⨯-=∆k k ,得532>k .由图可知λ==21x x DN DM由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x k k x x将21x x λ=代入得⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x 两式相除得)15(380)51(15400)1(2222k k k +=+=λλ+ ∵532>k ,35102<<k ,∴5205152<+<k ,即3165138042<⎪⎭⎫ ⎝⎛+<k ∴()31614<+<λλ,∵0>=DN DMλ,∴解得331<<λ ①∵DNDMx x ==21λ,M 在D 、N 中间,∴1<λ②又∵当k 不存在时,显然31==DN DM λ (此时直线l 与y 轴重合). 综上⎪⎭⎫⎢⎣⎡∈1,31λ课程小结解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.课后作业【基础】1.已知抛物线px y 22=上有一内接正AOB ∆,O 为坐标原点.求证:点A 、B 关于x 轴对称;xyOAB【解析】设()11,y x A ,()22,y x B ,∵OB OA =,∴22222121y x y x +=+,∴22212122px x px x +=+,即()()022121=++-p x x x x ,∵01>x ,02>x ,0>p ,∴21x x =,21y y -=,故点A 、B 关于x 轴对称2.若直线l 过圆02422=-++y x y x 的圆心M 交椭圆149:22=+y x C 于A 、B 两点,若A 、B 关于点M 对称,求直线l 的方程.【答案】02598=+-y x【解析】()1,2-M ,设()11,y x A ,()22,y x B ,则421-=+x x ,221=+y y又1492121=+y x ,1492222=+y x ,两式相减得:04922212221=-+-y y x x , 化简得()()()()09421212121=-++-+y y y y x x x x , 把421-=+x x ,221=+y y 代入得981212=--=x x y y k AB故所求的直线方程为()2211--=-x y ,即042=-+y x 所以直线l 的方程为 :02598=+-y x .3.在抛物线x y 42=上恒有两点关于直线3+=kx y 对称,求k 的取值范围. 【答案】()0,1-【解析】 (1)当0=k 时,曲线上不存在关于直线对称的两点.(2)当0≠k 时,设抛物线x y 42=上关于直线对称的两点()11,y x A ,()22,y x B ,AB 的中点为()00,y x M ,则直线AB 的斜率为k 1- ,可设直线b x ky AB +-=1: 代入x y 42=得0442=-+kb ky y016162>+=∆kb k (*) k y y 421-=+,kb y y 421-=⋅k y 20-=,()kb k kb y y k x x 24222121+=++-=+,kb k x +=202∵M 在直线3+=kx y 上,∴()3222++=-kb k k k ∴kk bk 3222---=, 代入(*)得即()()01312<⋅+-+kk k k 又032>+-k k 恒成立,所以01<<-m . 综合(1)(2),k 的取值范围是()0,1-【巩固】1.已知P 是椭圆124:22=+y x C 的动点,点⎪⎭⎫⎝⎛0,21A 关于原点O 的对称点是B ,若PB 的最小值为23,求点P 的横坐标的取值范围. 【答案】2-=x 或20≤≤x 【解析】由⎪⎭⎫ ⎝⎛0,21A ,得⎪⎭⎫⎝⎛-0,21B ,设()y x P ,()47121222121222222++=-+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+=x x x y x PB ,∵23≥PB ,()49471212≥++x ,解得0≥x 或2-≤x 又22≤≤-x ∴2-=x 或20≤≤x2. 定长为3的线段AB 的两个端点在抛物线x y =2上移动,记线段AB 的中点为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标.【答案】⎪⎪⎭⎫ ⎝⎛22,45或⎪⎪⎭⎫ ⎝⎛-22,45 【解析】 设()11,y x A ,()22,y x B ,()00,y x M , 因AB 与x 轴不平行,故可设AB 的方程为a my x +=, 将它代入x y =2得02=--a my y , ∴m y y =+21,a y y -=21由92=AB 得()()912212=-+y y m 即()()[]941212212=-++y y y y m∴()()94122=++a m m ,∴()414922m m a -+= (*) ()221210my y y =+=,()()a m a y y m x x x +=++=+=22221221210, 将(*)代入得()()4541234141149414922220=-≥-+++=++=m m m m x 当且仅当()4114922+=+m m 即22=m 时取等号,此时,41=a ,220±=y ,450=x 所以,点M 为⎪⎪⎭⎫ ⎝⎛22,45或⎪⎪⎭⎫ ⎝⎛-22,45时,到y 轴的最短距离最小,最小值为45.3.已知椭圆12222=+by a x (0>>b a )的离心率为22,以该椭圆上的点和椭圆的左、右焦点1F 1、2F 为顶点的三角形的周长为()124+.一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点.(1)求椭圆和双曲线的标准方程;(2)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明:121=⋅k k .【答案】(1)14422=-y x ;(2)见解析. 【解析】(1)设椭圆的半焦距为c ,由题意知:22=a c , ()12422+=+c a ,所以a =22,c =2, 又222c b a +=,因此2=b .故椭圆的标准方程为14822=+y x . 由题意设等轴双曲线的标准方程为12222=-my m x (0>m ),因为等轴双曲线的顶点是椭圆的焦点, 所以2=m ,因此双曲线的标准方程为14422=-y x . (2)证明:()00,y x P , 则2001+=x y k ,2002-=x y k . 因为点P 在双曲线422=-y x 上,所以42020=-y x .因此14222020000021=-=-⋅+=x yx y x y k k , 即121=k k .【拔高】1.已知椭圆C 过点⎪⎭⎫⎝⎛23,1M ,两个焦点为()0,1-A ,()0,1B ,O 为坐标原点.(1)求椭圆C 的方程;(2)直线l 过点()0,1-A ,且与椭圆C 交于P ,Q 两点,求BPQ ∆的面积的最大值.【答案】(1)13422=+y x ;(2)3. 【解析】(1)由题意,1=c ,可设椭圆方程为112222=++by b x . 因为M 在椭圆上,所以1491122=++bb , 解得32=b ,432-=b (舍去). 所以椭圆方程为13422=+y x . (2)设直线l 方程为1-=ky x ,()11,y x P ,()22,y x Q ,则()⎪⎪⎩⎪⎪⎨⎧+-=⋅+=+⇒=--+⇒⎪⎩⎪⎨⎧=+-=4394360963413412212212222k y y k k y y ky y k yx ky x 所以4311221222121++=-⋅=∆k k y y F F S BPQ. 令t k =+12,则1≥t ,所以tt S BPQ 1312+=∆,而tt 13+在[)+∞,1上单调递增, 所以31312≤+=∆tt S BPQ ,当1=t 时取等号,即当0=k 时,BPQ ∆的面积最大值为3.。
圆锥曲线综合训练题(分专题,含答案)
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
2023年高考数学(理科)一轮复习课件——圆锥曲线的综合问题 第二课时 定值问题
索引
(2)若直线 l 交椭圆 E 于 M,N 两点,直线 OM 的斜率为 k1,直线 ON 的斜率 为 k2,且 k1k2=-19,证明:△OMN 的面积是定值,并求此定值.
证明 当直线l的斜率不存在时,
索引
答题模板
第一步 求圆锥曲线的方程 第二步 特殊情况分类讨论 第三步 联立直线和圆锥曲线的方程 第四步 应用根与系数的关系用参数表示点的坐标 第五步 根据相关条件计算推证 第六步 明确结论
索引
训练 2 (2021·大同调研)如图,在平面直角坐标系 xOy 中, 椭圆 C:xa22+by22=1(a>b>0)的左、右顶点分别为 A,B,
已知|AB|=4,且点e,345在椭圆上,其中 e 是椭圆的
离心率.
(1)求椭圆 C 的方程;
解 ∵|AB|=4,∴2a=4,即a=2. 又点e,345在椭圆上,∴ae22+1465b2=1,即1c62 +1465b2=1, 又b2+c2=a2=4,联立方程解得b2=3, ∴椭圆 C 的方程为x42+y32=1.
(1)求动点 M 的轨迹 E 的方程;
[规范解答]
解 设M(x,y),P(x0,y0), 由(1- 3)O→Q=O→P- 3O→M, 得O→Q-O→P= 3O→Q- 3O→M, 即P→Q= 3M→Q,2 分
索引
∴xy00==x,3y,又点 P(x0,y0)在圆 O:x2+y2=6 上, ∴x20+y20=6,∴x2+3y2=6, ∴轨迹 E 的方程为x62+y22=1.4 分
索引
感悟提升
解此类题的要点有两个:一是计算面积,二是恒等变形.如本题,要求△OMN 的面积,则需要计算弦长|MN|和原点 O 到直线 l 的距离 d,然后由面积公式 表达出 S△OMN(如果是其他凸多边形,一般需要分割成三角形分别求解),再 将由已知得到的变量之间的等量关系代入面积关系式中,进行恒等变形, 即得 S△OMN 为定值23.
圆锥曲线大题综合:五个方程型(学生版)
圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。
2020年高考文科数学直线与圆锥曲线的综合问题 专项练习题 含解析
课时规范练 A 组 基础对点练1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程.(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝ ⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由. 解析:(1)由已知,得⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0). 由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1,得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 20=⎝⎛⎭⎪⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516.|AB |24=(x 1-x 2)2+(y 1-y 2)24=(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0,所以|GH |>|AB |2. 故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外.2.(2019·承德模拟)如图所示,椭圆E :x 2a 2+y 2b 2=1(a >b>0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程.(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解析:(1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ).又点P 的坐标为(0,1),且PC →·PD→=-1, 于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.从而,OA →·OB →+λP A →·PB→=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以,当λ=1时,-λ-12k 2+1-λ-2=-3.此时,OA →·OB →+λP A →·PB→=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD .当λ=1时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD→=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λP A →·PB→为定值-3. 3.(2019·贵阳模拟)如图所示,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b>0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,|AB |=4.(1)求椭圆的方程.(2)若|AB|+|CD|=487,求直线AB的方程.解析:(1)由题意知e=ca=12,2a=4.又a2=b2+c2,解得a=2,b=3,所以椭圆方程为x24+y23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB|+|CD|=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),则直线CD的方程为y=-1k(x-1).将直线AB的方程代入椭圆方程中并整理得(3+4k2)x2-8k2x+4k2-12=0,则x1+x2=8k23+4k2,x1·x2=4k2-123+4k2,所以|AB|=k2+1|x1-x2| =k2+1·(x1+x2)2-4x1x2=12(k2+1) 3+4k2.同理,|CD|=12⎝⎛⎭⎪⎫1k2+13+4k2=12(k2+1)3k2+4.所以|AB|+|CD|=12(k2+1)3+4k2+12(k2+1)3k2+4=84(k2+1)2(3+4k2)(3k2+4)=487,解得k=±1,所以直线AB的方程为x-y-1=0或x+y-1=0.4.如图所示,已知F(3,0)为椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,B 1,B 2,A 为椭圆的下、上、右三个 顶点,△B 2OF 与△B 2OA 的面积之比为32. (1)求椭圆C 的标准方程.(2)试探究在椭圆C 上是否存在不同于点B 1,B 2的一点P 满足下列条件:点P 在y 轴上的投影为Q ,PQ 的中点为M ,直线B 2M 交直线y +b =0于点N ,B 1N 的中点为R ,且△MOR 的面积为3510.若不存在,请说明理由;若存在,求出点P 的坐标. 解析:(1)由已知得S △B 2OF S △B 2OA=12bc12ab=c a =32.又c =3,所以a =2,所以b 2=a 2-c 2=1,所以椭圆C 的标准方程为x 24+y2=1.(2)假设存在满足条件的点P ,设其坐标为P (x 0,y 0)(x 0≠0),则Q (0,y 0),且M ⎝ ⎛⎭⎪⎫x 02,y 0.又B 2(0,1),所以直线B 2M 的方程为y =2(y 0-1)x 0x +1.因为x 0≠0,所以y 0≠1,令y =-1, 得N ⎝ ⎛⎭⎪⎫x 01-y 0,-1.又B 1(0,-1),则R ⎝ ⎛⎭⎪⎫x 02(1-y 0),-1,所以|MR |=⎣⎢⎡⎦⎥⎤x 02-x 02(1-y 0)2+(y 0+1)2=1+y 01-y 0. 直线MR 的方程为y -y 0=-x 02y 0⎝ ⎛⎭⎪⎫x -x 02,即2yy 0+x 0x -2=0,所以点O 到直线MR 的距离为d =2x 20+4y 2=1, 所以S △MOR =12|MR |·d =121+y 01-y 0×1=3510,解得y 0=27, 又x 204+y 20=1,所以x 0=±657,所以存在满足条件的点P ,其坐标为⎝ ⎛⎭⎪⎫±657,27.B 组 能力提升练5.(2019·武邑模拟)已知圆F 1:(x +1)2+y 2=16,定点F 2(1,0),A 是圆F 1上的一动点,线段F 2A 的垂直平分线交半径F 1A 于P 点. (1)求P 点的轨迹C 的方程.(2)四边形EFGH 的四个顶点都在曲线C 上,且对角线EG ,FH 过原点O ,若k EG · k FH =-34,求证:四边形EFGH 的面积为定值,并求出此定值. 解析:(1)因为P 在线段F 2A 的中垂线上, 所以|PF 2|=|P A |.所以|PF 2|+|PF 1|=|P A |+|PF 1|=|AF 1|=4>|F 1F 2|,所以轨迹C 是以F 1,F 2为焦点的椭圆,且c =1,a =2,所以b =3, 故轨迹C 的方程为x 24+y 23=1.(2)不妨设点E ,H 位于x 轴的上方,则直线EH 的斜率存在,设EH 的方程为y =kx +m ,E (x 1,y 1),H (x 2,y 2). 联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8kmx +4m 2-12=0,则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.①由k EG ·k FH =y 1y 2x 1x 2=-34,得(kx 1+m )(kx 2+m )x 1x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=-34.② 由①,②,得2m 2-4k 2-3=0.③ 设原点到直线EH 的距离为d =|m |1+k 2, |EH |=1+k 2|x 1-x 2|=1+k 216(12k 2-3m 2+9)(3+4k 2)2,S 四边形EFGH =4S △EOH =2|EH |·d =8|m |12k 2-3m 2+93+4k 2,④由③,④,得S 四边形EFGH =43,故四边形EFGH 的面积为定值,且定值为4 3. 6.已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D .(1)若当点A 的横坐标为3,且△ADF 为以F 为顶点的等腰三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点D (x 0,0)⎝ ⎛⎭⎪⎫x 0≥12,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP ⊥BP ,求证:点P 的坐标为(-x 0,0),并求点P 到直线AB 的距离d 的取值范围.解析:(1)由题知F ⎝ ⎛⎭⎪⎫p 2,0,|F A |=3+p 2,则D (3+p,0),FD 的中点坐标为⎝ ⎛⎭⎪⎫32+3p 4,0,则32+3p4=3,解得p =2,故C 的方程为y 2=4x . (2)依题可设直线AB 的方程为x =my +x 0(m ≠0), A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2),由⎩⎨⎧y 2=4x ,x =my +x 0消去x ,得y 2-4my -4x 0=0,因为x 0≥12.所以Δ=16m 2+16x 0>0, y 1+y 2=4m ,y 1y 2=-4x 0,设P 的坐标为(x P ,0),则PE →=(x 2-x p ,-y 2),P A →=(x 1-x P ,y 1), 由题知PE →∥P A →,所以(x 2-x P )y 1+y 2(x 1-x P )=0,即x 2y 1+y 2x 1=(y 1+y 2)x P =y 22y 1+y 21y 24=y 1y 2(y 1+y 2)4,显然y 1+y 2=4m ≠0,所以x p =y 1y 24=-x 0,即证x P (-x 0,0),由题知△EPB 为等腰直角三角形,所以k AP =1, 即y 1+y 2x 1-x 2=1,也即y 1+y 214(y 21-y 22)=1, 所以y 1-y 2=4,所以(y 1+y 2)2-4y 1y 2=16. 即16m 2+16x 0=16,m 2=1-x 0,x 0<1,又因为x 0≥12,所以12≤x 0<1,d =|-x 0-x 0|1+m 2=2x 01+m 2=2x 02-x 0,令2-x 0=t ∈⎝⎛⎦⎥⎤1,62,x 0=2-t 2,d =2(2-t 2)t =4t -2t , 易知f (t )=4t -2t 在⎝ ⎛⎦⎥⎤1,62上是减函数,所以d ∈⎣⎢⎡⎭⎪⎫63,2.。
圆锥曲线的综合经典例题(有答案)
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】①.②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)
解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
高三一轮复习圆锥曲线2
高三一轮复习圆锥曲线综合问题1.设椭圆E : 22221x y a b+=(a ,b >0)过M (2,2) ,N (6,1)两点,O 为坐标原点,(I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
解:(1)因为椭圆E : 22221x y a b +=(a ,b >0)过M (2,2) ,N (6,1)两点,所以2222421611a b a b +=+=⎧⎪⎪⎨⎪⎪⎩解得22118114a b⎧=⎪⎪⎨⎪=⎪⎩所以2284a b ⎧=⎨=⎩椭圆E 的方程为22184x y += (2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA OB ⊥ ,设该圆的切线方程为y kx m =+解方程组22184x y y kx m +==+⎧⎪⎨⎪⎩得222()8x kx m ++=,即222(12)4280k x kmx m +++-=,则△=222222164(12)(28)8(84)0k m k m k m -+-=-+>,即22840k m -+>12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,22222222212121212222(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=+++要使OA OB ⊥ ,需使12120x x y y +=,即2222228801212m m k k k --+=++,所以223880m k --=,所以223808m k -=≥又22840k m -+>,所以22238m m ⎧>⎨≥⎩,所以283m ≥,即263m ≥或263m ≤-,因为直线y k x m =+为圆心在原点的圆的一条切线,所以圆的半径为21mr k =+,222228381318m m r m k ===-++,263r =,所求的圆为2283x y +=,此时圆的切线y kx m =+都满足263m ≥或263m ≤-,而当切线的斜率不存在时切线为263x =±与椭圆22184x y +=的两个交点为2626(,)33±或2626(,)33-±满足OA OB ⊥ ,综上, 存在圆心在原点的圆2283x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA OB ⊥ .因为12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 所以22222212121222224288(84)()()4()41212(12)km m k m x x x x x x k k k --+-=+-=--⨯=+++,()2222222121212228(84)||()(1)()(1)(12)k m AB x x y y k x x k k -+=-+-=+-=++ 42242423245132[1]34413441k k k k k k k ++=⋅=+++++, ①当0k ≠时22321||[1]1344AB k k=+++因为221448k k ++≥所以221101844k k<≤++, 所以2232321[1]1213344k k<+≤++,所以46||233AB <≤当且仅当22k =±时取”=”. ② 当0k =时,46||3AB =.③ 当AB 的斜率不存在时, 两个交点为2626(,)33±或2626(,)33-±, 所以此时46||3AB =, 综上, |AB |的取值范围为46||233AB ≤≤即: 4||[6,23]3AB ∈ 【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.2.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+ ,向量(,1)b x y =-,a b ⊥ ,动点(,)M x y 的轨迹为E .(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;(2)已知41=m ,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点A ,B ,且OA OB ⊥(O 为坐标原点),并求出该圆的方程; (3)已知41=m ,设直线l 与圆C:222x y R +=(1<R<2)相切于A 1,且l 与轨迹E 只有一个公共点B 1,当R 为何值时,|A 1B 1|取得最大值?并求最大值.解(1)因为a b ⊥ ,(,1)a mx y =+ ,(,1)b x y =-, 所以2210a b mx y ⋅=+-= , 即221mx y +=.当m =0时,方程表示两直线,方程为1±=y ; 当1m =时, 方程表示的是圆当0>m 且1≠m 时,方程表示的是椭圆; 当0<m 时,方程表示的是双曲线.(2).当41=m 时, 轨迹E 的方程为2214x y +=,设圆心在原点的圆的一条切线为y kx t =+,解方程组2214y kx tx y ++==⎧⎪⎨⎪⎩得224()4x kx t ++=,即222(14)8440k x ktx t +++-=, 要使切线与轨迹E 恒有两个交点A ,B ,则使△=2222226416(14)(1)16(41)0k t k t k t -+-=-+>,即22410k t -+>,即2241t k <+, 且12221228144414kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩22222222212121212222(44)84()()()141414k t k t t k y y kx t kx t k x x kt x x t t k k k --=++=+++=-+=+++, 要使OA OB ⊥ , 需使12120x x y y +=,即222222224445440141414t t k t k k k k ----+==+++,所以225440t k --=, 即22544t k =+且2241t k <+, 即2244205k k +<+恒成立. 所以又因为直线y kx t =+为圆心在原点的圆的一条切线,所以圆的半径为21t r k=+,222224(1)45115k t r k k +===++, 所求的圆为2245x y +=. 当切线的斜率不存在时,切线为552±=x ,与2214x y +=交于点)552,552(±或)552,552(±-也满足OA OB ⊥. 综上, 存在圆心在原点的圆2245x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA OB ⊥ .(3)当41=m 时,轨迹E 的方程为2214x y +=,设直线l 的方程为y kx t =+,因为直线l 与圆C :222x y R +=(1<R <2)相切于A 1, 由(2)知21t R k =+, 即222(1)t R k =+ ①,因为l 与轨迹E 只有一个公共点B 1,由(2)知2214y kx tx y ++==⎧⎪⎨⎪⎩得224()4x kx t ++=, 即222(14)8440k x ktx t +++-=有唯一解则△=2222226416(14)(1)16(41)0k t k t k t -+-=-+=, 即22410k t -+=, ②由①②得2222223414R t R R k R ⎧=⎪⎪-⎨-⎪=⎪⎩-, 此时A ,B 重合为B 1(x 1,y 1)点, 由12221228144414kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩中21x x =,所以,222122441616143t R x k R --==+, B 1(x 1,y 1)点在椭圆上,所以22211214143R y x R -=-=,所以22211124||5OB x y R=+=-, 在直角三角形OA 1B 1中,2222211112244||||||55()A B OB OA R R R R=-=--=-+因为2244R R+≥当且仅当2(1,2)R =∈时取等号,所以211||541A B ≤-=,即 当2(1,2)R =∈时|A 1B 1|取得最大值,最大值为1.【命题立意】:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题.)0(12222>>=+b a b y a x 3322(Ⅰ)求a ,b 的值;(Ⅱ)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有 成立? 若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由。
直线与圆锥曲线的综合应用
直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。
解决直线和圆锥曲线的位置关系的解题步骤是: (1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组; (3)讨论类一元二次方程(4)一元二次方程的判别式 (5)韦达定理,同类坐标变换(6)同点纵横坐标变换 (7)x,y ,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等1:已知椭圆)0(1:2222>>=+b a by a x C 过点)23,1(,且离心率21=e 。
(Ⅰ)求椭圆方程;(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点)0,81(G ,求k 的取值范围。
解:(Ⅰ)Q 离心率21=e ,2213144b a ∴=-=,即2243b a =(1);又椭圆过点)23,1(,则221914a b +=,(1)式代入上式,解得24a =,23b =,椭圆方程为22143x y +=。
(Ⅱ)设1122(,),(,)M x y N x y ,弦MN 的中点A 00(,)x y由223412y kx m x y =+⎧⎨+=⎩得:222(34)84120k x mkx m +++-=, Q 直线)0(:≠+=k m kx y l 与椭圆交于不同的两点,2222644(34)(412)0m k k m ∴∆=-+->,即2243m k <+ (1)由韦达定理得:21212228412,3434mk m x x x x k k -+=-=++, 则2000222443,343434mk mk mx y kx m m k k k =-=+=-+=+++,直线AG 的斜率为:22232434413234348AGmm k K mk mk k k +==-----+, 由直线AG 和直线MN 垂直可得:22413234m k mk k=----g ,即2348k m k +=-,代入(1)式,可得22234()438k k k +<+,即2120k >,则1010k k ><-。
高中数学直线和圆锥曲线常考题型汇总及例题解析
高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。
2.4.2直线与圆锥曲线综合问题,课时作业高二上学期数学北师大版选择性必修第一册(含答案)
2.4.2直线与圆锥曲线综合问题,课时作业高二上学期数学北师大版选择性必修第一册(含答案)4.2直线与圆锥曲线的综合问题 1.已知椭圆x236+y29=1以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为() A.-12 B.12 C.-2 D.2 2.已知抛物线y2=2px(p0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为() A.x=1 B.x=-1 C.x=2 D.x=-2 3.若双曲线x2a2-y2b2=1(a0,b0)与直线y=3x无交点,则离心率e 的取值范围是() A.(1,2) B.(1,2] C.(1,5) D.(1,5] 4.已知椭圆x216+y24=1,过右焦点F且斜率为k(k0)的直线与椭圆交于A,B两点,若AF=3FB,则k=() A.1 B.2 C.3 D.25.已知过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(ab0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为.6.过双曲线x2a2-y2b2=1(a0,b0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为. 能力达标7.已知椭圆x216+y24=1,过右焦点F且斜率为k(k0)的直线与椭圆交于A,B两点,若AF=3FB,则k=() A.1 B.2 C.3 D.28.已知双曲线C:x2a2-y2b2=1(a0,b0)的离心率为52,过右焦点F的直线与两条渐近线分别交于A,B两点,且AB=BF,则直线AB的斜率为() A.-13或13 B.-16或16 C.2 D.16 9.已知抛物线y2=4x,过其焦点F的直线l与抛物线分别交于A,B两点(A在第一象限内),AF=3FB,过AB的中点且垂直于l的直线与x轴交于点G,则△ABG的面积为() A.839 B.1639 C.3239 D.6439 10.(2020浙江高三二模)已知F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右焦点,过右焦点F2的直线l与椭圆交于A,B两点,且满足AF2=2F2B,|F1B|=|AB|,则该椭圆的离心率是() A.12 B.33 C.32 D.53 11.(多选题)已知B1,B2分别是椭圆x2a2+y2b2=1(ab0)的下顶点和上顶点,点P是椭圆上不同于短轴端点的任意一点,点Q与点P关于y轴对称,则下列四个命题中正确的是() A.直线PB1与PB2的斜率之积为定值-a2b2 B.PB1·PB20 C.△PB1B2的外接圆半径的最大值为a2+b22a D.直线PB1与QB2的交点M的轨迹为双曲线12.设双曲线x29-y216=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△ABF的面积为. 13.在直角坐标系xOy中,已知点A(-2,2),B(2,2),直线AM,BM交于点M,且直线AM与直线BM的斜率满足:kAM-kBM=-2. (1)求点M的轨迹C的方程; (2)设直线l交曲线C于P,Q两点,若直线AP与直线AQ的斜率之积等于-2,证明:直线l过定点. 14.已知椭圆C:x2a2+y2b2=1(ab0)的离心率为63,且经过点32,-32. (1)求椭圆C的方程; (2)过点P(0,2)的直线交椭圆C于A,B两点,求△OAB(O为原点)面积的最大值. 1.已知椭圆x236+y29=1以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为() A.-12 B.12 C.-2 D.2 答案 A 2.已知抛物线y2=2px(p0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为() A.x=1 B.x=-1 C.x=2 D.x=-2 答案B 解析抛物线的焦点为Fp2,0, 所以过焦点且斜率为1的直线方程为y=__p2, 即x=y+p2,代入y2=2px消去x, 得y2=2py+p2,即y2-2py-p2=0, 由根与系数的关系得y1+y22=p=2(y1,y2分别为点A,B的纵坐标), 所以抛物线的标准方程为y2=4x,准线方程为x=-1. 3.若双曲线x2a2-y2b2=1(a0,b0)与直线y=3x无交点,则离心率e的取值范围是() A.(1,2) B.(1,2] C.(1,5) D.(1,5] 答案 B 4.已知椭圆x216+y24=1,过右焦点F且斜率为k(k0)的直线与椭圆交于A,B两点,若AF=3FB,则k=() A.1 B.2 C.3 D.2 答案 B 5.已知过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(ab0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为. 答案22 解析设A(x1,y1),B(x2,y2),x12a2+y12b2=1,x22a2+y22b2=1,∴(x1__2)(x1+x2)a2+(y1-y2)(y1+y2)b2=0, ∴y1-y2x1__2=-b2a2·x1+x2y1+y2. ∵y1-y2x1__2=-12,x1+x2=2,y1+y2=2, ∴-b2a2=-12. ∴a2=2b2. 又b2=a2-c2,∴a2=2(a2-c2),∴a2=2c2, ∴e=ca=22. 6.过双曲线x2a2-y2b2=1(a0,b0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为. 答案(1,5) 解析由过双曲线x2a2-y2b2=1(a0,b0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,可得ba2. ∴e=ca=a2+b2a21+4=5,∵e1, ∴1e5, ∴此双曲线离心率的取值范围为(1,5). 能力达标7.已知椭圆x216+y24=1,过右焦点F 且斜率为k(k0)的直线与椭圆交于A,B两点,若AF=3FB,则k=() A.1 B.2 C.3 D.2 答案B 解析∵c2=a2-b2=16-4=12,∴c=23. ∴椭圆的右焦点F(23,0). ∴设过右焦点F且斜率为k(k0)的直线为my=__23,其中m=1k. 设A(x1,y1),B(x2,y2), 联立my=__23,x216+y24=1,消去x得到(4+m2)y2+43my-4=0. ∴y1+y2=-43m4+m2,y1y2=-44+m2. ∵AF=3FB,∴-y1=3y2, 把以上三式联立消去y1,y2,得m2=12,∴1k2=12,即k2=2. 又k0,∴k=2. 8.已知双曲线C:x2a2-y2b2=1(a0,b0)的离心率为52,过右焦点F的直线与两条渐近线分别交于A,B两点,且AB=BF,则直线AB的斜率为() A.-13或13 B.-16或16 C.2 D.16 答案B 9.已知抛物线y2=4x,过其焦点F的直线l与抛物线分别交于A,B两点(A在第一象限内),AF=3FB,过AB的中点且垂直于l的直线与x 轴交于点G,则△ABG的面积为() A.839 B.1639 C.3239 D.6439 答案C 解析设A(x1,y1),B(x2,y2),因为AF=3FB, 所以y1=-3y2,设直线l的方程为x=my+1, 由y2=4x,x=my+1,消去x得y2-4my-4=0, ∴y1y2=-4, ∴y1=23,y2=-233,∴y1+y2=4m=433, ∴m=33,∴x1+x2=103,AB的中点坐标为53,233,过AB中点且垂直于直线l的直线方程为y-233=-33__53,令y=0,可得x=113,∴S△ABG=12×113-1×23+233=3239. 10.(2020浙江高三二模)已知F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右焦点,过右焦点F2的直线l与椭圆交于A,B两点,且满足AF2=2F2B,|F1B|=|AB|,则该椭圆的离心率是() A.12 B.33 C.32 D.53 答案B 11.(多选题)已知B1,B2分别是椭圆x2a2+y2b2=1(ab0)的下顶点和上顶点,点P是椭圆上不同于短轴端点的任意一点,点Q与点P关于y轴对称,则下列四个命题中正确的是() A.直线PB1与PB2的斜率之积为定值-a2b2 B.PB1·PB20 C.△PB1B2的外接圆半径的最大值为a2+b22a D.直线PB1与QB2的交点M的轨迹为双曲线答案BC 解析设P(x0,y0),x02a2+y02b2=1,则kPB1·kPB2=y0+bx0·y0-bx0=y02-b2x02=-b2a2,因此A不正确; ∵点P在圆x2+y2=b2外,∴x02+y02-b20, ∴PB1·PB2=(__0,-b-y0)·(__0,b-y0)=x02+y02-b20,B正确; 当点P在长轴的顶点上时,∠B1PB2最小且为锐角,设椭圆的右顶点为A,△PB1B2的外接圆半径为r,由正弦定理可得2r=2bsin∠B1PB2≤2bsin∠B1AB2=2bsin2∠OAB2=2b2aba2+b 2=a2+b2a. ∴r≤a2+b22a, ∴△PB1B2的外接圆半径的最大值为a2+b22a,C正确; 直线PB1的方程为y+b=y0+bx0x,直线QB2的方程为y-b=y0-b__0x,两式相乘可得y2-b2=y02-b2__02x2, 化为y2b2__2a2=1,由于点P不与B1,B2重合,∴M的轨迹为双曲线的一部分,∴D不正确. 12.设双曲线x29-y216=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△ABF的面积为. 答案3215 13.在直角坐标系xOy 中,已知点A(-2,2),B(2,2),直线AM,BM交于点M,且直线AM与直线BM的斜率满足:kAM-kBM=-2. (1)求点M的轨迹C的方程; (2)设直线l交曲线C于P,Q两点,若直线AP与直线AQ的斜率之积等于-2,证明:直线l过定点. (1)解设M(x,y),又A(-2,2),B(2,2), 则kAM-kBM=y-2x+2-y-2__2=8-4yx2-4=-2, 可得x2=2y(x≠±2), 则M的轨迹C的方程为x2=2y(x≠±2). (2)证明设Pm,m22,Qn,n22,m≠±2,n≠±2, 又A(-2,2),可得kAP·kAQ=m22-2m+2·n22-2n+2=m-22·n-22=-2, 即有mn-2(m+n)=-12,即mn=2(m+n)-12, 直线l的斜率为kPQ=m22-n22m-n=m+n2, 可得直线l的方程为y-m22=m+n2(__m), 化为y=m+n2__mn2, 可得y-6=m+n2(__2), 可得直线l恒过定点(2,6). 14.已知椭圆C:x2a2+y2b2=1(ab0)的离心率为63,且经过点32,-32. (1)求椭圆C的方程; (2)过点P(0,2)的直线交椭圆C于A,B两点,求△OAB(O 为原点)面积的最大值. 解(1)根据题意知:离心率e=63,可得ca=63,即c2a2=23,因为c2=a2-b2,所以a2-b2a2=23,整理得a2=3b2, 又由椭圆C经过点32,-32,代入可得(32)2a2+(-32)2b2=1,即34a2+34b2=1, 联立a2=3b2,34a2+34b2=1,解得a2=3,b2=1,所以椭圆C的方程为x23+y2=1. (2)由题意,易知直线AB的斜率存在,设直线AB的方程为y=kx+2, 联立y=kx+2,x23+y2=1,消去y得(1+3k2)x2+12kx+9=0, 因为直线AB 与椭圆C相交于A,B两点, 所以Δ=(12k)2-4×9(1+3k2)0,得k21, 设A(x1,y1),B(x2,y2),则x1+x2=-12k1+3k2,x1x2=91+3k2, 所以|AB|=1+k2·(x1+x2)2-4x1x2 =1+k2·(-12k1+3k2)2-4×91+3k2=61+k2·k2-11+3k2. 点O(0,0)到直线k__y+2=0的距离d=21+k2, 所以△OAB面积S△AOB=12|AB|·d=1261+k2·k2-11+3k2·21+k2=6k2-11+3k2. 令k2-1=t,则k2=t2+1(t0), 所以S△OAB=6t4+3t2=64t+3t≤624t×3t=32, 当且仅当4t=3t,即t2=43时,等号成立, 此时k2=73,△OAB的面积取得最大值32.。
2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
直线与圆锥曲线综合性问题(含答案)
直线与圆锥曲线综合性问题(含答案)一.考点分析。
⑴直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得 到一个一元二次方程 ,直线和圆锥曲线相交、相切、相离的充分必要条件分别是 A >0、A =0、△ < 0.⑵直线与圆锥曲线相交所得的弦长直线具有斜率 k ,直线与圆锥曲线的两个交点坐标分别为(1)1 AB 1= Jl+k' * 1 — 梵2 1= Jl + Q • +黑2)2或|AB|= Jl + p • Ivi -73!=+ * 丁(珀 + 兀)'-幻吐・上面的公式实质上是由两点间距离公式推导出来的(因为y i - y 2 =k (X i -X 2),运用韦达定理来进行计算 注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既 熟练掌握方程组理论,又关注图形的几何性质,以简化运算;2. 当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,二是点差法;3. 圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围二是建立不等式,通过解不等式求范围 .二.考试探究圆锥曲线是解析几何的核心内容,也是高考命题的热点之一.高考对圆锥曲线的考查,总体上是以知识应用和问题探究为主, 一般是给出曲线方程,讨论曲线的基本元素和简单的几何 性质;或给出曲线满足的条件,判断(求)其轨迹;或给出直线与曲线、曲线与曲线的位置 关系,讨论与其有关的其他问题(如直线的方程、直线的条数、弦长、曲线中参变量的取值 范围等);或考查圆锥曲线与其他知识综合(如不等式、函数、向量、导数等)的问题等 1. (2006年北京卷,文科,19)2 2椭圆C:务+^y2 =1(a Ab A0)的两个焦点为F1,F2,点P 在椭圆Ca b标及直线方程,联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方 程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程.A(X i ,y i ),B(X 2, y 2),则它的弦长,只是用了交点坐标设而不求的技巧而已当直线斜率不存在是,则AB=yi-y2.PF 1丄FF 』PF 彳4 PF 巳扌4C 的方程;(I )求椭圆(n )若直线I 过圆X +y +4x-2y=0的圆心M ,交椭圆C 于A 、B 两点,且 A 、B 对称,求直线〖解析〗(I )由椭圆的定义及勾股定理求出a,b,c 的值即可,(n )可以设出 A 、关于点M I 的方程.B 点的坐〖答案〗解法一:22) (I )因为点p 在椭圆C 上,所以2a = PF i + PF 2=6 , a=3. X y 已知曲线G : — +丄=1(a Ab >0)所围成的封闭图形的面积为a b在 Rt△ PF1F2 中,F I F2 =JI PF 2 -PF , 2= 2 J 5,故椭圆的半焦距c= J 5,从而b2=a2 —c2=4.2所以椭圆C 的方程为x_92丄=1.4(n)设 A , B 的坐标分别为(x1,y1 )、(x2,y2).已知圆的方程为(x+2) 2+(y — 1)2=5,所以圆心M 的坐标为(一2 , 1). 从而可设直线l 的方程为y=k(x+2)+1,代入椭圆 C 的方程得(4+9k2) x2+(36k2+18k)x+36k2+36k — 27=0. 因为A , B 关于点M 对称.2所以 Xj^—18k +9k =224 + 9k 2 解得k98 所以直线l 的方程为y =-(x +2)+1, 9 (经检验,所求直线方程符合题意 ) 解法二: (I )同解法一.2 2=(n)已知圆的方程为(x+2 ) +(y — 1) 5,所以圆心 M 的坐标为(一2, 1). 设A , B 的坐标分别为(x1,y1 ) ,(x2,y2).由题意x1 H x2且即 8x-9y+25=0.由①一②得因为A 、 代入③得所以直线 2X 12X 2(X 1 -X 2)(X 1 +x 2) +(y 1 -y 2)(y 1 +y 2)_0B 关于点M 对称,所以x1+ x2= — 4, y1+ y2=2,y 1 -y 2 = X 1 -X 2 -,即直线I 的斜率为8 ,9 98y — 1 = - (x+2 ),即 8x — 9y+25=0. 9所求直线方程符合题意 .)l 的方程为 (经检验2. ( 2008年山东卷,文科, W 5,曲线C i 的内切圆半径为 迹.记C 2为以曲线C i 与坐标轴的交点为顶点的椭圆.3(I)求椭圆C 2的标准方程;(n)设AB 是过椭圆C 2中心的任意弦,I 是线段AB 的垂直平分线.M 是I 上异于椭圆中心的点.(1 )若MO =A OA ( O 为坐标原点),当点A 在椭圆C 2上运动时,求点M 的轨迹方程;(2)若M 是I 与椭圆C 2的交点,求 △ AMB 的面积的最小值. 1解析〗(I)由三角形面积公式和点到直线的距离公式可得关于与坐标轴的交点为椭圆的顶点,显然C 2为焦点在X 轴的椭圆;(n) (1)设出AB 的方程y=kx(kHO), A(X A, g , M (x , y),联立直线与椭圆得到方程组后,由M0 = A 0A(A 工0)可得M 的轨迹方程,注意k = 0或不存在时所得方程仍1 1 2然成立;(2)由直线I 的方程:y=-—X 和椭圆方程联立后表示出 S ^AMB =2AB []OM I由不等式放缩即可求出最小值 .2ab=475,〖答案〗(I)由题意得《 a b2/5又a A b A 0,解得a 2 = 5 , b 2 = 4 .J a 2+b232 2因此所求椭圆的标准方程为0+£ = 1. 5 4AB 所在的直线斜率存在且不为零,设 AB 所在直线方程为a, b 的方程组,曲线C i(n) ( 1)假设y =kx(k 工0), A(X A,Y A).r 2区+解方程组{5 4l y = 田 2 20 2 20k2得X A = -- 2,y A = -------------- 2所以OA 2Y A20 丄20k220(1 +k2) = ------ +------ = ---------2 2 2设M(X, y),由题意知MO = A OA仏丰0),当且仅当4 +5k 2=5 +4k 2时等号成立,即k = ±1时等号成立,40此时△ AMB 面积的最小值是 S A AMB =40.92后2=245.9所以MO2,即x 2+y2、2 20(1 +k 2)=扎 --------因为I 是AB 的垂直平分线, 所以直线 I 的方程为y1一匚X ,因此X 2 + y 2 =入2 r20 1 + V V y 丿 2~ 4+5L 笃 y、2 20(x 2 +y 2) =h -------- 2 ------- T~4y +5x2又 X 2 +y2H 0,所以 5x 2 +4y 2 =20 几2,故—+ 乂4 5又当k = 0或不存在时,上式仍然成立.2 2综上所述,M 的轨迹方程为 .七L = 'd (k 丰0、.45(2)当k 存在且k H0时,由(1 )得2X A20 = 2,4+5k 2y A 220k— 24 +"2 2z 丄=1, 由{5 4解得 I 1 L 1x,220k 2X M _5 +4k 22y M20 5 +所以OA2 =xA 中2 y A 220(1+k 2)=2~ 4+5kAB 2=4 OA80(1+ k 2) 4 +5k 2,OM220(1 + k 2) = 2~ 5 + 4k解法一:由于S A AMBT AB 2臥2 280(1+k )汽 20(1 +k )400(1 +k 2)22 2400(1+= 22f 22昭「4 + 5k 2+5 +1600(1 +k 2)2 <40 f—2 2— I81(1 + k 2)2l 9 丿J沢亦沢4=275>坐. 当k不存在时,S A AMB2 9综上所述,△ AMB的面积的最小值为409解法二:因为1OA2+OM 220(1+k )4+5k2+ ——4+5k2+5+4k220(1+ k)= 20*)5 + 4k29"20OA1+ --OMOA|[|OM[,OA J OM I当且仅当4 +5k2 =5 +4k2时等号成立,即k = ±1时等号成立, 40 此时△ AMB面积的最小值是S AAMB =—.9当k =0,S SMB =丄咒2翕咒2 =275>402当k不存在时,S AAMB=丄咒=2亦294O>一•9 40综上所述,△ AMB的面积的最小值为上.93.(广东省实验中学 2008届高三第三次模拟考试,理科, 20)已知抛物线 x2= — y,直线L: (m+1)y+(3-m)x+m+1=0 (m € R且m^— 1)与抛物线交于 A,B两点•(1)当m=0时,试用x,y的不等式组表示由直线L和抛物线围成的封闭图形所在平面区域(包边界),并求该区域的面积•为直径的圆C上;并求(3)将抛物线x2= — y的图像按向量a = (4, 16)移动后得到函数y=f(x)的图像,若g(x) =6lnx+m,问是否存在实数 m,使得y=f (x)的图象与y=g (X)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由•〖解析〗(1)所要表示的平面区域包括边界,要注意不等式取等号,由定积分即可求出相应的面积,计算时可以整体代入;(2)证明抛物线的顶点在以线段 AB为直径的圆C上,即证明0AQB=0,圆C的圆心的轨迹可由中点坐标公式利用“代入法”求得;(3)构造函数®(x) =g(x) - f(X)=x2 -8x +6In x + m,因为x^O,所以 y=f (x)的图象与y=g (X)的图象有且只有两个不同的交点问题就可以转化为函数W(x)有两个正零点的问题,要对®(x)的单调性进行讨论,从而求出使得®(x)由两个正零点的m的取值范围x€( 0,(1)当m=0时,直线L 的方程为:y+3x+1=0,故所求区域2对应的不等式组为[y +x 乞0;[y + 3x + 1 > 0 y = -X e 2得x 2-3x-仁 0*) y + 3x+1 = 0贝x 2为方程(* 的两解,即 X t + X 2 = 3,X 1X 2 = — 1,X 2 - X t = = J 13/.所求区域面积亠X2设A (X 1,y 1), B(X 2,y 2),不妨x^X 1,则由*S =「(-x 2+3x +1 dx(X 33x 2Y x / 1 r -—+ ——+X l |x : = (X 2 -X 1 1 --収13 2 丿1V 3、_13J13+ X2 ) -X 1X 2】+3(X 1 +X2)+1]2 丿(2)令k=y^,则直线L 的方程为y = kxm +1L2由* y X 得:X 2+ kx -1=0,方程有解,且x 1, x 2为其两解, y = kx -1 贝 y X 1 + X 2 = —k, X 1X 2 = -1,-1,设A(X i ,y i ),B(X 2,y 2)/. OA ”OB = X 1X 2 + 丫』2 = X1X 2 +(X 1X 2 ) = —1 + 1 = 0.以AB 为直径的圆 恒过抛物线顶点(0,0设以AB 为直径的圆的圆心坐标为(X, y),2 2milX 1 +X 2 k y 1 + y 2X 1 + X 2贝寸 X = ------ = 一 一2(X 1 + X2 ) - 2X 1X 22 2 2 2 2 得y =-2x 2-1,即所求的圆心轨迹方程 为y = -2x 2-1k 2—— 一1(3)依题意,f(x)=-x2+8x,令护(X)=g(x) -f(x) = x2-8x+6lnx + m.因为x> 0,要使函数f(X)与函数g (x)有且仅有2个不同的交点,则函数®(x) =x 2 -8x +61 nx +m 的图象与x 轴的正半轴有且只有两个不同的交点 平'6 ■■申(X) =2x -8 + -= 2空二g =2(x -1)(x -3)(x 〉0) x€( 1, (X)c0,®(x)是减函数 x€( 3,®'(x) >0,®(x)是增函数当 x=1 或 x=3 时,cp'(X)=0•••甲(x)极大值为申⑴=m-7;申(X)极小值为W(3) =m +6In3-15又因为当X70时,W(X)T 二当X T P时,申(X)T 邑所以要使W(x) =0有且仅有两个不同的正根,必须且只须『⑴"或r⑶=0即或^十6"3-15=0[◎(3) <0 [护(1)>0 t m+61 n3-15c0 [m-7A0•- m=7 或m =15 -61 n3.•••当m=7或m =15-61 n3.时,函数f (x)与g (x)的图象有且只有两个不同交点4. ( 2008年广东卷,文科,20)2 2设b,椭圆方程为二+占=1,抛物线方程为X2 =8( y- b).如图所示,过点2b2 b2F(0, b +2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F i .(1)求满足条件的椭圆方程和抛物线方程;(2 )设A, B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点为直角三角形?若存在,请指出共有几个这样的点?并说明理由标).〖解析〗(1)由已知可求出 G点的坐标,从而求出抛物线在点G的切线方程,进而求出F i点的坐标,由椭圆方程也可以求出F i点的坐标,从而求出b =1,得出椭圆方程和抛物线方程;(2)以NPAB为直角和以NPBA为直角的直角三角形显然各一个,NAPB为直角的直角三角形是否存在可以转化成PA 'PB = 0 对应的方程是否有解的问题,从而可以求出满足条件的个数.P,使得△ ABP (不必具体求出这些点的坐以P点的1 答案〗(1)由x2=8(y-b)得y=1x2+b ,81当y =b +2 得x = ±4,二G 点的坐标为(4,b +2) , y'= —x ,4过点G的切线方程为y-(b+2) =x-4即y=x + b-2,F i点的坐标为(b,0),令y=0得x=2-b,二F i点的坐标为(2-b,0),由椭圆方程得2二2—b =b即b=1,即椭圆和抛物线的方程分别为一+ y2=1和x2 =8(y-1);2(2) •••过A 作x 轴的垂线与抛物线只有一个交点 PA 以N PAB 为直角的RtAAB P 只有一个,同理二 以N PBA 为直角的RUABP 只有一个。
繁昌一中直线与圆锥曲线综合问题专项训练
直线与圆锥曲线专项训练1若直线:l y kx m =+与椭圆C 221.43x y ∴+=相交于A ,B 两点(A B ,不是左右顶点),(1)以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标; (2)若B AF 2∠为锐角,求m k 和满足的关系式。
2.设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.3、过椭圆C : 2215x y += 的右焦点作直线l 交椭圆C 于A 、B 两点,交Y 轴于M 点,1MA AF λ= ,2MB BF λ=,求证:1210λλ+=-.4.过)0,1(P 的直线交的椭圆221.95x y +=于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由.5.已知双曲线2213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.6.若过点()2,0D 的直线l E 、F (E 在D 、F 之间),试求ODE ∆与ODF ∆面积之比的取值范围(O 为坐标原点).7.已知椭圆14222=+y x两焦点分别为F 1、F 2,P 是椭圆在第一象限弧上一点,并满足121=⋅PF PF ,过P 作倾斜角互补的两条直线P A 、PB 分别交椭圆于A 、B 两点.(1)求P 点坐标; (2)求证直线AB 的斜率为定值;8.若)0,1(),0,1(B A -是椭圆221(0)43x y y +=≠的两个焦点,线段CD 是椭圆过左焦点A 的弦,当52||2CB ≤< 时,求线段CD 的垂直平分线l 与x 轴交点的横坐标的取值范围.9. 是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆.14822=+y x 恒有两个交点A ,B ,且OB AB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围;若不存在,说明理由。
直线与圆锥曲线综合问题
直线与圆锥曲线的的综合问题(1)题型一。
直线与圆锥曲线的位置关系例1.直线l :3x +y -6=0与圆C :x 2+y 2-2y -4=0位置关系为_______.例2.直线y=x+m 和椭圆4x 2+y 2=1,当直线与椭圆有公共点时,求实数m 的取值范围。
例3.已知直线1:-=kx y L 与双曲线22:y x C -=4。
若直线L 与双曲线C 有一个公共点,求k 的范围;例4.过点(0,2)的直线l 与抛物线y 2=4x 仅有一个公共点,求直线l 的方程。
题型二。
直线与圆锥曲线的相交的弦长问题例5.直线l :3x +y -6=0被圆C :x 2+y 2-2y -4=0截得的弦长为_______.例6.直线x -y +1=0被椭圆11222=+y x 截得的弦长为.例7.过双曲线16322=-y x 的右焦点2F ,倾斜角为030的直线交双曲线于A 、B 两点,求AB 。
例8.直线l斜率为1且与抛物线y2=4x相交于A,B两点。
(1)直线l经过抛物线的焦点F,求AB。
(2)直线l经过点M(2,0),求AB。
题型三。
直线与圆锥曲线的相交的弦中点问题例9.已知P(-1,2)为圆x2+y2=8内一定点.直线l过点P且被圆所截得的弦中点P,求直线l方程_________________.例10.已知一直线与椭圆369422=+yx相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的直线方程例11.过点M(2,1)是否存在直线l交双曲线1222=-yx于P、Q两点,且M是线段PQ的中点。
例12.已知抛物线C:y2=4x,设直线与抛物线两交点为A、B,且线段AB中点为M(2,1),则直线l 的方程为________________________.直线与圆锥曲线的的综合问题(2)题型四。
最值问题例1、已知椭圆192522=+y x 和直线:45400l x y -+=,试推断椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?例2.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(.(1)求双曲线C 的方程; (2)若直线l :2+=kx y 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点),求k 的取值范围.例3.(1)点A (2,3),F 为抛物线y 2=6x 焦点,P 为抛物线上动点,则|PF|+|PA|的最小值为()A.5B.4.5C.3.5D.不能确定变式:A (2,5)题型五.垂直问题例4.求m 为何值时,直线y =mx +2与圆x 2+y 2=2相交于P 、Q 两点,且满足OP ⊥OQ ?(O 为坐标原点)例5.直线y =x +b 与抛物线y 2=4x 相交于P 、Q 两点,且满足OP ⊥OQ ?(O 为坐标原点),求b.6.已知椭圆2222b y ax +=1(a >b >0)的离心率e=36,过点A (0,-b )和B (a ,0)的直线与坐标原点距离为23.(1)求椭圆的方程;(2)已知定点E (-1,0),若直线y=kx+2(k ≠0)与椭圆相交于C 、D 两点,试判断是否存在k 值,使以CD 为直径的圆过定点E ?若存在求出这个k 值,若不存在说明理由.题型六.综合问题1.一动圆过定点)0,2(-A ,且与定圆12)2(22=+-y x 相切。
圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)
冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。
第50讲 圆锥曲线热点问题 第2课时 定点、定值、探索性问题
解:(1)依题意,当点A与上顶点重合时,A(0,b),因为==(1,-b),所以B(4,-b),又点B在椭圆E上,所以+=1,解得a2=18,则b2=a2-32=9,所以椭圆E的标准方程为+=1.
课堂考点探究
(2)证明:当直线l不垂直于y轴时,设其方程为x=my+3,设A(x1,y1),B(x2,y2).由消去x并整理得,(m2+2)y2+6my-9=0,易知Δ>0,则y1+y2=-,y1y2=-.因为k1=,k2=,所以k1+k2=+===0.当直线l垂直于y轴时,k1=k2=0,所以k1+k2=0.综上,k1+k2为定值0.
练习3 已知椭圆+=1(a>b>0)的离心率e=,过点A(0,-b)和B(a,0)的直线与原点的距离为.(1)求椭圆的标准方程.(2)已知定点E(-1,0),直线y=kx+2(k≠0)与椭圆交于C,D两点,则是否存在实数k,使以CD为直径的圆过点E?若存在,求出k的值;若不存在,请说明理由.
课堂考点探究
课堂考点探究
方法二:当直线MN的斜率存在时,设其方程为y=kx+m,由得(3+4k2)x2+8kmx+4m2-12=0,由Δ>0,得m2<3+4k2.设M(x1,y1),N(x2,y2),则x1+x2=-,x1·x2=.由题意可知A1(-2,0),A2(2,0),则直线A1M:y=(x+2),令x=4,得y=.直线A2N:y=(x-2),令x=4,得y=,所以=.由+=1,得=-,即=-,所以(x1+2)·(x2+2)+4(kx1+m)·(kx2+m)=0,即(4k2+1)x1x2+(2+4km)(x1+x2)+4m2+4=0,化简得(m-2k)(m+k)=0,解得m=2k或m=-k.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 直线与圆锥曲线的综合问题第一课时一.知识体系小结222222222222222222cos 1(0)()sin 11(0)1(00)1(00)2(0)2(0213x a x y x a b y b a b y xy a b a bx y y x x a b y a b a b a b y px p y px p圆锥曲线的标准方程椭圆:焦点在轴上时参数方程,其中为参数; 焦点在轴上时.双曲线:焦点在轴上:,;焦点在轴上:,.抛物线:开口向右时,,开口向左时,.22)2(0)2(0)x py p x py p ,开口向上时,开口向下时.2222222222222222222222222211111(0)123142x y x y a b a b x y x ya b a b x y x ya b a bmx ny 常用曲线方程设法技巧共焦点的设法:与椭圆有公共焦点的椭圆方程为;与双曲线有公共焦点的双曲线方程为;与双曲线共渐近线的双曲线方程为;中心在原点,对称轴为坐标轴的椭圆、双曲线方程可设为;不清楚开口方向的抛.物线设法:焦22(0)(0)x y mx m y x my m 点在轴上,; 焦点在轴上,.3.解决直线与圆锥曲线问题的通法: (1)设方程及点的坐标;(2)联立直线方程与曲线方程得方程组,消元得方程; (3)应用韦达定理及判别式;(4)结合已知、中点坐标公式、斜率公式及弦长公式求解.1212|||| |.AB AB x x y y (5)直线与圆锥曲线相交的弦长公式或 2220002220222000222020001()1()2(0)().b x x y P x y k a b a y b x x yP x y k a b a y py px p P x y k y 圆锥曲线中点弦斜率公式在椭圆中,以,为中点的弦所在直线的斜率;在双曲线中,以,为中点的弦所在直线的斜率;在抛物线中,以,为中点的弦所在直线的斜率以上公式均可由点4.差法可得.(1)(1234)05.()n k m n k mOA OB AB OA OB AB PM PN P MN AP AQ BP BQ A B PQ解析几何与向量综合的有关结论给出直线的方向向量,或,,等价于已知直线的斜率或给出与相交,等价于已知过的中点.给出,等价于已知是的中点.给出,.等价于已知,与的中点三点共线.u u106//50AB AC AB AC OC OA OB A B C MA MB MA MB AMB MA MB m AMB MA MB m给出以下情形之一:①;②存在实数,使;③若存在实数,,且,使,等价于已知,,三点共线.给出,等价于已知,即是直角;给出,等价于已知是钝角或反向共线;给出70(AMB MA MBMP MP AMB MA MB,等价于已知是锐角或同向共线.给出,等价于已知是的角平分线.二. 例题剖析1.概念性质22121221259||12||______1____.x y F F F A B F A F B AB 已知、为椭圆的两个焦点,过的直线交椭圆于、两点.若,则【例】 解析:由椭圆的定义可知:|F 1A |+|F 2A |=2a =10,|F 1B |+|F 2B |=2a =10,所以|AB |=20-|F 2A |-|F 2B |=8. 小结: 1.对椭圆、双曲线,已知曲线上的点与一个焦点的距离时,常作辅助线:连结它与另一个焦点,考虑使用定义解题.2.要熟悉焦点三角形的性质及研究方法 22121121123A 7B 5C 4D 3x y F F P PF y PF PF 椭圆的焦点为,,在椭圆上,如果线段的中点在轴上,则是的.倍 【变式训练1】 .倍 .倍 .倍22211233732227b PF x PF PF a PF PF 解析:由题意,轴,则可计算出,因此是的倍.答案为A2.椭圆方程221122122211(0)1,01.12()..2y x C a b A C a bC P C y x h h R C P C M N AP MN h 已知椭圆:>>的右顶点为,过的焦点且垂直长轴的弦长为求椭圆的方程;设点在抛物线:上,在点处的切线与交于点、当线段的中点与的中点的横坐标相等时,】求【的最小值例22212 . .114112b a x b b ay由题意解析:椭圆方程为,得,从而因此,所求的 211222212222222214221()()()|22.4(2)40.4(1)4()()40.16[2(2)4]0.2x t M x y N x y P t t h C P y t MN y tx t h C x tx t h t x t t h x t h MN C t h t h 设,,,,,,则抛物线在点处的切线斜率为,直线的方程为:将上式代入椭圆的方程中,得即①因为直线与椭圆有两个不同的交点,所以①式中的>②设212332().22(1)x x t t h MN x x t 线段的中点的横坐标是,则244342221.(1)10.2(1)401 3.320,401.1111.1t PA x x x x t h t h h h h h h h t h t h h设线段的中点的横坐标是,则由题意,得,即③由③式中的,得,或当时,<<,则不等式②不成立,所以当时,代入方程③得,将,代入不等式②的,检验成最小立以,值为.所 221222112210,0,02()0x y a b eF c a bF c Q x FQ a P x y QF T F Q PT TF T已知椭圆的离心率为,左右焦点分别为,,是椭圆外且不在轴上的动点,满足,点,是线段与椭圆的交点,点是【变式训练2线段上的点,且满足,求点】的轨迹. 1122121112222222121211()(),022,2.24x y 24y 44.T x y Q x y F c PT TF FQ a T F Q x c x y y FQ a x c y x a a a c c 不妨设,,,,如图所示,.且,得为的中点.因此有,则可得,因此有,化简因为又因为得解析:【例3】如图,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.22121212211222.1,2221 2.22(1)(1)111.()()4 1.2PA PB PA PB PA PB y px P p p y y PA k PB k k x k x x x PA PB k k A x y B x y y x x 由已知条件,可设抛物线的方程为因为点在抛物线上,所以,解得故所求设直线的斜率为,直线的抛物线的方程是,其准线方程是斜率为,则,.因为与的斜率存在且倾斜角互补,所以由,,,均解析:在抛物线22112244y x y x 上,得, ① ,②12121122122121221222241(2) 4.111()144A B y y y y k x x x x y y y y y y y AB y 所以,所以,所以由①②得,直线的斜率为.2y x O A B OA OB AOB 抛物线上异于坐标原点的两个相异的动点,满足,问:的面积是否存在最小值?若存在,求出最小值;若不存在,【变式训练3】请说明理由.12112212121222222222211221122121212121212()()11 1.124(x y )(x y )()(]2241y y A x y B x y OA OB x x y y x x AOB S S OA OB S y y y y y y y S y y 解析:设,,,.因为,则有,所以,不妨设的面积为,则因此有,因此,当且仅当 min 11,1 1.A S 时取到最小值.即此时,,小结:抛物线焦点弦的性质:直线l 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A 、B 两点,则有: (1)通径的长为2p ; (2)焦点弦公式:|AB |=x 1+x 2+p ;(3)x 1x 2=p 2/4,y 1y 2=-p 2. (4)以焦点弦为直径的圆与抛物线的准线相切.第二课时一.知识体系小结 122212222211221212121(0)||[]||[]||||[].123456tan ()21F PF x y F F a b P B a bO OP b a PF a c a c PF PF b a FPF FBF S b F PF椭圆中的最值,为椭圆的左、右焦点,为椭圆上的任意一点,为短轴的一个端点,为坐标原点,则有:,. ,. ,.. 焦点弦以通.径为最短. 12221222211221(00)12||.||.()ta 23nF PF x y F F a b P a bb O OP a PFc a S F PF .双曲线中的最值,为双曲线,的左、右焦点,为双曲线上的任一点,为坐标原点,则有:.22(0)||.234||2.()12|2|31pP y px p F PF ABAB p A m n PA PF b aa b抛物线中的最值点为抛物线上的任一点,为焦点,则有:焦点弦以通径为最值,即,为一定点,则有最小值.双曲线的渐近线求法:令双曲线标准方程的左边为零,分解因式可得.用法:①可得或..的方程. 3512直线与圆锥曲线的位置关系相离;相切;相交.特别地,①当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个公共点.②当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有.一个公共点.【注】:设直线l :Ax +By +C =0,圆锥曲线:f (x ,y )=0,由Ax +By +C =0f (x ,y )=0消元(x 或y ),若消去y 得a 1x 2+b 1x +c 1=0.(1)若a 1=0,此时圆锥曲线不是椭圆.当圆锥曲线为双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. (2)若a 1≠0,Δ=b -4a 1c 1,则 ①Δ>0时,直线与圆锥曲线,有 交点; ②Δ=0时,直线与圆锥曲线 ,有 的公共点; ③Δ<0时,直线与圆锥曲线,没有.二.例题剖析1.定值问题2221421()12x y M M A B M AB AMB 已知椭圆方程为,点,,过作倾斜角互补的两条直线,分别与椭圆交于、两点异于.求证直线的斜率为定值;求面积的【例】最大值.解析:定点、定值、最值问题是圆锥曲线的综合问题,它涉及到直线,圆锥曲线的定义、方程及位置关系,同时又与三角、函数、不等式、方程、平面向量、导数等代数知识紧密联系.解这类问题时,需要有较强的代数运算能力和识图能力,要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.22 2(0)(22(124111.2A BA B A B A BM A M A M B M A k k M A y k x x M B y k x y y y x x k x x A B证明:由题可知直线的斜率存在,且与的斜率互为相反数,不妨设直线的斜率为,则直线的方程为:,直线的方程为,代入可分别求得,所以即直线的斜率为定值.22222221(0)124222000 2.22 2.||2A B A BxAB y x m m yx mx m m x x m x x m AB设直线的方程为,代入得,,由,得而,所以222422max1||20241 1.AMBM AB d S AB d m m mm S点到直线的距离为则,又,当时,2.定点问题1517(0).44122322F P F xP P C C y MC A B AMBA B AMB AB y已知点,,上半平面内的点到点和轴的距离之和为求动点的轨迹方程; 设动点的轨迹方程为,曲线交轴于点,在曲线上是否存在两点,,使若,是曲线上满足【例证:直线与轴】交于一定点.217()0.44(00,421(041)P x y y yP x y yp y解析:设点坐标为,,其中,化简得动点的轨迹方程为.这是一个以为顶点,,开口向下的抛物线的一部分其中.2444(04)1,31,32.2MA y x MB y x x y y A BAMB考虑到抛物线的对称性,不妨设直线:,直线:,分别与联立,可得两个点的坐标为,,此时2222214 4.4,444111(4)314(030,3AM y kx BM y x ky kx x k A k kx y y kB AB k ABk k ky k k x k x y AB yk设直线的方程为,直线的方程为由方程组,解得,即点坐标为.同理可得点坐标为,,则直线的斜率为的方程为.令,得,从而直线与轴交于定点.221169411822A(0)B(0)C C.4,0D(0)1055x yA FA FB B BC CA C设为双曲线右支上一动点,为该双曲线的右焦点,连接交双曲线于,过作直线垂直于双曲线的右准线,垂足为,则直线必过定点.,【变式训练1,】..,:41(01.)0A AB x 解析此题也可采用探索法,考虑特殊情况,即与轴垂直时,便可得出一个定点,故选,3.最值问题2210,14111()(22212||3y x M l A B O P OP OA OB N l M P NP设椭圆方程为,过点的直线交椭圆于、两点,是坐标原点,点满足,点的坐标为,.当绕点旋转时,求【例:动点的轨迹方程;的最大值】与最小值.222112221221212221220,1 1.1()()(4)230142144.()((8222444:1l M k l y kx y kx A x y B x y k x kx y x k x x x x y y k k OP OA OB k k y y k直线过点,当斜率存在时,设其斜率为,则的方程为记,,,,由,得,所以,,解析则.222222222()40.0,040.111112.||()()164422171213().||6126611||.44P x y k x y y AB P x y y P x x NP x y x x NP x NP 设点的坐标为,,则,消去得当斜率不存在时,的中点为原点,也满足上述方程.所以点的轨迹方程为由点的轨迹方程知,即所以故当当时,取得最小值为 20,2(02)2,0||0()120|2|M N Q P m PQ MP NP m R P m MP NP已知定点、,、,动点满足. 求动点的轨迹方程,并说明轨迹的形【变式训练2状;当时,】求的取值范围.22222222222()(2)(2)(2)||(2)()4[(2)]4(1)(1)4440.1222,01(1P x y MP x y NP x y PQ x y PQ x y MP NP x y m x y x y m x m y mx m m x y m x设,,则,,,,,,,所以,整理得,当时,方程为,表示过点平行于轴的直线;当时,方程化为解析:2222)(1122(0)11m y m m m m m ,表示以,为圆心,以为半径的圆.2222042(3,32)|2|4|2|2|2|824,m x y MP NP x y MP NP x y MP NP MP NP当时,方程化为,,所以又因为,所以而的取值范围是所以.第三课时一.知识体系小结1求轨迹方程的常用方法:轨迹法:①建系设动点.②列几何等式.③坐标代入得方程.④化简方程.⑤除去不合题意的1.点作答.(2)待定系数法:已知曲线的类型,先设方程再求参数.(3)代入法:当所求动点随已知曲线上动点的动而动时用此法,代入法的步骤:①设出两动点坐标(x ,y ),(x 0,y 0).②结合已知找出x ,y 与x 0,y 0的关系,并用x ,y 表示x 0,y 0. ③将x 0,y 0代入它满足的曲线方程,得到x ,y 的关系式即为所求.(4)定义法:结合几种曲线的定义,明确所求曲线的类型,进而求得曲线的方程. 3.有关弦的中点问题 (1)通法. (2)“点差法”.点差法的作用是用弦的中点坐标表示弦所在直线的斜率. 点差法的步骤:①将两交点A(x 1,y 1),B(x 2,y 2)的坐标代入曲线的方程; ②作差消去常数项得到关于x 1+x 2,x 1-x 2,y 1+y 2,y 1-y 2的关系式. ③求出AB 的斜率 4.取值范围问题(1)椭圆上的点到焦点的距离的最大值为a +c ,最小值为a -c ; (2)双曲线上的点到左焦点的最小距离为c -a ; (3)抛物线上的点到焦点的距离的最小值为p /2 .二.例题剖析 1.参数范围问题(01)0,1||()12||1G ABC A B x M MA MC GM AB R C k l C P Q AP AQ k 已知点是的重心,,,,在轴上有一点,满足,. 求点的轨迹方程;若斜率为的直线与点的轨迹交于【例】不同的两点、,且满足,试求的取值范围.222()(()33(0)||31(0)131(0)3x yC x y G ABC G GM AB R xGM AB M x C y x x M MA MC xy x 设,,为的重心,则,.因为,所以,而点的轨迹方程为点在轴上,则,.由,得.析得以解:所22222222220||.013(13)63(1)0*(6)4(13)3(1)0130**2k l C P Q x AP AQ k l y kx my k x kmx m l km k m k m ①当时,与椭圆有两个不同的交点、,由椭圆的对称性知②当时,可设的方程为,代入,整理得,,因为直线与椭圆交于不同的两点,所以,即, 211221212221200000222263(1)()()13133()21313113||13-13AN km m P x y Q x y x x x x k k x x km mPQ N x y x y kx m k k mk AP AQ AN PQ k k k km k 设,,,,则,,则中点,的坐标为,,又,所以,所以, 2213**11,00,121,1k m k k k得,代入得,所以.综合①②得,的取值范围是.222Rt 103ABC BC BC BC P Q l AP AQ PQ 在中,斜边为,以的中点为圆心,作半径为的圆,分别交于、两点,设,试问是否是定值?如果是定值,请【变式训练1】求出这个值.2222222222223362410021003604.OPQ O PAQ APDQAP AQ PQ AD AD AO AP AQAP AQ PQ 如图所示,建立直角坐标系.因为圆的半径为,因此,利用圆心,可构造得平行四边形,根据解析平行四边形的边长关系得,,而,因此,所以:2.存在性问题(01)0 3.132(0)(0)2||2x Bx yk k Q l lM N BM BN l已知椭圆的中心在原点,焦点在轴上,一个顶点为,,且其右焦点到直线的距离为求椭圆的方程;是否存在斜率为【例】,且过定点,的直线,使与椭圆交于不同的两个点、,且?若存在,求出直线的方程;若不存在,说明理由.22222222222221122122121(0)1(,0)33.3151(13)902349(133)()1x y a b b ca bc a b cxy kx y k x kxkM x y N xx yy x x MN Pk设椭圆方程为,由已知得,设右焦点为,,解析:得,得设直线的方程为,代入,得,设,,,,则,设的中椭圆方程点为为,22222293(||26263112526093122625663..312332BPkP BM BN B MNk kkk k kkkkk l l y x则点的坐标为,,因为,所以点在线段的中垂线上,所以,化简得,又由得,因为故存在直线满足题意,的方程为2201()212,00l y px p A B lx OAB Ol P a a x x CABC a设直线与抛物线交于、两点,已知当直线经过抛物线焦点且与轴垂直时,的面积为为坐标【原点.求抛物线的方程;当直线经过点且与轴不垂直时,若在轴上存在点,使得为正三角形,变求的取式训练2】值范围.221122002122211222221112.222()()(),0(0)22022OABp pAB p O AB S pp p y xA x yB x y AB M x yC t lx my a y yx my a m y my a y my xx m a ABC MC解析:由条件可得,又点到的距离为,,所以,因此抛物线的方程为设,,,,的中点为,,又设,直线:,由,所以,所以,所以,因为为正三角形,所以11AB MCyMC AB x t m,,由,得,2222221.1113120006261(06t m a MC m m m m a a m m a a所以又,得,所以,因为,所以,所以所以的取值范围为,.3.综合问题2221211213 41.1(2011)2()C x y C x y M M C P C P C C A B M P ABl 已知抛物线:,圆:的圆心为求点到抛物线的准线的距离;已知点是抛物线上一点异于原点,过点作圆的两条切线,交抛物线于,两点,若过,两点的直线 l垂直于,求直线浙江卷【例】的方程.10,421414.41174M p y M 解析:因为,且,所以准线方程为,因此点到准线的距离为2222112212122222222244()()()41() 1.20,411142412AB PMPM AB m P m mA x xB x x k x x k m m mPM AB k k x x m mP C k P y m k x m k k m mkm m 设,,,,,,,,因为,则,所以设过点且与圆相切的直线的斜率为,则过的圆的切线方程为,由圆心到切线的距离为,得所以, 2224140m k m ,222212112222112222121212221222(4)01042(1444232()12(1)()115PM m m k k y m k x m x k x m m m m x k y m k x m x k x m m m x k x x k k m x x m mm k k m m m m m m m m m m k所以,设切线,则,所以,设切线,则,所以,所以,代入,得,所以,所以,23431155 4.115y x m22122211222212121(0)(,0)(,0)||2.0||0.12x y a b F c F c a b Q FQ a P FQ T F Q PT TF TF T C T C M F MF S b F MF已知椭圆的左、右焦点分别是、.是椭圆外的动点,满足点是线段与该椭圆的交点,点在线段上,并且满足,求点的轨迹的方程;试问:在点的轨迹上,是否存在点,使的【变式训练3】面积?若存在,求的正切值;若不存在,说明理由.222111222121()0||0||2||2||1||||21T x y PT TF TF PT TF F Q PF PQ a PF PF a PQ PF T OT OT F F OT a T设,,因为,,所以,又,而由椭圆定义,所以,则为线段的中点,连结,为的中位线,则,即点的解析:轨迹方程222.x y a 为 2222000002022022100200()||.122|2|()()x y a b M M x y y c S c y bb y a a M S b cb b a M a MFc x y MF c x y c c假设存在点满足题意,设,,则,得而,当时,存在点,使;当存在点.当时,,,,,222222212001************||||cos 1||||sin .tan 2.22.MF MF x c y a c b MF MF F MF b S MF MF F MF b F MF M F MF,即,又所以即存在点满足题意,且的正切值为第四课时 直线与圆锥曲线的位置关系训练题A 组(基本训练题)一选择题:(每题5分,合计40分)1.抛物线y x 42 的焦点F 作直线交抛物线于 222111,,,y x P y x P 两点,若621 y y ,则21P P 的值为 (C ) A.5 B.6 C.8 D.102. 过点(2,4)作直线与抛物线x y 82 有且只有一个公共点,这样的直线有( B ) A.一条 B.两条 C.三条 D.四条3. 平面内有一线段AB,其长为33,动点P满足3 PB PA ,O为AB的中点,则OP 的最小值为 ( A )A.23B.1 C.2 D.3 4. 过抛物线x y 42 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在5双曲线22221x y a b (0a ,0b )的左、右焦点分别是12F F ,,过1F 作倾斜角为30 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )ABCD .336直线)(1R k kx y 与椭圆1522 m y x 恒有公共点,则m 的取值范围是( A )A. ,55,1 B.(0,5) C. ,1 D.(1,5)7.过点(1,0)且与双曲线x 2-y 2=1只有一个公共点的直线有 ( C ) A .1 条 B .2条 C .3 条 D .4条8.已知动点P (x ,y )满足 5(x-1)2+(y-2)2=|3x+4y-11|,则P 点的轨迹是 ( A )A、直线B、抛物线C、双曲线D、椭圆 二.填空题:(每题5分,合计30分) 9. 一动点到y 轴的距离比到点(2,0)的距离小2,这个动点的轨迹方程是_______. (答案:y 2=8x 或y=0(x<0)) 10. 经过双曲线1322y x 的右焦点F 2作倾斜角为 30的弦AB ,则AB F 1 的周长为 .( 答案: 333 )11. 过椭圆22154x y 的右焦点作一条斜率为2的直线与椭圆交于A B ,两点,O为坐标原点,则OAB △的面积为 .(答案:53)12. 直线y=x-3与抛物线y 2=4x 交于A,B 两点,过A,B 两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB 的面积是 .4813. 过双曲线1222y x 的右焦点作直线l 交双曲线于A 、B 两点,若 AB 4,则满足条件的直线l 有____条314. 设P 是抛物线y 2=2x 上的点,Q 是圆(x-5)2+y 2=1上的点,则|PQ|的最小值为 2三.解答题:(每题15分,合计30分)15. 已知点P 是⊙O :229x y 上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足23DQ DP.(1)求动点Q 的轨迹方程;(2)已知点(1,1)E ,在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使1()2OE OM ON(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由.解:(1)设 00(,),,P x y Q x y ,依题意,则点D 的坐标为0(,0)D x∴00(,),(0,)DQ x x y DP y ,又 23DQ DP∴ 000002332x x x x y y y y即 , ∵ P 在⊙O 上,故22009x y∴ 22194x y , ∴ 点Q 的轨迹方程为22194x y(2)假设椭圆22194x y 上存在两个不重合的两点 1122(,),,M x y N x y 满足1()2OE OM ON,则(1,1)E 是线段MN 的中点,且有12121212122212x x x x y y y y 即,又 1122(,),,M x y N x y 在椭圆22194x y 上∴ 22112222194194x y x y 两式相减,得 12121212094x x x x y y y y , ∴ 121249MN y y k x x, ∴ 直线MN 的方程为 49130x y . ∴ 椭圆上存在点M 、N 满足1()2OE OM ON,此时直线MN 的方程为 49130x y16. 设1F 、2F 分别是椭圆C :22221(0)x y a b a b的左右焦点.(1)设椭圆C上点3)2到两点1F 、2F 距离和等于4,写出椭圆C 的方程和焦点坐标;(2)设K 是(1)中所得椭圆上的动点,求线段1KF 的中点B 的轨迹方程; (3)设点P 是椭圆C 上的任意一点,过原点的直线L 与椭圆相交于M ,N 两点,当直线PM ,PN 的斜率都存在,并记为PM k ,PN k ,试探究PM PN k K 的值是否与点P 及直线L 有关,不必证明你的结论。