高二必修一数学知识点幂函数的定义域和值域
高考数学知识点:幂函数知识点_知识点总结
高考数学知识点:幂函数知识点_知识点总结定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
高一数学知识点总结之幂函数
高一数学知识点总结之幂函数【】数学的学习不像文科要死记硬背,学好高中数学最主要的是要掌握好课本上的基本公式,熟练运用,才能解考试过程中的各种题型。
幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。
【高中数学】高中数学公式指导:幂函数的性质知识点_高中数学公式
【高中数学】高中数学公式指导:幂函数的性质知识点_高中数学
公式
定义:
y=x^A(A为常数)形式的函数,即以基为自变量、以幂为因变量、以指数为常数的函数称为幂函数。
定义域和值域:
当a为不同值时,幂函数的定义域不同如下:如果a为任意实数,则函数的定义域为
大于0的所有实数;如果a为负,那么X不能为0,但是此时,函数的定义域也必须是根[根据Q的奇偶性确定,即如果Q同时为偶数,X不能小于0,则函数的定义域为大于0的
所有实数;如果Q同时为奇数,则函数的定义域为不等于0的所有实数。
当X为不同值时,则幂函数的e值域不同如下:当x大于0时,当x小于0时,函数的值域总是大于0的实数,只有q是奇数,函数的取值范围是非零实数。
只有当a为正时,0才进入函数的值范
围
性质:
由于a的值是非零有理数,有必要在几种情况下讨论其特征:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果
q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整
数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次
的根号下而不能为负数,那么我们就可以知道:
排除了0和负两种可能性,即当x>0时,a可以是任意实数;。
高一数学必修1知识点总结:幂函数的性质考点
高一数学必修1知识点总结:幂函数的性质考点定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x;0,则a可以是任意实数;排除了为0这种可能,即对于x;0和x;0的所有实数,q 不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
高中数学幂函数知识点总结
高中数学幂函数知识点总结(一)定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p 次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
高考数学复习幂函数知识点归纳
高考数学复习幂函数知识点归纳形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数,以下是幂函数知识点归纳,期望对考生有关心。
幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须根[据q的奇偶性来确定,即假如同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情形如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:关于a的取值为非零有理数,有必要分成几种情形来讨论各自的特性:第一我们明白假如a=p/q,q和p差不多上整数,则x^(p/q)=q次根号(x 的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),明显x0,函数的定义域是(-,0)(0,+).因此能够看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就能够明白:排除了为0与负数两种可能,即关于x0,则a能够是任意实数;排除了为0这种可能,即关于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即关于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就能够得到当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须依照q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
幂函数的值域和定义域
幂函数的值域和定义域嘿,朋友们!今天咱来聊聊幂函数那点事儿。
你说幂函数像啥呢?就好比是一个魔法盒子,你给它不同的输入,它就能变出各种各样奇妙的结果。
这定义域啊,就像是这个魔法盒子能接受的原料范围,可不是啥都能往里扔的哟!比如说,最简单的幂函数 y=x^2,它的定义域那可就是全体实数啦。
就好像是一个超级大口袋,啥数都能装进去。
但有些幂函数就没这么“好说话”啦,可能只允许一部分数进去呢。
那值域呢,就是这个魔法盒子变出来的宝贝的范围。
有时候它变出的宝贝很有限,有时候又多得让你惊讶。
还是拿 y=x^2 来说,它的值域就是大于等于 0 的数,因为平方数可不会是负数呀,这就像是这个魔法盒子只能变出某种特定颜色的糖果一样。
咱再想想,如果幂函数是一场比赛,那定义域就是参赛选手的资格要求,值域就是比赛能产生的奖项范围。
你想想看,如果资格要求太苛刻,那能参加比赛的人就少了,产生的奖项可能也就少了;要是资格要求很宽松,那参赛的人多了,奖项的种类可能也就丰富了。
你说这幂函数是不是很有趣呀?就像生活中的很多事情一样,不同的条件会带来不同的结果。
比如说你去学一门手艺,那学习的内容和难度就是定义域,而你最后能达到的水平和收获就是值域。
再看看那些复杂点的幂函数,有时候它们的定义域和值域可没那么容易搞清楚呢!这就像是解一道很难的谜题,需要你仔细琢磨、认真思考。
但一旦你解开了,那种成就感可不是一般的强哟!咱可不能小瞧了幂函数,它们在数学的世界里可是有着重要的地位呢!它们就像一个个小精灵,在数学的森林里跳跃、舞动。
我们要学会和它们交朋友,了解它们的脾气和习性,这样才能更好地驾驭它们呀!所以啊,朋友们,好好去探索幂函数的奇妙世界吧!你会发现其中有无尽的乐趣和惊喜在等着你呢!这就是幂函数,一个充满魅力和神秘的数学领域。
高中数学必修1幂函数的基本性质
高中数学必修1幂函数的基本性质幂函数是数学中一种常见的函数类型,它的表达式形式为 $y = x^a$,其中 $x$ 是自变量,$a$ 是常量指数。
幂函数的基本性质有以下几个方面:1. 定义域和值域对于幂函数 $y = x^a$,当指数 $a$ 是有理数时,定义域为正实数集,即 $x > 0$;当指数 $a$ 是整数时,定义域为实数集;当指数 $a$ 是负有理数时,定义域为整个实数集。
其中,当指数 $a$ 是正偶数时,值域为正实数集,$y > 0$;当指数 $a$ 是正奇数时,值域为整个实数集;当指数 $a$ 是负偶数时,值域为正实数集,$y > 0$;当指数 $a$ 是负奇数时,值域为负实数集,$y < 0$。
2. 奇偶性对于幂函数 $y = x^a$,当指数 $a$ 是偶数时,函数为偶函数,即 $f(-x) = f(x)$;当指数 $a$ 是奇数时,函数为奇函数,即 $f(-x) = -f(x)$。
3. 单调性当指数 $a$ 是正数时,幂函数是递增函数,即 $a > 0, x_1 <x_2 \Rightarrow f(x_1) < f(x_2)$;当指数 $a$ 是负数时,幂函数是递减函数,即 $a < 0, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$。
4. 极值点和拐点当指数 $a$ 是正数时,幂函数不具有极值点和拐点;当指数$a$ 是负数时,幂函数具有极值点和拐点。
具体的极值点和拐点的位置需要根据具体的指数和函数图像来判断。
以上是关于高中数学必修1幂函数的基本性质的简要介绍。
幂函数作为数学中常见的函数类型,在数学的应用中具有重要的作用。
高中幂函数知识点
高中幂函数知识点高中幂函数学问点幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根[据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。
当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域幂函数性质:对于a的取值为非零有理数,有必要分成几种状况来商量各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=k,则x=1/(x^k),明显x≠0,函数的定义域是(∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排解了为0与负数两种可能,即对于x0,则a可以是任意实数;排解了为0这种可能,即对于x排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。
〔总结〕起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。
在x大于0时,函数的值域总是大于0的实数。
高考数学复习幂函数定义与性质知识点讲解
高考数学复习幂函数定义与性质知识点讲解根据同学们的需求,编辑老师整理了幂函数定义与性质知识点讲解,欢迎大家关注!掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是中华考试网为大家整理的幂函数公式大全,希望对广大朋友有所帮助。
定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x 为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
幂函数定义与性质知识点讲解是由编辑老师整理的高中生相关文章,希望对您有所帮助,更多信息查找请关注高考频道!。
高中数学函数知识点:关于幂函数的性质知识点
高中数学函数知识点:关于幂函数的性质知识点
高中数学函数知识点:关于幂函数的性质知识点【】高中如何复习一直都是考生们关注的话题,下面是查字典数学网的编辑为大家准备的高中数学函数知识点:关于幂函数的性质知识点
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x
大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a 为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
第 2 页。
高考数学知识点讲解:幂函数定义与性质
高考数学知识点讲解:幂函数定义与性质依照同学们的需求,查字典数学网编辑老师整理了2021高考数学幂函数知识点,欢迎大伙儿关注!把握幂函数的内部规律及本质是学好幂函数的关键所在,下面是中华考试网为大伙儿整理的幂函数公式大全,期望对宽敞朋友有所关心。
定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须根[据q的奇偶性来确定,即假如同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情形如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:关于a的取值为非零有理数,有必要分成几种情形来讨论各自的特性:第一我们明白假如a=p/q,q和p差不多上整数,则x^(p/q)=q次根号(x 的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),明显x0,函数的定义域是(-,0)(0,+).因此能够看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就能够明白:排除了为0与负数两种可能,即关于x0,则a能够是任意实数;排除了为0这种可能,即关于x0和x0的所有实数,q不能是偶数;单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
高一幂函数知识点笔记
高一幂函数知识点笔记幂函数是数学中的一种特殊函数形式,常见的形式是f(x) = x^a,其中a是实数,x是自变量,a为常数。
幂函数主要有以下几个重要知识点需要注意:一、定义域和值域:幂函数的定义域取决于指数a的值。
当a为正整数时,定义域为全体实数集R;当a为负整数时,定义域为R\{0},即除了0之外的所有实数;当a为零时,定义域为R\{0}。
幂函数的值域也取决于指数a的值,当a为奇数时,值域为R;当a为偶数时,当a>0时,值域为[0, +∞),当a<0时,值域为(0, +∞)。
二、对称性:当指数a为奇数时,幂函数以原点为中心具有对称性,即f(-x) = -f(x);当指数a为偶数时,幂函数以y轴为对称轴具有对称性,即f(-x) = f(x)。
三、奇偶性:当指数a为偶数时,幂函数为偶函数,即f(-x) = f(x);当指数a为奇数时,幂函数为奇函数,即f(-x) = -f(x)。
四、增减性:当指数a大于0时,幂函数在定义域上是递增的;当指数a小于0时,幂函数在定义域上是递减的。
五、图像:幂函数的图像特点取决于指数a的正负和大小。
当指数a为正数时,图像从原点出发,向右上方逐渐增长;当指数a为负数时,图像从原点出发,先向右下方增长,再接近于x轴。
指数a的绝对值越大,图像越接近于x轴。
当指数a为零时,幂函数的图像为一条常值函数。
六、特殊函数图像:当指数a为1时,幂函数的图像为一条斜率为1的直线;当指数a为-1时,幂函数的图像为一条斜率为-1的直线;当指数a为1/2时,幂函数的图像为一条开口向上的抛物线;当指数a为-1/2时,幂函数的图像为一条开口向下的抛物线。
通过以上的知识点笔记,我们可以更好地理解和掌握幂函数的基本性质和特点。
在解题过程中,我们可以根据具体的指数值和题目要求灵活运用这些知识点,帮助我们更准确地解答相关问题。
幂函数是数学学习中常见的一种函数形式,掌握好这些基本知识点对于我们进一步学习和应用函数概念非常重要。
幂函数知识点
幂函数知识点一、定义与性质幂函数是指函数表达式为y = ax^n的一类函数,其中a和n为常数,且a ≠ 0。
1. 幂函数的定义域与值域- 当n为正整数时,幂函数的定义域为全体实数集R,值域为R+(正实数集)。
- 当n为负整数时,幂函数的定义域为x ≠ 0的实数集R,值域为R+。
- 当n为0时,幂函数的定义域为x ≠ 0的实数集R,值域为{1}(常数函数)。
2. 幂函数的奇偶性- 当n为奇数时,幂函数是奇函数,即f(-x) = -f(x)。
- 当n为偶数时,幂函数是偶函数,即f(-x) = f(x)。
3. 幂函数的单调性与极值点- 当n为正整数且n > 1时,若a > 0,则幂函数是递增函数;若a< 0,则幂函数是递减函数。
幂函数没有极值点。
- 当n为正整数且n = 1时,幂函数是严格单调递增函数,没有极值点。
- 当n为负整数时,幂函数是递减函数,在定义域内有极小值点。
- 当n为0时,幂函数为常数函数,没有单调性和极值点。
4. 幂函数的图像特点- 当n为正整数且n > 1时,幂函数的图像是一条通过原点的增长趋近于正半轴的曲线。
- 当n为正整数且n = 1时,幂函数的图像是一条通过原点且与直线y = a平行的直线。
- 当n为负整数时,幂函数的图像是一条与x轴正向趋近于0的曲线。
- 当n为0时,幂函数的图像是一条水平直线。
二、幂函数的运算1. 幂函数的加减运算- 对于两个幂函数y = ax^n和y = bx^n(a ≠ b),它们的和函数为y = (a + b)x^n。
两个幂函数之和仍为幂函数,且幂指数不变。
- 对于两个幂函数y = ax^n和y = bx^n(a ≠ b),它们的差函数为y = (a - b)x^n。
两个幂函数之差仍为幂函数,且幂指数不变。
2. 幂函数的乘除运算- 对于两个幂函数y = ax^n和y = bx^m,它们的乘积函数为y = (ab)x^(n+m)。
高一数学知识点幂函数知识点知识点总结
高一数学知识点幂函数知识点知识点总结高一数学知识点─ 幂函数知识点总结幂函数是数学中的一种基本函数类型,在高一数学课程中占据重要地位。
幂函数的表达形式为$f(x) = ax^b$,其中$a$和$b$为常数($a \neq 0$)。
一、幂函数的定义域和值域幂函数$f(x) = ax^b$的定义域为实数集,即$(-\infty, +\infty)$。
幂函数的值域则取决于$a$和$b$的取值范围。
当$b > 0$时,幂函数的值域为$(0, +\infty)$。
此时,函数图像从第三象限逐渐上升到第一象限。
当$b < 0$时,幂函数的值域为$(-\infty, 0)$。
此时,函数图像从第一象限逐渐下降到第三象限。
二、幂函数的对称性幂函数的对称性可以分为以下两种情况:1. 当$b$为偶数时,幂函数$f(x) = ax^b$关于$y$轴对称。
即对于任意$x$都有$f(-x) = f(x)$。
2. 当$b$为奇数时,幂函数$f(x) = ax^b$关于原点对称。
即对于任意$x$都有$f(-x) = -f(x)$。
三、幂函数的增减性与极值幂函数$f(x) = ax^b$的增减性与$b$的正负性相关。
1. 当$b > 0$时,幂函数在定义域上是递增函数。
随着$x$的增大,函数值也随之增大。
2. 当$b < 0$时,幂函数在定义域上是递减函数。
随着$x$的增大,函数值反而减小。
对于幂函数$f(x) = ax^b$而言,只有$b > 0$且$a > 0$时,才会存在极大值;只有$b < 0$且$a < 0$时,才会存在极小值。
四、幂函数的图像特征对于幂函数$f(x) = ax^b$,根据参数$a$和$b$的取值范围,其图像可以表现出不同的特征。
1. 当$a > 0$,$b > 1$时,函数图像呈现上升的指数形态。
2. 当$a < 0$,$b > 1$时,函数图像呈现下降的指数形态。
高中幂函数知识点总结
高中幂函数知识点总结在高中的同学需要学习幂函数,那么关于幂函数的知识点是怎样的呢?下面是小编分享给大家的高中幂函数知识点总结,欢迎阅读。
定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x 肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的'数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞),《幂函数知识点总结》。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
高考数学幂函数定义与性质知识点归纳知识点总结
高考数学幂函数定义与性质知识点归纳知识点总结
形如y=_a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。
整理了幂函数定义与性质知识点,请考生参考。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当_为不同的数的定义域是(-,0)(0,+).因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于_0,则a可以是任意实数;
排除了为0这种可能,即对于_0和_0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。
幂函数定义与性质知识点的全部内容就为考生分享到这里,预祝考生取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二必修一数学知识点幂函数的定义域和值域高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了高二必修一数学知识点,希望对大家有帮助。
幂函数定义域
当a为不同的数值时,幂函数的定义域的不同情况如下:1.如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;2.如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:
1.在x大于0时,函数的值域总是大于0的实数。
2. 在x小于0时,则只有同时a为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,
因此下面给出幂函数在第一象限的各自情况。
幂函数值域
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x
不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x 为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域
小编为大家整理了高二必修一数学知识点,希望对大家有所帮助。