05工程优化第4章-1无约束最优化方法解析精品PPT课件
合集下载
第4章 无约束优化方法

4-2 牛顿法及其改进
基本思想 :
在Xk邻域内用一个二次函数 ( x ) 来近似代替原目 标函数,并将 ( x )的极小点作为对目标函数 f ( x )求 优的下一个迭代点 x k 1 。经多次迭代,使之逼近目 标函数 f ( x )的极小点。 牛顿法是求函数极值的最古老算法之一。
f ( X ) ( X ) f ( X k ) f ( X k )T ( X X k ) 1 ( X X k )T 2 f ( X k )( X X k ) 2
前途是光明的,道路是曲折的!
开始
给定
X 0 ,
k 0
s k f ( X k )
X k 1 X k k s k
k k k : min f ( X s ) k
k k 1
是
X k 1 X k
否
X * X k 1
结束
例4-1求目标函数
0
1. 基本思想
变量的尺度变换是放大或缩小各个坐标。通过尺 度变换可以把函数的偏心程度降到最低限度。
2 2 f ( X ) x 25 x 例如在用最速下降法求 1 2
设 X k 1为 ( X )的极小点 ( X k 1 ) 0
f ( X k ) 2 f ( X k )( X k 1 X k ) 0
X k 1 X k [2 f ( X k )]1 f ( X k ) (k 0,1,2, )
这就是多元函数求极值的牛顿法迭代公式。 对于二次函数 ,海赛矩阵H是一个常矩阵,其中 各元素均为常数。因此,无论从任何点出发,只 需一步就可找到极小点。
用直接法寻找极小点时,不必求函数的导数,只要 计算目标函数值。这类方法较适用于解决变量个数较少 的(n ≤20)问题,一般情况下比间接法效率低。 间接法除要计算目标函数值外,还要计算目标函数 的梯度,有的还要计算其海赛矩阵。
工程优化方法及应用 第四章1-2节

2 x x -0f x 1/2
1 0 0
Page 8
第2次迭代:
-1 f x , -2
1
|| f x1 || 5 0.5,
1
2+1 x x -1f x = 1/2+2 1 ( )=f x1 -f x1 =f 2+ ,1/2+2
2、其基本思想和逻辑结构可以推广到约束问题;
3、约束问题可以转化成无约束问题求解。
f ( x), x D min f ( x) min F ( x), 其中F ( x) n xD 类
解析法:对简单问题,求解必要条件或充分条件; 零阶法:只需计算函数值 f(x) 迭代算法 一阶法:需计算 ▽f(x) 梯度法 二阶法:需计算 ▽2f(x) 建立迭代算法的关键:确定迭代格式
3
5/2+22 3 x x -2f ( x )= = , 3/2 2 5/4
继续迭代可得到函数的近似最优解。
Page 10
2 2 例 用最速下降法求函数 f ( x1 , x2 )=x1 的极小点(迭代两 4 x2 T 次)。 并验证相邻两个搜索方向是正交的。初始点 x 0 1,1 。
No
Page 6
Yes stop. x* =xk
dk= -▽f(xk ) min f(xk+λdk) s.t. λ >0 得最佳步长因子λk 令: xk+1=xk+λkdk 解
最速下降法的算例
取 x 0 1,1T , =0.5. 解:函数的梯度为
Page 7
2 2 min f ( x ) x 2 x 例 利用最速下降法求解 1 2 2 x1 x2 4 x1 ,
《无约束优化方法》课件

收敛性分析
分析迭代点是否收敛到最优解,以及收敛速度的快慢。
04 算法实现和案例 分析
MATLAB实现
介绍MATLAB在无约束优化方 法中的应用,包括函数优化工 具箱的使用和自定义算法的实
现。
演示如何使用MATLAB求解无 约束优化问题,如最小二乘问
题、非线性规划问题等。
介绍MATLAB中常用的优化算 法,如梯度下降法、牛顿法、 拟牛顿法等,并给出相应的代 码实现。
04
总结Python在无约束优化方法中的优缺点,并给出相应的改进建议 。
案例分析:简单的二次函数优化
介绍二次函数优化的基本 概念和方法,包括最优解 的求解和性质分析。
演示如何使用MATLAB或 Python求解该问题,并 给出相应的代码实现和结 果分析。
ABCD
给出具体的二次函数优化 问题,如最小化f(x)=x^2 在区间[a,b]上的最小值。
深度学习优化
结合深度学习技术,对高维非线性问题进行 优化,解决复杂的问题。
目标函数
需要最小化或最大化的函数
约束条件
对目标函数的限制条件,无约束优化问题没有约束条件
02 无约束优化方法 简介
梯度法
总结词
基本、直观、简单
详细描述
梯度法是最早的无约束优化方法之一,它基于函数的梯度信息,通过沿着负梯 度的方向搜索来寻找最优解。由于其简单直观,被广泛应用于各种优化问题。
牛顿法
控制工程
用于系统优化、控制器设计和系统稳 定性分析,提高控制系统的性能。
无约束优化方法的未来发展方向
混合整数优化
将整数约束和连续变量优化结合起来,解决 更复杂的优化问题。
多目标优化
考虑多个目标函数,寻求多目标之间的平衡 ,满足多方面的需求。
分析迭代点是否收敛到最优解,以及收敛速度的快慢。
04 算法实现和案例 分析
MATLAB实现
介绍MATLAB在无约束优化方 法中的应用,包括函数优化工 具箱的使用和自定义算法的实
现。
演示如何使用MATLAB求解无 约束优化问题,如最小二乘问
题、非线性规划问题等。
介绍MATLAB中常用的优化算 法,如梯度下降法、牛顿法、 拟牛顿法等,并给出相应的代 码实现。
04
总结Python在无约束优化方法中的优缺点,并给出相应的改进建议 。
案例分析:简单的二次函数优化
介绍二次函数优化的基本 概念和方法,包括最优解 的求解和性质分析。
演示如何使用MATLAB或 Python求解该问题,并 给出相应的代码实现和结 果分析。
ABCD
给出具体的二次函数优化 问题,如最小化f(x)=x^2 在区间[a,b]上的最小值。
深度学习优化
结合深度学习技术,对高维非线性问题进行 优化,解决复杂的问题。
目标函数
需要最小化或最大化的函数
约束条件
对目标函数的限制条件,无约束优化问题没有约束条件
02 无约束优化方法 简介
梯度法
总结词
基本、直观、简单
详细描述
梯度法是最早的无约束优化方法之一,它基于函数的梯度信息,通过沿着负梯 度的方向搜索来寻找最优解。由于其简单直观,被广泛应用于各种优化问题。
牛顿法
控制工程
用于系统优化、控制器设计和系统稳 定性分析,提高控制系统的性能。
无约束优化方法的未来发展方向
混合整数优化
将整数约束和连续变量优化结合起来,解决 更复杂的优化问题。
多目标优化
考虑多个目标函数,寻求多目标之间的平衡 ,满足多方面的需求。
四常用无约束最优化方法(精品PPT)

(3)用终止准则检测是否满足:若满足,则打印最优
解 X k 1 ,f ( X k1 ) ,结束;否则,置 k k 1,转
(2).
,
最速下降法算法流程如图4.2所示.
Company Logo
最速下降法算 法流程如图所 示.
图4.2
开始 选定X0
f0 f (X0) g0 g(X0)
X ls(X 0 ,g0 )
Company Logo
§4.1 最速下降法
对于问题(4.1)为了求其最优解,按最优化算法的基
本思想是从一个给定的初始点
X
出发,通过基本迭代公
0
式 X k1 X k tk Pk,按照特定的算法产生一串
点列{X k } ,如果点列收敛,则该点列的极限点为问题
(4.1)的最优解.
一、最速下降法基本原理
1个迭代点
X
k
,即
1
X k1 X k tk f ( X k ) ,
其中步长因子 tk 按下式确定
也可记为
fin
t
f
(Xk
tf
(Xk
))
,
X k1 ls( X k , f ( X k )) . (4.3)
显然,令k 0, 1, 2, 就可以得到一个点列 X0, X1, X2 ,
g( X ) AX b ,(4.5)
因此,
gk g( X k ) AX k b.(4.6)
现在从X k 出发沿 g k 作直线搜索以确定 X k1 ,于是
X k1 X k tk gk , (4.7) 其中tk 是最优步长因子.
Company Logo
又因式(4.2),有 g( X k1 )T gk 0 ,再利用式
解 X k 1 ,f ( X k1 ) ,结束;否则,置 k k 1,转
(2).
,
最速下降法算法流程如图4.2所示.
Company Logo
最速下降法算 法流程如图所 示.
图4.2
开始 选定X0
f0 f (X0) g0 g(X0)
X ls(X 0 ,g0 )
Company Logo
§4.1 最速下降法
对于问题(4.1)为了求其最优解,按最优化算法的基
本思想是从一个给定的初始点
X
出发,通过基本迭代公
0
式 X k1 X k tk Pk,按照特定的算法产生一串
点列{X k } ,如果点列收敛,则该点列的极限点为问题
(4.1)的最优解.
一、最速下降法基本原理
1个迭代点
X
k
,即
1
X k1 X k tk f ( X k ) ,
其中步长因子 tk 按下式确定
也可记为
fin
t
f
(Xk
tf
(Xk
))
,
X k1 ls( X k , f ( X k )) . (4.3)
显然,令k 0, 1, 2, 就可以得到一个点列 X0, X1, X2 ,
g( X ) AX b ,(4.5)
因此,
gk g( X k ) AX k b.(4.6)
现在从X k 出发沿 g k 作直线搜索以确定 X k1 ,于是
X k1 X k tk gk , (4.7) 其中tk 是最优步长因子.
Company Logo
又因式(4.2),有 g( X k1 )T gk 0 ,再利用式
第四章 约束最优化方法---最优化方法课件

定理4.1.6 设x*为上述问题的局部最优解且 f(x),ci(x)(1≤i≤m)在x*点可微,则存在非零向量
l*=(l0*,l1*,···,lm*)使得
满足上面的条件的点称为Fritz-John点. 上面的条件仅仅是必要条件.
Fritz-John一阶必要条件
证明概要 设x*处的有效集为
I对显定*=理于然I(结无有x*效论l)=i*可约{=i|0c束以.i(x描,由*)述=于0为c,ii=(存x1),在>20,·l,·若0·及,m定l}.理i(i∈的I结*)论,使成得立,
对于i∈I \ I*,只要令li*=0,即可得到Fritz-John
条件.
例题 (Fritz-John条件)
例4.1.1 min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0
c2(x)=x1≥0 c3(x)=x2≥0
解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
条件下就是原来约束问题的最优解.
点(x*,l*)称为Lagrange函数L(x,l)的驻点.
等式约束问题的二阶充分条件
定理4.1.2 在上面的等式约束问题中,若 (i)f(x)与ci(x)(1≤i≤l)是二阶连续可微函数
(ii)存在x*∈Rn与l*∈Rl使得Lagrange函数的
梯度为零,即 (iii)对于任意非零向量s∈Rn,且
Gordan引理
引理4.1.4 设a1,···,ar是n维向量,则不存在向量 d∈Rn使得
aiTd<0(i=1,···,r) 成立的充要条件是,存在不全为零的非负实数
组l1,···,lr,使
Fritz-John一阶必要条件
l*=(l0*,l1*,···,lm*)使得
满足上面的条件的点称为Fritz-John点. 上面的条件仅仅是必要条件.
Fritz-John一阶必要条件
证明概要 设x*处的有效集为
I对显定*=理于然I(结无有x*效论l)=i*可约{=i|0c束以.i(x描,由*)述=于0为c,ii=(存x1),在>20,·l,·若0·及,m定l}.理i(i∈的I结*)论,使成得立,
对于i∈I \ I*,只要令li*=0,即可得到Fritz-John
条件.
例题 (Fritz-John条件)
例4.1.1 min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0
c2(x)=x1≥0 c3(x)=x2≥0
解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
条件下就是原来约束问题的最优解.
点(x*,l*)称为Lagrange函数L(x,l)的驻点.
等式约束问题的二阶充分条件
定理4.1.2 在上面的等式约束问题中,若 (i)f(x)与ci(x)(1≤i≤l)是二阶连续可微函数
(ii)存在x*∈Rn与l*∈Rl使得Lagrange函数的
梯度为零,即 (iii)对于任意非零向量s∈Rn,且
Gordan引理
引理4.1.4 设a1,···,ar是n维向量,则不存在向量 d∈Rn使得
aiTd<0(i=1,···,r) 成立的充要条件是,存在不全为零的非负实数
组l1,···,lr,使
Fritz-John一阶必要条件
《机械优化设计方法》第4章 无约束优化方法 (上课课件)

4.1.4 梯度法讨论
梯度法的收敛速度与设计变量的尺度关系很 大。对一般函数,梯度法的收敛速度较慢。 但对等值线为同心圆的目标函数,一次搜索 即可达到极小点。 若能通过点的坐标变换,改善目标函数的性 态,就可提高梯度法的收敛速度。
4.2 牛顿性方法
4.2 牛顿型方法
4.2.1 牛顿法的基本思想
1 * T * * f (X) f (X ) X X H ( X ) X X 2
*
结论:任意形式的目标函数在极值点附近的特 性,都近似于一个二次函数。 故以正定二元二次函数为例说明共轭方向对于 构造一种有效的最优化算法的重要性。
1 T T T f ( X ) X HX B X C , X x1 , x2 2
4.3.2共轭方向的产生
2 0 S f ( X ) e S 1 e0 0 S 0 e0 T S0 0 2 0 S f (X)S 0 T
S
k 1
e i s
k i 0
k
k
i
2 i S f (X) e k i T 2 i S f ( X ) e S 0 i i i T 2 i i o S f (X)S 2 i S f (X) e S k 1 ek T Si i 2 i i 0 S f (X)S k i T
若f(X)是二次函数,则X*就是f(X)的极小点;
否则只是一个近似点,需进一步迭代。
4.2.2牛顿法的迭代公式及迭代过程
故牛顿法的迭代公式为:
X k 1 X k [ H ( X K )]1 f ( X K ) k 1 k k X X S k k 1 k S [ H ( X )] f ( X )
第四章约束问题的最优化方法PPT课件

s.t. gu(x) 0,u1,2,...,p
2、等式约束优化问题(EP型)
minF(x)
xD Rn
s.t. hv(x) 0,v 1,2,...,q
3、一般约束优化问题(GP型)
min F(x)
x D Rn
s.t. gu( x) 0, u 1,2,..., p
1
hv ( x) 0, v 1,2,...,q
惩罚项:当迭代点在非可行域或不满足不等式约束条件时,在迭 代过程之中迫使迭代点逼近约束边界或等式约束曲面。
加权因子(即惩罚因子): r1 , r2
无约束优化问题:m.in (x,r1,r2)
Φ函数的极小点序列 x (k)* ( r1 (k) , r2 (k) ) k= 0,1,2…
其收敛必须满足:
4. 求解过程分析:
18
§4.3 外点惩罚函数法 (衰减函数法)
一. 基本思想:
外点法将新目标函数
Φ( x , r ) 构筑在可行域 D 外,
随着惩罚因子 r(k) 的不断递增,
生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k))
4
序列从可行域外部趋向原目标
②
(x(k1) *((rx((kk 1 1)))*() r (k(1)x)k* )(r(k)))2
若均满足,停止迭代,有约束优化问题的最优点为 x* = xk*;
若有一个准则不满足,则令 x ( 0 ) x k * ( r ( k ) ) r ( k , 1 ) c r ( k ) , k k 1
5
m
p
新目标函数: (x,r1,r2)f(x)r1 u1G [gu(x) ]r2 v1H[hv(x)]
无约束优化方法PPT课件-PPT精选文档

1 1 f x a G d 0 1
等式两边同乘 d
0
T
得
d Gd 0
0 T 1
fxa fx fx 0
k k T k k
k f x f x 0 k 1 T
d
k 1 T
dk 0
由此可知,在最速下降法中,相邻两个迭代点上 的函数梯度相互垂直。而搜索方向就是负梯度方 向,因此相邻两个搜索方向互相垂直。
第四章
无约束优化方法
第一节 概述
从第一章列举的机械设计问题,大多数实际问题 是约束优化问题。 约束优化问题的求解——转化为一系列的无约束 优化问题实现的。
因此,无约束优化问题的解法是优化设计方法 的基本组成部分,也是优化方法的基础。
无约束优化问题的极值条件
f x* 0
解析法(间接解法)
4.3.2 阻尼牛顿法 牛顿法的缺陷是,在确定极值点的过程中,并不含有沿 下降方向搜索的概念。因此对于非二次型函数,在迭代过 k 1 k 程中,可能出现 f( X )f( X )
的现象。为此人们提出了所谓的阻尼牛顿法。
令
k d H ( X ) f ( X ) k
1 k
以上二种经典方法中,人们不断努力,发掘,提出了不
同的改进方法。
第四节共轭方向及共轭方向法
为了克服最速下降法的锯齿现象,提高收敛速度,发展 了一类共轭方向法。搜索方向是共轭方向。
一、共轭方向的概念 共轭方向的概念是在研究二次函数
1T T f x x bx c xG 2
时引出的。 首先考虑二维情况
数值法(直接解法)
等式两边同乘 d
0
T
得
d Gd 0
0 T 1
fxa fx fx 0
k k T k k
k f x f x 0 k 1 T
d
k 1 T
dk 0
由此可知,在最速下降法中,相邻两个迭代点上 的函数梯度相互垂直。而搜索方向就是负梯度方 向,因此相邻两个搜索方向互相垂直。
第四章
无约束优化方法
第一节 概述
从第一章列举的机械设计问题,大多数实际问题 是约束优化问题。 约束优化问题的求解——转化为一系列的无约束 优化问题实现的。
因此,无约束优化问题的解法是优化设计方法 的基本组成部分,也是优化方法的基础。
无约束优化问题的极值条件
f x* 0
解析法(间接解法)
4.3.2 阻尼牛顿法 牛顿法的缺陷是,在确定极值点的过程中,并不含有沿 下降方向搜索的概念。因此对于非二次型函数,在迭代过 k 1 k 程中,可能出现 f( X )f( X )
的现象。为此人们提出了所谓的阻尼牛顿法。
令
k d H ( X ) f ( X ) k
1 k
以上二种经典方法中,人们不断努力,发掘,提出了不
同的改进方法。
第四节共轭方向及共轭方向法
为了克服最速下降法的锯齿现象,提高收敛速度,发展 了一类共轭方向法。搜索方向是共轭方向。
一、共轭方向的概念 共轭方向的概念是在研究二次函数
1T T f x x bx c xG 2
时引出的。 首先考虑二维情况
数值法(直接解法)
无约束优化方法PPT课件

x1 x0 a0d0
f f x1 T d0 0
d x1
x* x1a1d1
21
d 1 应满足什么条件? 对于二次函数 f x 在 x * 处取得极小点的必要条件
f x* G x*b0
fx * G x 1 a 1 d 1 b G x 1 b a 1 G d 1
f x1 a1G d10
15
ቤተ መጻሕፍቲ ባይዱ
第四节共轭方向及共轭方向法
为了克服最速下降法的锯齿现象,提高收敛速度,发展 了一类共轭方向法。搜索方向是共轭方向。 一、共轭方向的概念
共轭方向的概念是在研究二次函数
f x1xTGxbTxc
2 时引出的。 首先考虑二维情况
16
1 共轭方向
定义1:设G为 n n阶实对称正定矩阵,而 d i , d 为j 在n
f(Xk1)f(Xk)
13
阻尼牛顿法程序框图
14
以上介绍的最速下降法及牛顿法或者阻尼牛顿法, 属于经典的数学方法。
显然在这些方法中要用到某点函数的一阶梯度,二 阶梯度等信息,同时对牛顿法还要用到逆矩阵的计算等。 当变量维数较高时,计算工作量相当大,影响计算速度。
理论上,牛顿法的收敛速度高于最速下降法。从 以上二种经典方法中,人们不断努力,发掘,提出了不 同的改进方法。
4、提供新的共轭方向 d k 1 ,使 dj TGdk1 0
5、置 kk1,转2。
23
24
共 轭 方 向 法 程 序 框 图
25
第五节 共轭梯度法
共轭梯度法是共轭方向法的一种,共轭向量有迭代点 的负梯度构造出来,所以称共轭梯度法。
f x1xTGxbTxc
2
从点x k出发,沿G某一共轭方向d k 作一维搜索,到达x k 1
f f x1 T d0 0
d x1
x* x1a1d1
21
d 1 应满足什么条件? 对于二次函数 f x 在 x * 处取得极小点的必要条件
f x* G x*b0
fx * G x 1 a 1 d 1 b G x 1 b a 1 G d 1
f x1 a1G d10
15
ቤተ መጻሕፍቲ ባይዱ
第四节共轭方向及共轭方向法
为了克服最速下降法的锯齿现象,提高收敛速度,发展 了一类共轭方向法。搜索方向是共轭方向。 一、共轭方向的概念
共轭方向的概念是在研究二次函数
f x1xTGxbTxc
2 时引出的。 首先考虑二维情况
16
1 共轭方向
定义1:设G为 n n阶实对称正定矩阵,而 d i , d 为j 在n
f(Xk1)f(Xk)
13
阻尼牛顿法程序框图
14
以上介绍的最速下降法及牛顿法或者阻尼牛顿法, 属于经典的数学方法。
显然在这些方法中要用到某点函数的一阶梯度,二 阶梯度等信息,同时对牛顿法还要用到逆矩阵的计算等。 当变量维数较高时,计算工作量相当大,影响计算速度。
理论上,牛顿法的收敛速度高于最速下降法。从 以上二种经典方法中,人们不断努力,发掘,提出了不 同的改进方法。
4、提供新的共轭方向 d k 1 ,使 dj TGdk1 0
5、置 kk1,转2。
23
24
共 轭 方 向 法 程 序 框 图
25
第五节 共轭梯度法
共轭梯度法是共轭方向法的一种,共轭向量有迭代点 的负梯度构造出来,所以称共轭梯度法。
f x1xTGxbTxc
2
从点x k出发,沿G某一共轭方向d k 作一维搜索,到达x k 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理(一阶必要条件)
设 f : Rn R 是严格凸函数且在 x 处连续可微,若 f (x*) 0, 则 x 为 f (x) 的唯一全局极小点。
无约束优化的最优性条件
例: 利用最优性条件求解下列问题:
解:
min
f
x
1 3
x13
1 3
x23
x22
x1
f x1
x12 1,
f x2
x22 2x2,
这里用到的一阶必要条件就是最优性条件。
所谓最优性条件,是指最优化问题的最优解所要满足的 必要条件或充分条件。
这些条件对于最优化算法的建立和最优化理论的推导都是 至关重要的。
无约束优化的最优性条件----一阶必要条件
定理(一阶必要条件)
设 f : Rn R ,若 x 为 f (x) 的局部极小点,且在 N (x*)
最速下降法
最速下降法是求多元函数极值的最古老的数值算 法,早在1847年法国数学家Cauchy提出该算法,后来 Curry作了进一步的研究。
该方法直观,简单,计算方便,而且后来的一些新的 有效的方法大多数是对它的改进,或受它的启发而得到 的。
最速下降法的迭代格式
(1) 选定某一初始点x0 , 0 并令 k: 0 (2) 若 f (xk ) , x* xk,否则转(3);
2 0
0 2
是不定矩阵;
x1, x4不是极小点;
2
f
x2
2 0
0
2
是正定矩阵;
x2 是极小点;
2
f
x3
2 0
0
2
是负定矩阵;
x3 是极大点。
• 对某些较简单的函数,这样做有时是可行的;
• 但对一般n元函数 f(x) 来说,由条件 f (x) 0 得到的是一个
非线性方程组,解它相当困难。
f (x*) 0, 2 f x 正定,则 x 为 f (x) 的严格局部极小
点。
如果 2 f x 负定,则 x 为 f (x) 的严格局部极大点。
无约束优化的最优性条件----凸优化的一阶条件
定理(一阶充要条件)
设 f : Rn R 是凸函数且在 x 处连续可微,则 x 为 f (x)的全局极小点的充要条件是 f (x*) 0.
无约束优化方法
本章介绍解析法
收敛速度快,需要计算梯度或者Hesse矩阵
可求得目标函数的梯度时使用解析法
直接法:仅利用函数值的信息,寻找最优解
不涉及导数,适用性强,但收敛速度慢
在不可能求得目标函数的梯度或偏导数时使用直接法
最优性条件(Optimality Conditions)
解析法要用到目标函数的梯度或者Hesse矩阵,容易想到 利用一阶必要条件将无约束优化问题转化成一个梯度为0确定 的方程组。
令 f x 0, 即:
利用一阶条件 求驻点
利用二阶条件 判断驻点是否 是极小点
x12 x22
10 2x2
0
得到驻点: 1 1 1 1
x1
0
,
x2
2
,
x3
0
,
x4
2
.
无约束优化的最优性条件
函数 f x 的Hesse阵:
2
f
x
2x1 0
0
2x2
2
利用二阶条件 判断驻点是否 是极小点
第4章 无约束最优化方法
• 最优性条件 • 最速下降法 • 牛顿法及其阻尼牛顿法 • 共轭方向法 • 共轭梯度法 • 变尺度法(DFP算法和BFGS算法)
无约束最优化问题:
min f (x) f : Rn R
(1)
目的是找 中的一点 x * ,使对x Rn ,均有 f (x*) f (x) ,称 x * 为(1)的全局极小点。
P是什么方向时,函数值 f (x p) 下降最快?也就是
p是什么方向时,f (x)T p 取得最小值? f (x)T p f (x) p cos(f (x), p)
当 cos(f (x), p) 1 时,f (x)T p 最小,最小值为
f (x)
,此时由f (x)T
p
f (x)
可得 p
f (x)T f (x)
• 为此,常直接使用迭代法。
根据迭代点是否 沿某个方向产生
线搜索方法:迭代点沿某方向产生 信赖域方法:迭代点在某区域内搜索产生
线搜索迭代法的步骤
(1) 选定某一初始点 x0 ,并令 k: 0.
(2) 确定搜索方向 d k .
(3) 从 xk 出发,沿方向 d k 求步长 k ,以产生下一个迭代点
求解 (1)的计算方法称为无约束最优化方法。
最优化方法中的基本方法---无约束优化方法
无约束最优化方法应用广泛,理论也比较成熟; 可将约束优化问题转化为无约束优化问题来处理;
min
xD
f
(x)
min
xRn
F ( x),
其中F ( x)
f (x), x D
,
others.
解析法:利用函数的一阶或二阶导数的方法
在点 x1, x2, x3, x4 处的Hesse阵依次为:
2
f
x1
2 0
0
2
,
2
f
x2
2 0
0 2
,
2
f
x3
2 0
0 2
,
2
f
x4
2 0
02 .
1
1 1 1
x1
0
,
x2
2
,
x3
0
,
x4
2
.
无约束优化的最优性条件
2
f
x1
2 0
ห้องสมุดไป่ตู้
0 2
,
2
f
x4
xk +1. (4) 检查得到的新点 xk +1是否为极小点或近似极小点。
若是,则停止迭代。
否则,令k: k 1,转(2)继续进行迭代。
在以上步骤中,选取步长可选用精确一维搜索或者非精确一 维搜索,
下降方向的选取正是下面我们要介绍的,下降方向选取的不 同,得到不同的算法。
最速下降法
负梯度方向
这是函数值减少 最快的方向
内连续可微,则
f (x*) 0.
无约束优化的最优性条件----二阶必要条件
定理(二阶必要条件)
若 x*为f x的局部极小点,且在 N x* 内 f x 二次连续
可微,则f (x*) 0,2 f (x*) 半正定。
无约束优化的最优性条件----二阶充分条件
定理(二阶充分条件)
设 f : Rn R ,若在 N (x*) 内 f (x) 二次连续可微,且
假设 f 连续可微,
d k f (xk )
f
(xk
k d k )
min 0
f
(xk
dk )
步长 k由精确一维搜索得到。
从而得到第 k+1次迭代点,即
xk1 xk +k d k xk kf (xk )
最速下降法 负梯度方向d k f (xk )是函数值减少最快的方向 ?
令 p 是单位长度的向量, p 1, 0, f (x p) f (x)+f (x)T p o( )
设 f : Rn R 是严格凸函数且在 x 处连续可微,若 f (x*) 0, 则 x 为 f (x) 的唯一全局极小点。
无约束优化的最优性条件
例: 利用最优性条件求解下列问题:
解:
min
f
x
1 3
x13
1 3
x23
x22
x1
f x1
x12 1,
f x2
x22 2x2,
这里用到的一阶必要条件就是最优性条件。
所谓最优性条件,是指最优化问题的最优解所要满足的 必要条件或充分条件。
这些条件对于最优化算法的建立和最优化理论的推导都是 至关重要的。
无约束优化的最优性条件----一阶必要条件
定理(一阶必要条件)
设 f : Rn R ,若 x 为 f (x) 的局部极小点,且在 N (x*)
最速下降法
最速下降法是求多元函数极值的最古老的数值算 法,早在1847年法国数学家Cauchy提出该算法,后来 Curry作了进一步的研究。
该方法直观,简单,计算方便,而且后来的一些新的 有效的方法大多数是对它的改进,或受它的启发而得到 的。
最速下降法的迭代格式
(1) 选定某一初始点x0 , 0 并令 k: 0 (2) 若 f (xk ) , x* xk,否则转(3);
2 0
0 2
是不定矩阵;
x1, x4不是极小点;
2
f
x2
2 0
0
2
是正定矩阵;
x2 是极小点;
2
f
x3
2 0
0
2
是负定矩阵;
x3 是极大点。
• 对某些较简单的函数,这样做有时是可行的;
• 但对一般n元函数 f(x) 来说,由条件 f (x) 0 得到的是一个
非线性方程组,解它相当困难。
f (x*) 0, 2 f x 正定,则 x 为 f (x) 的严格局部极小
点。
如果 2 f x 负定,则 x 为 f (x) 的严格局部极大点。
无约束优化的最优性条件----凸优化的一阶条件
定理(一阶充要条件)
设 f : Rn R 是凸函数且在 x 处连续可微,则 x 为 f (x)的全局极小点的充要条件是 f (x*) 0.
无约束优化方法
本章介绍解析法
收敛速度快,需要计算梯度或者Hesse矩阵
可求得目标函数的梯度时使用解析法
直接法:仅利用函数值的信息,寻找最优解
不涉及导数,适用性强,但收敛速度慢
在不可能求得目标函数的梯度或偏导数时使用直接法
最优性条件(Optimality Conditions)
解析法要用到目标函数的梯度或者Hesse矩阵,容易想到 利用一阶必要条件将无约束优化问题转化成一个梯度为0确定 的方程组。
令 f x 0, 即:
利用一阶条件 求驻点
利用二阶条件 判断驻点是否 是极小点
x12 x22
10 2x2
0
得到驻点: 1 1 1 1
x1
0
,
x2
2
,
x3
0
,
x4
2
.
无约束优化的最优性条件
函数 f x 的Hesse阵:
2
f
x
2x1 0
0
2x2
2
利用二阶条件 判断驻点是否 是极小点
第4章 无约束最优化方法
• 最优性条件 • 最速下降法 • 牛顿法及其阻尼牛顿法 • 共轭方向法 • 共轭梯度法 • 变尺度法(DFP算法和BFGS算法)
无约束最优化问题:
min f (x) f : Rn R
(1)
目的是找 中的一点 x * ,使对x Rn ,均有 f (x*) f (x) ,称 x * 为(1)的全局极小点。
P是什么方向时,函数值 f (x p) 下降最快?也就是
p是什么方向时,f (x)T p 取得最小值? f (x)T p f (x) p cos(f (x), p)
当 cos(f (x), p) 1 时,f (x)T p 最小,最小值为
f (x)
,此时由f (x)T
p
f (x)
可得 p
f (x)T f (x)
• 为此,常直接使用迭代法。
根据迭代点是否 沿某个方向产生
线搜索方法:迭代点沿某方向产生 信赖域方法:迭代点在某区域内搜索产生
线搜索迭代法的步骤
(1) 选定某一初始点 x0 ,并令 k: 0.
(2) 确定搜索方向 d k .
(3) 从 xk 出发,沿方向 d k 求步长 k ,以产生下一个迭代点
求解 (1)的计算方法称为无约束最优化方法。
最优化方法中的基本方法---无约束优化方法
无约束最优化方法应用广泛,理论也比较成熟; 可将约束优化问题转化为无约束优化问题来处理;
min
xD
f
(x)
min
xRn
F ( x),
其中F ( x)
f (x), x D
,
others.
解析法:利用函数的一阶或二阶导数的方法
在点 x1, x2, x3, x4 处的Hesse阵依次为:
2
f
x1
2 0
0
2
,
2
f
x2
2 0
0 2
,
2
f
x3
2 0
0 2
,
2
f
x4
2 0
02 .
1
1 1 1
x1
0
,
x2
2
,
x3
0
,
x4
2
.
无约束优化的最优性条件
2
f
x1
2 0
ห้องสมุดไป่ตู้
0 2
,
2
f
x4
xk +1. (4) 检查得到的新点 xk +1是否为极小点或近似极小点。
若是,则停止迭代。
否则,令k: k 1,转(2)继续进行迭代。
在以上步骤中,选取步长可选用精确一维搜索或者非精确一 维搜索,
下降方向的选取正是下面我们要介绍的,下降方向选取的不 同,得到不同的算法。
最速下降法
负梯度方向
这是函数值减少 最快的方向
内连续可微,则
f (x*) 0.
无约束优化的最优性条件----二阶必要条件
定理(二阶必要条件)
若 x*为f x的局部极小点,且在 N x* 内 f x 二次连续
可微,则f (x*) 0,2 f (x*) 半正定。
无约束优化的最优性条件----二阶充分条件
定理(二阶充分条件)
设 f : Rn R ,若在 N (x*) 内 f (x) 二次连续可微,且
假设 f 连续可微,
d k f (xk )
f
(xk
k d k )
min 0
f
(xk
dk )
步长 k由精确一维搜索得到。
从而得到第 k+1次迭代点,即
xk1 xk +k d k xk kf (xk )
最速下降法 负梯度方向d k f (xk )是函数值减少最快的方向 ?
令 p 是单位长度的向量, p 1, 0, f (x p) f (x)+f (x)T p o( )