纳米硅碳负极材料研究报告

合集下载

硅碳纳米负极材料

硅碳纳米负极材料

硅碳纳米负极材料简介硅碳纳米负极材料是一种新型的负极材料,由硅、碳以及纳米级的颗粒组成。

它具有优异的电化学性能和稳定性,被广泛应用于锂离子电池等能源存储领域。

本文将详细介绍硅碳纳米负极材料的特点、合成方法、性能评价以及应用前景。

特点1. 高容量硅碳纳米负极材料的最大特点是具有高容量。

由于硅元素的特殊性质,硅碳纳米材料可实现比传统碳负极材料更高的容量。

这是因为硅具有较高的理论比容量,为4200mAh/g,远远超过了传统碳负极材料的372mAh/g。

因此,硅碳纳米负极材料成为提高电池储能密度的重要选择。

2. 优异的循环性能硅碳纳米负极材料具有优异的循环性能。

由于硅碳材料结构特殊,通过纳米化技术可以使硅颗粒与碳基负极材料充分结合,形成稳定的复合结构。

该结构能够缓解硅材料充放电过程中的体积膨胀和收缩,从而提高其循环稳定性和抗容量衰减能力。

3. 优秀的电导率硅碳纳米负极材料的电导率较高。

硅和碳的复合结构使得电子在硅碳颗粒之间容易传导,同时硅碳颗粒之间的间隙有利于锂离子的传输。

因此,硅碳纳米材料能够有效提高电池的充放电性能和功率输出能力。

合成方法硅碳纳米负极材料的合成方法多种多样,下面介绍两种常用的方法。

1. 溶液热解法溶液热解法是一种常用的合成方法。

首先,将硅源和碳源溶解在适当的有机溶剂中,形成一个混合溶液。

然后,将混合溶液转移到高温炉中,在一定的反应温度下进行热解。

最后,通过洗涤、离心等方法获取硅碳纳米材料。

2. 气相沉积法气相沉积法是另一种常用的合成方法。

该方法需要使用化学气相沉积设备,在适当的反应温度和气氛条件下进行。

通常,硅源和碳源会以气体的形式输入反应器中,然后在催化剂的作用下进行反应。

最终,硅碳纳米材料会在反应器壁上沉积形成。

性能评价硅碳纳米负极材料的性能评价主要包括容量、循环性能和电导率等方面。

1. 容量测试容量测试是评价硅碳纳米负极材料容量性能的重要指标。

常用的测试方法包括恒流充放电测试和循环伏安法。

碳、硅及磷酸钛锂纳米复合膜锂离子电池负极材料的研究

碳、硅及磷酸钛锂纳米复合膜锂离子电池负极材料的研究

碳、硅及磷酸钛锂纳米复合膜锂离子电池负极材料的研究随着信息技术、手持式机械和电动汽车的迅猛发展,对高效能电源的需求急剧增长,高能量密度、高功率密度的锂离子电池已经成为目前发展最为迅速的领域之一。

一方面,随着化石类能源的不断消耗,以及人们环保意识的加强,传统能源消耗方式必将发生改变;另一方面,太阳能、风能等新型能源仍然存在很大的局限性,比如供能间歇式的问题。

所以,锂离子电池的发展是必然趋势。

锂离子电池是在锂电池的基础上发展起来的一类新型电池,在锂离子电池中采用可使锂离子嵌入和脱出的碳材料代替纯锂作为负极,锂离子电池具有安全性能高、循环寿命好、高比能量、高电压、等优点,在众多储能器件中优点突出。

提高锂离子电池的关键在于正负极材料,而正极材料的比容量很难提高,因此提升锂离子电池储能密度要在负极材料上着手。

硅作为负极材料,理论比容量高,自然界储量丰富,储锂电位低,是最具潜力的新一代锂离子电池负极材料,具有十分广阔的发展应用前景。

但需要解决硅在脱、嵌锂过程中的体积效应,以及低电导率问题,解决方法主要是纳米化和缓冲介质。

采用PVD法制备多层膜结构的碳、硅及磷酸钛锂复合薄膜,纳米硅层和碳缓冲层都可以有效缓解了硅在充放电过程中的体积膨胀,从而改善锂离子电池的循环效应,磷酸钛锂的引入能够增加硅的离子电导率,加快了活性物质活化。

实验发现,复合薄膜的循环性能欠佳,猜测是由于薄膜的结晶性不好引起的,因此对薄膜进行不同温度的热处理,发现薄膜的结晶性发生改变,循环性能能够得到很大改善。

1.1前言随着社会以及科技的进步,不论是基础工业,还是新兴科技产业,都对能源有着越来越大的需求,能源作为社会发展的重要动力,一直受到极高的重视,各类新型能源不断诞生,如风能、太阳能、地热能等。

考虑到持续长时间供电,以及石油天然气不可再生问题及对环境造成污染问题,对高能量密度高功率密度的锂离子电池的需求越来越迫切。

现如今,电动自行车、电脑、手机等各类电子产品在人们的生活当中愈发重要,因此对高储能设备的依赖性也越来越大,对二次电池的需求不断增加。

纳米硅碳负极材料研究报告

纳米硅碳负极材料研究报告

纳米硅碳负极材料研究报告0 引言自 1991 年 SONY 公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。

近年来,随着新能源交通工具(如 EV 和 HEV)的发展,对锂离子电池提出了更高的要求。

作为锂离子电池关键部分的负极材料需要具备在 Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。

研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。

然而,这些新颖的材料,如 Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌1铿容量较高(Sn 和 Si 的理论嵌铿容量分别为 994mAh/g 和 4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。

因此,若将其进行商业化应用还需要解决许多问题。

锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。

在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。

同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景1 不同负极材料的特点评述天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。

在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面 SEI 膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。

为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。

清华大学硅碳负极方面的研究

清华大学硅碳负极方面的研究

清华大学关于硅碳复合负极材料方面的专利汇总清华大学化学工程系魏飞教授关于硅碳负极方面的专利在soopat或佰腾专利搜索只能检索到一篇(201510395054.7),且还未授权,其专利大致情况如下所示:该硅碳复合材料是一种核壳结构,其中以硅或其氧化物为核,石墨烯为壳的亚/微米颗粒,所得材料的粒径尺寸在0.05-15um之间,石墨烯的重量占核壳结构颗粒总重量的1-8wt%,且核壳结构的比表面积等于或小于原始硅或其氧化物颗粒的比表面积。

制备的复合材料宏观形貌为球形、棒状、片状、不规则多面体形状。

其制备方法包括如下步骤:1)在常温下,将含碳粘合剂(如直连、直链淀粉、葡萄糖、多羟基醇)溶于去离子水中,持续搅拌并缓慢加热至50-100℃,保持恒温1-6小时,得到粘性液体;2)将粒径为0.1um-10um的硅或其氧化物颗粒加入到步骤1)所制备的粘性液体中,搅拌得到固含量为30-60wt%悬浊液浆料;3)将步骤2)得到的浆料进行喷雾造粒,得到粒径分布在50-300um之间的多孔球形颗粒,即二级结构颗粒;4)将步骤3)得到的二级结构颗粒填充到流化床中,在惰性气氛中加热至反应温度700-1000℃,然后通入碳源(如甲烷、乙烷、乙烯、乙炔、甲苯、苯等),惰性气体和碳源的总空速为500-900 h-1,保持碳源与惰性气体的体积比在0.5-2之间,进行化学气相沉积,反应时间为20-60min,得到粒径尺寸为0.05-15um的石墨烯包覆的硅或其氧化物核壳结构。

清华大学材料系黄正宏教授有一篇关于硅碳负极方面的专利(200910082897.6)。

该专利的大致情况如下所示。

该复合负极材料由基体和均匀分布其中的颗粒组成,其中颗粒是一种具有纳米尺寸的核壳结构颗粒;所述纳米颗粒的核为纳米硅,壳为有机物热解得到的无定型碳,所述的基体是高压静电电纺制备的有机纤维热解碳化后得到的,为不规则多孔洞的无定型碳网络结构。

其大致步骤如下:1)在室温90℃的水浴中,利用机械搅拌或磁力搅拌,将无定型碳的有机前驱体均匀溶于溶剂中,形成透明的溶液;2)将纳米硅颗粒均匀分散于与步骤1)中的相同的溶剂中后,再与步骤1)中的溶液混合搅拌,使得纳米硅颗粒均匀地分布于有机前驱体中;3)将步骤2)中所得的悬浊液进行高压静电电纺,得到的产物在惰性气体保护下碳化,以1℃/min速度升温至溶剂沸点温度,保温0.5-3小时,使得溶剂完全挥发;继续以5-10℃/min速度升温至400-1000℃,保温0.5-5小时,随炉冷却,使得纳米硅粉被无定形碳包覆,且均匀分散于碳基体中。

硅碳负极材料的合成与性能表征

硅碳负极材料的合成与性能表征

摘要Si具有理论容量高、工作电位适宜、储量高等优点,是一种理想的锂离子电池负极材料。

由于Si在锂脱/嵌时会产生显著的体积膨胀,导致电极材料结构崩塌、电池容量急速衰减,从而限制Si材料的规模化应用。

针对以上问题,本文将Si纳米颗粒与碳材料复合制备了Si/C负极材料,在控制充放电过程中体积膨胀效应的同时,进一步提高其电化学循环稳定性能。

本文研究内容和结果如下:(1)通过一步水热法合成了Si/C复合材料(M-Si/C),复合材料中Si颗粒的外层具有结构完整的碳包覆层,碳材料可显著降低Si在体积膨胀条件下的内应力,且避免其与电解液接触,在0.2A·g−1电流密度下循环100次后比容量具有510mAh·g−1,在200次循环后容量保持率在80%以上;(2)通过一步水热法得到Si/C多孔微球复合结构(P-Si/C),其中纳米Si颗粒像石榴籽一样均匀嵌入在碳球中,在0.5A·g−1电流密度下循环100次后比容量仍有530mAh·g−1,容量保持率为79.3%,即使将电流密度提升到1A·g−1,比容量也能稳定在420mAh·g−1;(3)利用滤纸作为碳骨架和葡萄糖的聚合作用制备了具有三维结构的Si/C复合材料(F/G/Si),在0.2A·g−1的电流密度下循环100次后仍然拥有422mAh·g−1放电比容量,并且在0.5A·g−1电流密度下的倍率比容量为400mAh·g−1。

关键词硅碳材料;电化学性能;微观结构;倍率性能;比容量AbstractSi, with advantages of high theoretical capacity, appropriate operating potential and high natural reserves, belongs to a new type of lithium ion battery cathode material. However, in practical applications, silicon produces distinct volume expansion when removing/embedding lithium, leading to a rapid decline in battery capacity, which hinders the commercialization of Si cathode. In view of the above problems, Si nanoparticles are compounded with a variety of carbon materials and Si/C anode materials are prepared in this paper. Through structural design, the electrode conductivity increases and the volume change level during charge and discharge reduces.The research contents and results of this paper are as follows:(1)The Si/C composite material (M-Si/C) is synthesized by one-step hydrothermal method. The outer layer of Si particles in the composite material has a structurally complete carbon coating. The carbon material could significantly reduces the internal stress of Si under the condition of volume expansion and avoids its contact with electrolyte. At the current density of 0.2A·g−1, the specific capacity is 510mAh·g−1 after 100 cycles, and the capacity retention rate is above 80% after 200 cycles.(2)The composite structure of Si/C porous microspheres (P-Si/C) is obtained by one-step hydrothermal method, in which the Si nanoparticles are evenly embedded in the carbon spheres like pomegranate seeds. At the current density of 0.5A·g−1, the specific capacity is still 530mAh·g−1after 100 cycles, with A capacity retention rate of 79.3%. Even if the current density increases to 1A·g−1, the reversible specific capacity could be reached to 420mAh·g−1 .(3)Using filter paper as carbon skeleton, Si/C composites (F/G/Si) with three-dimensional structure are prepared by the polymerization of glucose. At the current density of 0.2A·g-1, the circulating capacity could reach 422mAh·g−1embedded lithium capacity after 100 cycles, and the capacity could still be stable after 50 cycles.Key words Silicon carbon material; Electrochemical properties; Microstructure;Multiplier performance; Specific capacity of charge and discharge目 录摘要 (I)Abstract (III)第1章绪论 (1)1.1 引言 (1)1.2 锂离子电池介绍 (1)1.2.1 锂离子电池的工作原理 (1)1.2.2 锂离子电池的特点 (2)1.3 锂离子电池电极材料 (3)1.3.1 正极材料 (3)1.3.2 负极材料 (4)1.4 硅基材料 (6)1.4.1 硅纳米化 (6)1.4.2 硅氧化物 (7)1.4.3 硅基合金材料 (7)1.4.4 硅碳复合材料 (8)1.5 课题研究内容 (10)第2章实验原料及方法 (13)2.1 实验药品 (13)2.2 实验仪器 (13)2.3 材料表征 (14)2.4 材料电化学性能测试 (15)第3章DMF溶液对制备M-Si/C复合材料的性能影响 (17)3.1 M-Si/C复合材料制备 (17)3.2 M-Si/C复合材料结构表征 (17)3.3 M-Si/C复合材料电化学性能 (22)3.4 本章小结 (26)第4章石榴状结构P-Si/C微球的制备及其电化学性能研究 (29)4.1 P-Si/C复合材料制备 (29)4.2 P-Si/C复合材料结构表征 (29)4.3 P-Si/C复合材料电化学性能 (33)4.4 循环后的扫描电子显微镜测试结果分析 (36)4.5 本章小结 (36)第5章柔性电极F/G/Si复合材料的制备及其电化学性能研究 (37)5.1 柔性电极F/G/Si复合材料制备 (37)5.2 柔性电极F/G/Si复合材料表征 (37)5.3 柔性电极F/G/Si复合材料电化学性能 (42)5.4 本章小结 (46)结论 (48)参考文献 (50)致谢 (58)第1章绪论1.1 引言随着经济发展和能源需求的不断高涨,加剧了人们对化石燃料的过度使用。

纳米硅碳负极材料的粒度标准

纳米硅碳负极材料的粒度标准

纳米硅碳负极材料的粒度标准
纳米硅碳负极材料的粒度标准因应用领域和产品类型
而异。

一般来说,纳米硅碳负极材料的粒度范围在50-500nm 之间,但具体数值需要根据产品的应用场景和性能要求进行选择和调整。

在锂离子电池领域,纳米硅碳负极材料需要与正极材料相匹配,因此需要控制粒度大小和分布,以获得更好的电化学性能。

一般来说,较小的粒度能够提高材料的比表面积和反应活性,但过小的粒度可能导致材料粉化、易团聚等问题。

因此,纳米硅碳负极材料的粒度需要在保证电化学性能的同时,兼顾生产工艺和稳定性要求。

此外,不同类型和用途的纳米硅碳负极材料也有不同的粒度标准。

例如,一些硅碳复合材料需要将硅纳米颗粒分散在碳基质中,因此需要控制硅颗粒的大小和分布;而一些氧化亚硅碳复合材料则需要控制氧化亚硅纳米颗粒的大小和
分布。

总之,纳米硅碳负极材料的粒度标准需要根据具体的应用场景和性能要求进行选择和调整,以保证材料的性能和稳定性。

硅碳负极研究发展现状

硅碳负极研究发展现状

(姜玉珍山东青岛青岛华世洁环保科技有限公司)锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。

特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。

负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。

未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。

硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。

然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。

另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。

针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。

1、硅碳负极目前存在的主要问题在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。

造成首次放电效率低。

随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。

此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。

针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。

2、硅碳负极制备方法、静电纺丝吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。

其过程为:将PVP溶于乙醇制备L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。

纳米硅颗粒负极材料制备及性能分析

纳米硅颗粒负极材料制备及性能分析

纳米硅颗粒负极材料制备及性能分析纳米硅颗粒负极材料是一种新型的锂离子电池负极材料,具有高比容量、高能量密度、长循环寿命等特点,因此被广泛应用于电动汽车、智能手机等领域。

本文将介绍纳米硅颗粒负极材料的制备方法以及其性能分析。

一、纳米硅颗粒负极材料的制备方法1、溶胶凝胶法此法通常利用硅、硅烷(SiH4)或硅乙烷(SiH6)等为原料,将其溶于合适的溶剂(如乙醇、水等)中形成溶液,加入适量的催化剂(如HCl、NH3等),形成溶胶悬浮液。

将溶胶悬浮液放入恒温干燥箱中干燥,形成硅凝胶。

随后,将硅凝胶与适量的碳源(如蔗糖、麦芽糖等)一起放入炉中,在惰性气体(N2或Ar)下热解得到硅碳复合材料。

最后,将硅碳复合材料进行球磨处理,得到具有纳米级粒径的纳米硅颗粒。

2、高温焙烧法此法将硅粉末或硅源与适量的碳源混合均匀,然后在高温下热解制备纳米硅颗粒。

焙烧温度一般在1000℃左右,焙烧过程中碳源会发生氧化反应,生成CO和CO2,从而使硅粉末与碳源之间的反应进行下去。

最终得到纳米硅颗粒。

3、机械球磨法此法将硅粉末与碳源混合后放入球磨机中,进行机械球磨、振荡处理,反应生成纳米硅颗粒。

在球磨过程中,硅和碳源颗粒之间发生反应,形成硅碳化物,然后再通过球磨机的振荡作用,使硅碳化物颗粒分解成纳米硅颗粒。

二、纳米硅颗粒负极材料的性能分析1、高比容量纳米硅颗粒负极材料具有高比容量的特点,主要是由于纳米硅颗粒具有较大的比表面积。

在锂离子电池充放电过程中,锂离子可以在纳米硅颗粒表面和内部进行嵌入和脱嵌反应,从而实现高比容量。

2、高能量密度纳米硅颗粒负极材料可以实现高能量密度的储存,主要是由于利用纳米硅颗粒的高比容量和高放电电位进行锂离子的储存。

锂离子在纳米硅颗粒表面和内部进行嵌入和脱嵌反应,从而释放出较高的电压和电流,实现高能量密度的储存。

3、长循环寿命纳米硅颗粒负极材料具有较长的循环寿命,主要是由于其较高的充放电比容量和体积稳定性。

纳米硅颗粒可以在锂离子电池的充放电循环中保持稳定的体积和形态,从而不影响锂离子的传输和反应。

纳米硅碳负极材料

纳米硅碳负极材料

纳米硅碳负极材料纳米硅碳材料是一种新型的负极材料,可以用于锂离子电池和其他能源储存设备中。

它的独特结构和化学性质使其具有良好的电化学性能和储能能力。

在本文中,我将详细介绍纳米硅碳材料的特点、制备方法、性能以及它在能源储存领域的应用。

纳米硅碳材料与传统的碳负极材料相比,具有更高的比容量和更低的循环稳定性。

这是由于硅和碳的协同作用,硅可以嵌入碳纳米结构中,增加了材料的储锂能力,同时碳可以充当导电网络的作用,提高了电子传导性能。

此外,纳米硅碳材料具有较低的体积膨胀率,更好的电化学稳定性和更长的循环寿命。

制备纳米硅碳材料的方法有很多种,包括机械球磨、溶液浸渍、化学气相沉积等。

机械球磨是一种简单有效的制备方法,可以通过球磨硅粉和碳粉来实现硅和碳的混合。

溶液浸渍法是将硅和碳纳米颗粒分散在溶液中,然后通过干燥和烧结来形成纳米硅碳材料。

化学气相沉积是一种高温反应方法,通过控制反应温度、反应气氛和反应时间等参数来合成纳米硅碳材料。

纳米硅碳材料具有优异的性能,包括高比能量、高循环稳定性和良好的倍率性能。

它的高比能量使其成为理想的负极材料,可以实现高能量密度的电池设计。

高循环稳定性意味着纳米硅碳材料在长期循环充放电过程中能够保持稳定的电化学性能。

良好的倍率性能意味着纳米硅碳材料可以在高速充放电条件下保持稳定的性能。

纳米硅碳材料在能源储存领域有广泛的应用。

它可以用于锂离子电池、锂硫电池和钠离子电池等储能设备中。

在锂离子电池中,纳米硅碳材料可以作为负极材料,提高电池的储能能力。

在锂硫电池中,纳米硅碳材料可以作为硫的载体,提高硫的储能能力。

在钠离子电池中,纳米硅碳材料可以替代锂离子电池中的锂材料,实现可持续的储能。

总之,纳米硅碳材料是一种具有潜力的负极材料,可以用于各种类型的能源储存设备中。

它的独特结构和化学性质使其具有良好的电化学性能和储能能力。

随着材料制备技术的发展和理解的深入,纳米硅碳材料有望在能源储存领域发挥更重要的作用。

纳米硅碳负极材料

纳米硅碳负极材料

纳米硅碳负极材料纳米硅碳负极材料是一种新型的电池材料,具有许多优异的特性和潜在的应用前景。

本文将从材料的制备方法、性能特点以及应用领域等方面进行探讨。

让我们了解一下纳米硅碳负极材料是如何制备的。

纳米硅碳负极材料通常采用化学气相沉积法制备,即通过在高温下将硅和碳源气体反应生成纳米硅碳颗粒。

这种方法具有制备工艺简单、成本低廉的优势,并且可以控制颗粒的尺寸和形貌,从而调控材料的性能。

纳米硅碳负极材料具有许多优异的性能特点。

首先,纳米硅碳颗粒具有较高的比表面积,这意味着材料有更多的活性表面与电解液接触,有利于电荷传输和离子扩散,从而提高了电池的能量密度和功率密度。

此外,纳米硅碳材料具有较好的导电性能,可以有效减小电池的内阻,提高充放电效率。

此外,这种材料还具有较高的循环稳定性和较长的使用寿命,能够保持较高的容量保持率,不易发生容量衰减。

纳米硅碳负极材料在锂离子电池领域具有广阔的应用前景。

由于其优异的性能特点,纳米硅碳材料可以用于制备高性能的锂离子电池负极。

相比传统的石墨负极材料,纳米硅碳材料具有更高的容量和更好的循环稳定性,可以大大提高电池的能量密度和循环寿命。

此外,纳米硅碳材料还可以用于制备柔性电池,这种电池具有较高的柔韧性和可弯曲性,可以应用于柔性显示器、智能穿戴设备等领域。

除了锂离子电池,纳米硅碳负极材料还可以应用于其他能源存储领域。

例如,纳米硅碳材料可以用于超级电容器的负极材料,具有较高的比容量和超快的充放电速度,能够满足高能量密度和高功率密度的需求。

此外,纳米硅碳材料还可以用于储能电池、钠离子电池等领域,拓展了材料的应用范围。

纳米硅碳负极材料具有制备简单、性能优异和潜在的广泛应用前景。

随着科学技术的不断发展,纳米硅碳材料在能源存储领域的应用将会得到进一步的推广和发展。

相信在不久的将来,纳米硅碳负极材料将成为电池领域的研究热点,并为能源存储技术的发展做出重要贡献。

清华大学硅碳负极方面的研究

清华大学硅碳负极方面的研究

清华大学关于硅碳复合负极材料方面的专利汇总清华大学化学工程系魏飞教授关于硅碳负极方面的专利在soopat或佰腾专利搜索只能检索到一篇(201510395054.7),且还未授权,其专利大致情况如下所示:该硅碳复合材料是一种核壳结构,其中以硅或其氧化物为核,石墨烯为壳的亚/微米颗粒,所得材料的粒径尺寸在0.05-15um之间,石墨烯的重量占核壳结构颗粒总重量的1-8wt%,且核壳结构的比表面积等于或小于原始硅或其氧化物颗粒的比表面积。

制备的复合材料宏观形貌为球形、棒状、片状、不规则多面体形状。

其制备方法包括如下步骤:1)在常温下,将含碳粘合剂(如直连、直链淀粉、葡萄糖、多羟基醇)溶于去离子水中,持续搅拌并缓慢加热至50-100℃,保持恒温1-6小时,得到粘性液体;2)将粒径为0.1um-10um的硅或其氧化物颗粒加入到步骤1)所制备的粘性液体中,搅拌得到固含量为30-60wt%悬浊液浆料;3)将步骤2)得到的浆料进行喷雾造粒,得到粒径分布在50-300um之间的多孔球形颗粒,即二级结构颗粒;4)将步骤3)得到的二级结构颗粒填充到流化床中,在惰性气氛中加热至反应温度700-1000℃,然后通入碳源(如甲烷、乙烷、乙烯、乙炔、甲苯、苯等),惰性气体和碳源的总空速为500-900 h-1,保持碳源与惰性气体的体积比在0.5-2之间,进行化学气相沉积,反应时间为20-60min,得到粒径尺寸为0.05-15um的石墨烯包覆的硅或其氧化物核壳结构。

清华大学材料系黄正宏教授有一篇关于硅碳负极方面的专利(200910082897.6)。

该专利的大致情况如下所示。

该复合负极材料由基体和均匀分布其中的颗粒组成,其中颗粒是一种具有纳米尺寸的核壳结构颗粒;所述纳米颗粒的核为纳米硅,壳为有机物热解得到的无定型碳,所述的基体是高压静电电纺制备的有机纤维热解碳化后得到的,为不规则多孔洞的无定型碳网络结构。

其大致步骤如下:1)在室温90℃的水浴中,利用机械搅拌或磁力搅拌,将无定型碳的有机前驱体均匀溶于溶剂中,形成透明的溶液;2)将纳米硅颗粒均匀分散于与步骤1)中的相同的溶剂中后,再与步骤1)中的溶液混合搅拌,使得纳米硅颗粒均匀地分布于有机前驱体中;3)将步骤2)中所得的悬浊液进行高压静电电纺,得到的产物在惰性气体保护下碳化,以1℃/min速度升温至溶剂沸点温度,保温0.5-3小时,使得溶剂完全挥发;继续以5-10℃/min速度升温至400-1000℃,保温0.5-5小时,随炉冷却,使得纳米硅粉被无定形碳包覆,且均匀分散于碳基体中。

2023年硅碳负极材料行业市场环境分析

2023年硅碳负极材料行业市场环境分析

2023年硅碳负极材料行业市场环境分析硅碳负极材料是锂离子电池中的关键材料之一,其主要作用是储存锂离子。

随着电动汽车、储能等领域的快速发展,硅碳负极材料的市场需求也在快速增长。

本文将从市场环境、行业发展现状、竞争格局、未来发展趋势等几个方面,对硅碳负极材料行业做出详细分析。

一、市场环境分析1. 国家政策支持:中国政府提出了“中国制造2025”,其中主要支持新能源汽车、可再生能源等领域的发展,作为锂离子电池重要组成部分的硅碳负极材料受到政策的大力支持。

2. 市场需求增长:随着电动汽车、储能等领域的快速发展,对锂电池的需求越来越大,市场对硅碳负极材料的需求量也在不断增长。

3. 技术进步和成本下降:随着技术的不断进步和成本的不断下降,硅碳负极材料的性能不断提高,价格不断下降,使其在市场上更有竞争力。

二、行业发展现状目前,全球硅碳负极材料市场的主要供应商有日本的Shin-Etsu Chemical、中国台湾的NEI Corporation等,其中以日本的Shin-Etsu Chemical占据了市场份额的80%以上。

国内企业主要有东方财富、浙江知识产权、南京智道、盾安环保等,但市场占比较小。

目前,中国硅碳负极材料市场的发展还比较初级,产品性能和质量还有待提高,市场竞争还比较激烈。

三、竞争格局硅碳负极材料行业市场的厂商主要是Japan Shin-Etsu Chemical、NEI Corporation、滨化工产业、JSR、Arkema等,这些企业在硅碳负极材料领域技术实力和市场份额上处于较高水平。

在国内市场,东方财富、浙江知识产权、南京智道等在硅碳负极材料生产上较为活跃。

但是,从整体市场份额来看,中国产的硅碳负极材料占比较小,市场集中度不高,还有较大发展空间。

四、未来发展趋势1. 技术不断进步:硅碳负极材料是锂电池的重要组成部分之一,随着技术的不断进步,硅碳负极材料的性能将会不断提高。

2. 市场迎来快速增长:随着电动汽车、储能领域的快速发展,硅碳负极材料的市场需求也将会迎来快速增长。

硅碳负极材料研究报告

硅碳负极材料研究报告

硅碳负极材料研究报告
硅碳负极材料是一种新型的负极材料,在锂离子电池领域有着广泛的应用前景。

该材料具有较高的比容量、较低的电压平台、良好的循环性能和较长的循环寿命等优点,可以作为传统的石墨负极材料的替代品。

硅碳负极材料的制备方法主要有机热分解法、高能球磨法、化学气相沉积法等。

其中,有机热分解法是硅碳负极材料制备的主要方法,该方法利用有机物质作为硅和碳的源材料,在高温条件下裂解和聚合反应生成硅碳材料。

硅碳负极材料在锂离子电池中的应用主要受限于其可逆容量和循环稳定性。

为了提高其性能,研究人员采取了多种策略,如掺杂、包覆、结构设计等。

掺杂可以提高硅碳材料的导电性和机械性能,减轻材料与锂离子的反应,进而提高可逆容量和循环稳定性。

包覆可以有效地防止硅碳材料与电解液的反应,减轻膨胀压力,进一步提高了循环寿命。

结构设计主要通过合理设计硅碳材料的孔隙度和孔径分布,提供更大的表面积和更快的离子传输,促进锂离子的扩散和嵌入。

总的来说,硅碳负极材料具有广泛的应用前景,但是还需要进一步的研究来解决其循环性能和循环稳定性问题。

锂离子电池硅碳复合负极材料的研究

锂离子电池硅碳复合负极材料的研究

锂离子电池硅碳复合负极材料的研究王英;孙文;唐仁衡;肖方明;黄玲【摘要】以商品化纳米硅粉和沥青为原料,采用喷雾干燥热解法制得Si@C复合物.将Si@C复合物和人造石墨混合,制得Si@C/G硅碳复合材料作为锂离子电池的负极材料.借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试等方法,对Si@C复合物和Si@C/G复合材料的结构、形貌和电化学性能进行表征.结果表明,当硅碳复合材料中Si@C复合物和石墨的质量比为15∶85时,在100 mA/g的恒电流下,首次放电比容量为695.4 mAh/g,首次库仑效率为86.1%,循环80周后容量仍有596.6mAh/g.【期刊名称】《材料研究与应用》【年(卷),期】2018(012)003【总页数】6页(P161-166)【关键词】锂离子电池;硅碳复合负极材料;纳米硅;人造石墨;碳包覆【作者】王英;孙文;唐仁衡;肖方明;黄玲【作者单位】广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;华南理工大学材料科学与工程学院,广东广州510641;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650【正文语种】中文【中图分类】TM912 9;TM531为了不断提升新能源汽车的续航里程,近年来对锂离子电池的能量密度要求越来越高.到2020年,我国对锂离子电池电芯能量密度的期望值将达到350 Wh/kg.由于现有的商用负极材料石墨难以满足上述要求,因此,开发新型高容量负极材料成为研究热点.硅的理论嵌锂容量高达4200 mAh/g,且具有脱锂电位低、资源丰富、成本低和环境友好等优势,成为综合性能最具发展潜力的新型负极材料[1-5].硅材料虽然储锂容量较大,但锂离子在嵌入硅过程中会引起体积膨胀(300%),易造成材料结构的崩塌和活性物质的脱落,使循环稳定性大大下降.同时,这种体积效应也使电极表面难以形成稳定的固体电解质界面膜(SEI膜),导致不断有硅裸露到电解液中.针对硅负极材料循环稳定性的问题,近年来,研究人员将硅进行纳米化处理,即硅单质材料体系的改性.通过制备各种纳米硅材料来缓解硅嵌锂产生的体积膨胀.研究表明[6-7],当硅颗粒尺寸小于单个硅纳米颗粒嵌锂过程中的破碎临界值,纳米硅颗粒在参与电化学反应过程所产生的应力能不足以使得电极表面生成裂纹,从而避免颗粒的破碎粉化.但是,纳米硅的高活性表面则会使电极发生较多的副反应,造成较高的不可逆容量损失.因此,除了硅纳米化改性技术外,还应通过硅与碳材料的二元或多元复合来制备复合材料,即建立硅复合材料体系[8-12].基本原理是利用第二相的机械性能和导电性来抑制硅的体积效应和增强硅的导电性,减少电极副反应的发生,并防止嵌脱锂过程中纳米颗粒的团聚.李纯莉[13]先采用酸浸蚀方法从铝硅合金得到纳米硅,然后将纳米硅与石墨烯进行复合制得石墨烯/多孔硅复合负极材料.复合结构中的石墨烯片或均匀分散在多孔纳米硅颗粒间,或包裹着小尺寸的纳米硅颗粒,有效改善了纳米硅的导电性和减缓多孔硅结构的衰变.用复合材料制成的电极在循环120周后,其放电比容量仍可达1843 mAh/g.Julien[14]利用激光化学沉积热解法(LCVP)制备出包覆1 nm厚度碳层的纳米非晶硅复合材料,经充放电循环后,极片厚度从循环前的12.6 μm到嵌脱锂300周后的14.9 μm,体积膨胀率仅18%,表现出良好的循环性能,所设计的核壳结构保持了材料结构和电极的稳定性.Zhuang[15]以纳米氧化镁为造孔剂,将纳米硅嵌入多孔碳中,制备的复合材料在循环40周后仍有1172 mAh/g的可逆容量,主要归功于多孔碳支架为纳米硅提供充足的空间以缓冲硅的体积变化.综上所述,采用硅纳米化和复合化相结合的方法制备电化学性能优异的硅碳复合材料是切实可行的.本文以纳米硅粉和沥青为原料,通过喷雾干燥热解法在纳米硅颗粒表面包覆一层无定形碳层制得Si@C复合物,将Si@C复合物和人造石墨颗粒混合可制得用于锂离子动力电池的Si@C/G复合负极材料.1 试验部分1.1 硅碳材料的制备以平均粒径80 nm硅粉、沥青为原料,按硅粉和沥青质量比为1∶1混合均匀,然后依次加入无水乙醇和去离子水搅拌,搅拌均匀后得到浆料,再经喷雾干燥制得Si@C前驱物(喷雾干燥设备进口温度180 ℃,出口温度110 ℃).将前驱物放入充有高纯氩气保护的管式炉内在1050 ℃保温3 h,然后冷却至室温,再研磨筛分,获得Si@C复合物.将Si@C复合物和人造石墨分别按质量比10∶90,15∶85,20∶80混合,制得硅碳复合负极材料Si@C/G,分别标记为样品a、样品b和样品c.1.2 硅碳材料的性能表征将活性物质(Si@C或Si@C/G)、导电乙炔黑和粘结剂(羧甲基纤维素钠CMC和丁苯橡胶SBR混合物,质量比3∶5)按质量比8∶1∶1混合,以去离子水为溶剂混合成浆料,然后将浆料均匀涂敷于铜箔基体上,充分干燥后制成正极.以金属锂片为负极,Celgard 2500型聚丙烯多孔膜为隔膜,1 mol/L的LiPF6溶于碳酸乙烯酯(EC)、碳酸甲基乙基酯(EMC)和碳酸二甲酯(DMC)(体积比1∶1∶1)为电解液,在真空手套箱中组装成2032型扣式电池.采用蓝电CT2001A二次电池性能检测装置对电池进行充放电性能测试,测试电流密度为100 mA/g,电压范围为0.01~1.5 V.采用荷兰Philips X'pert MPD diffractometer XRD衍射仪(20 kV,40 mA,Cu Kα)分析样品结构,扫描角度为10°~90°,步长为0.02°/s;用德国蔡司公司Zeiss supra 40扫描电镜(SEM)和日本精工JOEL JSM-2100F透射电镜(TEM)观察复合材料的微观形貌.2 试验结果与讨论2.1 Si@C复合物的性能图1为纳米硅和Si@C复合物的XRD谱图.由图1可知,Si和Si@C均在位于2θ为28.43°,47.29°,56.13°,69.13°,76.45°,88.07°左右处出现Si峰,分别对应硅的晶面(111),(220),(311),(400),(331),(422).包覆碳前后硅特征峰的位置基本一致.图谱中2θ为25°左右处有一个宽化的弥散峰,没有观察到其他明显的特征峰,表明沥青热解生成的碳为无定形态.图1 材料的XRD图Fig.1 XRD patterns of the materials图2为 Si@C复合物的SEM和TEM及Si材料SEM图.由图2(a~e)给出的Si@C 复合物的SEM和TEM图可以清晰地看出,纳米硅颗粒表面包覆着一层稳定致密的碳层,硅颗粒通过包覆碳层连接成的导电性骨架形成良好的电接触.多个这样的一次小颗粒组成较大的二次颗粒,如图2(b)、2(c)和2(e)所示.Si@C二次颗粒尺寸大小均匀,分散性较好.图2(f)为纳米硅的SEM图,与图2(c)相比,发现通过喷雾干燥热解可以有效地在纳米硅表面包覆碳膜.图2 Si@C复合物的SEM和TEM图及Si材料SEM图(a),(b),(c)Si@C复合物的SEM;(d),(e) Si@C复合物的TEM;(f) Si材料的SEMFig.2SEM(a,b,c) ,TEM(d,e) images of Si@C composites and image of SEM(f) of Si 图3 Si和Si@C复合物的电化学性能 (a) 首次充放电曲线;(b)循环性能曲线Fig.3 The electrochemical performance of Si@C composites and Si (a) the first charge/discharge curves;(b) the cycling performance curves将Si和Si@C复合物分别组装模拟电池进行充放电循环测试,其电化学性能如图3所示.图3(a)为电池的首次充放电曲线.由图3(a)可知,两种硅材料在首次放电曲线0.9 V左右处均出现倾斜下降的一个小平台,对应电解液浸润活性物质时,在活性物质颗粒表面形成SEI膜的过程.包覆Si@C复合物的平台电压略低于未包覆Si 材料,说明包碳可以促进电极表面SEI膜的生成.首次放电曲线上较长的电压平台是典型的晶体硅嵌锂电压平台.与Si材料的嵌锂平台电压相比,Si@C复合物的嵌锂平台低,主要原因是碳包覆层增强了Si@C复合物的表面电性,降低了电极表面极化.图3(b)为电池的循环曲线.由图3(b)可知,Si@C的首次循环放电比容量为1706.4 mAh/g,首次库仑效率为86.5%.循环80周后,容量仍有731.2 mAh/g,容量保持率达到42.9%;纳米硅的首次放电比容量为2915.8 mAh/g,首次库伦效率为79.4%.经80周循环后,放电比容量仅有66.6 mAh/g.与纯硅材料相比,Si@C复合物的库仑效率和循环性能明显提高.将硅颗粒均匀分散于碳基体获得具有包覆型的Si@C复合物,热解碳在硅颗粒表面形成的一层无定形碳膜具有缓冲硅体积效应和增强复合材料电子导电率的作用,可避免内部硅颗粒与电解液直接接触,形成完整的SEI膜,在一定程度上改善了复合材料电极的充放电性能.2.2 Si@C/G复合材料的性能将Si@C复合物直接应用于锂离子动力电池,循环稳定性仍然难以达到使用要求.基于石墨的高导电性,在牺牲一定放电容量的前提下,将Si@C复合物和石墨混合后制得Si@C/G复合材料,可进一步提升负极材料的充放电性能.图4(a)为Si@C/G复合材料样品a,b,c的首次充放电曲线.由图4(a)可知,首次放电曲线在0~0.2 V之间的一个明显的放电平台与锂离子嵌入活性物质硅和石墨的过程相对应,由于两种物质的嵌锂电位较相近,曲线上仅显示出一个平台.首次充电曲线上位于0.15 V,0.45V左右的两个电压平台则分别对应着锂离子从石墨、硅中脱出的过程.随着样品a,b,c中Si@C复合物含量的增加,充电平台延长,复合材料的比容量增大.图4 Si@C/G复合材料的电化学性能(a)首次充放电曲线;(b)循环性能曲线Fig.4 The electrochemical performance of Si@C/G composites (a) the first charge/discharge curves;(b) the cycling performance curves图4(b)为Si@C/G复合材料a,b,c三种样品的循环性能曲线.由图4(b)可知,三种复合材料首次放电比容量分别为559.5 mAh/g,695.4 mAh/g和779 mAh/g,首次库仑效率分别为86.8%,86.1%,86.2%.循环80周后,放电比容量分别为497 mAh/g,596.6 mAh/g和627.1 mAh/g,容量保持率分别为88.8%,85.8%和80.5%,平均每周容量衰减率分别仅为0.14%,0.18%和0.24%.三种复合材料表现出良好的循环稳定性,主要是由于纳米硅颗粒的表面包覆碳层和石墨有效缓解了硅材料在锂化过程中的体积膨胀.特别是石墨基体在硅颗粒膨胀时能够承受较大的弹性形变,使嵌锂过程中的残余应力较小.同时,石墨的良好导电性和容量特性也显著改善了Si@C复合物的综合电化学性能.从平衡放电容量、首次库仑效率和循环稳定性的角度来看,Si@C复合物和石墨的质量比为15∶85(样品b)的硅碳复合材料的电化学性能稍优.该复合材料的XRD图如图5所示.图5 复合材料样品b的XRD图Fig.5 XRD patterns of sample b从图5可以看出,在2θ为26.56°,44.39°和54.54°处出现石墨特征峰.复合材料的Si@C复合物颗粒均匀地附着在石墨表面,分散性较好,见图6.图6 复合材料样品b不同放大倍数的SEM图Fig.6 SEM images of sample b3 结论通过喷雾干燥热解的方法制备核壳型Si@C复合物,将Si@C复合物和石墨混合制得Si@C/G复合材料,可作为锂离子动力电池的负极材料.当Si@C/G复合材料中Si@C复合物和石墨的质量比为15∶85时,在100 mA/g的恒电流下,首次放电比容量为695.4 mAh/g,首次库仑效率为86.1%.循环80周后容量仍有596.6 mAh/g,容量保持率达到85.8%.【相关文献】[1] 王静,陈志柠,郭玉忠,等.有序介孔硅/碳复合结构负极材料的制备与电化学性能研究[J].无机材料学报,2018,33(3):313-319.[2] 罗金华,倪伟.三维纳米硅/多孔碳的储锂性能[J].电池,2017,47(6):328-331.[3] 白雪君,刘婵,侯敏,等.锂离子电池硅/碳纳米管/石墨烯自支撑负极材料研究[J].无机材料学报,2017,32(7):705-712.[4] PAIREAU C,JOUANNEAU S,AMMAR M R,et al. Si/C composites prepared by spary drying from cross-linked polyvinyl alcohol as Li-ion batteries anodes[J]. Electrochimica Acta,2015,174:361-368[5] LAI Jun,GUO Hua-jun,LI Xiang-qun,et al.Silicon/flake graphite/carbon anode materials prepared with different dispersants by spray-drying method for lithium ion batteries[J].Trans Nonferrous Met Soc China,2013,23:1413-1420.[6] LIU Xiaohua,LI Zhong,SHAN Huang,et al.Size-dependent fracture of silicon nanoparticle during lithiation [J].ACS Nano,2012,6(2):1522-1531.[7] LI Hong,HUANG Xuejie,CHEN Liquan,et al.A high capacity nano-Si composite anode material for lithium rechargeable batteries[J].Electrochemical and solid-state letters,1999,2(11):547-549.[8] ZHOU Yu,GUO Huajun,WANG Zhixing,et al.Improved electrochemical performance of Si/C material based on the interface stability[J].Journal of Alloys and Compounds,2017,725:1304-1312.[9] CHEN Hedong,WANG Zhoulu,HOU Xianhua,et al.Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode[J].Electrochimica Acta,2017,249:113-121.[10] LI Xiaotian,YANG Dandan,HOU Xiaocun,et al.Scalable preparation of mesoporous silicon@C/graphite hybrid as stable anodes for lithium-ion batteries[J].Journal of Alloys and Compounds,2017,728:1-9.[11] YUN Qinbai,QIN Xianying,HE Yanbing,et al.Micron-sized spherical Si/C hybrids assembled via Water/Oil system for high-performance lithium ionbattery[J].Electrochimica Acta,2016,211:982-988.[12] 杨昱霖,高铭,梁静爽,等.硅纳米粒子聚苯胺包覆改性及其嵌/脱锂电化学性能[J].无机化学学报,2017,33(12):2262-2270.[13] 李纯莉,杨广,张平,等.石墨烯/多孔纳米硅负极的电化学性能[J].电化学,2015,21(6):572-576.[14] SOURIC J,BORDE A,BOULINEAU A,et al.Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries[J].Journal of Power Sources,2016,328:527-535.[15] ZHUANG Xiangyang,ZHANG Yao,HE Lingxiao,et al.Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ionbatteries[J].Electrochimica Acta,2017,249:166-172.。

硅碳负极 硅基负极

硅碳负极 硅基负极

硅碳负极硅基负极全文共四篇示例,供读者参考第一篇示例:近年来,随着电动汽车和储能设备市场的迅速发展,对高性能、高容量、高循环稳定性的锂离子电池材料的需求也日益增加。

在这个背景下,硅碳负极材料以其优异的性能逐渐受到人们的关注。

与传统的石墨负极材料相比,硼碳负极具有更高的理论比容量和更优异的循环稳定性,是未来电池领域的一个重要研究方向。

硅碳负极材料是由硅和碳组成的混合物,其优势主要有两点:一是硅的高比容量,二是碳材料对硅的体积膨胀具有很好的抑制作用。

硅的理论比容量为4200mAh/g,是石墨材料的10倍以上,这意味着硅碳负极材料可以提供更高的电池容量。

硅在锂离子电池充放电过程中会发生体积膨胀,导致电池循环性能下降,而碳材料具有较好的导电性和结构稳定性,可以有效缓解硅的体积膨胀问题,提高电池的循环寿命。

硅碳负极材料也存在一些问题,如低电导率、氧化、机械破坏等。

为了克服这些问题,研究人员不断探索改进硅碳负极材料的方法。

一种常用的方法是将硅碳负极材料与其他导电剂或包覆剂组合使用,以提高材料的导电性和稳定性。

一些新型的硅碳负极材料也在逐渐涌现,如硅纳米颗粒、硅纳米线、硅薄膜等,这些材料在提高电池性能的同时也降低了成本。

除了硅碳负极材料外,硅基负极材料也备受研究人员的关注。

硅基负极材料是由硅和其他合金元素组成的混合物,其优势在于硅与其他合金元素的相互配合,可以提高电池的循环稳定性和安全性。

硅基负极材料通常采用合金形式存在,如硅锡合金、硅锗合金等,这些合金材料在循环过程中可以形成较为稳定的析出产物,有助于提高电池的循环寿命。

虽然硅碳负极材料和硅基负极材料在一定程度上可以提高电池性能,但它们仍然面临一些挑战,如体积膨胀、团簇化、界面问题等。

为了解决这些问题,研究人员正在不断探索新的材料设计和结构优化方法。

利用纳米技术制备高度结晶的硅碳负极材料,可以减少硅的体积膨胀,提高电池的稳定性;引入表面修饰剂或涂层材料也可以改善硅碳负极材料的电化学性能。

硅碳负极材料的最新研究进展

硅碳负极材料的最新研究进展

硅碳负极材料的最新研究进展硅碳负极材料是一种新型锂离子电池负极材料,由硅和碳组成。

与传统的石墨负极相比,硅碳负极材料具有更高的比容量和能量密度,可以显著提高电池的能量存储能力。

然而,由于硅在充放电过程中容易发生体积膨胀,导致电极的结构破坏和容量衰退,硅碳负极材料的应用受到了一定的限制。

因此,针对硅碳负极材料的研究一直在不断深入。

最新的研究进展之一是使用纳米多孔硅碳材料。

研究人员通过控制硅碳材料的孔隙结构和纳米尺度的颗粒,可以改善材料的机械稳定性和电化学性能。

此外,纳米多孔硅碳材料还具有较大的比表面积,可以提供更多的反应活性位点,加速离子和电子的传输速度,从而提高电池的循环稳定性和倍率性能。

另一项研究是开发碳包裹硅纳米颗粒。

研究人员利用碳材料包裹硅纳米颗粒,形成核-壳结构。

碳壳可以提供保护硅颗粒的作用,防止硅在充放电过程中膨胀,从而增加了材料的稳定性。

此外,碳壳还可以提供导电通道,促进离子和电子的传输,提高电极的性能。

这种碳包裹硅纳米颗粒的设计不仅可以提高硅的嵌入式容量,还可以减小体积膨胀引起的结构破坏。

另外一项重要的研究是探索硅碳合金作为负极材料。

硅碳合金具有丰富的嵌入式容量和较小的体积膨胀,可以作为良好的负极材料。

研究人员通过调控硅和碳的比例,控制硅碳合金的特性,以提高材料的稳定性和电化学性能。

此外,硅碳合金还可以通过合成纳米颗粒的形式,提高材料的反应活性和传输速度,从而增强电极的性能。

此外,还有一些研究专注于改善硅材料的结构和界面。

例如,利用纳米结构调控硅的形态,如纳米线、纳米球等,可以有效抑制硅的膨胀,提高电极的稳定性。

另一方面,通过界面修饰层的设计,如功能化聚合物涂层、氧化物涂层等,可以增强电极材料与电解液之间的相容性,抑制固体电解质界面的形成,提高电池性能和循环寿命。

总之,硅碳负极材料的研究正在不断推进,展现出巨大的应用潜力。

通过探索新的材料结构、界面设计和纳米尺度调控等策略,可以进一步提高硅碳负极材料的性能和循环稳定性,推动锂离子电池技术的发展。

碳硅负极材料

碳硅负极材料

碳硅负极材料随着电动汽车的兴起,电池技术的研究和发展也日益受到关注。

其中,负极材料的研究尤为重要,因为它直接影响着电池的性能和寿命。

目前,市面上最常用的负极材料是石墨,但随着电动汽车的普及,石墨的性能已经无法满足市场需求。

因此,人们开始研究和开发新的负极材料,其中碳硅材料被认为是最有前途的一种。

碳硅负极材料是由碳和硅组成的复合材料,它具有优异的电化学性能和机械性能,能够显著提高电池的能量密度和循环寿命。

碳硅材料的制备方法有很多种,包括溶胶凝胶法、高温热解法、化学气相沉积法等。

其中,溶胶凝胶法是目前应用最广泛的一种制备方法,它可以制备出高纯度、纳米级别的碳硅材料。

碳硅材料的优点主要体现在以下几个方面:一、高能量密度相比传统的石墨负极材料,碳硅材料具有更高的理论比容量和比能量密度。

这是因为硅的理论比容量是石墨的10倍以上,而硅和碳的复合材料能够充分利用硅的高容量特性,从而实现更高的能量密度。

二、长循环寿命石墨负极材料在充放电循环中会发生结构改变和容量衰减,导致循环寿命较短。

而碳硅材料具有较好的结构稳定性和容量保持能力,可以实现更长的循环寿命。

三、快速充电性能碳硅材料具有优异的电导率和离子传递性能,可以实现快速的充电和放电。

这对于电动汽车等需要快速充电的应用来说尤为重要。

四、环保可持续碳硅材料是由碳和硅组成的天然材料,与石墨等材料相比更为环保可持续。

同时,碳硅材料可以通过多种方法制备,具有较好的可控性和可扩展性。

然而,碳硅材料也存在一些问题和挑战。

首先,硅的体积膨胀率较大,在充放电循环中容易发生膨胀和收缩,导致材料的结构破坏和容量衰减。

其次,碳硅材料的制备成本较高,需要进一步降低成本。

此外,碳硅材料的应用还需要进一步研究和开发,以实现更好的性能和应用效果。

总之,碳硅负极材料是一种具有很高潜力的材料,可以显著提高电池的能量密度和循环寿命。

随着电动汽车等应用的不断发展,碳硅材料的研究和开发也将得到更多的关注和支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米硅碳负极材料研究报告
0引言
自1991年SONY公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。

近年来,随着新能源交通工具(如EV和HEV)的发展,对锂离子电池提出了更高的要求。

作为锂离子电池关键部分的负极材料需要具备在Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。

研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。

然而,这些新颖的材料,如Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌铿容量较高(Sn和Si的理论嵌铿容量分别为994mAh/g和4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。

因此,若将其进行商业化应用还需要解决许多问题。

锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。

在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。

同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电
源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景
1不同负极材料的特点评述
天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。

在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面SEI膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。

为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。

从成本和性能的综合考虑,目前土业界石墨改性主要使用碳包覆土艺处理。

商业化应用的改性天然石墨比容量为340~ 370 mA·h/g,首周库仑效率90%~93%,100% DOD循环寿命可达到1000次以上,基本可以满足消费类电子产品对小型电池的性能要求。

2硅碳负极材料应用前景
近年来,我国锂离子电池产业发展迅速,全球市场份额不断攀升,在大规模的锂离子电池产业投资的带动下,锂离子电池负极材料的需求不断上升。

硅负极相比石墨负极具有更高的质量能量密度和体积能量密度,采用硅负极材料的锉离子电池的质量能量密度可以提升8%以上,体积能量密度可以提升10%以上,同时每千瓦时电池的成本可以下降至少3%,因此硅负极材料将具有非常广阔的应用前景。

新能源汽车产业是全球汽车产业的发展方向,也是我国重要的新兴战略产业之一,未来10年将迎来全球汽车产业向新能源汽车转型和升级的战略机遇。

新能源汽车主要包括纯电动汽车、插电式混合动力汽车及燃料电池汽车。

其中,纯电动汽车完全使用动力电池驱动,对电池容量需求最大,要求锉离子电池容量平均为30 kW /h。

自2010年起,动力类锉离子电池受益于技术提升和成本降低,逐渐替代镍锅,镍氢电池,成为新能源汽车广泛使用的动力电池。

根据中国汽车工业协会统计,我国新能源汽车产量由2011年的8000辆左右增至2015年的34万辆,而销量则由2011年的8000辆左右增至2015年的33万辆,年均复合增长率均超过150% o在各种利好政策的影响下,2014
年至今我国新能源汽车产业迎来了爆发性的增长,将带动上游锉离子电池及负极材料市场规模的大幅提升,而纳米硅碳负极材料高能量密度的特点将颇具竞争优势。

同时,航空航天、船舶舰艇等领域也对锉离子电池提出了更高能量密度和功率密度的要求,而纳米硅碳材料也是现阶段最具有开发潜力的锉离子电池负极材料,其应用前景非常广阔。

3常见硅碳负极材料分类
目前比较常见的硅碳负极材料主要有以下几类:①碳包覆纳米硅;②氧化亚硅碳复合材料;
③硅纳米线;④变氧型氧化亚硅碳复合材料;⑤无定形硅合金,碳包覆纳米硅是以纳米硅为原材料,表面包覆碳层的结构。

其中硅材料的粒径为30~200 nm,碳层多采用沥青高温碳化处理后形成的软碳。

其单体容量一般为400~2000 mAh/g,成本较低,首效较高,但电池膨胀较大,长循环稳定性较差。

氧化亚硅碳复合材料是以氧化亚硅材料为核,这里的氧化亚硅一般是采用化学气相沉积法将2 ~10 nm的硅颗粒均匀分布在Si0:的基质中。

其单体容量一般为1300~1700 mAh/g。

由于硅材料颗粒更小、分散更加均匀且材料结构更加致密稳定,该材料膨胀较低,拥有非常好的长循环稳定性。

但是由于Si0:首周与锉发生不可逆反应,该材料的首效一般较低,且成本较高,一定程度上限制了其在全电池中的使用。

硅纳米线指的是通过特殊的工艺,制备出严格控制长径比的圆柱状纳米硅颗粒,再在颗粒表面包覆碳层。

这种结构的材料比容量和首效都较高,但是需要配合成熟的预理化技术才能满足SEI膜对锉的不断消耗以确保长循环稳定性,工艺上存在一定难度。

变氧型碳氧化亚硅碳复合材料指的是在碳包覆氧化亚硅的基础上,通过对原材料的特殊处理,改变原材料中氧元素的含量,从而达到提升材料首效或者改善材料循环性能的目的。

其单体容量一般为1300~1700 mAh/g。

该材料同时可以具有较高的首效和较好的长循环稳定性,是目前比较高端的硅碳材料之一。

3物理研发进展
在碳包覆纳米硅方面,由早期的结构逐渐转变为更加致密的核桃结构,面向不同的市场需求开发出了低容量和高容量两个方向。

其中,低容量材料主要通过掺混更多的石墨来缓解应变、抑制反弹,同时结合液相分散工艺和表面包覆软碳等措施,使材料与当前商业化的电池体系相容性更高。

如400 mAh/g的碳包覆纳米硅材料,首周效率可达91 % , 600周后容量保持80%(负载3 mAh/cm2,反弹后压实1.32 g/cm2,图1)。

在高容量材料方面,由于硅含量较高,其体积膨胀所带来的后续循环稳定性问题较大,项目组则是从原材料出发,制备了一种粒径更小(D50<100nm)的掺杂纳米硅作为原材料[6],并在此基础上开发出使表面包覆更加均匀且更加适合于规模化生产的气相包覆工艺,提升材料性能。

如500 mAh/g的碳包覆纳米硅材料,首周效率可达88%, 500周后容量保持80%(负载3 mAh/cm2,反弹后压实1.21/cm2。

在氧化亚硅碳复合材料方面,已经有较为成熟的软碳包覆工艺,在固相条件下对原材料表面进行高温热处理,可以有效提高材料首效、增加导电性、缓解膨胀。

目前,项目组已经可以制备扎匕次稳定性较高的碳包覆氧化亚硅材料,并且在合作单位取得了较好的测试结果反馈。

如420 mAh/g的碳包覆氧化亚硅材料,匹配正极锉镍锰酸铝(NCA),制备成3 A/h规格为20650的钢壳电池,在1 C充电、lOC放电的测试条件下,循环500周容量保持80%(图3)。

另外,为了解决氧化亚硅碳复合材料存在的首效较低的问题,开发了一种对原材料的新型处理工艺,可以降低氧化亚硅材料中氧元素的含量。

4发展现状及存在的问题
纳米硅在硅基负极材料中得到了广泛的认可,但仍存在比表面积较大、库仑效率较低等问题。

针对这些问题,化学所项目组研发出一种低成本、绿色无污染、灵活可控的大规模硅基负极材料制备工艺,通过纳微复合结构降低了材料的比表面积,提高了材料的首次库仑效率;且将纳米硅均匀分散在三维导电碳网络中,提升了材料的导电性,使其具有较好的倍率性能。

然而,在高压实密度和高质量负载的情况下,要实现优异的电化学性能依然富有挑战。

随着消费电子类产品的更新换代、新能源汽车产业的蓬勃发展、智能电网的迅速推少’一以及其它技术领域对高性能电池的旺盛需求,离子电池产业必将在未来10~20年持续高速发展。

这为我国锂离子电池负极材料产业的发展提供了很大的机遇,但同时也提出了甲高的要求。

在电化学性能方面,其它负极材料都还存在着不同程度的不足。

硬碳材料首周效率低,成本较高;软碳材料首周不可逆容量大,体积能量密度低;高容量的硅基负极材料首周效率、循环性能、倍率性能都还有待提高,体积膨胀问题也需要解决。

虽然已经通过各种改性处理方法不断完善这些负极材料的制备土艺,并逐渐开发了适合这些材料的电池,但是这些新材料的产业化程度和技术成熟度与石墨类碳材料相比还有一定距离,针对材料在各类电池中应用时的电化学反应、储锉机制、热力学、动力学、稳定性、界面反应等基础科学问题的深入研究,综合性能指标改进、材料匹配性、服役与失效机制等关键技术攻关、寻找创新的综合技术解决方案是下一阶段的主要任务。

5总结与展望
随着电动汽车、消费电子以及储能等领域对锉离子电池能量密度、功率密度等要求的不断提高,纳米硅碳负极材料在未来一段较长时间内将拥有广阔的应用前景。

目前硅碳负极材料的总产量尚不足锉电负极材料的1%,不过随着各大负极企业的扩产和新企业的崛起,预计硅碳材料在2018年底会正式大批量进入市场。

尽管目前对于硅颗粒嵌锉膨胀、SEI膜不断破裂生长消耗锉源和电解液等问题还没有非常完美的解决方法,然而经过国内外各大型企业和科研院所的多年努力,部分纳米硅碳负极材料已得到电芯企业的认可。

中国科学院掌握了硅碳负极材料早期的核心专利,在产业化方面也不落人后,相信随着各种新思路的涌现以及各种工艺路线的不断优化,一定会将纳米硅碳负极材料的优势更加合理地发挥出来。

【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

相关文档
最新文档