无机材料科学基础晶体学基础优秀课件
材第二章_晶体学基础

25
12 简单立方点阵
a=b=c,α=β=γ =90°
26
13 体心立方点阵
a=b=c,α=β=γ =90°
27
14 面心立方点阵
a=b=c,α=β=γ =90°
28
2.3、晶向指数和晶面指数
晶向——通过晶体中任意两个原子中心连成直 线 来表示晶体结构的空间的各个方向。 晶面——晶体结构一系列原子所构成的平面。
8
2.2 布拉菲点阵
点阵(晶格)模型
晶胞
代表性的基本单元(最小平行六面体)
9
c
b
a
空间点阵及晶胞的不同取法
10
选取晶胞的原则: 1.要能充分反映整个空间点成的周期性和对称性; 2.在满足1的基础上,单胞要具有尽可能多的直角; 3.在满足上条件,晶胞应具有最小的体积。
1
2
6
3
4 5
晶体学选取晶胞的原则
47
描述晶胞从以下几个方面: 晶胞中原子的排列方式 (原子所处的位置) 点阵参数 (晶格常数和晶轴间夹角) 晶胞中原子数 原子半径 R(原子的半径和点阵常数关系) 配位数和致密度 密排方向和密排面 晶体结构中间隙 (大小和数量) 原子的堆垛方式
48
三种典型金属晶体结构刚球模型
间隙有两种:四面体间隙和八面体间隙 八面体间隙: 位于晶胞体中心和每个棱边的中点, 由 6 个面心原子所围成,大小rB=0.414R,rB为间隙半径, R为原子半径,间隙数量为4个。
面心立方八面体间隙
55
面心立方四面体间隙
四面体间隙:由一个顶点原子和三个面心原子围成,其大 小:rB=0.225R,间隙数量为8个。
42
晶带定理的应用
晶体学基础与典型金属的晶体结构

OZ(晶面与坐标原点O不能有交点) (2)以一个晶格常数a为度量单位求出该
晶面与坐标轴的截距。 (3)取截距的倒数化简成最小整数放入
(hkl)内 。
第一节 晶体学基础
晶面指数小结
(1)一个晶面指数代表空间相互平 行的一组晶面 ,将各指数乘以
单晶体
晶体结构
B A
C
单晶体与多晶体
第7页
第一节 晶体学基础
三. 空间点阵、晶格与晶胞
1. 空间点阵--由具有相同的周围环 2. 境阵点构成的阵列,且无限大。 2. 晶格-空间几何格架。
3. 晶胞-晶格中最小的几何单元。
规律性、对称性和周期性 晶胞参数- 晶格常数:a、b、c
棱间夹角:α、β、γ
第一节 晶体学基础
立方晶系 - a=b=c , α=β=γ=90o
四方晶系 - a=b≠c , α=β=γ=90o
六方晶系 -a1=a2=a3 , α=β= 90o ,γ=120o 三斜晶系 - a≠ b≠c ,α ≠ β ≠ γ ≠ 90o
单斜晶系 - a≠ b≠c , α = γ= 90o ≠ β
棱方晶系 - a=b=c , α=β=γ ≠90o 正交晶系 - a≠ b≠c ,α=β=γ=90o,
第二节 典型金属的晶体结构
第13页 第1页
返回
材料科学基础教程
第一节 晶体学基础
1.金属原子结合和金属键 2.晶体与非晶体 3.空间点阵、晶格与晶胞 4.晶体结构与空间点阵 5.布拉非点阵及晶系 6.晶向指数与晶面指数
第一节
第2页
第一节 晶体学基础
工程材料中的原子排列
硅表面原子排列
(完整版)1《材料科学基础》第一章晶体学基础

晶向、晶
钯的PDF卡片-----Pd 89-4897
crystal system,space
图 2 CdS纳米棒的TEM照片(左)和 HRTEM照片(右)
图2 选区电子衍射图
图1. La(Sr)3SrMnO7的低 温电子衍射图
晶向、晶面、晶面间距
晶向:空间点阵中行列的方向代表晶体中原子排 列的方向,称为晶向。
晶面:通过空间点阵中任意一组结点的平面代表 晶体中的原子平面,称为晶面。
L M
P点坐标?
(2,2,2)或222
N
一、晶向指数
1、晶向指数:表示晶体中点阵方向的指数,由晶向上结点的 坐标值决定。
2、求法 1)建立坐标系。 以晶胞中待定晶向上的某一阵点O为原点,
联系:一般情况下,晶胞的几何形状、大小与对应的单胞是 一致的,可由同一组晶格常数来表示。
不区分 图示
晶 胞
空间点阵
单
胞
•NaCl晶体的晶胞,对应的是立方面心格子 •晶格常数a=b=c=0.5628nm,α=β=γ=90°
大晶胞
大晶胞:是相对 于单位晶胞而言 的
例:六方原始格子形式的晶胞就是常见的大晶胞
① 所选取的平行六面体应能反映整个空间点阵的对称性; ② 在上述前提下,平行六面体棱与棱之间的直角应最多; ③ 在遵循上两个条件的前提下,平行六面体的体积应最小。
具有L44P的平面点阵
单胞表
3、单胞的表征
原点:单胞角上的某一阵点 坐标轴:单胞上过原点的三个棱边 x,y,z 点阵参数:a,b,c,α,β,γ
准晶
是一种介于晶体和非晶体之间的固体。准晶具有长程定向有 序,然而又不具有晶体所应有的平移对称性,因而可以具有 晶体所不允许的宏观对称性。
材料科学基础-第1章

晶面指数及晶面间距
现在广泛使用的用来表示晶面指数的密勒指数是由 英国晶体学家ler于1939年提出的。
z
确定晶面指数的具体步骤如下: 1.以各晶轴点阵常数为度量单位,求 出晶面与三晶轴的截距m,n,p; 2.取上述截距的倒数1/m,1/n,1/p; 3. 将以上三数值简为比值相同的三 个最小简单整数,即 1 1 1 h k l (553) : : : : h:k :l x m n p e e e 其中e为m,n,p三数的最小公倍数,h,k,l为简单整数; 4.将所得指数括以圆括号, (hkl)即为密勒指数。
13 体心立方点阵
a=b=c,α=β=γ =90°
14 面心立方点阵
a=b=c,α=β=γ =90°
§ 1.5 晶体结构的对称性
一、对称:对称是指物体相同部分作有规律的 重复。对称操作所依据的几何元素,亦即在对 称操作中保持不动的点、线、面等几何元素称 为对称元素。 二、对称性
1.晶体的宏观对称性 2. 晶体的32种点群 3. 晶体的微观对称性 4.230种空间群
晶体结构=空间点阵+基元
注意:上式并不是一个数学关系式,而只是用来表示这三者之间的 关系。
二、晶体的点阵理论
1 、点阵(Lattice):
将晶体中重复出现的最小单元作为结构基元,用一个数 学上的点来代表 , 称为点阵点,整个晶体就被抽象成一组 点,称为点阵。 1 点阵点必须无穷多; 点阵必须具备的三个条件 2 每个点阵点必须处于相同的环境; 3 点阵在平移方向的周期必须相同。
c
b
a
空间点阵及晶胞的不同取法
选取晶胞的原则: 1.要能充分反映整个空间点阵的周期性和对称性; 2.在满足1的基础上,单胞要具有尽可能多的直角; 3.在满足上条件,晶胞应具有最小的体积。
材料科学基础 第一章

第一章晶体学基础材料中的原子(离子、分子)在三维空间呈规则,周期性排列。
原子无规则堆积。
非晶体:蜂蜡、玻璃金刚石、NaCl、冰等。
YX§1-1 空间点阵一、空间点阵的概念为了便于分析研究晶体的结构,进行如下处理:组成晶体的原子(或分子、原子集团)抽象几何点(点阵的结点自然形成三维阵列(空间点阵平行线连接空间格子(原子(离子)的刚球模型原子中心位置X Y Z a bcX Zab c §1-2晶面指数、晶向指数——Miller 指数晶面——穿过晶体中原子的平面。
晶向——晶体中任意原子列的直线方向。
§1-3常见晶体结构常见的晶体结构主要有:体心立方一、体心立方(BCC)体心立方结构可以缩写为BCC 钢球模型质点模型(face-centered cubic)a从晶体结构的钢球模型可以看出,原子与原子之间存在许多间隙。
分析这些间隙的数量、位置、形状和大小,对于了解晶体的性能、合金的相结构以及相变、扩散等问题都是十分重要的。
一、FCC 晶体FCC 中的间隙有2种:八面体间隙,四面体间隙1、正八面体间隙边长为:2a §1-4常见晶体结构的间隙八面体间隙四面体间隙§1-5 晶体的堆垛方式任何晶体都可以看作是由任意晶面的。
一般是以最密排晶面的堆垛方式作为晶体的堆垛方式。
一、BCC晶体视频最密排晶面:(110)堆垛次序:ABAB……§1-6 晶带所有相交于某一直线的或平行于此直线的晶面构成一个此直线称为晶带轴。
晶带轴[uvw]与该晶带的晶面存在如下关系——晶带方程hu+kv+lw例如:在正交(立方、正方、四方)点阵中,(101(100)、(010)、(110)、向平行,构成以[001]为晶带轴的晶带。
材料科学基础 第1章 晶体学基础

金刚石
Nacl
水晶
CaF2
MoS2
闪锌矿
高分辨率电镜-High Resolution Electron Microscopy (HREM)
The surface of a gold specimen, was taken with a atomic force microscope (AFM). Individual atoms for this (111) crystallographic surface plane are resolved.
底心正方和简单 正方点阵的关系
例:结构对性能的影响-Sn 1850 in Russia. The winter that year was particularly cold, and record low temperatures persisted for extended periods of time. The uniforms of some Russian soldiers had tin buttons, many of which crumbled due to these extreme cold conditions, as did also many of the tin church organ pipes. This problem came to be known as the “tin disease.”
组平行的晶面应当包含点阵所有的阵点。 ● 2、晶向(lattice or crystal directions) 通过两阵点之间的直线。 ● 3、定量表示晶面和晶向的意义 各向异性,结构分析(需要表征晶体结构内部的不同
材料科学基础第三章典型晶体结构(共71张PPT)

表示方法:球体堆积法;坐标法;投影图;配位多面体连 接方式
与金刚石晶胞的比照 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、 -ZnS〔纤锌矿〕型结构 〔AB type〕
六方晶系,简单六方格子
配位数:
晶胞中正负离子个数
堆积及空隙情况
同型结构的晶体:BeO, ZnO, AlN等
笼外俘获其它原子或基团,形成类C60的衍生物,例如
C60F60。再如,把K、Cs、Ti等金属原子掺进C60分子 的笼内,就能使其具有超导性能。再有C60H60这些相 对分子质量很大地碳氢化合物热值极高,可做火箭的 燃料等等。
2〕碳纳米管
碳纳米管又称纳米碳管〔 Carbon nanotube,CNT〕,是 单质碳的一维结构形式。碳纳米 管按照石墨烯片的层数分类可分 为:单壁碳纳米管〔Singlewalled nanotubes, SWNTs〕和多 壁碳纳米管〔Multi-walled nanotubes, MWNTs〕。
4. -ZnS〔闪锌矿〕型结构 〔AB type〕 点群:
空间群:
配位数:
晶胞中正负离子个数Z:
堆积及间隙情况:
• 以体积较大的S2-作立方紧密堆积 • Zn2+如何填充? • 空隙如何分布?
等同点分布:
共有2套等同点。这种结构 可以看作是Zn离子处在由S离 子组成的面心立方点阵的4个
四面体间隙中,即有一半四面 体间隙被占据,上层和下层的
晶体结构的描述通常有三种方法:
1〕坐标法:给出单位晶胞中各质点的空间坐标,这种采用
数值化方式描述晶体结构是最标准化的。为了方便表示晶胞, 化学式可写为MO,其中M2+是二价金属离子,结构中M2+和O2-分别占据了NaCl中钠离子和氯离子的位置。 以由体正积 负还较离大子可的半径S以2比-作rN采立a方+/r用紧cl-密≈堆投0.积 影图,即所有的质点在某个晶面〔001〕上的投
材料科学基础第二章

y
[111]
x
[111]
例:画出晶向
[112 ]
2.立方晶系晶面指数
晶面指数的确定方法
(a)建立坐标系,结点为原点, 三棱为方向,点阵常数为单位 (原点在标定面以外,可以采 用平移法); (b)晶面在三个坐标上的截距a1 a2 a3 ; (c)计算其倒数 b1 b2 b3 ; (d)化成最小、整数比h:k:l ; 放在圆方括号(hkl),不加逗号, 负号记在上方 。
3.六方晶系晶面和晶向指数
三指数表示六方晶系晶面和晶向的缺点:晶体学上等价的 晶面和晶向不具有类似的指数。 例:
晶面指数
(11 0)
(100)
[010] [100]
从晶面指数上不能明确表示等同晶面,为了克服这一缺点, 采用a1、a2、a3及c四个晶轴, a1、a2、a3之间的夹角均 为120º ,晶面指数以(hkil)表示。 根据立体几何,在三维空间中独立的坐标轴不会超过三 个可证明 : i= - (h+k) 或 h+k+i=0
六方晶系
d hkl
h k l a b c
2 2 2
d hkl
a h2 k 2 l 2
1 l c
2
4 h 2 hk k 2 3 a2
注:以上公式是针对简单晶胞而言的,如为复杂晶胞, 例如体心、面心,在计算时应考虑晶面层数增加的影 响,如体心立方、面心立方、上下底(001)之间还有 一层同类型晶面,实际
[1 00 ]
[0 1 0]
[010]
[1 00]
y
[100]
x
[00 1]
无机材料科学基础 第一章结晶学基础

§1-5 晶体的理想形态
一、 单形的概念
➢ 单形:指借助于对称型之全部对称要素的作用 而相互联系起来的一组晶面的组合。
➢ 单形特点:同一单形中的晶面是同形等大的; 共有47种单形。
物
质
气态
内
能
液态
玻璃态
结晶态
2020/6/18
物质存在状态
2020/6/18
一、对称的特点
➢ 所有的晶体都是对称的; ➢ 受到格子构造控制晶体的对称是有限的。 ➢ 对称体现在外形上、物理、化学性质上。
2020/6/18
二.晶体的宏观对称要素和对称操作
➢对称操作:指能使对称物体中各相同部分作有
2020/6/18
• 二、各晶系晶体的定向法则
晶系
三斜晶系
单斜晶系
晶体几何常数
a≠b≠c α≠β≠γ
a≠b≠c α=γ= 90°β≠ 90°
斜方晶系 四方晶系 三方晶系 六方晶系
a≠b≠c、 α=β=γ=90°
a=b≠c、 α=β=γ=90°
a=b=c、 α=β=γ≠90°
a=b≠c、 α=β=90°γ=120°
第一章 结晶学基础
2020/6/18
第一章 几何结晶学基础
认识晶体/非晶体的过程:
自然界存在的外形规则的物体→人工合成晶体 非晶体也可以呈现出规则外形;晶体在非理想生长条件 下可以呈 现出不规则外形
晶体现代定义:内部质点以一定周期性方式在 三维空间规则排列的物质
晶体学包含的主要内容
2020/6/18
2020/6/18
3.空间点阵与实际晶体的区别
组成单元
空间分布
空间点阵 几何点
无限大
实际晶体 实际原子或离子 有限大
材料科学基础

材料科学基础第一章晶体学基础1、固态物质按其原子(或分子)的聚集状态可分为二大类——晶体和非晶体。
区分他们主要从其内部的原子排列情况来确定。
在晶体中,原子(离子或分子)在三维空间作有规则的周期性重复排列。
而非晶体就不具备这一特点。
2、晶体定义:晶体是内部质点在三维空间中呈周期性重复排列的固体。
其组成质点在三维空间中成周期性排列。
这也是晶体与其它状态物体之间的本质区别。
这种质点在三维空间周期性的重复排列也称为格子构造。
因此,也可以说,晶体是具有格子构造的固体。
即不论沿晶体的哪个方向看去,总是相隔一定的距离就出现相同原子或原子集团。
这个距离也称为周期。
显然,沿不同的方向可能有不同的周期。
而把大范围的周期性的规则排列叫做长程有序。
3、非晶体(Amorphous)不具有上述特征。
在非晶体中原子(或分子、离子)无规则地堆积在一起。
液体和气体都是非晶体。
在液体中,原子也处于相对紧密聚集的状态,但不存在长程的周期性排列。
固态的非晶体实际上是一种过冷状态的液体,只是它的物理性质不同于通常的液体。
玻璃是一个典型的固态非晶体,所以,往往将非晶态称为玻璃态。
4、准晶体:具有五次或六次以上的对称轴,其质点的排列虽为长程有序,但不体现周期重复,即不存在格子构造。
5、晶体的基本性质:晶体内部的周期性质决定了晶体具有一些共有的性质,并且根据这些性质能与其他状态的物体区分开来。
1 均一性:指晶体内部在其任一部位都具有相同性质的特性。
如密度、化学性质。
2 异向性:指晶体的性质因观测方向的不同而表现出差异的特性。
如硬度,解理。
3 对称性:指晶体中的相同部分或性质,能够在不同方向或位置上有规律地重复出现。
4 自范性:或称为自限性,指晶体能自发地形成封闭的凸几何多面体外形的特点。
5 最小内能:指的是在相同热力学条件下,晶体与同种物质的非晶态相比较,其内能最小,因而晶体的结构也是最稳定的。
6 稳定性:由于晶体有最小的内能,因而结晶状态是一个相对稳定的状态。
晶体几何基础

山东大学无机材料科学基础
山东大学无机材料科学基础
山东大学无机材料科学基础
六方晶系的定向与晶面指数
山东大学无机材料科学基础
山东大学无机材料科学基础
六方晶系中,三轴指数和四轴指数的相互转 化
三轴晶向指数(U V W) 四轴晶向指数(u v t w)
晶体构造中的微观对称特点
1、晶体构造中的对称要素不仅有方向,还 有严格的位置 2 、微观对称操作除了旋转、反应、反伸 外还有平移 3、若移动距离为零,则与宏观对称要素同 4、晶体微观对称要素在空间作互相平行的 无限排列
平移轴
为一条假象的直线,晶体构造沿此直线移动 一个或数个节点间距时,构造自相重合。 晶体构造中的任何一个行列方向为一根平 移轴 晶体的14中空间格子可视为各行列的组合, 即代表晶体构造中平移轴的组合 晶体有14种平移格子
山东大学无机材料科学基础
山东大学无机材料科学基础
晶向指数说明
晶向指数特征:与原点位置无关;每一指数对应一组 平行的晶向。 晶向族:原子排列情况相同,但空间位向不同的一组 晶向的集合。 表示方法:用尖括号<uvw>表示 。 举例:
可见任意交换指数的位置和改变符号后的所 有结果都是该族的范围。
山东大学无机材料科学基础
三轴晶面指数(h k l) 四轴晶面指数(h k i l) i=- ( h + k )
山东大学无机材料科学基础
晶面间距
由晶面指数求面间距dhkl
通常,低指数的面间距 较大,而高指数的晶面 间距则较小 晶面间距愈大,该晶面 上的原子排列愈密集; 晶面间距愈小,该晶面 上的原子排列愈稀疏。
材料科学基础课件第二章--晶体结构

小结
1. 晶体结构是指晶体中原子或分子的排列情况,由空间点阵 与结构基元构成,晶体结构的形式是无限多的。
2. 空间点阵是把晶体结构中原子或分子等结构基元抽象为周
围环境相同的阵点之后,描述晶体结构的周期性和对称性的
图像。
17
2.1.2 晶向指数和晶面指数
(1) 晶向指数 晶向(crystal directions)—通 过晶体中任意两个原子中心连 成直线来表示晶体结构的空间 的各个方向。
些晶向可归为一个晶向族,用〈uvw〉表示。如
〈111〉 晶 向 族 包 括 [111] 、 [T11] 、 [1T1] 、 [11T] 、 [TT1]、[1TT]、[T1T]、[TTT];〈100〉晶向族包括 [100]、[010]、[001]、[T00]、[0T0]、[00T] 。
(4)同一晶向族中晶向上原子排列因对称关系而等同。
范德华键的特点及典型的分子晶体的性质:
范德华键(分子键)是通过“分子力”而产生的键合。分子力 包括三种力:葛生力(Keesen force)──极性分子中的固有 偶极矩产生的力,德拜力(Debye force)──感应偶极矩产生 的力,即极性分子和非极性分子之间的作用力,伦敦力 (London force)──非极性分子中的瞬时偶极矩产生的力。 当分子力不是唯一的作用力时,它们可以忽略不计。
2 晶体结构
晶体:物质是由原子、分子或离子按一定的空间 结构排列所组成的固体,其质点在空间的分布具 有周期性和对称性,因而晶体具有规则的外形。
1
晶体的宏观特征
石英
硫
2
钠长石 Na[AlSi3O8]
绿柱石 Be3Al2(SiO3)6
3
祖母绿Be3Al2[Si6O18]
材料科学基础ppt

第一章 材料结构的基本知识
一、原子的电子排列
第一节 原子结构
原子
原子核
中子 质子
核外电子
原子的结构示意图
原子的运动轨道是有四个量子数所确定的,它们分别为主量子数、次量子数、磁 量子数以及自旋量子数。四个量子数中最重要的是主量子数n(n=1、2、3、4·····),
正方晶系: d h k 1 / l h [ /a ) ( 2 ( k /b ) 2 ( l/c ) 2 ] 1 /2
六方晶系:
d h k 1 / l4 / [ 3 ( h 2 h k k 2 ) /a 2 ( l/c ) 2 ] 1 /2
第二节 纯金属的晶体结构
一. 典型金属的晶体结构
金属晶体中的结合键是金属键,由于金属键没有方向性和饱和性,使大多数金属晶 体都具有排列紧密、对称性高的简单晶体结构。最常见的典型金属通常具有面心立方(A1 或fcc)、体心立方(A2或bcc)和蜜排六方(A3或hcp)三种晶体结构。
四. 晶面间距
1. 晶面间距:相邻两平行晶面间的距离。
2. 计算公式
对于各晶系的简单点阵,晶面间距与晶面指数 (hkl) 和点阵常数(a,b,c)之间有如下
关系:
立方晶系:
dhk la/h ቤተ መጻሕፍቲ ባይዱ2k2l2]1/2
四方晶系:
d h k1 l/h [2 (k 2 )/a 2 ( l/c )2 ] 1 /2
二.材料性能与内部结构的关系
材料的不同性能都是由其内部结构决定的。从材料的内部结构来看,可分为四个 层次:原子结构、结合键、原子的排列方式(晶体和非晶体)以及显微组织。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按周期性规律重复排列
非 晶 态 结 构 示 图
晶体的基本特征
1)晶体能自发形成多面体外形(晶体的自范性) F(晶面数)+V(顶点数)=E(晶棱数)+ 2
满足欧拉定理
6+8=12+2 8+6=12+2 4+4=6+2
晶体的理想外形具有特定的对称性,这是内部结构对称性的反映
2)各向异性
NaCl
平行四边形格子 a
b
aa≠∧bb≠120。
(3) 空间点阵与正当空间格子
正当空间格子的标准: 1. 平行六面体 2. 对称性尽可能高 3. 含点阵点尽可能少
正当空间格子有7种形状,14种型式
空间格子净含点阵点数:
每个格子顶点位置的阵点为八个格子所公用,每个格子占1/8; 每个格子棱心位置的阵点为四个格子所公用,每个格子占1/4; 每个格子面心位置的阵点为两个格子所公用,每个格子占1/2; 每个格子内部位置的阵点为该格子所独用,每个格子占1。
正当平面格子的标准
1. 平行四边形 2. 对称性尽可能高 3. 含点阵点尽可能少
正当平面格子有4种形状,5种型式(其中矩形有带心与不带心 两种型式):
正方形格子 a
b a=b a∧b=90°
矩形格子 a
b aa≠∧bb=90。
矩形带心格子 a
b aa≠∧bb=90。
六方格子 a
b
aa=∧bb=120。
连接直线点阵任意两个相邻阵点间的向量a,称为素向量。
(2) 平面点阵与正当平面格子
四边形顶点上
的阵点,对每个 单位的贡献为1/4
四边形边上的
阵点,对每个单 位的贡献为1/2
四边形内的阵
点,对每个单位 的贡献为1。
净含一个点阵点的平面格子是素格子,多于一个点阵点者是
复格子;平面素格子、复格子的取法都有无限多种。所以需 要规定一种 “正当平面格子”标准。
6)晶体对的X-射线衍射 晶体的周期性结构使它成为天然的三维光栅,周期与X光
波长相当, 能够对X光产生衍射。
周期性结构二要素:
(1) 周期性重复的内容结构基元(motif); (2) 周期性重复的大小与方向,即平移矢量。
周期性结构的研究方法—点阵理论:
将晶体中的结构基元(重复的内容)抽象为几何学 中的点,这些点按一定的方式在空间重复排列形成点 阵(由点阵点组成)
石墨
石墨晶体在平行于石墨层 方向上比垂直于石墨层方 向上导电率大一万倍。
3)晶体的均匀性
一块晶体内部各个部分的宏观性质是相同的,如有相 同的密度、相同的化学组成。
4) 晶体确定的熔点
5) 晶体的对称性
理想晶体的外形与其内部的微观结构是紧密相关的,都具 有特定的对称性,而且其对称性与性质的关系非常密切。
所有点阵点分布在一条直线上。 所有点阵点分布在一个平面上。 所有点阵点分布在三维空间上。
晶体结构和空间点阵的区别
空间点阵是晶体中质点排列的 几何学抽象,用以描述和分析 晶体结构的周期性和对称性, 由于各阵点的周围环境相同, 它只能有14种类型
晶体结构则是晶体中实际质点 (原子、离子或分子)的具体 排列情况,它们能组成各种类 型的排列,因此,实际存在的 晶体结构是无限的。
下列晶体结构如何抽象成点阵?
Mn
(立方简单)
Li Na K Cr Mo W…...
(立方体心)
以上每一个原子都是一个结构基元,都可以抽象成一个点阵点.
2 、点阵单位(格子)
晶体可以抽象成点阵,点阵是无限的。只要从点阵中取一 个点阵单位即格子,就能认识这种点阵。
如何从点阵中取出一个点阵单位呢?
(1)直线点阵与素向量、复向量
二、晶体的点阵理论
1 、点阵(Lattice):
将晶体中重复出现的最小单元作为结构基元,用一个数 学上的点来代表, 称为点阵点,整个晶体就被抽象成一组点, 称为点阵。
1 点阵点必须无穷多; 点阵必须具备的三个条件 2 每个点阵点必须处于相同的环境;
3 点阵在平移方向的周期必须相同。
点阵
由点阵点在空间排布形成的图形
点阵点
由重复单位抽象出的几何学上的点
结构基元
点阵点所代表的重复单位的具体内容
晶体结构 = 点阵 + 结构基元
lattice 点阵
structural motif 结构基元
Crystal structure 晶体结构
晶体结构 = 点阵 + 结构基元
晶体结构
点阵
结构基元
+
点阵
直线点阵 平面点阵 空间点阵
4. 初基晶胞: 初基点阵矢量定义的平行六面体,仅包含一个点阵点。
5. 晶体结构: 原子在晶体中的周期性排列。 它可以通过在每点阵点 安放一个称为基元(或型主)的一组原子来描述。
a.一维周期性结构与直线点阵:等距离分布在一条直线上的无限点列。 重复的大小和方向用一矢量a表示;Tm = ma (m = 0, ±1, ± 2 …) 所 有矢量作用在图形上都能复原。
T0,T1,T2, …Tm …组成的集合,满足群的条件,构成∞阶平移群
a
a'
b.二维周期性结构与平面点阵:
平移群表示 Tm,n = ma + nb (m, n = 0,±1, ± 2 …)
石墨层
小黑点为平面点阵. 为比较二者关系, 暂以 石墨层作为背景,其实点阵不保留这种背景.
c.三维周期性结构与空间点阵: Tm,n,p = ma + nb + pc (m, n, p = 0,±1, ± 2 …)
无机材料科学基础 晶体学基础
晶体学基础
Introduction to Crystallography
1、 晶体结构的周期性和点阵 2、 晶体结构的对称性 3、 结晶化学基本原理 4、 晶体结构
§1.1 晶体结构的周期性和点阵
一、 晶体结构的特征
固体物质按原子(分子、离子)在空间排列 是否长程有序
晶体结构和空间点阵的区别
晶体结构和空间点阵的区别
g-Fe, fcc
c
b a
Cu3Au, simple cubic
点阵、结构和单胞
1. 点阵:晶体的周期性,忽略填充空间的实际结构(分子) 。 2. 点阵矢量:由点阵矢量移动晶体到一个等效位置的平移。 3. 初基点阵矢量: 可选择的最小点阵矢量。
无定形 晶体
晶体:是原子、离子、分子等微粒在空间按一定规律周期重复 地排列构成的固体物质。
其结构特征是规则排列: 在空间上“一定数量种类的微粒”每 隔一定距离重复出现,即所谓晶体的周期性.
无定形态物质(玻璃体、非晶态物质)内部排列杂乱无章,或仅 仅是短程有序,它们不能通过对称性相关联。
晶态结构示意图