大学物理稳恒磁场习题及答案 (1)
大学物理第六章稳恒磁场习题参考答案
第六章稳恒磁场作业集第37讲毕奥-萨伐儿定律一、Ⅰ类作业:解:根据毕奥萨伐尔定律20sin d 4d r l I B θπμ=,方向由右手定则决定。
(1)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==方向垂直纸面向里(沿z 轴负向)。
(2)00sin d 4sin d 4d 2020=︒==L l I r l I B πμθπμ(3)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==,方向沿x 轴正向。
(4)因为2245sin sin ,2222=︒==+=θL L L r ,所以2020d 82sin d 4d Ll I r l I B πμθπμ==,方向垂直纸面向里(沿z 轴负向)。
37.2教材223页第6.2、6.4、6.6题解:(1)6.2:(2)6.4:(3)6.6:二、Ⅱ类作业:解:根据磁场叠加原理可知,中心点O 的磁感应强度是两根半无限长载流导线的B 和41载流圆弧的B 的矢量和。
即321B B B B ++=其中,半无限长载流导线在其延长线上的031==B B ,41载流圆弧的R I B 802μ=,方向垂直纸面向外。
所以RI B B 802μ==,方向垂直纸面向外第38讲磁场的性质一、Ⅰ类作业:38.1一块孤立的条形磁铁的磁感应线如图所示,其中的一条磁感线用L 标出,它的一部分在磁铁里面,你能根据安培环路定理判断磁铁里面是否有电流吗?如果有穿过L 的电流方向是怎样的?解:因为磁感应强度沿L 的线积分不为零,即环量不为零,根据安培环路定理,有电流穿过环路L 。
根据右手定则,电流是垂直纸面向里。
38.2教材229页6.7、6.9题二、Ⅱ类作业:38.3如图所示,有一根很长的同轴电缆,由两层厚度不计的共轴圆筒组成,内筒的半径为1r 1,外筒的半径为r 2,在这两导体中,载有大小相等而方向相反的电流I ,计算空间各点的磁感应强度.解:该电流产生的磁场具有轴对称性,可用安培环路定理计算磁感应强度。
大学物理习题稳恒磁场
稳恒磁场一、选择题1. 一圆电流在其环绕的平面内各点的磁感应强度B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。
2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中321O ,O ,O 处的磁感应强度为B B B 123,,,则 【 】(A)B B B 123==; (B) 0B 0B B 321≠== ;(C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠=3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】(A) 若⎰=⋅L0l d B ,则必定L 上B 处处为零(B) 若⎰=⋅L0l d B, 则必定L 不包围电流(C) 若⎰=⋅L0l d B, 则L 所包围电流的代数和为零(D) 回路L 上各点的B 仅与所包围的电流有关。
4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2(C) 4(D) 1/45. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】(2)选择题(A) 2/IB Na 32,(B)4/IB Na 32, (C) 60sin IB Na 32,(D) 06. 一带电粒子以速度v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半径变为2R ,磁场B 应变为: 【 】 B 22)D (B 21)C (B 2)B (B 2)A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两条轨迹可以判断【 】(A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。
大学物理《电磁学2·稳恒磁场》复习题及答案共72页文档
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢你的阅读
上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
大学物理《电磁学2·稳恒磁场》复习 题及答案
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
《大学物理学》习题解答(第13章 稳恒磁场)(1)
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
(完整版)稳恒磁场作业习题及参考答案.doc
赵近芳编大学物理学 ch9. 稳恒磁场 作业习题及参考答案9-6 已知磁感应强度B 2.0 Wb ·m -2 的均匀磁场,方向沿x 轴正方向,如题 9-6 图所示.试求:(1) 通过图中 abcd 面的磁通量; (2) 通过图中 befc 面的磁通量; (3)通过图中 aefd 面的磁通量.解: 如题 9-6 图所示(1) 通过 abcd 面积 S 1 的磁通是 : 1B S 1 2.0i (0.3 0.4)i 0.24 ( Wb )(2) 通过 befc 面积 S 2 的磁通量 :2B S 22.0i (0.3 0.3)k(3) 设 aefd 面积 S 3 的法线正方向如图,则通过aefd 面积 S 3 的磁通量:3 B S 32 (0.30.5)cos20.15 4 0.24 ( Wb )题 9-6 图59-7 如题 9-7图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半径为R .若通以电流 I ,求 O 点的磁感应强度.解:如题9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中AB 段产生: B 1BC 段产生:B 2 0I60I(即垂直纸面向里)2R 360,方向题 9-7 图12 RCD 段产生: B 3I (sin 90 sin 60 ) 0I (13) ,方向4 R2 R 22【或: B 3I(cos120cos180 )I(13) ,方向 】4 R2 R22∴B 0B 1B 2B 30 I(13 ) , 方向 .2 R2 69-8 在真空中,有两根互相平行的无限长直导线L 1 和 L 2 ,相距 0.1m ,通有方向相反的电流, I 1 =20A,I 2 =10A ,如题 9-8图所示. A , B 两点与导线在同一平面内.这两点与导线L 2 的距离均为 5.0cm .试求 A , B 两点处的磁感应强度,以及磁感应强度为零的点的位置.解:如题 9-8 图所示, B A 方向垂直纸面向里,大小为:B A0 I120 I21.2 10 4 T2 (0.1 0.05)0.05B B 方向垂直纸面向外,大小为:0 I10 I21.33 10 5 T题 9-8 图B B22 (0.1 0.05) 0.05设 B0在 L 2 外侧距离 L 2 为 r 处,则II 20 , 解得: r 0.1 m9-12 两平行长直导线相距d =40cm ,每根导线载有电流 I 1 = I 2 =20A ,如题 9-12图所示.求:(1) 两导线所在平面内与该两导线等距的一点A 处的磁感应强度;(2) 通过图中斜线所示面积的磁通量. ( r 1 = r 3 =10cm, l =25cm) .解: (1) B A0 I10 I24 105 (T) 方向纸面向外2 ( d) 2 ( d)22题 9-12 图(2)dS ldr ,则: dB dS Bldr取面元d r 1 r 2 0 I 1 0 I 2]ldr0 I 1lln 30 I 2 lln1I 1lln 3 2.2 106( Wb )r 1 [S2 r2 (d r )2239-13 一根很长的铜导线载有电流 10A ,设电流均匀分布。
(完整版)大学物理电磁场练习题含答案
(完整版)⼤学物理电磁场练习题含答案前⾯是答案和后⾯是题⽬,⼤家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22.[]2.边长为l 的正⽅形线圈中通有电流I ,此线圈在A 点(见图)产⽣的磁感强度B 为(A) l I π420µ. (B) l Iπ220µ.(C)l Iπ02µ. (D) 以上均不对.[]3.通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[]4.⽆限长载流空⼼圆柱导体的内外半径分别为a 、b ,电流在导体截⾯上均匀分布,则空间各处的B ?的⼤⼩与场点到圆柱中⼼轴线的距离r 的关系定性地如图所⽰.正确的图是[]5.电流I 由长直导线1沿平⾏bc 边⽅向经a 点流⼊由电阻均匀的导线构成的正三⾓形线框,再由b 点沿垂直ac 边⽅向流出,经长直导线2返回电源(如图).若载流直导线1、2和三⾓形框中的电流在框中⼼O 点产⽣的磁感强度分别⽤1B ?、2B ?和3B表⽰,则O 点的磁感强度⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ?,但B 3≠ 0.[]6.电流由长直导线1沿半径⽅向经a 点流⼊⼀电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆⼼O 三点在同⼀直线上.设直电流1、2及圆环电流分别在O 点产⽣的磁感强度为1B ?、2B ?及3B,则O 点的磁感强度的⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ?,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0.[] v7.电流由长直导线1沿切向经a 点流⼊⼀个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆⼼O 在同⼀直线上.设长直载流导线1、2和圆环中的电流分别在O 点产⽣的磁感强度为1B ?、2B ?、3B,则圆⼼处磁感强度的⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ??.[]8.a R r OO ′I在半径为R 的长直⾦属圆柱体内部挖去⼀个半径为r 的长直圆柱体,两柱体轴线平⾏,其间距为a ,如图.今在此导体上通以电流I ,电流在截⾯上均匀分布,则空⼼部分轴线上O ′点的磁感强度的⼤⼩为(A) 2202R a a I ?πµ (B)22202R r a a I -?πµ(C) 22202r R a a I-?πµ (D) )(222220a r Ra a I -πµ []参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空⼼部分轴线上的磁感强度可以看成是电流密度为J 的实⼼圆柱体在挖空部分轴线上的磁感强度1B ?和占据挖空部分的电流密度-J 的实⼼圆柱在轴线上的磁感强度2B ?的⽮量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=µ 所以挖空部分轴线上⼀点的磁感强度的⼤⼩就等于)(22201r R IaB -π=µ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减⼩ 2分在2/R x <区域减⼩;在2/R x >区域增⼤.(x 为离圆⼼的距离) 3分13. 0 1分I 0µ- 2分14. 4×10-6 T 2分 5 A 2分15. I0µ 1分 0 2分2I0µ 2分16. 解:①电⼦绕原⼦核运动的向⼼⼒是库仑⼒提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电⼦单位时间绕原⼦核的周数即频率000142a m a e a ενππ=π=v 2分由于电⼦的运动所形成的圆电流00214a m a e e i ενππ== 因为电⼦带负电,电流i 的流向与 v ?⽅向相反 2分③i 在圆⼼处产⽣的磁感强度002a i B µ=00202018a m a eεµππ= 其⽅向垂直纸⾯向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产⽣的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B +++= ∵ 1B ?、4B ?均为0,故32B B B ?+= 2分)2(4102R I B µ= ⽅向? 2分 242)sin (sin 401203R I a I B π=-π=µββµ)2/(0R I π=µ ⽅向 ? 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800µµ)141(20π+=R I µ ⽅向 ? 2分 18. 解:电流元1d l I ?在O 点产⽣1d B ?的⽅向为↓(-z ⽅向) 电流元2d l I ?在O 点产⽣2d B ?的⽅向为?(-x ⽅向) 电流元3d l I ?在O 点产⽣3d B ?的⽅向为? (-x ⽅向) 3分kR I i R IB π-+ππ-=4)1(400µµ 2分 19. 解:设x 为假想平⾯⾥⾯的⼀边与对称中⼼轴线距离,++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=µ (导线内) 2分r I B π=202µ (导线外) 2分)(42220x R R Il -π=µΦR R x Il +π+ln20µ 2分令 d Φ / d x = 0,得Φ最⼤时 Rx )15(21-= 2分20. 解:洛伦兹⼒的⼤⼩ B q f v = 1分对质⼦:1211/R m B q v v = 1分对电⼦: 2222/R m B q v v = 1分∵ 21q q = 1分∴ 2121//m m R R = 1分21.解:电⼦在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接⼊射和出射点的线段将是圆周的⼀条弦,如图所⽰.所以⼊射和出射点间的距离为:)/(3360sin 2eB m R R l v ==?= 3分2解:在任⼀根导线上(例如导线2)取⼀线元d l ,该线元距O 点为l .该处的磁感强度为θµsin 20l I B π=2分⽅向垂直于纸⾯向⾥. 1分电流元I d l 受到的磁⼒为 B l I F=d d 2分其⼤⼩θµsin 2d d d 20l lI l IB F π== 2分⽅向垂直于导线2,如图所⽰.该⼒对O 点的⼒矩为 1分θµsin 2d d d 20π==lI F l M 2分任⼀段单位长度导线所受磁⼒对O 点的⼒矩+π==120d sin 2d l l l I M M θµθµsin 220π=I 2分导线2所受⼒矩⽅向垂直图⾯向上,导线1所受⼒矩⽅向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r µµµ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /µ 6.25×10-4 T ·m/A 2分=-=1/0µµχm 496 2分9. ⼀磁场的磁感强度为k c j b i a B ?++= (SI),则通过⼀半径为R ,开⼝向z 轴正⽅向的半球壳表⾯的磁通量的⼤⼩为____________Wb .10.在匀强磁场B ?中,取⼀半径为R 的圆,圆⾯的法线n ?与B ?成60°⾓,如图所⽰,则通过以该圆周为边线的如图所⽰的任意曲⾯S 的磁通量==Sm S B ?d Φ_______________________.11. ⼀质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中⼼所产⽣的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(µ0 =4π×10-7 H ·m -1)12. 载有⼀定电流的圆线圈在周围空间产⽣的磁场与圆线圈半径R 有关,当圆线圈半径增⼤时,(1) 圆线圈中⼼点(即圆⼼)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平⾏的⽆限长直载流导线A 和B ,电流强度均为I ,垂直纸⾯向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ?_____________.(2) 磁感强度B ?沿图中环路L 的线积分 =??L l B ??d ______________________.14. ⼀条⽆限长直导线载有10 A 的电流.在离它 0.5 m 远的地⽅它产⽣的磁感强度B 为______________________.⼀条长直载流导线,在离它 1 cm 处产⽣的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图⽰有三种环路;在每种情况下,??lB ?____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原⼦基态的电⼦轨道半径为a 0,求由于电⼦的轨道运动(如图)在原⼦核处(圆⼼处)产⽣的磁感强度的⼤⼩和⽅向.17.⼀根⽆限长导线弯成如图形状,设各线段都在同⼀平⾯内(纸⾯内),其中第⼆段是半径为R 的四分之⼀圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ?2d l I ?3d l I ?O如图,1、3为半⽆限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平⾯内,导线2、3在Oyz 平⾯内.试指出电流元1d l I ?、2d l I ?、3d l I ?在O 点产⽣的Bd 的⽅向,并写出此载流导线在O 点总磁感强度(包括⼤⼩与⽅向).19.⼀根半径为R 的长直导线载有电流I ,作⼀宽为R 、长为l 的假想平⾯S ,如图所⽰。
大学物理《稳恒电流的磁场》习题答案
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
大学物理第七章稳恒磁场习题答案
第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。
如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。
解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。
大学物理A(一)课件第七章 稳恒磁场习题及答案
第七章 练习题1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B、3B 表示,则O点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B. (C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B.3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]5、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll B d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.IBxOR (D )Bx O R(C )BxO R (E )电流筒6、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动.(D) 离开大平板向外运动.7、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.8、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l Id 所受的安培力F d 的大小为____,方向________.9、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B的方向在水平面内,导线中电流方向如图所示,当导 线所受磁力与重力平衡时,导线中电流I =___________________.10、图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表____________________的B ~H 关系曲线.b 代表____________________的B ~H 关系曲线.c 代表____________________的B ~H 关系曲线.11、AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)12、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.I 1I 2IlI dIB13、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.14、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案:一 选择题1、D2、A3、D4、B5、D6、B7、2ln 20πIaμ 8、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)9、)/(lB mg10、铁磁质、 顺磁质、 抗磁质 11、解:AA '线圈在O 点所产生的磁感强度002502μμ==AAA A r I NB (方向垂直AA '平面)CC '线圈在O 点所产生的磁感强度 005002μμ==CCC C r I N B (方向垂直CC '平面)O 点的合磁感强度 42/1221002.7)(-⨯=+=C AB B B T B 的方向在和AA '、CC '都垂直的平面内,和CC '平面的夹角︒==-4.63tg1AC B B θC A12、解:利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 xiB π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμbb a x+π=ln20δμ 方向垂直纸面向里.13、解: ===l NI nI H /200 A/m===H H B r μμμ0 1.06 T14、解:由安培环路定理:∑⎰⋅=iI l Hd0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2rI H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r rI H ---π=)1(2222322200RR R r rIH B ---π==μμr >R 3区域: H = 0,B = 0。
大学物理练习题
练习二十七 稳恒磁场(一)1、一根无限长直导线abcde 弯成图27—1所示的形状,中部bcd 是半径为R ,对圆心O 张角为0120的圆弧,当通以电流I 时,O 处磁感应强度大小=B____________,方向为 ________________.2、两平行长直导线相距m 21040-⨯,通过图中矩形面积abcd 的磁通量=Φ3、[]放置. 如图27—3所示,则圆心O处磁感应强度大小为:(1) 0 ; (2) R I 20μ; (3) R I 220μ ; (4)R I 0μ4、 [ ] 如图27—4所示,在无限长载流导线附近一球形闭合曲面S ,当面向长直导线靠近的过程中,穿过面S 的通量Φ及面上任意一点P 的磁感应强度大小B 的变化为:(1)Φ增大,B 增大;(2)Φ不变,B 不变; (3)Φ增大,B 不变;(4)Φ不变,B 增大。
5、如图27—5所示,一宽为a 求:在薄板所在平面上距板右侧为d 的P 点的磁感应强度P B练习二十八 稳恒磁场(二)1.有一半径R 的无限长圆柱形导体,沿其轴线方向均匀地通有稳恒电流I ,则在导体内距离轴线为r 处的磁场应强度的大小B 1 =_____________ ;导体外,距轴线为r 处的磁感应强度的大小B 2=____________________ 。
∮L2B.dl =__________________.。
3.[ ]如图28-3所示,a 、c 处分别放置无限长直截流导线,P 为环路L 上任 一点,若把a 处的截流导线移至b 处,则: (1)∮L B.dl 变,B p 变; (2)∮L B.dl 变,B p 不变; (3)∮L B.dl 不变,B p 不变; (4)∮L B.dl 不变,B p 变。
4.[ ]在一个圆形电流外取一个圆形闭合回路L ,且 L 与圆形电流同心共面,由安培环路定律∮L B.dl =0,可得: (1)L 上各点的B 一定为零;(2)圆电流在L 上各点的磁感应强度和一定为零; (3)B 沿L 上任一点的切向分量为零; (4)安培环路定律对圆电流的磁场不适用。
稳恒磁场习题答案
稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。
稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。
下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。
1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。
这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。
3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。
即磁场强度随着电流的增加而增加。
4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。
即磁场强度随着线圈的面积的增加而增加。
5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。
这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。
7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。
这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。
8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。
大学物理第8章稳恒磁场课后习题与答案
第 8 章 稳恒磁场习题及答案6. 如图所示,AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半径为R 。
若通以电流 I ,求 O 点的磁感应强度。
解: O 点磁场由 AB 、 BC 、 CD 三部分电流产生,应用磁场叠加原理。
AB 在 O 点产生的磁感应强度为B 1 0BC 在 O 点产生的磁感应强度大小为B 20 I0 I0 I,方向垂直纸面向里4 R4 R 312RCD 在 O 点产生的磁感应强度大小为B 3I(cos1cos 2 )4 r 00 I4R cos60 0(cos150cos180 )0 I3(1) ,方向垂直纸面向里2 R2故 B 0B 1 B 2B 30 I(13) ,方向垂直纸面向里22 R6A ,B 两点,并在很远处与电源相连。
已知7. 如图所示,两根导线沿半径方向引向铁环上的圆环的粗细均匀,求环中心 O 的磁感应强度。
解:圆心 O 点磁场由直电流A和 B及两段圆弧上电流 I 1与 I 2所产生,但 A 和 B 在O 点产生的磁场为零。
且I 1 电阻R 2I 2电阻R 12I 1 产生的磁感应强度大小为B 10 I12)(4 R,方向垂直纸面向外I 2 产生的磁感应强度大小为B 2 0 I2,方向垂直纸面向里4 R所以,B 1 I 1(2)1B 2I 2环中心 O 的磁感应强度为B 0B 1 B 28. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为 b 的任意点 P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以 P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取 dIIdx , dI 在 P 点产生的磁感应a强度大小为dB0dIIdx ,方向垂直纸面向里2 x 2 axP 点的磁感应强度大小为BdB0 Ib adx 0 Iln ba2 abx2 ab方向垂直纸面向里。
稳恒磁场习题(包含答案)
练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。
大学物理稳恒磁场作业题参考答案
8.3.7 设题8.3.7图中两导线中的电流均为8A,对图示的三条闭合曲线 a , b , c ,
分别写出安培环路定理等式右边电流的代数和.并讨论:
(1)在各条闭合曲线上,各点 的磁感应强度 B 的大小是否相等?
(2)在闭合曲线 c 上各点的 B 是否为 零?为什么?
解:
B a
dl
8
0
b
B
dl
80
cB dl 0
∴
Fab
b
Idl
B
I
(
b
dl
)
2 B
I ab B
a
a
方向⊥ ab 向上,大小 Fab BI ab
题 8.3.11 图
8.3.11 如题8.3.11图所示,在长直导线 AB 内通以电流 I1 =20A,在矩形线圈 CDEF 中通有电流 I 2 =10 A, AB 与线圈共面,且 CD , EF 都与 AB 平行.已知 a =9.0cm, b =20.0cm, d =1.0 cm,求:
(C)内外部磁感应强度 B 都与 r 成反比;
(D)内部磁感应强度 B 与 r 成反比,外部磁感应强度 B 与 r 成正比。
[答案:B]
(5)在匀强磁场中,有两个平面线圈,其面积 A1 = 2 A2,通有电流 I1 = 2 I2,它
们所受的最大磁力矩之比 M1 / M2 等于 [
]
(A) 1;
(B) 2;
(1)导线 AB 的磁场对矩形线圈每边所作用的力;
(2)矩形线圈所受合力和合力矩. 解:(1) FCD 方向垂直 CD 向左,大小
FCD
I2b
0 I1 2d
8.0 104
N
同理 FFE 方向垂直 FE 向右,大小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
( √ )2、磁通量m SB dS φ=⋅⎰vv 的单位为韦伯。
( × )3、电流产生的磁场和磁铁产生的磁场性质是有区别的。
( × )4、电动势用正、负来表示方向,它是矢量。
( √ )5、磁场是一种特殊形态的物质,具有能量、动量和电磁质量等物质的基本属性。
( × )6、满足0m SB dS φ=⋅=⎰vv 的面积上的磁感应强度都为零。
四、简答题(每小题5分)1、在同一磁感应线上,各点B v 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B v? 的方向?答:在同一磁感应线上,各点B v数值一般不相等。
(2分)因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B v 的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B v的方向。
(3分)2、写出法拉第电磁感应定律的数学表达式,说明该表达式的物理意义。
答: 法拉第电磁感应定律的数学表达式r l S B E dl dS t ∂⋅=-⋅∂⎰⎰vv vv Ñ(2分)物理意义:(1)感生电场是由变化的磁场激发的;(1分)(2)感生电场r E v 与Bt∂∂v构成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包围的面积。
(1分)五、计算题(每题10分,写出公式、代入数值、计算结果。
)1、如图5所示,AB 、CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖ(1分)CD 产生RIB 1202μ=,(2分)方向垂直向里(1分)CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)方向⊥向里(1分) ∴)6231(203210ππμ+-=++=R I B B B B ,(2分)方向⊥向里.(1分) 2、如图6所示。
半径为R 的均匀带电圆盘,面电荷密度为σ。
当盘以角速度ω绕其中心轴OO '旋转时,求盘心O 点的B 值。
解法一:当带电盘绕O 轴转动时,电荷在运动,因而产生磁场。
可将圆盘看成许多同心圆环的组合,而每一个带电圆环转动时相当于一圆电流。
以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环转动时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其方向沿轴线,因此整个圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:根据运动电荷的磁场公式304r rv q B ρρϖ⨯=πμ,(2分)求解,在圆盘上取一半径为r ,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)方向垂直于盘面向上,同样图5图6RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分)3、图7所示,在一长直载流导线旁有一长为L 导线ab ,其上载电流分别为I 1和I 2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab受力。
解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其方向垂直低面向里,电流之I 2dx 受安培力大小为dx xII Bdx I df πμ22102== (3分)df v方向垂直向上,且各电流之受力方向相同,(2分)故,ab 受力为 012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4、一长直导线通有电流120A I =,旁边放一导线ab ,其中通有电流210A I =,且两者共面,如图8所示。
求导线ab 所受作用力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥ϖd 向上,(2分) 大小为rI rI F πμ2d d 102=(2分) F ϖd 对O 点力矩F r M ϖϖϖ⨯=d (2分) M ϖd 方向垂直纸面向外,大小为r II F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===b a b a r I I M M 6210106.3d 2d πμ m N ⋅(2分) 5、两平行长直导线相距d =40cm ,每根导线载有I 1=I 2=20A 如图10所示。
求:⑴两导线所在平面内与该两导线等距的一点A 处的磁感应强度; ⑵通过图中斜线所示面积的磁通量。
(r 1= r 3=10cm ,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中心x 处,取一窄条ds ldx =,则通过ds 的磁通量m d B ldx φ=g()1222O O I I ldx x d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)I 1I2dL图7图8图9图1031122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6、 已知磁感应强度B =·m -2的均匀磁场,方向沿X 轴正方向,如图11所示,试求:(1) 通过abcd 面的磁通量; (2) 通过图中befc 面的磁通量; (3) 通过图中aefd 面的磁通量。
解: (1)通过abcd 面的磁通量mabcd abcd B S φ=g 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)通过ebfc 面的磁通量,由于B v线掠过此面 故0mbdfc φ=(3分) (3)通过aefd 面的磁通量0.24maefd mabcd wb φφ==(3分)图11。