基于单片机的数控直流稳压电源设计方案
基于单片机的数控直流稳压电源
AT89C51的管脚排列如上图所示,9管脚接复位电路,18、19管脚为晶振的两个输入端,20管脚接地,40管脚接+5V。
晶振Y1和两个电容C2、C3构成自激震荡,连接到单片机的X1和X2端,电解电容C4、电阻R5和按键S5构成复位电路,连接到单片机的复位端。当按键S5按下后,复位端通过R5与+5V电源接通,电容迅速放电,使RST管脚为高电平;当复位按键S5弹起后,+5V电源通过R6对电容C4重新充电,RST管脚出现复位正脉冲。
3、显示模块:本来准备使用液晶显示,可是想想我们的层次不够,液晶现实的额程序不会写,只能退而其次,选择使用单片机通过锁存器控制8段LED数码管直接显示,这样可以精确的显示输出电压。
系统结构设计图如上图所示。该系统主要由单片机最小控制系统、显示电路、独立按键、D/A转换电路、放大电路和稳压电路组成。单片机设定预输出值,并可以通过独立键盘改变单片机的预设值。然后通过DAC0832转化为模拟量,再经过运算放大和稳压稳流电路最后输出预设电压值,通过LED显示能够直观的看到预设值。因为器材原因,我们设计的稳压电源采用的是外部稳压器提供的电源。这样虽然算不上是一个完整的数控直流稳压电源,但是,除了这点,我们设计的电源基本已经复合要求。
方案论证:
1、输出模块:使用运算放大器做前级的运算放大器,由于运算放大器具有很大的电源电压抑制比,可以减少输出端的纹波电压。使用LM317做电流稳压器,把电流稳定到0.5A。
2、数控模块:采用AT89C51单片机完成整个数控部分的功能,同时,AT89C51作为一个智能化的可编程器件,便于系统功能的扩展。
如上图所示,本设计中将DAC0832的Iout2接地,采用Iout1输出,然后接运算放大LM358P将输出电流转化为电压。经过LM358P转化后的电压值也为5V。为了达到与单片机预设电压范围2~15V同步,输出端电压需要经过二级放大。第一级不放大,直接将D/A输出的电流转化为电压,第二级放大,放大倍数 =R2/R1=5.5K/1.1K=5。这里的R2由于找不到5.5K的电阻,所以用电位器代替。因为DA0832转换后的电压的范围为0~5V,即DA0832的8位输入端全为高电平1时,输出电压为5V,输入端全为低电平0时,输出电压为0V,且呈线性变化。为此为了使输出与LED显示同步,必须经过放大倍数 =5的二级放大。再经过运放放大后的电压已经复合要求,可是电流却没有复合要求,这就要用到了三段稳压器LM317。在这里,LM317作为电流稳压器,其应用电路如下图所示,其中 ,所以R1的值应该为2.5Ω。可是,我们在实验室能找到的最小电阻是200Ω,这还是远远大于2.5Ω。所以我们的输出电流才6ma。这里还要说的是,本来我们采用的运算放大器是Lm324n,可是,因为我的不小心,在测试运放放大的时候,把芯片烧坏了。并且我们手头没有多余的芯片,幸亏和我们做同一方案的同学有运放Lm358p,所以我们也采用了Lm358p。
基于51单片机的数控直流稳压电源设计
数控直流稳压电源就是能用数字来控制电源输出电压的大小,而且能使输出的直流电压能保持稳定、精确的直流电压源。
本文介绍了利用D/A转换电路、辅助电源电路、去抖电路等组成的数控稳压电源电路,详述了电源的基本电路结构和控制策略。
它与传统的稳压电源相比,具有操作方便,电压稳定度高的特点,其结构简单、制作方便、成本低,输出电压在1-10V之间连续可调,其输出电压大小以0.5V步进,输出电压的大小调节是通过“ ”、“-”两个键操作的,而且可以根据实际要求组成具有不同的输出电压值的稳压源电路。
该电源控制电路选用89C51单片机控制主电路采用串联调整稳压技术具有线路简单、响应迅速、稳定性好、效率高等特点。
关键词:稳压电源、单片微型机;数控直流、D/A转换;第一章绪论 (3)1.1数控直流稳压电源的产生背景 (3)1.2系统开发的意义 (4)1.3系统主要功能 (5)1.4研究中拟解决的主要问题 ............................................. 错误!未定义书签。
第二章系统总体方案设计 ......................................................... 错误!未定义书签。
2.1系统概述.......................................................................... 错误!未定义书签。
2.2系统整体概述.................................................................. 错误!未定义书签。
2.2.1控制部分................................................................ 错误!未定义书签。
2.2.2显示部分................................................................ 错误!未定义书签。
基于单片机的数控直流稳压电源设计方案
基于单片机的数控直流稳压电源设计方案一、设计方案简介基于单片机的数控直流稳压电源设计方案主要是通过单片机控制开关电源的开关管,控制输出电压的稳定性和精度。
本设计方案采用闭环控制的方式,通过反馈电路将输出电压反馈给单片机,单片机根据反馈信号控制开关电源的开关管进行开关操作,以实现电源输出电压的稳定。
二、设计方案详细介绍1.系统总体设计:本设计方案将开关电源分为输入电源模块、控制模块和输出电源模块。
输入电源模块主要是对输入电压进行滤波和稳压,以保证输入电源的稳定性;控制模块主要是使用单片机进行控制,接收反馈电路的反馈信号,根据设定值进行比较,并控制开关电源的开关管进行开关操作;输出电源模块主要是将开关电源的输出电压经过滤波和稳压处理,以保证输出电压的稳定性和精度。
2.输入电源模块设计:输入电源模块主要是对输入电压进行滤波和稳压处理,保证输入电源的稳定性和安全性。
常用的电源滤波电路有LC滤波电路、RC滤波电路等。
同时,可以使用稳压芯片来实现输入电压的稳压。
3.控制模块设计:控制模块使用单片机进行控制,主要是通过反馈电路将输出电压反馈给单片机,并经过AD转换后与设定值进行比较。
根据比较结果,单片机控制开关电源的开关管进行开关操作,调整输出电压的稳定性。
在控制过程中,可以设置合适的控制算法,如PID控制算法,以提高控制的精度和稳定性。
4.输出电源模块设计:输出电源模块主要是对开关电源的输出电压进行滤波和稳压处理,以保证输出电压的稳定性和精度。
常用的电源滤波电路有LC滤波电路、RC滤波电路等。
可以使用稳压芯片或者反馈调节电路来实现输出电压的稳压。
5.电源保护设计:为了保护电源和设备的安全性,可以设计过压保护、欠压保护、过流保护、短路保护等保护电路。
过压保护可以使用过压保护芯片,欠压保护可以使用欠压保护芯片,过流保护可以通过电流传感器实现,短路保护可以通过保险丝或者短路保护芯片实现。
三、设计方案的优势和应用1.优势:本设计方案采用闭环控制的方式,通过反馈电路将输出电压反馈给单片机,使得输出电压的稳定性和精度得到保证。
基于单片机的数控稳压电源设计
本科毕业设计(论文)题目:基于单片机的数控稳压电源设计(硬件设计)院(系):电子信息工程学院专业:自动化班级:100402学生:赵祥学号:100402121指导教师:杨建华2014年 06月本科毕业设计(论文)题目:基于单片机的数控稳压电源设计(硬件设计)院(系):电子信息工程学院专业:自动化班级:100402学生:赵祥学号:100402121指导教师:杨建华2014年 06月基于单片机的数控稳压电源设计摘要随着电力电子技术的发展,开关电源已经广泛应用与航空航天、计算机、通讯、医疗仪器等诸多领域。
它能把电网提供的强电和粗电,变换成各种电气设备和仪器所需要的高稳定度的精电和细电,它是现代电子设备重要的“心脏供血系统”。
但是目前的电源普遍存在输出不恒定、精度较差的问题,针对这些问题,设计一种性能优良的开关电源十分重要。
本系统对单片机控制数控稳压电源进行了研究和设计,论文首先介绍了开关电源领域的发展情况,然后提出了现代开关电源存在的问题,并在理论分析上提出了自己的设计方案,本文设计的数控稳压开关电源,主要分为主电源电源模块,稳压电路模块、按键模块、显示模块、电压/电流采集模块和A/D转换模块组成。
通过键盘输入预期的电压值,设置步进等级为0.1,输出电压范围为0-15V,最大电流为1A,系统有过流保护电路,当输出电流过大时,开关管自动截止,并且通过蜂鸣器报警。
系统采集的电压通过A/D转换器输入至单片机,输出显示到四位数码管上。
通过参与单片机内部的PID运算,从而控制PWM波占空比调节控制开关管的通断时间来输出不同的电压。
通过最后系统的调试和对数据的分析,输出电压稳定,验证了系统设计方案的可行性。
关键字:电源;数字控制;单片机;PWMDesign of a digital controlling power supplbased on MCUAbstractWith the development of power electronics,switching power supply has been widely used in the areas of aviation,computer,communication,medical device.It can turn strong and coarse electricity into precise and exquisite electricity,which can be used by many kinds of electrical equipments and instruments,and it is the “heart blood supply system”of modern electrical equipments.However, the current output power is not constant and poor accuracy,for these problems,designing a good performance of the switching power supply is very important.This system is mainly about the research and design of a switching power supply based on MCU.Fist the current development of power supply is introduced.Then bring forward some problems about switch power supply and design scheme based on theoretical analyses.This design NC regulators switching power supply,mainly consists of power modules, voltage regulator circuit module, key module, display module, voltage / current acquisition module and the A / D converter module. The operate inputs the expected voltage data through keyboard,set stepping rating 0.1,the voltage range of output is 0.0-15V.0,the maximum current is 330ma.This system has over current protection circuit,when the output current is too large,the switch automatic cut-off and the buzzer alarm.The voltage acquired from system by the A/D converter,the output display to for bit digital tube.Through participation in the MCU internal PID operation, by adjusting the duty cycle of PWM wave to control the switch-off time to output different voltages.Through the debugging of the system and the date analysis,the output stability,verify the feasibility of system design scheme.Key words: power;digital control ;SCM;PWM目录摘要 (I)Abstract (II)目录 (i)第一章绪论 (1)1.1稳压电源概述 (1)1.1.1 稳压电源的分类 (1)1.1.2稳压电源的背景及研究意义 (1)1.1.3 直流稳压电源的结构 (2)1.2数控直流稳压电源的国内外现状 (2)1.2.1 线性稳压电源的发展 (3)1.1.2 开关稳压电源的发展 (5)1.3.1 本文主要研究内容 (6)第二章系统方案设计 (7)2.1 系统方案选择与分析 (7)2.1.1 方案选择 (7)2.1.2 方案分析 (7)2.2 系统结构设计 (8)第三章系统的硬件设计 (9)3.1主控单片机(MCU) (9)3.1.1 AT89S51简介 (9)3.1.2 AT89S51主要性能特点[16] (9)3.1.3 AT89S51管脚说明[17] (9)3.2 总系统整体电路设计 (11)3.3 主电路的设计 (12)3.3.1 主电路参数讨论 (13)3.3.1 斩波电路 (13)3.3.3驱动电路设计 (14)3.4 显示模块设计 (15)3.4.1 数码管的结构和工作原理 (15)3.4.2 系统显示电路 (16)3.5 按键模块设计 (17)3.6 供电电源的设计 (17)3.7 电压/电流采集的设计 (18)3.7.1 电压采集 (18)3.7.2 电流采集 (19)3.8 过流保护电路 (20)3.8 A/D转换电路 (21)3.8.1 AD转换芯片(ADC0809) (21)3.8.2 系统A/D接线图 (23)第四章系统调试 (24)4.1 硬件调试 (24)4.1.1 供电电源模块测试 (24)4.1.2 按键电路、显示和报警模块测试 (24)4.1.3软硬件联合调试 (25)4.1.4数据测量 (27)第五章结论与展望 (28)致谢 (29)参考文献 (30)毕业设计(论文)知识产权声明 (32)毕业设计(论文)独创性声明 (33)附录A 系统原理图 (33)第一章绪论第一章绪论1.1稳压电源概述1.1.1 稳压电源的分类稳压电源是能为负载提供稳定电源的电子装置,在现代应用中比较多。
基于单片机的数控直流稳压电源设计
PRACTICE区域治理基于单片机的数控直流稳压电源设计江苏大学京江学院 陈金华摘要:随着新时代的到来,我国整体国力有了很大提高,这也有利于我国电子技术产业的快速发展。
在电子技术领域当中,不管是任何类型的电子设施都有一个共同一致的电路,这就是电路电源,唯有取得了电路电源的支撑,才可以较好地使电子设施取到良好的运转以及工作。
直流稳压电源在电子技术领域占有十分重要的地位,这是当中不可或缺的主要设施之一。
本文章重要对基于单片机的数控直流稳压电源的设计实行了详细的研究,用单片机成为中心,对直流稳压电源实施了设计,一开始对系统硬件方面的设计进行了研究,其次,又对系统软件方面的设计实行了研究。
关键词:单片机;数控直流稳压;电源设计中图分类号:TL825 文献标识码:A 文章编号:2096-4595(2020)29-0207-0001电子技术产业是关系到社会生产和人民生活的非常主要产业,其发展始终受到社会各界的极度注重。
而直流稳压电源成为电子领域当中的一种不可或缺的设施,普遍地运用于教育、科学研究等行业。
以往的多性能直流稳压电源繁杂性能较高,并且在性能方面还较为单一,在可靠性方面很难得以保障,往往受到各种方面因素的干扰而带来一定的影响,很难得以控制。
另外,长时间运用直流电源还会产生各项在质量原因的相关问题,如波段导关与电位器发生的对接不合理等问题,这不只是影响到输出的准确性以及及时性问题,且还减少了直流稳压电源该拥有的运用时间。
单片机即单片微控制器拥有价格低、体格小等特征,将其利用于直流电源的设计当中,以确保直流电源的更新。
本文章重要是以单片机为关键,设计了一样精确度高智能化的直流稳压电源,详细状况如下。
一、直流稳压电源系统的性能特征科学地制定直流稳压电源的输出电压,以0V-9V较好,并制定输出电压。
本试验系统由AT89S51单片机、LCD1602显示电压模板与D/A变换模板、电压模板以及数据收集模板等合成,并可达到多样性能。
基于单片机的数控直流稳压电源设计
第26卷 第1期《新疆师范大学学报》(自然科学版)Vol.26,No.1 2007年3月Journal of Xinjiang Normal University Mar.2007(Natural Sciences Edition)基于单片机的数控直流稳压电源设计刘楚湘1, 杜 勇1, 尤双枫2(1.新疆师范大学数理信息学院,新疆乌鲁木齐830054;2.新疆军区自动化工作站,新疆乌鲁木齐830042)3摘要:将单片机数字控制技术,有机地融入直流稳压电源的设计中,设计出一款数字化通用直流稳压电源。
该电源具有数码显示、数字输入调压、电压调节精度高的特点。
通过软件编程,易于实现功能的扩展。
关键词:直流稳压电源;单片机;数字闭环控制中图分类号: TN71019 文献标识码: A 文章编号: 1008296592(2007)20120050203直流稳压电源是电子技术领域不可缺少的设备。
常见的直流稳压电源,大都采用串联反馈式稳压原理,通过调整输出端取样电阻支路中的电位器来调整输出电压。
由于电位器阻值变化的非线性和调整范围窄,使普通直流稳压电源难以实现输出电压的精确调整。
目前,直流稳压电源已朝着多功能和数字化的方向发展,本文以单片机为核心,结合数字反馈控制技术,设计出一种输出电压在0~12V之间并以0.5V为步进值进行电压精确调整的数控直流稳压电源电路。
该电路具有电压调整简便,读数直观,电压输出稳定,便于智能化管理的特点,有效地克服了传统电源的不足。
1 系统功能系统电压调节范围为0~12V,最大输出电流2A,具有过载和短路保护功能。
数字显示有4位,其中1位功能显示,另3位显示输出电压以及电路参数设定值。
键盘设有4个键,功能选择键,步进增减键以及确认键。
功能选择键用于启动参数设定状态,步进增减键用于设定参数数值,确认键用于输入设定值电源开机设定值为前次使用值。
此时按键,则电压显示值出现闪烁现象,表示进入参数设定状态。
基于单片机的直流稳压电源毕业设计
基于单片机的直流稳压电源毕业设计基于单片机的直流稳压电源是一种能够提供稳定的直流电压输出的装置。
它广泛应用于各种电子设备和电子系统中,并且对电子设备的正常工作起到至关重要的作用。
本文将介绍这样一个基于单片机的直流稳压电源的毕业设计,并详细讨论其设计原理、电路图和功能。
首先,我们来介绍这个直流稳压电源的设计原理。
该电源的设计采用了单片机作为控制核心,通过精确的反馈控制来保持稳定的输出电压。
具体来说,单片机通过测量输出电压并与设定的目标值进行比较,然后相应地调整控制电路的工作状态,以实现电压的稳定输出。
单片机还可以监测电源的工作状态,并在出现异常情况时采取相应的保护措施,以防止电源和连接的设备受到损坏。
其次,我们来看看这个直流稳压电源的电路图。
电路图中包括了电源输入部分、控制部分和输出部分。
电源输入部分主要包括输入电源接口、输入滤波电路和过压保护电路。
控制部分由单片机和与之连接的外围电路组成,用于控制电源的工作状态和输出电压。
输出部分由电压稳压电路和输出滤波电路组成,用于提供稳定的输出电压。
此外,电路图还包括了保护电路,用于保护电源和负载设备免受过电流、过压和过热等异常情况的影响。
最后,我们来讨论一下这个直流稳压电源的功能。
该电源具有以下几个主要功能:1.稳定输出电压:通过单片机的精确控制,电源可以提供稳定的输出电压,以满足负载设备的要求。
2.输入保护:通过过压保护电路,电源可以在输入电源过压时及时切断电源输入,以保护电源和负载设备。
3.负载保护:通过输出过电流保护电路,电源可以在输出电流超出额定值时及时切断电源输出,以保护电源和负载设备。
4.温度保护:通过温度传感器和过热保护电路,电源可以在工作温度超出安全范围时及时切断电源输出,以确保电源的安全运行。
总结起来,这个基于单片机的直流稳压电源是一种功能强大的装置,能够提供稳定的输出电压,并具有输入和负载保护功能。
它的设计原理、电路图和功能使得其能够广泛应用于各种电子设备和电子系统中。
基于单片机的数控直流稳压电源设计
基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
基于单片机的数控直流稳压电源设计与制作
基于单片机的数控直流稳压电源设计与制作数控直流稳压电源是一种能够稳定输出直流电压的电源装置。
它通常由一块单片机控制,并通过反馈回路来实现对输出电压的稳定调节。
本文将介绍基于单片机的数控直流稳压电源的设计和制作过程。
首先,我们需要选择合适的硬件设备。
单片机选择常见的51系列单片机,如STC89C52,因为该系列单片机性能稳定且价格相对较低。
稳压电路中的关键元件包括电源变压器、整流电路、滤波电路、稳压电路和输出电路。
电源变压器用于将市电的交流电转换为所需的直流电级。
整流电路将交流电转换为直流电,滤波电路用于滤除电路中的杂波和纹波。
稳压电路根据单片机反馈信息来调节输出电压,并通过输出电路提供稳定的电压给负载。
接下来,我们需要进行电路设计。
根据所需输出电压和电流,选择合适的电源变压器和稳压集成电路。
通过计算得到电路中各个电阻、电容和二极管的参数,以保证电路的稳定性和可靠性。
在电路设计中,还需要考虑到过流保护、过压保护和温度保护等功能,以确保设备的安全使用。
设计完成后,我们需要进行电路的制作。
根据设计图纸,将电路图转移到电路板上,并通过化学腐蚀或电解腐蚀的方法将电路板制作完成。
然后,将各个元件按照电路图的要求焊接到电路板上。
注意焊接时要保证引脚的正确连接,避免引脚之间的短路和虚焊现象。
接下来,我们需要编写单片机的程序。
程序中需要实现对输入电压和输出电压的采样,通过ADC(模数转换器)将模拟信号转换为数字信号,然后通过PWM(脉冲宽度调制)技术来控制输出电压的调节。
在程序中,还需要实现对电压的稳定调节和保护功能的控制。
需要注意的是,在设计和制作过程中,要遵循电气安全和电磁兼容性的要求,确保设备的正常运行和使用安全。
总结起来,基于单片机的数控直流稳压电源设计与制作涉及到硬件设备的选择、电路的设计、电路的制作、程序的编写和调试测试等方面,需要一定的电子技术和单片机编程知识。
希望本文对读者有所帮助,能够指导大家在实际应用中进行数控直流稳压电源的设计和制作。
基于单片机的数控直流稳压电源设计
基于单片机的数控直流稳压电源设计2011年09月26日11:36 本站整理作者:秩名用户评论(0)关键字:稳压电源(110)单片机(1452)随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,传统应用技术,由于功率器件性能的限制使开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,为了提高开关电源工作效率,设计出性能优良的开关电源,十分必要。
1、几种数控直流稳压电源设计方案比较1.1几种设计方案电路原理方案1 : 采用模拟的分立元件,利用纯硬件来实现功能,通过电源变压器、整流滤波电路以及稳压电路,实现稳压电源稳定输出±5 V、±12 V、±15 V并能可调输出0~ 30 V电压,见图1所示。
但由于模拟分立元件的分散性较大,各电阻电容之间的影响较大,因此所设计的指标不高、不符合设计要求、且使用的器件较多、连接复杂、灵活性差、功耗也大,同时焊点和线路较多,使成品的稳定性和精度受到影响。
图1 方案1电路原理方案2 : 此方案采用传统的调整管方案,主要特点在于使用一套双计数器完成系统的控制功能,其中二进制计数器的输出经过 D /A 变换后去控制误差放大的基准电压,以控制输出步进。
十进制计数器通过译码后驱动数码管显示输出电压值,为了使系统工作正常,必须保证双计数器同步工作。
图2 方案2电路原理方案3 : 此方案不同于方案1之处在于使用一套十进制计数器,一方面完成电压的译码显示,另一方面其输出作为EPROM的地址输入,而由EPROM 的输出经 D /A变换后控制误差放大同步的问题,但由于控制数据烧录在EPROM中,使系统设计灵活性降低。
图3 方案3电路原理方案4 : 此方案采用51系列单片机作为整机的控制单元,通过改变输入数字量来改变输出电压值,从而使开关控制电源输出电压发生变化,间接地改变输出电压的大小。
为了能够使系统具备检测实际输出电压值的大小,经过ADC0809进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理。
(完整word版)基于单片机的数控直流稳压电源的设计
基于单片机的数控直流稳压电源的设计作者姓名专业电气工程及其自动化指导教师姓名专业技术职务讲师目录摘要 (1)第一章引言 (1)1.1.数控电源的发展史 (1)1.2.数控电源的应用范围 (2)1.3.数控电源的优点 (3)第二章系统的设计要求和方案选择 (3)2.1.设计要求 (3)2.2.方案论证与比较 (4)2.2.1稳压电源的选择 (4)2.2.2 数字显示方案 (4)第三章系统硬件设计 (5)3.1.系统设计 (5)3.2.微控制器模块 (6)3.2.1 8051单片机的性能 (6)3.2.2 8051单片机的最小系统 (7)3.3.电源模块 (8)3.3.1单片机供电模块 (8)3.4.W117电阻网络和继电器驱动电路 (9)3.5.显示电路 (11)3.6.键盘电路 (11)第四章软件 (12)4.1.主程序 (12)4.2.扫描键盘程序 (20)4.3.显示驱动程序 (22)第五章总结 (29)第六章附件(电路图) (31)参考文献 (32)致谢 (33)摘要数控直流稳压源就是能用数字来控制电源输出电压的大小,而且能使输出的直流电压能保持稳定、精确的直流电压源;数控电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性,市场前景广阔。
在本文中控制部分主要以8051单片机为核心制作控制电路,稳压部分主要以w117为核心制作三端稳压电路,显示部分采用数码管显示,输入采用键盘式输入再加一个驱动电路;通过软件编程有效的实现可控、可显的电源输出。
关键词:直流稳压电源;8051单片机;数码管显示。
第一章引言1.1. 数控电源的发展史电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。
(整理)基于单片机的数控直流稳压电源的设计设计
基于单片机的数控直流稳压电源的设计作者姓名专业电气工程及其自动化指导教师姓名专业技术职务讲师目录摘要 (1)第一章引言 (1)1.1.数控电源的发展史 (1)1.2.数控电源的应用范围 (2)1.3.数控电源的优点 (2)第二章系统的设计要求和方案选择 (3)2.1.设计要求 (3)2.2.方案论证与比较 (3)2.2.1稳压电源的选择 (3)2.2.2 数字显示方案 (4)第三章系统硬件设计 (4)3.1.系统设计 (4)3.2.微控制器模块 (5)3.2.1 8051单片机的性能 (5)3.2.2 8051单片机的最小系统 (6)3.3.电源模块 (7)3.3.1单片机供电模块 (7)3.3.2整流滤波电路和+5v供电模块 (7)3.4.W117电阻网络和继电器驱动电路 (8)3.5.显示电路 (10)3.6.键盘电路 (10)第四章软件 (11)4.1.主程序 (11)4.2.扫描键盘程序 (17)4.3.显示驱动程序 (18)第五章总结 (23)第六章附件(电路图) (24)参考文献 (25)致谢 (26)摘要数控直流稳压源就是能用数字来控制电源输出电压的大小,而且能使输出的直流电压能保持稳定、精确的直流电压源;数控电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性,市场前景广阔。
在本文中控制部分主要以8051单片机为核心制作控制电路,稳压部分主要以w117为核心制作三端稳压电路,显示部分采用数码管显示,输入采用键盘式输入再加一个驱动电路;通过软件编程有效的实现可控、可显的电源输出。
关键词:直流稳压电源;8051单片机;数码管显示。
第一章引言1.1. 数控电源的发展史电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一。
基于单片机的数控直流稳压电源设计方案
电源电路设计
1 2 3
输入电源选择
220V交流市电。
变压与整流
通过变压器将220V交流市电降压至合适的低压 交流电,再经过桥式整流电路转换为脉动直流电 。
滤波与稳压
采用电容滤波电路将脉动直流电平滑为纹波较小 的直流电,再通过稳压芯片(如LM78XX)实现 电压的稳定输出。
数控接口电路设计
DA转换芯片
04
系统测试与性能分析
测试环境与方法
测试环境
为了确保测试的准确性和可靠性,测试 环境应保持恒定,包括温度、湿度等环 境因素的控制。
VS
测试方法
采用黑盒测试、白盒测试等多种测试方法 ,确保系统的稳定性和性能得到全面评估 。
硬件性能测试
电源输出电压稳定性
在不同负载条件下测试电源输出电压的稳定性,确保其在允许范 围内波动。
采用DAC0832等DA转换芯片,将单片机输出的数字信号转 换为模拟信号,以实现对电源输出的精确控制。
接口电路
设计单片机与DA转换芯片之间的接口电路,包括地址总线、 数据总线和控制总线,确保数据的可靠传输。
保护电路设计
01
过流保护
通过检测电源输出电流,当电流超过设定值时,触发过流保护电路,迅
速切断电源输出,避免设备损坏。
基于该设计的改进与拓展方向
智能化控制
引入更先进的控制算法,实现电源的智能化控制,提高响应速度 和稳定性。
多路输出
设计多路输出的数控直流稳压电源,满足更多应用场景的需求。
高效能转换
提高电源的转换效率,降低能耗,实现绿色环保。
未来发展趋势与前景展望
集成化
随着技术的发展,数控直流稳压电源 将越来越集成化,体积更小,重量更 轻,便于携带和应用。
基于单片机的多功能数控直流稳压电源
江 西 煤 炭 科 技 2004年第2期 J I ANG XI C OA L SCIE NCE &TECH NO LOGY NO.2 2004基于单片机的多功能数控直流稳压电源Ξ胡 爱 闽(华东交通大学,江西南昌330013)摘 要:介绍一种基于单片机控制的多功能直流稳压电源的设计方案。
该电源简单易用,精度高、成本低,可以用作信号发生器,产生输出正弦波、方波、三角波、锯齿波等多种波形信号;通过软件升级很容易实现功能扩展。
关键词:单片机;直流稳压电源;功率放大;系统软件中图分类号:T M44 文献标识码:B 文章编号:1006-2572(2004)02-0048-02 直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。
传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。
而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。
1 总体设计 本多功能数控直流稳压电源以一稳压电源为基础,以高性能单片机系统为控制核心,以稳压驱动放大电路、过流检测电路为外围的硬件系统,在检测与控制软件的支持下实现对电压输出的数字控制,通过对稳压电源输出的电流、电压进行数据采样与给定数据比较,从而调整和控制稳压电源的工作状态及监测开关电路的输出电流大小。
本多功能数控直流稳压电源实现以下功能:键盘可以直接设定输出电压值;可快速调整电压;数码管显示电压值及功能指示;输出各种波形(正弦波、方波、三角波、锯齿波)并可以调节频率和幅度。
2 硬件设计2.1 系统组成硬件系统包括单片机系统、键盘、数码管显示器、直流稳压电路,功率放大电路、检测电路、D/A 、A/D 转换电路等几个部分组成。
具体如图1所示。
图1 系统结构2.2 单片机系统单片机系统采用80C51为CPU ,采用8279芯片负责控制显示和键盘输入的下层处理,软件控制LE D 显示和响应键盘中断,采用8155芯片扩展I/O 口,负责数据的输入与输出。
基于单片机的数控直流稳压电源
基于单片机的数控直流稳压电源在电子设备中,直流稳压电源是非常重要的一部分,它能够为其他电路、芯片或者整个系统提供稳定可靠的电源供应。
而基于单片机的数控直流稳压电源技术则能够在一定程度上提升电源的稳定性和可调性,本文将介绍基于单片机的数控直流稳压电源的原理和设计。
1. 引言直流稳压电源在各种电子设备中都起着至关重要的作用。
传统的直流稳压电源主要采用稳压二极管、稳压管等元件,无法实现精准的控制和调节。
而基于单片机的数控直流稳压电源通过单片机的控制和监测,能够实现电源输出的精确控制和稳定性。
2. 设计原理基于单片机的数控直流稳压电源采用了反馈控制的原理,通过单片机对电源输出进行监测和调节。
其基本原理如下:首先,将输入交流电源经过整流和滤波,得到稳定的直流电压。
然后,通过单片机的模数转换功能,将电源输出电压转换为数字信号。
单片机通过比较这个数字信号与设定值,计算出控制电源输出的PWM 信号。
接下来,PWM信号经过数模转换后,通过放大电路驱动功率开关管。
功率开关管的导通与截止控制决定了电源的输出电压。
单片机通过不断调整PWM信号的占空比,实现对电源输出电压的精确调节。
同时,通过单片机监测电源输出电压的实际值,并与设定值进行比较,若存在偏差,则单片机通过反馈控制的方式调整PWM信号,使电源输出电压保持在设定值附近,从而实现直流稳压电源的功能。
3. 设计步骤基于单片机的数控直流稳压电源的设计步骤如下:3.1 硬件设计根据需要设计输出电压范围和电流容量,选取适当的元器件。
包括整流滤波电路、模数转换电路、功率开关管和放大电路等。
3.2 软件设计编写单片机的控制程序,实现电源输出的精确控制和稳定性。
包括模数转换、PWM控制和反馈控制等功能。
3.3 系统集成将硬件电路和单片机控制程序进行集成,进行系统调试和优化。
通过实验和测试,不断优化电源的稳定性和可调性。
4. 应用示例基于单片机的数控直流稳压电源的应用非常广泛。
例如,可以应用于实验室、工业自动化、通信设备等领域。
基于单片机的数控直流稳压电源
保密类别编号湖北工业大学毕业论文基于51单片机数控直流稳压电源的设计院(系)别(小二号宋体居中)专业班级姓名学号指导教师2014年 4 月 9 日目录一、绪论1.1直流稳压电源 (3)1.2数控直流稳压电源 (3)1.3数控直流稳压电源要求 (3)二、数控直流稳压电源方案设计与论证2.1硬件原理框图 (4)2.2方案简介 (4)2.3单片机选择与论证 (5)2.4DA方案选择 (6)2.5稳压输出选择与论证 (7)2.6显示模块 (8)2.7输入按键 (9)2.8电源模块选择 (9)三、硬件电路设计3.1供电电路设计 (10)3.2 单片机最小系统 (12)3.3DA输出设计 (13)3.4稳压输出 (15)3.5电压采样电路 (18)3.6数码管显示电路 (19)四、系统软件设计4.1系统软件设计流程图 (21)4.2AD转换程序 (21)4.3DA转换程序 (22)五、系统调试与仿真 (23)5.1硬件调试 (23)5.2软件调试 (25)5.3仿真软件protues简介 (26)5.4DA仿真图 (28)5.5AD仿真图 (28)六、总结 (29)基于51单片机数控直流稳压电源的设计摘要:随着科技的日益的发展,电子产品对电源的要求也越来越高。
针对普通直流电源一般不可以调节或调节范围小的缺点设计出了一种可调节,宽调节范围的直流稳压电源。
该直流稳压电源系统以STC单片机公司的12C5408AD单片机为核心,利用8位DA芯片DAC0832作为DA输出,由单片机12C5408AD内部自带AD 转换器对输出电压进行采样处理,采用C语言进行程序控制,输出0~+9.9V,扩展0~-9.9V的输出范围,步进0.1V的精确稳压输出。
关键词:直流电流源单片机12C5408AD DAC0832High precision DC current source based on 51 MCUAbstract:With the development of science and technology. Electronic products to the requirements of the power supply is more and more high. For regular direct current voltage stabilizer accuracy is not high, and the adjusting range is small, we designed a direct voltage stabilizer with high precision and wide adjusting range. This system is based on the MCU of 12C5408AD which product by STC. Using a chip DAC0832 which with 8 bit as DA output. By using the MCU internal AD converter to process the output voltage. Use the C language to control the system. So that it can output 0~+9.9V, extend to 0~-9.9 V, and stepping for 0.1V adjustment function.Key words: DC current MCU 12C5408AD DAC0832一、绪论1.1 直流稳压电源简介当今社会人们极大的享受着电子设备带来的便利,但是任何电子设备都有一个共同的电路--电源电路。
课程设计基于单片机的数控直流电源设计
课程设计基于单片机的数控直流电源设计随着科技的发展和电子技术的应用,数控技术在现代工业中得到了广泛的应用。
数控技术在实现高精度、高效率的同时,也带来了不少挑战,其中就包括数控直流电源的设计。
单片机作为一种重要的微处理器,可以在数控直流电源的设计中起到重要的作用。
本文将介绍基于单片机的数控直流电源设计,并分析其优势和应用。
一、设计原理:数控直流电源是在电力供应已经数字化的前提下,通过嵌入式微控制技术实现对直流电信号进行数字化控制的一种电力供给方式。
该技术主要通过控制器进行数字化控制,可并行实现输出电压、输出电流和负载等重要参数的实时监控和控制,从而实现电力供给的高精度和高可靠性。
基于单片机的数控直流电源主要由控制系统、数字化输出系统、输出分流系统、显示系统和传感器等组成。
其中,控制系统通过内部控制逻辑和程序,实时获取电源需要输出的电压、电流和负载信息,通过合理的控制算法生成控制信号,从而驱动电源输出相应的电信号;数字化输出系统固定输出直流电流值,可通过调整其输出电压和电流,实现不同功率的输出;输出分流系统用于实现多路电源分流,适应不同的负载并减少过大的输出电流对电路产生的不良影响;显示系统可实时地显示电源的各项参数信息,方便实时监控。
二、设计流程:基于单片机的数控直流电源的设计一般包含以下几个步骤:1.采集系设计:根据电源的需求采用MPU或MSU芯片采集所用电路的主要参数,如电流、电压等。
2.控制逻辑设计:作为一种嵌入式控制系统,由MPU或MSU芯片组成,可以根据采集值来生成控制信号。
3.控制信号生成器设计:根据采集到的电流、电压等参数信息生成相应的控制信号,该信号将被送到开关电源,实现对输出电流进行控制。
4.数字化输出电路:独立于控制电路,采用异步转换电路等方式,将所需的输出电流进行本地数字化处理。
5.控制器设计:是一种将电源输入与输出匹配的逻辑附件。
6.硬件设计:根据设计原则,精益制造硬件电路,提高电源的工作效率和稳定性。
基于单片机的数控直流稳压电源的设计设计
基于单片机的数控直流稳压电源的设计设计数控直流稳压电源是一种能够为电子设备提供稳定直流电压的电源,可以用于实验室、生产线以及科研等领域。
本文将基于单片机对数控直流稳压电源进行设计。
1.设计目标设计一个数控直流稳压电源,具有以下特点:-输入电压范围广,能够适应各种电源电压。
-输出电压范围广,能够满足不同设备的需求。
-输出电压稳定性好,能够保持输出电压在设定值附近波动范围内。
-控制方式灵活,能够通过数控手段来调整输出电压。
2.硬件设计-电源输入部分:使用变压器降低输入电压,并通过整流电路将交流电转换为直流电。
-过滤电路:用电容器对直流电进行滤波,减小纹波。
-脉宽调制(PWM)控制器:使用单片机的PWM输出,控制开关管的导通时间,从而调整输出电压。
-反馈电路:采集输出电压并与设定值进行比较,通过PWM控制器调整开关管的导通时间,使输出电压稳定在设定值上。
3.软件设计-单片机程序设计:编写单片机程序,实现输入输出控制,包括读取输入电压、设定输出电压以及调整PWM输出。
-降压控制算法:根据输入输出电压以及电流等参数,通过控制PWM 输出的占空比,实现对输出电压的调整和稳定。
4.输出保护-过压保护:当输出电压超出设定范围时,通过单片机程序停止PWM 输出,避免对设备的损坏。
-过流保护:当输出电流超过额定值时,通过监测电流大小,控制PWM输出,避免过大电流对设备的损坏。
5.调试与测试-利用示波器等测试工具,对电源的输入输出进行测试,验证稳定性和精度。
-对于过压、过流等保护功能,进行测试验证其可靠性和及时性。
总结本设计基于单片机实现了数控直流稳压电源,能够根据输入和输出的要求,实现电压的调整和稳定。
同时,通过保护电路、控制算法等设计,确保了电源的可靠性和安全性。
在实际应用中,可以根据具体需求进行扩展和优化,以满足更多应用场景的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的数控直流稳压电源设计方案随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,传统应用技术,由于功率器件性能的限制使开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,为了提高开关电源工作效率,设计出性能优良的开关电源,十分必要。
1、几种数控直流稳压电源设计方案比较1.1几种设计方案电路原理方案 1 : 采用模拟的分立元件,利用纯硬件来实现功能,通过电源变压器、整流滤波电路以及稳压电路,实现稳压电源稳定输出±5 V、±12 V、±15 V并能可调输出 0~ 30 V电压,见图 1所示。
但由于模拟分立元件的分散性较大,各电阻电容之间的影响较大,因此所设计的指标不高、不符合设计要求、且使用的器件较多、连接复杂、灵活性差、功耗也大,同时焊点和线路较多,使成品的稳定性和精度受到影响。
图 1 方案 1电路原理方案 2 : 此方案采用传统的调整管方案,主要特点在于使用一套双计数器完成系统的控制功能,其中二进制计数器的输出经过 D /A 变换后去控制误差放大的基准电压,以控制输出步进。
十进制计数器通过译码后驱动数码管显示输出电压值,为了使系统工作正常,必须保证双计数器同步工作。
图 2 方案 2电路原理方案 3 : 此方案不同于方案 1之处在于使用一套十进制计数器,一方面完成电压的译码显示,另一方面其输出作为 EPROM的地址输入,而由 EPROM 的输出经 D /A变换后控制误差放步的问题,但由于控制数据烧录在 EPROM中,使系统设计灵活性降低。
图 3 方案 3电路原理方案 4 : 此方案采用 51系列单片机作为整机的控制单元,通过改变输入数字量来改变输出电压值,从而使开关控制电源输出电压发生变化,间接地改变输出电压的大小。
为了能够使系统具备检测实际输出电压值的大小,经过 ADC0809进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理。
利用单片机程控输出数字信号,经过 D /A 转换器( DA0830)输出模拟量,再经开关电源控制电路,使得输出电压达到稳压的目的。
单片机系统还兼顾对恒压源进行实时监控,输出电压经过电流 /电压转变后,通过 A /D转换芯片,实时把模拟量转化为数据量,经单片机分析处理,经过数据形式的反馈环节,使电压更加稳定,构成稳定的压控电压源。
而且采用PWM 控制的开关电源,该电源具有高集成度、高性价比、最简外围电路、最佳性能指标、能构成高效率无工频变压器的隔离式开关电源等优点。
而且在成本上与同等功率的线性稳压电源相当,而电源效率显著提高,体积和重量则大为减小。
图 4 方案 4电路原理2、方案的比较与论证( 1)输出模块方案 1:采用线性调压电源,以改变其基准电压的方式使输出不仅增加 /减少,这样不能不考虑整流滤波后的纹波对输出地影响,此输出只能是用万用表量出。
而方案 2、方案 3中使用运算放大器做前级的运算放大器,由于运算放大器具有很大的电源电压抑制比,可以减少输出端的纹波电压。
在方案 1中,为抑制纹波而在线性调压电源输出端并联的大电容降低了系统的响应速度,这样输出的电压难以跟踪快变的输入,方案 4中的输出电压波形与 D /A 变换输出波形相同,不仅可以输出直流电平,而且只要预先生成波形的量化数据,就可以产生多种波形输出,使系统有一定驱动能力的信号源。
( 2)数控模块方案 1利用纯硬件来控制电压的输出,其中最基本的电路原理分析,需要计算负载的大小,稳压管的选择有关,方案 2、方案 3中采用中、小规模器件实现系统的数控部分,使用的芯片很多,造成电路部接口信号繁琐,中间相互关联多,抗干扰能力差,如方案 1中的双计数器一旦出现计数不同步时,会导致显示电压与输出电压不一致。
在方案 4 中采用AT89C51单片机完成整个数控部分的功能,同时,AT89C51作为一个智能化的可编程器件,便于系统功能的扩展。
图 5 方案 5数控模块( 3)控制模块在该系统中,采用具有 D /A转换功能的 PWM 调节电路、斩波电路、阔流器和可调稳压管 ( LM317)去控制输出参考电压,在利用 A /D转换采样,使输出更准确,且纹波小,电流亦可扩展,容易保护电路。
( 4)显示模块方案 2、方案 3中的显示输出地对电压的量化值直接进行译码显示输出,显示值为 D /A变换的输入量,由于 D /A变换与功率驱动电路引入的误差,显示值与电源实际输出值之间可能出现较大偏差。
方案4中采用 A /D转换电路,通过对输出电压的采样,经过单片机的分析处理,通过数据的反馈环节,使电压更加稳定,这样使得显示值与实际输出之间的偏差减为最小。
方案 4采用 4位数字电压表直接对输出电压采样并显示输出实际电压值,一旦系统工作异常,出现预制值与输出值偏差过大,用户可以根据该信息予以处理,还采用了键盘 /显示器的查询时间,提高了CPU的利用率。
3、结束语如前所述,虽然方案 3比前两者有许多优点,但方案 1、方案 2对于完成设计要求并非不可行,而且在某些方面还具有优势,之所以采用方案 4 ,一个很重要的考虑是系统使用了单片机,使得进一步的功能扩展较为方便。
数控直流稳压电源设计【【【【摘要摘要摘要摘要】】】】本本本本设计设计设计设计以直流电压源为核心以直流电压源为核心以直流电压源为核心以直流电压源为核心,,,,STC89C52RC单片机为主控制器单片机为主控制器单片机为主控制器单片机为主控制器,,,,单片机系统是数控电源的核心单片机系统是数控电源的核心单片机系统是数控电源的核心单片机系统是数控电源的核心。
它通过软它通过软它通过软它通过软件的运行来控制整个仪器的工作件的运行来控制整个仪器的工作件的运行来控制整个仪器的工作件的运行来控制整个仪器的工作,,,,从而完成设定的功从而完成设定的功从而完成设定的功从而完成设定的功能能能能。
通过通过通过通过数字数字数字数字键盘来设置直流电源的输出电压键盘来设置直流电源的输出电压键盘来设置直流电源的输出电压键盘来设置直流电源的输出电压,,,,输出电压围为输出电压围为输出电压围为输出电压围为0000————9.99.99.99.9V,,,,最大电流为最大电流为最大电流为最大电流为0mA,,,,并可由液晶屏并可由液晶屏并可由液晶屏并可由液晶屏LCD1602显显显显示实际输出电压值示实际输出电压值示实际输出电压值示实际输出电压值。
本本本本设计设计设计设计由单片机程控输出数字信号由单片机程控输出数字信号由单片机程控输出数字信号由单片机程控输出数字信号,,,,经过经过经过经过D/A转换器转换器转换器转换器((((DAC0832))))输出模拟量输出模拟量输出模拟量输出模拟量,,,,再经过运算放大器再经过运算放大器再经过运算放大器再经过运算放大器LM324隔离放大隔离放大隔离放大隔离放大,,,,最后输出各种设备所需要的电压最后输出各种设备所需要的电压最后输出各种设备所需要的电压最后输出各种设备所需要的电压。
实际测试实际测试实际测试实际测试结果表明结果表明结果表明结果表明,,,,本系统实际应用于需要高稳定度小功率恒本系统实际应用于需要高稳定度小功率恒本系统实际应用于需要高稳定度小功率恒本系统实际应用于需要高稳定度小功率恒压源的领域压源的领域压源的领域压源的领域。
【【【【关键字关键字关键字关键字】】】】直流稳压电源直流稳压电源直流稳压电源直流稳压电源;;;;单片机单片机单片机单片机;;;;数控数控数控数控;;;;DAC0832 1.概述 1.1课题背景电源技术特别是稳压电源技术在工程技术方面使用性很强,在各个行业里得到了广泛的应用。
直流稳压电源的电路形式有很多种,有串联型、开关型、集成电路、稳压管直流稳压电源等等。
目前使用的直流稳压电源大部分是线性电源,利用分立元件组成,体积大,效率低,可靠性差,操作使用不便,自我保护功能不完善,故障率高(长期工作在大电流和大电压下,电子元器件很容易损坏)但在直流稳压电源中,通过整流、滤波电路所获得的直流电源的电压往往是不稳定的[1]。
当在外在电压波动或负载电流变化的时侯也会使输出电压有所改变。
供给电子设备的电压源的不稳定,会使设备产生很多问题。
所以,设计出质量优良的直流稳压电源,才能满足各种电子线路的要求。
数控电源是从80年代才真正的发展起来的,系统的一些电力电子理论基础在那期间刚刚建立。
这些理论的研究为其后来电源的发展提供了一个较好的基础。
在以后的电力电子发展中,数控电源技术的发展得到了长足的进步。
不过其产品存在数控程度要求达不到、分辨率不够高、功率密度低、可靠性比较差等缺点。
因此稳压电源以后主要的主要发展方向,是针对上述缺点不断的进行改善。
单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。
新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W的数控电源[2]。
1.2 本论文的主要设计思想目前,市场上各种直流电源的基本环节大致相同,都包括交流电源、交流变压器、整流电路、滤波稳压电路等[3]。
本设计将单片机控制系统应用于直流稳压电源的方法和原理,实现了稳压电源的数控调节。
从组成上,本设计硬件电路主要由单片机、变压器、整流电路、滤波电路、稳压输出电路、D/A转换电路、显示电路等组成。
利用D/ A 转换器的高分辨率和单片机的自动检测技术设计数控电源更显示出其优越性。
数控电源既能方便输入,具有较高精度和稳定性,而且在0.0V到9.9V可以任意设定输出电压,所有功能由面板上的键盘控制单片机实现,给电路实验带来极大的方便,提高了工作效率。
1.3 数控直流稳压电源设计研究的意义基于单片机的数控直流稳压电源,与传统直流稳压电源相比,具有新颖性、独创性和先进性。
它不仅能作为常规的电子产品和科研实验电源用,而且可以通过软件编程的方法使稳压电源产生连续变化的输出电压,具有很高的性价比[4]。
电源采用数字控制,具有以下明显优点: 1.采用先进的智能控制策略和控制方法,体现出电源模块的高程度智能化,更加完美性能。
2.系统升级方便,控制比较灵活,只需修改控制算法,而不必改动硬件线路。
3. 提高控制系统的可靠性,更容易实现标准化,可以针对不同的系统(或不同型号的产品),采用相同的控制板,而只需对软件控制部分做一些调整便可。
4.系统电压输出的一致性比较好,成本低廉,方便量产。
2.各模块方案的论证 2.1 控制方案比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。
本方案电路复杂,灵活性不高,效率低,不利于系统的扩展,对信号处理比较困难。