储层评价

合集下载

储层评价技术(一)

储层评价技术(一)
粒度命名法: 含量>50%——主名;25~50%——质;10~25%——含
常用的碎屑颗粒粒度分级表
十进制
颗粒直径(mm)
>1000 1000~100 100~10
10—1
巨砾 粗砾 中砾 细砾
1—0.5 0.5~0.25 0.25~0.1
粗砂 中砂 细砂
0.1—0.05 0.05~0.01
粗粉砂 细粉砂
三、油气储层地质学的近代进展
80年代以来:
1、 储、产层一体化组合研究 四性资料—测试—试井—生产动态—生产测井综合研究 重点: 产层参数、产层特征、产能判断
2 、储盖层综合研究 强化盖层研究,确定盖层封闭能力,计算盖层封闭油气 柱高度。 ——准确确定储层有效性
3 、构造、储层综合研究 1)构造和断裂的演化与储层形成机制——孔隙发育 2)不同构造类型的储层与油气富集关系——有利构造 圈闭
薄片鉴定
2、填隙组分 杂基(粘土和灰泥)和胶结物。 胶结物指成岩期在颗粒缝隙中形成的化学沉淀物。 主要为: 碳酸盐矿物(方解石、白云石和菱铁矿) 硅质—石英、玉髓和蛋白石 其它铁质矿物(赤铁矿、褐铁矿和黄铁矿) 硫酸盐矿物(石膏、硬石膏、重晶石(少见))
三 、结构
1 、粒度 一般采用十进制粒度分级,编制粒度概率图和求粒 度参数多采用2的几何级数制。 砾和砂的分界也可定在2mm、粉砂和粘土的分界也 可定在0.0039或0.005mm
建立岩、电关系综合剖面。 主要测井曲线: 自然电位、微电极、感应、自然伽马、密度、声波、 地层倾角等 五 、分类进行分析化验 岩石薄片,铸体薄片,荧光薄片、粒度分析、重矿 物分析、阴极发光薄片、电子探针分析、扫描电镜、 X-衍射分析、微量元素分析、稳定同位素分析、图 像分析、压汞分析、油层物性分析。

油井储层综合评价与新方法测井解释

油井储层综合评价与新方法测井解释

油井储层综合评价与新方法测井解释摘要:油井勘探目的,是为该区的地震、地质等基础调查求取有关地层数据;为资源储量测算提供重要参考;为该区域下阶段石油勘查发展奠定基础。

油井先后已开展过四期全套测井,全部使用美国LOGIQ测井系统。

测井方面针对各种第一手数据开展了资料校正、数据分析、四性关系评价、储层综合判断、新数据分析等较完整的研究。

关键词:测井解释;四性关系;阵列感应;地层倾角引言:测井技术可以说是一种新的测井技术,它的关键在于确定测井信号与地质信息之间的关系,并通过合适的处理手段将其处理成地质信号。

结合大量的地质、钻井、开发等数据,对地层划分、油气层、矿物层等进行了详细的研究。

测井解释工作包括:评价产层性质、评价产液性质、评价储层性质、开展钻探和开发应用等。

一、测井解释的新方法(一)井周声波成像(CBIL)测井技术井周声波成像测井技术是利用旋转环能装置将高频率的脉冲声波辐射到目标地层,利用声波的反馈,对井口周围进行地质勘探,其频率为每秒6周,一般一周可达250个取样点。

通过传感器端接井周声波,通过内部处理器来记录和分析井周声波的强度和回波时间,并以此来完成井周地层的特征分析。

在实际应用中,通过对岩层的回波强度和回波时间的分析,可以得到岩性、物性、沉积结构等信息。

此外,还可以将反射波的传输时间转化为目标的距离,并将其以井周360度的方式呈现为黑白或彩色的影像。

通过图象显示的资料,可以更好的理解井底岩性和几何接触面的变化,进而对地层中的裂缝位置、地质结构等进行分析。

(二)核磁共振技术在没有其他磁场干扰的情况下,形成中的氢核是自旋相关的,并且具有随机的方向。

利用核磁共振技术,通过使用核磁共振记录装置来创造一个永久的磁场,形成中的氢核在应用磁场的方向上形成有规律的排列,这个过程称为氢核的极化。

如果这个应用磁场总是恒定的,那么在它上面添加一个垂直方向的射频场,同时调整射频场的频率以匹配氢核的谐振频率,就会产生核磁共振现象。

第六章储层非均质性研究与储层评价

第六章储层非均质性研究与储层评价
个储层,必须采用多项参数,从多个方面进行综合评价。
一般来说,储层综合评价都要选择以下一些参数: ① 油层厚度:如沉积厚度、砂泥岩厚度、砂泥岩比例、 有效厚度等; ② 油层物性:如有效孔隙度、绝对孔隙度、有效渗透率、 粒度中值、分选系数、泥质含量等; ③ 孔隙结构:如孔隙类型及分布状况、平均孔隙直径、孔 喉 比、最大连通喉道半径、最小非饱和体 积孔喉分选系数等; ④ 沉积相带:所属亚相、微相及特征 ⑤ 油层分布状况:如含油面积、油砂体个数、油层连通情况、 砂层钻遇率等; ⑥ 地质储量分布:各砂层储量大小及其占总储量的百分数。 所选用的参数,在不同地区、不同油田、不同任务和不同 的勘探开发阶段是有差别的。因而评价参数的选择范围和参数 的重要程度也有不同。
(4)层间非均质性
三、层内非均质性
层内非均质性是指一个单砂层在垂向上的储渗性质变化。 包括层内渗透率的剖面差异程度、高渗透率段所处的位置、 层内粒度韵律、渗透率韵律及渗透率的非均质程度、层内不 连续的泥质薄夹层的分布等。
正韵律 反韵律 复合韵律 均质韵律 颗粒粒度自下而上由粗变细 颗粒粒度自下而上由细变粗 正、反韵律的组合 粒度在垂向上变化均匀
夹层分布频率越高,层内非均质性就越严重。 ⑵夹层分布密度( Dk ) 每米储层内非渗透性泥质隔夹层的合计厚度。
H sh Dk H
H sh —层内泥质隔夹层总厚度,
m;H —层厚,m。
夹层分布密度越大,储层的层内非均质性 就越强。
渗透率差异对水洗油层的影响 油层剖面渗透率的非均质性变化情况复杂,一般可归结为 三种基本类型:渗透率下高上低的正韵律油层,渗透率下低 上高的反韵律油层,渗透率呈正、反韵律交叉变化的复合韵 律油层。这三种油层的剖面水洗特征具有一定的典型意义。 见水 水淹 剖面水 见水后含水 采收率

储层微观特征及分类评价

储层微观特征及分类评价

4.储层微观特征及分类评价4.1孔隙类型本次孔隙分类采用以孔隙产状为主,并考虑溶蚀作用,结合本区实际,将孔隙分类如下:1. 粒间孔隙粒间孔隙是指位于碎屑颗粒之间的孔隙。

它可以是原生粒间孔隙或残余原生粒间孔隙,即原生粒间孔隙在遭受机械压实作用、胶结作用等一系列成岩作用破坏后而保留下来的那一部分孔隙。

多呈三角形,无溶蚀标志。

另一方面它也可以是粒间溶蚀孔隙,即原生粒间孔隙经溶蚀作用强烈改造而成,或者是颗粒间由于强烈溶蚀作用的结果。

粒间空隙一般个体较大,连通性较好。

粒间孔隙是本区主要的孔隙类型。

2. 粒内(晶内)孔隙这类孔隙主要是砂岩中的长石、岩屑等非稳定组分的深部溶蚀形成的,在研究区深层砂岩中普遍存在。

长石等非稳定组分的溶蚀空隙可以进一步分为粒内溶孔和晶溶孔。

晶内溶孔是指长石颗粒内的溶孔,而粒内溶孔是指岩屑等碎屑内部的易溶组分在深部酸性流体作用下形成。

常常沿长石的解理缝、双晶纹和岩屑内矿物之间的接触部位等薄弱带进行溶蚀并逐渐扩展,因而常见沿解理缝和双晶结合面溶蚀形成的栅状溶孔。

长石、岩屑等非稳定组分的溶蚀孔的发育常常使彼此孤立的、或很少有喉管项链的次生加大晶间孔的连通性大为改进,而且,这类孔隙的孔径相对较大,从而优化了深部储层的储集性能。

3. 填隙物孔隙填隙物孔隙包括杂基内孔隙、自生矿物晶间孔和晶内溶孔。

杂基内孔隙多发育与杂基含量较高的(>10%)砂岩中,孔隙数量多,个体细小,连通性差。

自生矿物晶间孔隙发育在深埋条件下自生矿物,如石英、方解石、沸石、碳酸岩小晶体以及石盐晶体之间,个体小,数量多随埋深有增加之趋势。

但由于常生长于粒间孔隙中,连通性较好,又由于其晶体小,比表面积大,孔隙结构复杂,影响流体渗流。

因此在埋深3500米以下,孔隙度降低较慢,而渗透率降低很快。

这类晶间孔隙在徐东-唐庄地区相对发育。

另外,杜桥白地区深层还可见到丰富的碳酸盐晶内溶孔和石盐晶内溶孔。

4. 裂隙裂缝在黄河南地区较不发育,在桥24井沙三段3547.5米砂岩中见一构造裂缝,此外多见泥质粉砂岩或细砂岩中泥质细条带收缩缝。

储层综合评价

储层综合评价
❖ II类为物性中等的储层,其渗透率在100-250×10-3μm2左 右,孔隙度在20-30%之间,以25-29%之间为主,显示相对中 孔、中渗的储层特征,储层比较均匀,平均有效厚度为2.3米;
❖ III类为物性相对较差、储层内非均质性很强的储层,其渗 透率在50-120×10-3μm2之间,孔隙度在10-25%之间,多为水 层。
储层综合评价实例
二、储层分类
在本次研究中,我们采用了Q型聚类分析法,利用 STATIC软件中的聚类分析程序对以上选择样品进行聚 类分析,并进行判别分析。从数据可知,全部样品大致 分为I、II、III类,判别结果与实际分类吻合良好。由此 可见,划分的储层类型是合理的,按此类型划分本区各 井各小层的储层类型是可行的。
2、R型主因子分析—将有一定相关程度的多 个变量进行综合分析,从中确定出在整 个数据矩阵中起主要作用的变量组合, 把多个变量减少为相互独立的几个主要 变量,即主因子。
3、多种非线形单相关分析 从多个变量中剔除与因变量关系不密切 的参数。
一、“权重”评价法
1、选取参与评价的参数 2、单项参数评价分数的计算
对各数据分别求出归属于各类储层的判别值,以最大归属准则,将该类 数据对相应的储层层段归为最大判别值的储层类型。
储层综合评价实例
III砂组I类储层有效厚度
储层综合评价实例
III砂组II类储层有效厚度
储层综合评价实例
III3小层储层类型平面分布图
❖ 将岩心观察与实验分析的第一手资料相对应,这样选取的样 品才具有地质分析的可靠性与代表性;
❖ 所选择样品应包括该区储层所有岩相类型,保证所选样品较 全面地反映本区储层岩性特征;
❖ 所选井相应实验分析、测井数字处理资料相对较全,且具有 匹配性。

10储层综合评价5

10储层综合评价5

杜I 二 杜 II 杜 III 杜I 三 杜 II 杜 III 杜I 四 杜 II 杜 III 权系数
综合评价分数:1~0.7为一类; 0.7~0.35为二类; <0.35为三类
以辽河曙光 油田油层组 综合评价为例
泥 质 含 量 (%) 8.56 7.88 8.54 15.25 15.28 11.35 24.9 13.96 14.59 碳酸盐 含 量 (%) 8.08 4.08 4.55 6.37 6.64 4.25 10.83 10.24 5.94
(2) 计算单项参数的评价分数
a
b
a
b
c
3. 方案实施阶段:
钻成第一批开发井网
阶段任务:确定完井射孔投产原则,对开发层系 划分、注采井别选择作出实施决策,确定每 口井的井别、射孔井段,交付实施投产。据 此进一步预测开发动态,修正开发指标,并 编制初期配产配注方案。 基础资料: 开发井网+ 评价井+地震资料
储层评价任务:
(1) 完成全开发区的油层划分对比 (2) 建立分井分层的储层参数数据库 (3) 编制分层微相图及分层储层参数图 (4 )建立储层静态模型 (包括剖面图及油层连通栅状图)
4. 管理调整阶段:油田投入开发以后
阶段任务:进行开发分析,掌握油水运动状况、 储量动用状况及剩余油分布状况; 实施各种增产增注措施,调整好注 采关系。
基础资料:加密井、检查井、 动态资料(如多井试井、示踪剂地层测试
及生产动态资料)
+ 开发井网+评价井+(地震资料)
储层评价任务:
(1) 综合所有静动态资料,逐步把储层静态模型 向预测模型发展。 (2) 研究各类微相砂体的水驱油运动规律,包括 平面注入水运动规律、层内水淹及层间干扰 特点。 (3) 监测储层在开采过程中的可能变化。

第六章储层特征与评价

第六章储层特征与评价

㈡ 孔隙发育控制因素
1.原生孔隙发育的控制因素 浅水、高能沉积环境,结构较粗,原生孔发育。相反
则差 2.溶蚀孔隙发育的控制因素 ⑴ 岩石溶解度
影响因素较多,岩石矿物成分不同;岩石结构构造 一般情况:石灰岩>白云岩>泥灰岩 ⑵ 地下水的溶解能力
CO2含量高者溶解能力强 ⑶地貌、气候、构造因素的影响
三、碳酸盐岩的裂缝
μ-粘度,1Pa·s
达西(D)或毫达西(mD) 两种制式的关系:
1D=0.987 μm2≈1 μm2 1mD=987×10-6 μm2 ≈1×10-3 μm2
L-长度,1m F-截面积,1m2 ΔP-压差,1Pa
2.绝对渗透率 指单相流体 ( 油、气 、水 )充满孔隙且液体不与
岩石发生物理化学作用时通过孔隙介质时的渗透率 。
美国 堪萨斯州 布什城油田 加拿大 阿尔伯达省 贝尔希油田
点砂坝
河流砂体 (曲流河)
河流砂体 (辫状河)
㈢ 三角洲砂岩体(Delta sandstone)与油气关系密切
1.形成地区:河流入海、入湖处 2. 岩性特征
A 三角洲平原亚相:河道砂岩体、 决口扇砂岩体
B 三角洲前缘亚相:河道砂岩体和河口砂坝、前缘席状砂
岩样中所有孔隙空间总体积与该岩样总体积的比值,以百 分数表示。
孔隙分类(按岩石中孔隙大小和对流体所起的作用):
①超毛细管孔隙
管形孔隙直有径效>孔0.5隙m度m;的裂变缝化宽范度围>0.25mm
②毛细管孔砂隙岩储层的有效孔隙度:5~30%, 管形孔一隙般直为径1:0~0.250~%0;.0002mm
㈣ 胶结情况
1. 胶结物成分 泥质 > 钙质 >硅、铁质 2.胶结物含量 : 愈少愈好。 3.胶结类型 接触胶结>孔隙胶结>基底、杂乱胶结

储层评价技术

储层评价技术

储层评价技术储层评价是指通过一系列的技术手段和方法来评价油气储层的性质和储集条件,为油田开发提供依据。

储层评价的目的是确定储层的孔隙度、渗透率、饱和度等参数,进而评估储层的储量和产能,为油田开发和生产提供科学的指导。

储层评价技术主要包括岩心实验、地震勘探和测井技术等。

岩心实验是通过采集储层岩石样品,并进行一系列的实验分析,来获得储层岩石的物理性质和流体性质。

常用的岩心实验包括岩心物性实验、岩心饱和度实验、岩心渗透率实验等。

岩心实验可以提供直接的储层参数数据,为储层评价提供重要依据。

地震勘探是通过地震波在地下介质中传播的方式来获取储层的地质信息。

地震勘探可以获得储层的层位分布、厚度、构造等信息,进而推断储层的孔隙度、渗透率及饱和度等参数。

地震勘探主要包括地震勘探数据采集、地震资料处理和解释等过程。

地震勘探可以提供广泛的储层信息,对于评价储层的连通性和储量有着重要的作用。

测井技术是通过测井仪器对井下的地层进行测量,获取储层的物性参数和流体性质。

常用的测井技术包括电测井、声测井、自然伽玛测井等。

测井技术可以提供井壁周围地层的电阻率、声波速度、放射性等参数,进而推断储层的孔隙度、饱和度和渗透率等参数。

测井技术是评价储层的一种重要手段,能够在井中直接获取储层参数,对储层评价具有较高的精度。

储层评价技术的选择和应用应根据不同的储层类型和区域特点进行综合考虑。

不同的储层评价技术有其适用的场合和局限性,在实际应用中需合理选择和组合多种技术手段,以达到准确评价储层的目的。

同时,随着技术的不断发展,如岩心CT扫描技术、地震反演技术和三维测井技术的应用,储层评价技术将进一步提高。

综上所述,储层评价技术是评价油气储层性质和储集条件的重要手段,岩心实验、地震勘探和测井技术是常用的评价手段。

通过合理选择和组合多种技术手段,可以获得准确的储层参数和地质信息,为油田开发和生产提供科学的依据。

储层评价技术的发展将进一步推动油气勘探开发的科学化和精细化。

储层伤害评价

储层伤害评价
特征
• 阿格厄尔的图版曲线以表皮系数 S 和井储系数 C
为参变量
• 格林加登和包迪特的图版曲线,以参变量CDe2S 为参变量,S 在指数位置,是主要的影响参数
第8页/共78页
阿格厄尔(Agarwal)图版曲线示 意图
第9页/共78页
格林加登(Grengarten)图版曲线示 意图
CDe2S
第10页/共78页
• 解释地层渗透 率
K=3.45mD
• 300m 宽 的 通 道形边界
第51页/共78页
陕178井试井曲线
(1999年8月7日-9月21日)
• 打开层位二 叠系山西组
• 井深: 2990m2998.6m
产能试井 (修正等时)
压力恢复试井
第52页/共78页
陕178井开井压压降曲线双对数图
第53页/共78页
数 S 值,可达到 –5 以上。除用S 值评价压裂效果外,
还须通过裂缝半长 Xf 和裂缝导流能力FCD 对压裂效果加
以描述。
第15页/共78页
采油、采气和注水过程中对地层的损害,一
般不能单独用表皮系数S 加以评价
• 采油时地层脱气 • 采气时地层深部产生反凝析 • 注水的油层,可能由于水敏,使储层内部的粘土
Ks(mD) 3
Sfs
0
0.18 0.091 0.046
0.5 1
2
第46页/共78页
井号
S141 Y28-12
S211 Y36-9 Y27-11 S117 S143 Y29-10 S142 Y35-8
压力恢复测试成果表 (1)
有效厚度 地层 kh 渗透率 k 裂缝半长 总表皮
h(m) (mD. m) (mD)

页岩气储层的基本特征及其评价

页岩气储层的基本特征及其评价

页岩气储层的基本特征及其评价一、本文概述页岩气作为一种重要的非传统天然气资源,近年来在全球能源领域引起了广泛关注。

由于其储层特征的复杂性和评价方法的多样性,对页岩气储层的基本特征及其评价进行深入研究具有重要的理论和实践意义。

本文旨在全面概述页岩气储层的基本特征,包括地质特征、物理特征、化学特征以及工程特征等方面,并探讨相应的评价方法和技术手段。

通过对页岩气储层特征的深入剖析,本文旨在为页岩气勘探开发提供理论支撑和实践指导,推动页岩气产业的健康发展。

具体而言,本文首先介绍了页岩气储层的地质背景,包括地层分布、构造特征以及沉积环境等。

在此基础上,重点分析了页岩气储层的物理特征,如孔隙结构、渗透率、含气饱和度等,这些特征直接影响了页岩气的赋存状态和开采难易程度。

同时,本文还关注了页岩气储层的化学特征,如有机质含量、矿物杂质成分等,这些特征对于评估页岩气储层的品质和开采潜力具有重要意义。

在评价方法方面,本文综述了目前常用的页岩气储层评价方法,包括地球物理勘探、地球化学分析、岩石力学测试等。

这些方法和技术手段在页岩气储层评价中各有优缺点,需要根据具体的地质条件和勘探需求进行选择和应用。

本文还将介绍一些新兴的评价技术和方法,如页岩气储层数值模拟、微观孔隙结构表征等,这些新技术和方法的应用将进一步提高页岩气储层评价的准确性和可靠性。

本文旨在全面系统地介绍页岩气储层的基本特征及其评价方法,以期为页岩气勘探开发提供理论支持和实践指导。

通过深入研究页岩气储层的特征和评价方法,有助于更好地认识页岩气资源的分布规律和开发潜力,推动页岩气产业的可持续发展。

二、页岩气储层的基本特征物理性质:页岩储层一般具有较低的孔隙度和渗透率,这与其主要由粘土矿物、石英等细粒沉积物构成有关。

尽管孔隙度低,但页岩的裂缝发育丰富,这些裂缝为页岩气提供了有效的运移和储集空间。

页岩的层理结构明显,这种层状结构对页岩气的分布和运移有重要影响。

化学性质:页岩的化学性质多样,主要取决于其含有的矿物成分。

储层分类标准

储层分类标准
储层分类标准
表1储层分类评价标准比较
分类部门
储层分类
孔隙度
(%)
渗透率
(×10-3um2)
分类部门
储层分类
孔隙度
(%)
渗透率
(×10-3um2)
评价
原石油天然气总公司

>30
>2000
中国石油

>25
>1000
最好

25-30
500-2000

20-15
100-1000


15-25
100-500

排驱压力MPa
饱和中值压力MPa
束缚水饱和度%

a
粒间孔或溶孔
微孔,晶间孔,矿物解理缝
细、中(粗)
>25
>600
<0.02
0.07-0.2
<10
>37.5
非常好
b
粒间孔或溶孔
微孔,晶间孔,矿物解理缝
中、细
20-30
100-600
0.02-0.1
0.2-1.5
<20
7.5-37.5
很好
c
粒间孔或溶孔,微孔
15-20
10-100
较好

10-15
10-100

10-15
1-10
较差

<10
<10

5-10
0.1-1.0

表2碎屑岩储层分类评价表
分类依据
Ⅰ类储层
Ⅱ类储层
Ⅲ类储层
Ⅳ类储层
渗透率
>100

储层评价

储层评价
.
若定义 KPOR = K/Φ,则依据 KPOR值大小判断孔隙结构的复杂性 ,进而可以定性 地判别储层的产液能力。研究结果表明 ,在中央凹陷带 ,中、 粗喉道储层所占比例 仅为 1/ 5 (此类不需改造即可获得较好产能) ,大部分储层为细微储层(需进行大规 模的储层改造才能取得较好效果) ,在此基础上再结合其他地质资料对储层进行精 细评价。
.
1、 储 层 基 本 特 征
储层定义:在自然界中,具有一定储集空间并能使储存在其中的流体在一定压差下可流动 的岩石称为储集岩 。由储集岩所构成的地层称为储集层。 1.1 储层基本属性 (1)孔隙性: ①储集空间(广义的孔隙)。储集岩中未被固体物质所充填的空间部分称为储集空间。 ②孔隙的大小:孔隙是被岩石颗粒包围的较大储集空间它是流体的基本储集空间 。 ③孔隙的连通性:连接二个孔隙的通道称为喉道。孔隙按其对流体渗流的影响可分为两类: 有效孔隙和无效孔隙。 ④孔隙度:它是反映岩石中孔隙的发育程度。可划分为总孔隙度和有效孔隙度。
致密碎屑岩储层评价方法 研究
.
背景介绍
碎屑岩储层是我国非常重要的一类储层,其油气储量约占总 储量的90%以上,碎屑岩储层的基本属性和碎屑岩评价技术与 方法,包括储层岩石学研究、储层沉积相分析、储层成岩作用 研究、储层空间和物性评价、含油性评价、综合评价几个方面。 在我国碎屑岩油气储量约占总储量的90%以上。因此,对碎屑 岩储层进行评价具有重要的意义。
.
.
312 渗透率计算方法 渗透率是最能反映储层物性特征的参数 ,可利用岩心渗透率与孔隙度拟合方法计 算得出 ,但由于与孔隙度的相关性较差(相关系数为 0156) ,导致用该法计算结果 误差较大。进一步研究表明 ,渗透率不但与有效孔隙度Φ有一定相关性,还与泥质 含量(V sh ) 、 粒度中值( Md ) 、 束缚水饱和度( Swirr )等参数密切相关。因此 可用线性回归分析建立研究区渗透率 K与Φ,V sh , Md , Swirr各参数值的数学模 型 ,即

油气田开发地质

油气田开发地质

油⽓⽥开发地质⼀、油⽓⽥开发阶段储层评价内容和主要特点是什么?近年来在该研究⽅⾯的新进展有哪些?答:每个开发阶段的资料基础和所要解决的开发任务不同,因⽽储层评价的内容也各不相同。

1、开发准备阶段(1)对各含油层系进⾏地层对⽐:对开发⽬的层系进⾏油层组划分,做出油层综合柱状图,油层对⽐剖⾯图。

(2)描述各油层组岩性特征:分析统计岩⽯成分、含量、粒度中值、分选系数、胶结物含量、胶结类型。

(3)分油层组统计有效厚度:作出含有层系和分油层系的有效厚度等值线图,作出含油⾯积图,描述砂体的连续性、稳定性、⽅向性。

(4)沉积亚相分析:分析各亚相带的旋回性、韵律性等,作出相模式图。

(5)开展孔隙结构研究:确定各套开发⽬的层系的储集空间类型;分油层组统计孔喉⼤⼩、孔喉均值程度、作⽑细管压⼒曲线分析。

(6)物性分析:统计孔隙度、渗透率及渗透率分布,各油层组或含油层系建的渗透率级差、变异系数,作⾮均质评价;作出含油饱和统计。

(7)渗流特征分析:分含油层系、油层组确定润湿性;作出相当渗透率曲线;作出敏感性评价。

(8)隔层研究:确定隔层标准、统计含油层系、油层组间的隔层厚度,隔层的孔渗性、裂缝特征、钻遇情况,描述隔层的岩性,作出隔层平⾯等厚图。

(9)在上述研究的基础上初步建⽴储层的概念模型。

2、开发⽅案设计与实施阶段(1)进⾏油层对⽐:将含油层系细分到⼩层,作出油层综合柱状图,对⽐剖⾯图,分区块作出连通图、⼩层平⾯图。

(2)开展⼩层沉积相研究:将沉积相带划分到微相,研究各微相平⾯分布与纵向变化,研究各微相带岩⽯的结构、构造,孔隙度、渗透率的纵横向变化,作出孔渗平⾯等值图。

(3)孔隙结构研究:以微相带为单元研究不同岩⽯的孔隙结构,⽤⽑细管压⼒曲线作出孔喉体积、渗透率贡献图。

(4)成岩作⽤研究:研究成岩作⽤对孔隙类型和分布的控制。

(5)⾮均质性研究:以⼩层为单元,进⾏平⾯、层⾯、层内⾮均质性描述,统计变异系数、⾮均质性系数和级差数据等。

储层有效性综合评价方法

储层有效性综合评价方法

储层综合评价方法储层评价是预测和评价研究区含油气有利区带的重要技术手段,是对储层研究的综合认识和评判。

针对单因素评价储层结果不惟一的缺点,本文研究了储层综合定量评价的方法(图1)。

该方法分为4个步骤:首先利用特征选择算法对评价参数进行筛选,然后根据灰关联分析来确定各影响因素的权重,进而运用最大值标准化法确定各项参数的评价分数,最后计算各项参数综合得分,在此基础上,运用聚类分析进行储层分类评价。

对储层评价结果进行统计分析,所划分的各类储层特征明显,与研究区储层实际特征具有很好的一致性。

最大限度地应用计算机手段对油气储层进行精细评价和综合解释具有定量化、地质意义明确等优点,有一定应用价值。

图1储层综合评价方法体系框架1评价参数的选择一项参数只从一个方面表征储层的特性,全面评价一个储层,需要采用多项参数,从多个方面进行综合评价。

对储层进行合理的分类是评价储层的基础。

迄今为止,国内外学者提出了许多储层分类的参数与方法,但应该用哪些参数、选用何种方法是一个很难解决的问题。

而储层综合定量评价是在选取储层评价参数的基础上,对储层多个影响因素做综合评价,最终得到一个综合评价指标,并依此对储层分类。

国内研究储层的学者在评价参数选择方面作了不少研究,所选择的评价指标也各不相同。

比如:刘吉余等[7]认为储层综合评价的参数主要为储层的有效厚度、砂体钻遇率、渗透率、有效孔隙度、泥质含量、黏土矿物类型、孔隙结构参数、层内非均质性参数及隔(夹)层的分布参数等;吕红华等[8]选择孔隙度、小层厚度、含油饱和度及小层钻遇率4个参数作为储层评价指标;张晓东等[9]选择有效厚度、沉积相、夹层频数、孔隙度和裂缝渗透率5个参数作为储层评价指标;张琴等[10]选取孔隙度、渗透率、颗粒分选、杂基含量、粒径、储层成岩相带、溶蚀作用及胶结作用共8个参数进行储层评价;马立文等[11]选取孔隙度、渗透率、泥质含量及渗透率突进系数4个参数进行储层评价。

测井储层评价

测井储层评价
性质有关。
在我国胜利油田,通过大量密闭取芯井资料,以统计回归分析,
可以给出C、x、y数值。同时,由于Φ与△t有关。Swi与Φ、Md有关。
因此,可以通过△t、△GR测井,利用回归公式计算K值。
2、以电阻率为基础的统计方法求渗透率
在纯油层的地方,根据卡赞公式,SA与Swi之间有线性关系,而油气层的 Swi越小,则SO越大,Rt就越高。因此,在纯油层可以建立K、△t与Rt之间二元 回归关系,甚至Rt与k之间的一元回归关系。这种方法要求RW变化较稳定。 3、核磁共振测井计算渗透率的方法 用常规的测井方法确定地层渗透率的误差较大,一般最大相对误差可达 50%。而用NMR测井求地层渗透率误差要小一个数量级。这就提高了用测井
在某些地区,Q值可做为指示地层渗透率的参数。
S D Q S
4、电阻率法
b=1~2;
Rsh Vsh R t
1 b
说明:在油层处,Vsh较低;在水层处,Vsh较高
Rsh RLim Rt Vsh R R R Lim sh t
直方图平移、趋面分析法来消除井间误差。在此基础上,建立Φ与△t 的 回归关系式。
万昌组孔隙度与声波时差关系图
25 y = 0.1489x - 26.366 20 R 2 = 0.7043 15 10 5 200 250 300 350
孔隙度(%)
声波时差(us/m)
4、核磁共振测井计算孔隙度 在获得流体氢核的横向弛豫时间T2分布之后,对T2分布的积分面 积,可以视为核磁共振孔隙度(ΦNMR)。
0.3 0.25 0.2
M d /mm M d /mm
0.3 0.25 0.2 0.15 0.1 0.05 0 245
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
经分析 ,油气指示参数 OID 和反映物性的胶结指数 m 是影响储集层产能的关键参数。 通过对岩石的四性关系研究 ,结合测试产能与储层参数之间的关系进行对比 ,可以发 现 ,油气指数 OID (其值相当于单位厚度的初产油量)与深侧向电阻率( Rt ) 、 孔隙 度(Φ)和泥质含量(V sh )关系最密切。通过非线性拟合回归 ,得出油气指数 OID 与深 侧向、 孔隙度、 泥质含量的关系为
致密碎屑岩储层评价方法 研究
.
背景介绍
碎屑岩储层是我国非常重要的一类储层,其油气储量约占总 储量的90%以上,碎屑岩储层的基本属性和碎屑岩评价技术与 方法,包括储层岩石学研究、储层沉积相分析、储层成岩作用 研究、储层空间和物性评价、含油性评价、综合评价几个方面。 在我国碎屑岩油气储量约占总储量的90%以上。因此,对碎屑 岩储层进行评价具有重要的意义。
.
百色盆地东部拗陷中央凹陷带那读组为陆相碎屑岩沉积地层 ,储集层 的特点是岩性致密 ,孔隙结构复杂 ,非均质性较强 ,横向可对比性较差 ,用传 统解释方法对其储层进行正确评价比较困难。综合岩心分析、 储层电性特 征对该区储层进行系统研究 ,初步形成了一套用常规测井资料综合评价致密 碎屑岩储层评价技术 ,包括流体性质判别、 孔隙结构评价、 储层非均质性 评价、 储层分类、 产量预测等方法 ,并通过实例进行了效果评价 ,证实该技 术的应用可有效地促进中央凹陷带的勘探开发。
.
储 层 岩 石 学 研究
百色盆地东部拗陷中央凹陷带是百色盆地的沉 积中心,也是盆地的生油中心。该区油气资源丰富 , 第三系那读组为主要含油层系。几十年的油气勘探 开发表明 ,该区储集物性条件差、 岩性致密、 非均质 性极强,储层横向可对比性较差 ,流体性质判别比较 困难 ,运用传统的测井解释技术难以对流体识别、 孔 隙结构、 储层非均质性、 产量预测以及储层参数进行准确的定量评价。为此针 对该区致密碎屑岩储层的特点 ,结合区内其他实际资料 ,综合岩心的分析和电性特 征对该地区的致密碎屑岩储层进行了系统研 究 ,总结出一套利用常规测井综合评价致密碎屑岩 储层的方法。
.
3 方法原理简介
3.1 流体判别方法
使用传统的交会图及 P1/ 2正态分布等方法判别那读组储层流体性质,判 别结果符合率很低。通过系统研究试油、 分析化验数据发现,那读组无水 层存在,因此可将那读组储层分为油层、 差油层及干层三类,只要能判断储 层的产油量,再根据该地区三类储层的产量标准,就能实现对这三类储层的 判别。也就是说,识别储层流体性质可以通过判断储层的产油量实现。
.
四、储集层的孔隙结构பைடு நூலகம்
岩石所具有的孔隙和喉道的几何形状、大小、分布及其连通关系。
决定孔隙度好、坏的主要是孔隙;决定渗透率好坏的主要是喉道。
图3-10 岩石孔隙系统示意图
图0-1 我国1历.岩年石颗石粒油;产2.胶量结变物. 化;3直.孔方隙系图统
.
(2)渗透性:指在一定压差下,岩石本身允许流体通过的能 力。它能控制产能大小,并受控于形成条件和工艺改造措施。 (3)饱和度:饱和度与岩石的性质密切相关,是指某种流体所充填的孔隙体积占 全部孔隙体积的百分数。岩石的性质直接影响着储层饱和度,进而影响采收率和产 量。 (4)储层非均质性:由于沉积建造、成岩演化、构造改造等作用使得油气储层在 空间分布及内部各种属性上均表现出不均匀变化就叫储层非均质性。
OID = - 01014lg ( Rt ) + 010969Φ - 010153V sh - 0132
据前人研究结果[ 1 ]和岩心分析可知 ,由低孔隙度(Φ< 13 %)较纯砂岩得出的胶结指数 m 与泥质含 量(V sh )的关系为
m = 21006e010033V sh
.
为了对储层性质进行判别,OID 与 m 分别使用一定的刻度绘图进行重叠, 可 得出各层的OID 与 m的交会面积 S 值。试油资料表明,储层产量与交会面积 S 值正相关关系,因此根据 S 大小即可实现储层流体性质(储层性质) 的识别。使用 交会面积方法对已试油的28 层储层流体的性质进行判别,得出如表 1所示的判别 标准 ,图 1 为 XK7 井流体性质判别图。上述应用实例表明 ,交会面积法为中央 凹陷带那读组致密储层性质识别提供了新的有效识别手段 ,与原有的交会图等识 别方法相比 ,该法快速、 直观 ,效果明显 ,解释结果符合率由 56 %提高到9614 %,从而解决了在近年生产上遇到的难题 ,为开发测试准确选层提供了可靠的依 据。
.
1、 储 层 基 本 特 征
储层定义:在自然界中,具有一定储集空间并能使储存在其中的流体在一定压差下可流动 的岩石称为储集岩 。由储集岩所构成的地层称为储集层。 1.1 储层基本属性 (1)孔隙性: ①储集空间(广义的孔隙)。储集岩中未被固体物质所充填的空间部分称为储集空间。 ②孔隙的大小:孔隙是被岩石颗粒包围的较大储集空间它是流体的基本储集空间 。 ③孔隙的连通性:连接二个孔隙的通道称为喉道。孔隙按其对流体渗流的影响可分为两类: 有效孔隙和无效孔隙。 ④孔隙度:它是反映岩石中孔隙的发育程度。可划分为总孔隙度和有效孔隙度。
.
喉道的大小、分布及其几何形状是影响储集层储集能力和渗透特征的主要因素。孔隙结构实质上是岩石的 微观物理性质,它能够较深入而细致地揭示岩石的特征。特别是对于低渗透性岩石,仅利用孔隙度和渗透率有 时无法正确评价储集层的性质,必须研究岩石的孔隙结构。
常规研究孔隙结构方法: 1、压汞法:具有快速、准确,根据曲线可定量反映孔喉的大小分布; 2、铸体:铸体薄片、铸体骨架,在二维平面上得到孔喉的形态、分布; 3、电镜扫描:微观上,得到较可靠的结果; 4、矿场研究:测井、渗流力学,借助此方法研究大范围孔喉分布。
.
2 那读组储层特征
那读组储集层以三角洲前缘亚相砂体为主 ,埋 深在 2100~2600m 之间 ,储集层的岩性、 物性及厚 度在纵、 横向上的分布不均 ,差异较大。 那读组储集层物性普遍较差 ,有效储集层平均 孔隙度为 1016 % ,渗透率主要分布范围为 0106~ 319mD ,平均值为 0193mD ,属典型的低孔、 低渗致 密砂岩储集层。但是那读组储集层岩屑或岩心录井 资料普遍有良好的油气显示 ,且层薄 ,产量低(大部 分油层日产油量低于 1t) 。
相关文档
最新文档