复合函数零点个数问题

合集下载

复合函数求零点的方法

复合函数求零点的方法

已知函数的上的图象如下图所示.给出下列四个命题:
①方程有且仅有6个根; ②方程有且仅有3个根;
③方程有且仅有5个根; ④方程有且仅有4个根.
需要详解
另外,复合函数的零点问题,也详细说明一下,比如说子函数有3个零点,复合到含有2个零点的母函数就变成有2+3=5个零点或者是2*3=6个零点(假设子母函数定义域都是R)向左转|向右转
1)f[g(x)]:f(x)存在三个零点,分别是[-2,-1][0][1,2];而g(x)的值在[-2,-1]上对应的x有两个,在[1,2]上对应的x有两个,g(x)=0的根也是两个,所以复合函数有六个根。

2)f(x)+g(x),这个答案是有些问题的,这个要看两个函数复合后函数在某一区间的单调问题,如果复合后在譬如[0,1]区间上是单调的,那这个答案应该是对的
3)f(x)*g(x),这个答案是最简单的,只要f(x)或g(x)其中有一个为0,且f(x)和g(x)不同时为0,这样f(x)和g(x)的乘积的根就是他们分别得根数相加。

4)g[f(x)],其道理同(1),g(x)有两个零点,在[-2,-1]和[0,1]内,f(x)的值在[-2,-1]内对应的x 有1个,f(x)的值在[0,1]内对应的x有三个,加起来是四个。

对于其他的复合函数的问题,只能说f(x)*g(x)的根数是二者的根数相加(f(x)和g(x)不同时为0),若f(x)和g(x)在x=x1时同时为0,则要相应减去相同的根数。

其他的f[g(x)]的问题只能是具体问题具体分析了。

至于f(x)+-g(x)的问题是最为复杂的。

复合函数零点问题

复合函数零点问题

复合函数零点问题例1:设定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x b f x c ++=由3个不同的解123,,x x x ,则222123x x x ++=______ 思路:先作出()f x 的图像如图:观察可发现对于任意的0y ,满足()0y f x =的x 的个数分别为2个(000,1y y >≠)和3个(01y =),已知有3个解,从而可得()1f x =必为()()20f x bf x c ++=的根,而另一根为1或者是负数。

所以()1i f x =,可解得:1230,1,2x x x ===,所以2221235x x x ++=答案:5例2:关于x 的方程()22213120x x ---+=的不相同实根的个数是( )A. 3B. 4C. 5D. 8思路:可将21x -视为一个整体,即()21t x x =-,则方程变为2320t t -+=可解得:1t =或2t =,则只需作出()21t x x =-的图像,然后统计与1t =与2t =的交点总数即可,共有5个 答案:C 例3:已知函数11()||||f x x x x x=+--,关于x 的方程2()()0f x a f x b ++=(,a b R ∈)恰有6个不同实数解,则a 的取值范围是 . 思路:所解方程2()()0f x a f x b ++=可视为()()20f x a f x b ++=,故考虑作出()f x 的图像:()2,12,012,102,1x x x x f x x x x x⎧>⎪⎪<≤⎪=⎨--≤<⎪⎪-<-⎪⎩, 则()f x 的图像如图,由图像可知,若有6个不同实数解,则必有()()122,02f x f x =<<,所以()()()122,4a f x f x -=+∈,解得42a -<<-答案:42a -<<-例4:已知定义在R 上的奇函数,当0x >时,()()121,0212,22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,则关于x 的方程()()2610f x f x --=⎡⎤⎣⎦的实数根个数为( )A. 6B. 7C. 8D. 9思路:已知方程()()2610f x f x --=⎡⎤⎣⎦可解,得()()1211,23f x f x ==-,只需统计11,23y y ==-与()y f x =的交点个数即可。

2.20复合函数零点问题—利哥

2.20复合函数零点问题—利哥

秘籍提示:①先看外层零点,把外层零点一一列出:t1,t2,t3 ;②再在外层函数作直线y =t1,y =t1 ,交点个数即为复合函数零点个数.2.20 抖音直播直播—复合函数零点问题——利哥数学,快乐上分我们来一起看几个题去理解秘籍,如下图,左边为f (x)图像,右边为g(x)图像.【例题1】求 f [f (x)]的零点个数:【解析】先看外层零点,外层函数为f (x),f (x)有两个零点:t1=-2 ,t2= 2 ;在内层函数作直线y =-2 、y = 2 ,如右图,显然四个交点,所以f [f (x)]的零点个数为 4.【例题2】求 f [g(x)]的零点个数:【解析】先看外层零点,外层函数为f (x),f (x)有两个零点:t1=-2 ,t2= 2 ;在内层函数作直线y =-2 、y = 2 ,如右图,显然两个交点,所以f [g(x)]的零点个数为 2.⎨2x ,x ≤ 0 【例题 3】求 g [g (x )]的零点个数:【解析】先看外层零点,外层函数为 g (x ),g (x )有三个零点: t 1 = -1,t 2 = 0 ,t 3 = 1;在内层函数作直线 y = -1、y = 0、y = 1 ,如右图,显然七个交点,所以 f [g (x )]的零点个数为 7.【例题 4】求 g [f (x )]的零点个数:【解析】先看外层零点,外层函数为 g (x ),g (x )有三个零点: t 1 = -1,t 2 = 0 ,t 3 = 1;在内层函数作直线 y = -1、y = 0、y = 1 ,如右图,显然六个交点,所以 f [g (x )]的零点个数为 6.【例题 5】(2019 春•邯郸期末)函数 f (x ) = ⎧| log 2 x | ,x > 0 ,则函数 g (x ) = 3 f 2(x ) - 8 f (x ) + 4 的零点个数是⎩ ( )A .5B .4C .3D .6【解析】令 f (x )= t ,则 g (x ) = 3 f 2 (x ) - 8 f (x ) + 4 ⇒ h (t ) = 3t 2 - 8t + 4 ,外层函数为 h (t ), h (t )有两个零点t 1 = 2 ,t3 2 = 2 ,在内层函数 f (x )作直线 y = 2 、y = 2 ,如图,3显然五个交点,所以 f [g (x )]的零点个数为 5,故选 A .⎩ 4⎨ 现学现卖⎧x2 - 2x + 4, x 0【卖弄 1】(2019 秋•东莞市期末)已知函数 f (x) =⎨⎩lnx, x > 0,若函数 g(x) =f 2 (x) + 3 f (x) +m(m ∈R)有三个零点,则m 的取值范围为( )A.m <94B.m - 28C. -28 m <94D.m > 28【解析】作出f (x) 的图象如图:设t =f (x) ,则由图象知当t 4时,t =f (x) 有两个根,当t < 4 时,t =f (x) 只有一个根,若函数g(x) =f 2 (x) + 3 f (x) +m(m ∈R) 有三个零点,等价为函数g(x) =h(t) =t2 + 3t +m 有两个零点,其中t < 4 或t 4 ,则满足⎧ = 9 - 4m > 0,1 2⎧m <9⎨f (4) = 16 + 12 +m 0⎪,得m - 28 ,故选B .⎪⎩m -28【卖弄2】(2019•山东模拟)已知函数f (x) =| x2 - 4x + 3 |,若方程[ f (x)]2 +bf (x) +c = 0 恰有七个不相同的实根,则实数b 的取值范围是( )A.(-2, 0) B.(-2, -1) C.(0,1) D.(0, 2)【解析】 f (1)=f (3)= 0 ,f (2)= 1 , f (x) 0 ,若方程[ f (x)]2 +bf (x) +c = 0 恰有七个不相同的实根,∴t 2 +bt +c = 0 ,其中一个根为 1,另一个根在(0,1) 内,∴g(t) =t2 +bt +c ,g (1)= 1 +b +c = 0 ,g(-b ) < 0 ,20 <-b< 1,g(0) =c > 0 2方程[ f (x)]2 +bf (x) +c = 0 恰有七个不相同的实根∴c =-1 -b > 0 ,b ≠-2 ,-2 <b < 0 ,即b 的范围为:(-2, -1) ,故选B .得则1【卖弄3】(2019 秋•双流县校级期中)已知函数y =f (x) 和y =g(x) 在[-2 ,2] 的图象如下所示:给出下列四个命题:(1)方程f[g(x)]=0有且仅有6个根;(2)方程g[f(x)]=0有且仅有3个根(3)方程f[f(x)]=0有且仅有5个根;(4)方程g[g(x)]=0有且仅有4个根其中正确命题的个数是( )A.4 B.3 C.2 D.1【解析】(1)正确,(2)错误,(3)(4)正确,故选B.【卖弄 4】已知函数 f (x) =lnx,关于x 的方程 f (x) -x1f (x)=m 有三个不等的实根,则m 的取值范围是( )A.(-∞, e -1)eB.(-∞,1-e)eC.(e -1, +∞)eD.(1-e, +∞)e【解析】 f '(x) =1 -lnx,当0 <x <e 时, f '(x) > 0 ,当x >e 时, f '(x) < 0 ,x2即函数f (x) 在(0, e) 为增函数,在(e, +∞) 为减函数,则 f (x)max =f (e) =1,则f (x) 的图象如图所示:令t =f (x) ,e则 f (x) -1f (x)=m 可变形为t -1-m = 0 ,t即t 2 -mt - 1 = 0 ,设方程t 2 -mt - 1 = 0 有两个根t ,t ,1 2关于 x 的方程 f (x) -1f (x)=m 有三个不等的实根等价于t =f (x) 的图象与直线t =t1 ,t =t2的交点个数之和为 3,由图可知t < 0 <t 1,设g(t) =t2 -mt -1 ,2 1<eg( ) =1-m- 1 > 0 ,解得:m <1-e ,故选B .e e2 e e3 3 ⎨ ⎧| lg (-x ) |, x < 0 【卖弄 5】(2019•全国模拟)定义域为 R 的函数 f (x ) = ⎪ ,若关于 x 的函数 y = 3 f 2 (x ) + 2bf (x ) + 1 ⎨ 1 x⎪1 - ( ) , x 0⎩ 2有 6 个不同的零点,则实数b 的取值范围是()A . (-2, - 3)B . (-2, 0)⎧| lg (-x ) |, x < 0C . (-3, - 3)D . (- , +∞) 【解析】 函数 f (x ) = ⎪ 1,作出它的图象如图所示:⎪1 - ( ) , x 0⎩ 2关于 x 的函数 y = 3 f 2 (x ) + 2bf (x ) + 1有 6 个不同的零点,则令t = f (x ) ,则关于t 的方程3t 2 + 2bt + 1 = 0 在(0,1) 上有 2 个不同解. 即函数 g (t ) = 3t 2 + 2bt + 1在(0,1) 上有 2 个不同零点,⎧ = 4b 2 - 12 > 0⎪ b ⎪0 < - < 1故有 ⎨ 3 ,求得-2 < b < - ,故选 A .⎪ f (0) = 1 > 0⎪ ⎪⎩ f (1) = 3 + 2b + 1 > 0x。

指数型复合函数零点

指数型复合函数零点

我们要找出一个指数型复合函数的零点。

首先,我们需要理解什么是零点。

一个函数的零点是指函数值为0的x值。

例如,函数f(x) = x^2 - 4 的零点是x = ±2,因为f(2) = 0 和f(-2) = 0。

对于指数型复合函数,例如f(x) = a^x + b^x,我们可以通过令它等于0来找到零点。

即:a^x + b^x = 0但是,请注意,对于非线性指数函数,我们通常不能直接找到所有零点。

这是因为指数函数是非线性的,所以它的解可能不是简单的x值。

为了找到这个函数的零点,我们可以使用数值方法,例如二分法或牛顿法。

这些方法可以帮助我们在一定的精度范围内找到函数的零点。

为了找到指数型复合函数的零点,我们可以使用二分法或牛顿法等数值方法。

这些方法可以帮助我们在一定的精度范围内找到函数的零点。

例如,对于函数f(x) = a^x + b^x,我们可以使用二分法来找到它的零点。

首先,我们需要选择一个初始区间[a, b],然后反复将区间一分为二,并检查中间点的函数值。

如果中间点的函数值为负,则说明零点在右半部分;如果中间点的函数值为正,则说明零点在左半部分。

通过不断缩小区间,我们可以找到函数的零点。

另一种方法是使用牛顿法。

牛顿法是一种迭代方法,它基于函数的泰勒级数展开来逼近函数的零点。

对于函数f(x) = a^x + b^x,我们可以将其泰勒级数展开并保留前几项,然后将其等于0来求解x。

通过不断迭代,我们可以找到函数的零点。

需要注意的是,对于非线性指数函数,我们可能无法找到所有的零点。

因此,在使用数值方法时,我们需要合理选择初始区间或迭代初值,以确保找到的零点具有一定的精度和可靠性。

浅析复合函数零点的个数问题

浅析复合函数零点的个数问题
二、复合函数零点个数分两类问题
一类是判断零点个数,另一类是已知零点个数求参
数的取值范围.以下本文通过对典型例题的分析来探究
一下复合函数零点问题中求零点个数和求参数的问题.
1.判断复合函数零点的个数
{ 例1 已知函数犳(狓)=
5 狓-1 -1(狓 ≥0), 则 狓2+4狓+4(狓 <0),
关 于狓的方程犳2(狓)-5犳(狓)+4=0的实数根的个数
零点个数即方程犳(狓)=0的
根个数,也即犳(狓)的图像与
狓 轴 交 点 的 个 数,若 方 程
犳(狓)=0犵(狓)=犺(狓),即
为两函数犵(狓)与犺(狓)图像
图1
交点的个数.该问题只需要确
定零点个数并 不 需 要 求 出 零 点,也 可 画 出 函 数 图 像,
结合图像确定交点的个数,由狋2 -5狋+4=0,得狋=4 或1,所以犳(狓)=4或1,由函数图像犳(狓)分别与狔= 1、狔=4有4个交点和3个交点,所以犳(狓)=1、犳(狓) =4分别有4个根和3个根,所以方程犳2(狓)-5犳(狓) +4=0共有7个根.
图2 图3
2.已知复合函数的零点个数求参数的取值范围 例2 已 知 函 数 犳(狓)的 图 像,若 函 数 犵(狓)= [犳(狓)]2 -犽犳(狓)+1恰有4个零点,则实数犽 的取值 范围是( ).
( ) A.(-
∞,-2)∪
(2,+
∞)
8 B.e2
,2
( ) 4
C.e2
若犳(狓)=1,当狓 ≥0时,即5 狓-1 -1=1,解得
狓=1±log52,当狓 <0时,即狓2+4狓+3=0,解得狓
=-1或 -3.
若犳(狓)=4,当狓 ≥0时,即5 狓-1 -1=4,解得

复合函数的零点问题

复合函数的零点问题
例如:已知 f x 2x, g x x2 x ,计算 g f 2 . 【解析】 f 2 22 4 , g f 2 g 4 12 .
3.已知函数值求自变量的步骤:若已知函数值求 x 的解,则遵循“由外到内”的顺序,一层层拆解直到求出
x 的值.例如:已知 f x 2x , g x x2 2x ,若 g f x 0 ,求 x .
时,显然只有一个交点,所以 ,只需要对数从点 B,点C下
面穿过就有 4 个零点,所以
解得 ,选 D.
【点睛】对于求不同类的两个函数构成的方程,我们常把方程变形为f(x)=g(x),然后根据 y=f(x)与 y
=g(x)的两个图像交点个数来判断原方程根的个数.如本题把方程
变形为
,再画出两个函数的图像,根据两个图像有 4 个交点,求出参数 a 的范围.
c (a,b) ,使 f (c) 0 .
②如果函数 f x 在区间a,b 上的图象是连续不断的曲线,并且有 f (a) · f (b) 0 ,那么,函数 f x 在
--
--
区间 (a, b) 内不一定没有零点.
③如果函数 f x 在区间a,b 上的图象是连续不断的曲线,那么当函数 f x 在区间 (a, b) 内有零点时不
1.复合函数定义:设 y f t ,t g x ,且函数 g x 的值域为 f t 定义域的子集,那么 y 通过 t 的联系
而得到自变量 x 的函数,称 y 是 x 的复合函数,记为 y f g x .
2.复合函数函数值计算的步骤:求 y g f x 函数值遵循“由内到外”的顺序,一层层求出函数值.
③由函数 y f (x) 在闭区间a,b 上有零点不一定能推出 f (a) · f (b) 0 ,如图所示.所以 f (a) · f (b) 0 是 y f (x) 在闭区间a,b 上有零点的充分不必要条件.

零点问题复合函数练习题

零点问题复合函数练习题

一、函数概念1. 设f(x) = x^2 + 1,g(x) = 2x 3,求f(g(x))。

2. 若f(x) = 3x + 4,g(x) = x^2 5,求f(g(2))。

3. 设h(x) = x 2,f(x) = h(x) + 1,求f(h(3))。

4. 若g(x) = 2x 1,f(x) = g(x^2),求f(1)。

5. 设f(x) = 5x 2,g(x) = f(x^2),求g(4)。

二、复合函数的求值6. 若f(x) = x^3,g(x) = f(x + 1),求g(2)。

7. 设h(x) = 4x^2 1,f(x) = h(x 1),求f(3)。

8. 若g(x) = 2x + 5,f(x) = g(x^2),求f(1)。

9. 设h(x) = x^2 + 3x + 2,f(x) = h(x + 1),求f(2)。

10. 若g(x) = 3x 2,f(x) = g(x^3),求f(2)。

三、复合函数的求导11. 设f(x) = x^2 + 1,g(x) = 2x 3,求(f ∘ g)'(x)。

12. 若f(x) = 3x + 4,g(x) = x^2 5,求(g ∘ f)'(2)。

13. 设h(x) = x 2,f(x) = h(x) + 1,求(f ∘ h)'(3)。

14. 若g(x) = 2x 1,f(x) = g(x^2),求(f ∘ g)'(1)。

15. 设h(x) = x^2 + 3x + 2,f(x) = h(x + 1),求(f ∘h)'(x)。

四、复合函数的极值16. 设f(x) = x^3 3x^2 + 4x 1,求f(g(x))的极值点。

17. 若f(x) = 2x^2 4x + 3,g(x) = x 1,求f(g(x))的极值。

18. 设h(x) = x^2 + 2x + 1,f(x) = h(x 1),求f(h(x))的极值点。

复合函数零点个数的探究

复合函数零点个数的探究

复合函数零点个数的探究
《复合函数零点个数的探究》
复合函数是指由两个或两个以上函数组合而成的函数,它在函数分析学中占有重要地位。

其中,复合函数的零点个数是研究复合函数的重要组成部分,也是比较重要的研究内容。

首先,要求复合函数的零点个数,就必须先确定复合函数的组成函数,然后求出每个函数的零点个数,最后把每个函数的零点个数相加,得到复合函数的零点个数。

其次,复合函数的零点个数受到组成函数的影响,如果组成函数中有多项式函数,则可以用多项式的零点公式求出零点个数;如果组成函数中有指数函数,则可以用指数函数的零点公式求出零点个数;如果组成函数中有对数函数,则可以用对数函数的零点公式求出零点个数。

最后,复合函数的零点个数也受到复合函数的结构影响,如果复合函数是由两个函数相乘组成的,则其零点个数等于两个函数零点个数的乘积;如果复合函数是由两个函数相加组成的,则其零点个数等于两个函数零点个数的和。

研究复合函数的零点个数是一项复杂的工作,必须充分考虑复合函数的结构、组成函数的性质和零点公式等因素,才能准确求出复合函数的零点个数。

复合函数的零点问题 - 副本

复合函数的零点问题 - 副本

3、解方程f (t)=0,求出t的值 t不一定能求出具体的值
4、解方程g(x) t,求出x的值或者个数
常常采用数形结合
5、小结,得到复合函数的零点或零点个数
课堂练习:
1、设定义域为R的函数
f
(
x)

|
x
1 1
x |

1 ,
若关于x的方程
1x 1
f 2 (x) bf (x) c 0有3个不同的解x1, x2 , x3,则x12 +x22 +x32 = 5
答案
2、已知函数y 关于x的方程[
f
(
fx)(]x2)是a定 f (x义) 域b为0R有的5偶个函不数同,实当数x根,0a时,bf的 x取 值 ( 范15612围)xx为 2 01x54x,122,
常数形结合
再代入
f
(x)

2 t可得
f
(x)
, f
(x)
1
2
结合图象可知各有两个解
y1 2
y 2
(1)方程 f g x 0 有且只有 6 个根(2)方程 g f x 0 有且只有 3 个根 例2:(已3知 )方y 程 ff (xf)x和y0有g且(x只)有在5x个根[2,(24])的方图程象g 如g 下x, 完0 有成且下只列有问4 题个根:
A. 1
B. 2
C. 3
D. 4
答案解析
题型二、复合函数零点中含参数的有关问题
例 有38:个已不知等函的数实f 数x根,e则xx21a,x的2x取0值 1, x范围0,是关3于 ax的143方程答f 案2
x
3f x
数形结合

复合函数的零点解题技巧

复合函数的零点解题技巧

复合函数的零点解题技巧
一、理解函数定义
在解决复合函数的零点问题之前,首先要理解函数的定义。

函数是一种数学关系,它将一个数集映射到另一个数集。

理解函数的定义有助于我们更好地理解复合函数的结构和性质。

二、识别复合函数
复合函数是由两个或多个函数通过运算组合而成的。

识别复合函数是解决问题的关键步骤。

通过识别复合函数,我们可以更好地理解函数的组成和结构,从而更好地解决零点问题。

三、分解复合函数
在识别出复合函数后,我们需要将其分解为更简单的函数。

通过分解复合函数,我们可以更容易地找到函数的零点。

在分解过程中,需要注意函数的运算顺序和运算规则。

四、寻找零点条件
寻找零点是解决复合函数零点问题的核心步骤。

我们需要找到使复合函数为零的x值。

在寻找零点时,需要注意函数的定义域和值域,以及函数的运算规则。

五、运用数学方法
在寻找零点的过程中,我们需要运用一些数学方法,如代数法、图象法等。

这些方法可以帮助我们更好地理解函数
的性质和变化规律,从而更准确地找到零点。

六、验证解的正确性
在找到零点后,我们需要验证解的正确性。

可以通过代入原函数进行验证,或者通过计算其他相关量进行验证。

如果解不正确,需要重新寻找零点或者调整解题思路。

七、总结解题思路
在解决复合函数的零点问题后,需要对解题思路进行总结。

总结解题思路有助于我们更好地理解问题和掌握解题技巧,从而在未来的问题解决中更加熟练和准确。

同时,也可以将解题思路与其他同学或老师分享,以促进共同学习和进步。

高考 复合函数的零点问题

高考 复合函数的零点问题

函数专题(复合函数的零点问题)一、相关概念及有关结论 1.复合函数的定义设函数()u x ϕ=的定义域为是A ,值域是B ;又设函数()y f u =的定义域是C ,且B C y M ⊆∈,,这时对A 内每一个x ,通过ϕ,得到B 内唯一的一个u 与此x 对应,再通过f 又得到M 内唯一的一个y 与此x 对应.因此对于A 内的每一个x 先通过ϕ再通过f ,得到M 内唯一的一个y 与此x 对应,这就确定了一个从A 到M 的函数,称它是由()u x ϕ=与()y f u =合成的复合函数(也称嵌套函数),记为()y f x ϕ⎡⎤=⎣⎦.称u 为中间变量,为了叙述方便起见,不妨将()u x ϕ=称为内层函数,称()y f u =为外层函数. 2.有关命题与结论函数的零点问题不仅与函数、方程、不等式、导数等知识交汇融合,同时还涉及“函数与方程”、“化归与转化”、“数形结合”、“分类与讨论”等数学思想.以下引入上述思想的相关命题,以便为下面的分析与求解提供理论支撑. 二、常见复合函数零点问题的考察类型 1.“()()=f f x k ”型问题 例11.设函数()2log f x x =,则函数()()()1g x f f x =−的零点为 . 【答案】4【分析】由题知2log 2x =,即求.【详解】函数()g x 的零点即为方程()0g x =的解,也即()22log log 10x −=的解.()22log log 1x =,即2log 2x = 解得4x =,即函数()g x 的零点为4. 故答案为:4 例22.设函数f (x )=22,0,0x x x x x ⎧+<⎨−≥⎩若f (f (a ))≤2,则实数a 的取值范围是 .【答案】a ≤【分析】对()f a 的符号进行分类讨论,带入相应的解析式求解不等式,可得f (a )≥-2,再对a 的符号进行分类讨论代入相应解析式求解不等式即可.【详解】当()0f a <时,f (f (a ))≤2即为2()()2f a f a +≤,()()[1][2]0f a f a −+≤, 解得()21f a −≤≤,所以()20f a −≤<;当()0f a ≥时,f (f (a ))≤2即为2()2f a −≤,因为2()2f a ≥−恒成立,所以()0f a ≥满足题意.所以f (a )≥-2,则202a a a <⎧⎨+≥−⎩或22a a ≥⎧⎨−≥−⎩,解得a ≤故答案为:a ≤【点睛】本题考查利用分段函数的性质解不等式,考查分类讨论思想,属于较难题. 2.“()()=f g x k ”型问题 例33.设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=−+=⎨⎪−−−≤⎩,,,,,则函数()()()1h x f g x =−的零点为 .【答案】14322−−−,,, 【分析】由题可知求()()1f g x =的解,再利用分段函数求方程的解即可. 【详解】函数()h x 的零点即为方程()0h x =的解,也即()()1f g x =的解. 令()t g x =,则原方程的解变为方程组()()1t g x f t ⎧=⎪⎨=⎪⎩,①②的解. 由方程②可得320t t −=, 解得0t =或1t =,将0t =代入方程①,而方程104x x+=无解, 由方程2680x x −−−=解得4x =−或2x =−;将1t =代入方程①,而方程114x x +=,解得12x =, 由方程2681x x −−−=,解得3x =−.综上,函数()h x 的零点为14322−−−,,,,共四个零点. 故答案为:14322−−−,,,. 3.复合函数()⎡⎤=−⎣⎦y f f x x 的零点问题一般地,关于复合函数()y f f x x ⎡⎤=−⎣⎦的零点有如下结论:若()f x 单调,则()()0000f f x x f x x ⎡⎤=⇔=⎣⎦.证明 一方面,若()00f f x x ⎡⎤=⎣⎦,不妨设()f x 单调递增,若()00f x x >,则()()000f f x f x x ⎡⎤>>⎣⎦,与()00f f x x ⎡⎤=⎣⎦矛盾,同理可证()00f x x <的情形; 另一方面,若()00f x x =,则()()000f f x f x x ⎡⎤==⎣⎦,综上可知结论成立. 例44.设函数()f x a ∈R ,e 为自然对数的底数),若曲线sin y x =上存在点()00x y ,使得()()00f f y y =,则a 的取值范围是( ). A .[]1e , B .111e ⎡⎤−⎢⎥⎣⎦, C .[]1e 1+, D .11e 1e ⎡⎤−+⎢⎥⎣⎦,【答案】A【分析】由题可得2e x x a x +−=,再利用函数的单调性即求.【详解】显然()f x =于是()()00f f y y =等价于()00f y y =,即00y =≥, 又00sin 1y x =≤,故001y ≤≤,从而0200e y a y y =+−,令()2e x g x x x =+−, 则()()'e 12''e 20x xg x x g x =+−=−=,,令()''0g x =,则ln2x =,可知当[]0ln2x ∈,时,()'g x 单调递减,当[]ln21x ∈,时,()'g x 单调递增, 从而()()''ln232ln20g x g ≥=−>, 故()g x 在[]01,上单调递增, 从而()()][011e a g g ⎡⎤∈=⎣⎦,,. 故选:A .4.复合函数()⎡⎤=−⎣⎦y f g x x 的零点问题一般地,关于复合函数()y f g x x ⎡⎤=−⎣⎦的零点有如下结论:()y f g x x ⎡⎤=−⎣⎦有零点()y g f x x ⎡⎤⇔=−⎣⎦有零点.证明 设()00f g x x ⎡⎤=⎣⎦,则(){}()00g f g x g x ⎡⎤=⎣⎦,可知()0g x 为()y g f x x ⎡⎤=−⎣⎦的零点,反之若0x 为()y g f x x ⎡⎤=−⎣⎦的零点,则同理可得()0f x 为()y f g x x ⎡⎤=−⎣⎦的零点. 例55.若()f x 和()g x 都是定义在实数集R 上的函数,且方程()0x f g x ⎡⎤−=⎣⎦有实数根,则()g f x ⎡⎤⎣⎦不可能是A .215x x +−B .215x x ++C .215x −D .215x +【答案】B【详解】试题分析:设0x 为方程的 ()0x f g x ⎡⎤−=⎣⎦的一个根,∴00[()]f g x x =,∴{}00()[()]g x g f g x =,再令0()t g x =,故有 [()]t g f t =,从而可知方程[()]g f x x =至少有一个实数根 t ,A ,C ,D 选项中的函数均符合条件,而B 选项:215x x x ++=无解,故选B . 【点睛】本题考查的是抽象函数与方程的问题,需挖掘条件中的隐含信息,对已知条件中的式子()0x f g x ⎡⎤−=⎣⎦进行等价变形,可以得到 [()]g f x x =至少也有一个实数根,分别考察四个选项中的函数,判断根的情况,从而可知选B . 5.含参二次函数复合型零点问题 例66.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4} D .{1,4,16,64}【答案】D【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项.【详解】设关于()f x 的方程()()20mf x nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=−对称,因而()1f x t =或()2f x t =的两根也关于2bx a =−对称.而选项D 中41616422++≠.故选D. 【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f t g x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征. 例77.若函数32()f x x ax bx c =+++有极值点1x ,2x ,且()11f x x =,则关于x 的方程()()()232f x af x +0b +=的不同实根个数是A .3B .4C .5D .6【答案】A【分析】由题意求导结合极值点的性质可得原方程等价于1()f x x =或2()f x x =,按照12x x <、12x x >分类,作出函数图象,数形结合即可得解.【详解】由题意2()32f x x ax b '=++,1x ,2x 为函数()f x 的极值点, 所以2()320f x x ax b '=++=有两解12,x x ,所以方程()()()232f x af x +0b +=等价于1()f x x =或2()f x x =,当12x x <时,则1x 为函数()f x 的极大值点,且()11f x x =,2x 为函数()f x 的极小值点,画出函数图象,如图:此时1()f x x =有两个不同实根,2()f x x =有一个实根,()()()232f x af x +0b +=有三个不同实根;当12x x >时,则1x 为函数()f x 的极小值点,且()11f x x =,2x 为函数()f x 的极大值点, 画出函数图象,如图:此时1()f x x =有两个不同实根,2()f x x =有一个实根,()()()232f x af x +0b +=有三个不同实根;综上,()()()232f x af x +0b +=有三个不同实根. 故选:A.【点睛】本题考查了导数与函数极值的关系、函数与方程的综合应用,考查了逻辑推理能力与数形结合思想,属于中档题.6.其他型 例88.已知定义在()0+∞,上的单调函数()f x ,若对任意()0x ∈+∞,都有()12log 3f f x x ⎛⎫+= ⎪⎝⎭,则方程()2f x =的解集为 .【答案】{}416,. 【分析】由题可求()122log f x x =−,再利用数形结合即求.【详解】∵定义在()0+∞,上的单调函数()f x ,对任意()0x ∈+∞,都有()12log 3f f x x ⎛⎫+= ⎪⎝⎭, 令()12log f x x c +=,则()3f c =,在上式中令x c =,则()1122log log 3f c c c c c +==−,,解得2c =,故()122log f x x =−,由()2f x =122log 2x −=2log x =在同一坐标系中作出函数2log y x =和y可知这两个图像有2个交点,即()42,和()164,,则方程()2f x ={}416,. 故答案为:{}416,. 例99.已知函数()12f x x x=+−,如果关于x 的方程()4213021xx f t ⎛⎫ ⎪−+−= ⎪−⎝⎭有三个相异的实数根,求t 的范围.【答案】104t −<<.【分析】令21xm −=,由题得()232410m t m t −+++=,再采用数形结合法及二次方程根的分布即求.【详解】令21xm −=,则()430f m t m ⎛⎫+−= ⎪⎝⎭,即14230m t m m ⎛⎫+−+−= ⎪⎝⎭,去分母得:()232410m t m t −+++=,此方程最多有两个根,由函数21xm =−图像可知,方程()232410m t m t −+++=的两根必须有一根m 1≥,另一根01m <<,才能保证原方程有三根,设()()23241g m m t m t =−+++,因此由根的分布知识得:()()041011(32)410g t g t t ⎧=+>⎪⎨=−+++<⎪⎩或()()11(32)410041032012g t t g t t ⎧⎪=−+++=⎪=+>⎨⎪+⎪<<⎩,,,解得:104t −<<.7.零点求和问题 例1010.定义域为R 的函数()12212x x f x x ⎧≠⎪−=⎨⎪=⎩,,,,若关于x 的函数()()()212h x f x af x =++有5个不同的零点1x 、2x 、3x 、4x 、5x ,则2222212345x x x x x ++++等于( ).A .15B .20C .30D .35【答案】C【分析】结合函数的图象可知1102a ++=,进而可得()1f x =或()12f x =,即求. 【详解】作函数()12212x x f x x ⎧≠⎪−=⎨⎪=⎩,,,的图象如图所示,则由函数()()()212h x f x af x =++有5个不同的零点知1102a ++=,解得32a =−.解()()231022f x f x −+=得()1f x =或()12f x =.若()1f x =,则2x =或3x =或1x =; 若()12f x =,则0x =或4x =. 故222221234530x x x x x ++++=.故选:C . 同步练习11.设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a =−有三个零点,则实数a 的范围为 .【答案】(]01,. 【分析】令()t f x =,则原方程的解变为方程组()()t f x f t a ⎧=⎪⎨=⎪⎩,①②的解,作出函数()y f x =,采用数形结合法即求.【详解】函数()g x 的零点即为方程()0g x =的解,令()t f x =, 则原方程的解变为方程组()()t f x f t a ⎧=⎪⎨=⎪⎩,①②的解,作出函数()y f x =的图象,由图象可知,当1t >时,有唯一的x 与之对应;当1t ≤时,有两个不同的x 与之对应. 由方程组()()t f x f t a ⎧=⎪⎨=⎪⎩,①②有三个不同的x 知,需要方程②有两个不同的t ,且一个1t >,一个1t ≤,结合图象可知,当(]01a ∈,时,满足一个(]10t ∈−,,一个(]12t ∈,,符合要求, 综上,实数a 的取值范围为(]01,. 故答案为:(]01,12.设函数()()2210230x x f x x x g x x x x ⎧+>⎪=+=⎨⎪−+≤⎩,,,,,若函数()()()h x g f x a =−有六个不同的零点,则实数a 的取值范围为 .【答案】(]23,. 【分析】利用数形结合即求.【详解】函数()h x 的零点即为方程()0h x =的解,也即()()g f x a =的解, 令()t f x =,则原方程的解变为方程组()()t f x g t a ⎧=⎪⎨=⎪⎩,①②的解,作出函数()y f x =和直线y t =的图象如图所示. 由图可知,当1t >−时,有两个不同的x 与之对应;当1t =−时,有一个x 与之对应,当1t <−时,没有x 与之对应.由方程组()()t f x g t a ⎧=⎪⎨=⎪⎩,①②有六个不同的x 解知,需要方程②有三个不同的t ,且都大于1−,作出函数()y g t =和直线y a =的图象如图所示,由图可知当(]23a ∈,时满足要求, 综上,实数a 的取值范围为(]23,. 故答案为:(]23,13.已知函数2()(1)x f x x x e =−−,设关于x 的方程25()()()f x mf x m R e−=∈有n 个不同的实数解,则n 的所有可能的值为 A .3 B .1或3 C .4或6 D .3或4或6【答案】A【详解】()()()()'12,xf x x x e f x =−+∴在(),2−∞−和()1,+∞上单增,()2,1−上单减,又当x →−∞时,()0,f x x →→+∞时,()f x →+∞故()f x 的图象大致为:令()f x t =,则方程250t mt e −−=必有两个根,12,t t 且125t t e=−,不仿设120t t << ,当1t e=−时,恰有225t e −=,此时()1f x t =,有1个根,()2f x t =,有2个根,当1t e <−时必有2205t e −<<,此时()1f x t =无根,()2f x t =有3个根,当10e t −<<时必有225t e −>,此时()1f x t =有2个根,()2f x t =,有1个根,综上,对任意m R ∈,方程均有3个根,故选A.【方法点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .14.已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为A .3B .4C .5D .6【答案】A【详解】试题分析:求导得,显然是方程的二不等实根,不妨设,于是关于x 的方程3(f(x))2+2af(x)+b =0的解就是或,根据题意画图:所以有两个不等实根,只有一个不等实根,故答案选A.考点:导数、零点、函数的图象15.设定义域为R 的函数2lg ,0(){2,0x x f x x x x >=−−≤, 若关于x 的函数有8个不同的零点,则实数b 的取值范围是 . 【答案】【详解】关于的二次方程至多有两个实数根,设()2,2210f x t t bt =++=,要使得有8个零点,就是()f x t =有4个解,由图象知()f x t =,(0,1)t ∈内有4个解. 二次方程22210t bt ++=在内有两个不等的实数根,故有故填16.已知定义在R 上的函数()y f x =存在零点,且对任意R m n ∈,都满足()()()()2f mf m f n f x n +=+,若关于x 的方程()()31log (01)a f f x x a a −=−>≠,恰有三个不同的根,求a 的取值范围. 【答案】(3,+∞).【分析】令函数()y f x =的零点为m ,即f (m )=0,则由对任意m ,n ∈R 都满足f [mf (m )+f (n )]=f 2(m )+n .可得f [f (x )]=x ,进而x 的方程|f [f (x )]﹣3|=1﹣log a x (a >0,a ≠1)恰有三个不同的根,可转化为|x ﹣3|=1﹣log a x (a >0,a ≠1)恰有三个不同的根,根据对数函数的图象和性质分类讨论后,可得答案.【详解】令函数y =f (x )的零点为m ,即f (m )=0, ∵对任意m ,n ∈R 都满足f [mf (m )+f (n )]=f 2(m )+n . 则f [f (n )]=n 恒成立, 即f [f (x )]=x ,若关于x 的方程|f [f (x )]﹣3|=1﹣log a x (a >0,a ≠1)恰有三个不同的根, 即|x ﹣3|=1﹣log a x (a >0,a ≠1)恰有三个不同的根,当0<a <1时,函数y =|x ﹣3|与y =1﹣log a x 的图象如下图所示:由图可知,函数y =|x ﹣3|与y =1﹣log a x 的图象有两个交点,即关于x 的方程|f [f (x )]﹣3|=1﹣log a x (a >0,a ≠1)恰有两个不同的根,不满足条件; 当1<a <3时,函数y =|x ﹣3|与y =1﹣log a x 的图象如下图所示:由图可知,函数y =|x ﹣3|与y =1﹣log a x 的图象有一个交点,即关于x 的方程|f [f (x )]﹣3|=1﹣log a x (a >0,a ≠1)恰有一个不同的根,不满足条件; 当a =3时,函数y =|x ﹣3|与y =1﹣log a x 的图象如下图所示:由图可知,函数y =|x ﹣3|与y =1﹣log a x 的图象有两个交点,即关于x 的方程|f [f (x )]﹣3|=1﹣log a x (a >0,a ≠1)恰有两个不同的根,不满足条件; 当a >3时,函数y =|x ﹣3|与y =1﹣log a x 的图象如下图所示:由图可知,函数y =|x ﹣3|与y =1﹣log a x 的图象有三个交点,即关于x 的方程|f [f (x )]﹣3|=1﹣log a x (a >0,a ≠1)恰有三个不同的根,满足条件; 综上所述,实数a 的取值范围是(3,+∞).17.定义在R 上的函数1,22()1,2x x f x x ⎧≠⎪−=⎨⎪=⎩若关于x 的方程2()()3f x af x b ++=有三个不同的实数解1x , 2x ,3x ,且 123x x x <<,则下列结论错误的是A .22212314x x x ++= B .2a b += C .134x x += D .1322x x x +>【答案】D【详解】试题分析:当2x ≠时,()1()0,2f x x =∈+∞−且关于y 轴对称, 因为方程2()()3f x af x b ++=有三个不同的实数解, 所以当时,,必为方程的一个解,代入方程得,即选项B 正确;因为()()131f f ==,所以,所以选项A 、C 正确,而选项D 错. 故正确答案选D .。

分段复合函数零点个数问题

分段复合函数零点个数问题

分段复合函数零点个数问题是一个复杂的问题,需要考虑函数的定义域、分段函数的性质以及复合函数的性质等多个因素。

以下是一些可能有用的提示和步骤,帮助您解决这个问题:确定函数的定义域:首先,您需要确定函数的定义域,以确保您在正确的范围内求解零点。

分析分段函数的性质:分段函数可能在不同的区间内具有不同的性质。

您需要仔细分析这些性质,并找出可能影响零点个数的关键点。

分析复合函数的性质:复合函数可能具有更复杂的性质,例如连续性、可导性等。

您需要分析这些性质,以确定如何找到零点。

使用代数方法求解零点:一旦您确定了函数的定义域、分段函数的性质和复合函数的性质,您可以使用代数方法(例如因式分解、求解方程等)来求解零点。

考虑特殊情况:在某些情况下,函数可能在某些特定的x值处具有特定的性质(例如奇函数、偶函数等)。

您需要仔细考虑这些特殊情况,并确定它们是否会影响零点的个数。

需要注意的是,解决分段复合函数零点个数问题可能需要一定的数学技巧和经验。

如果您不确定如何解决这个问题,建议请教数学专家或查阅相关的数学教材和文献。

高考函数-复合函数的零点-含答案

高考函数-复合函数的零点-含答案
Zg∩Df ,则将 y=f(g(x))称为由函数 y=f(u)和 u=g(x)构成的复合函
数.y=f(u)称为外层函数,u=g(x)称为内层函数,也称为中间变量.
2.复合函数函数值计算的步骤:求 y g f x 函数值遵循“由内到外”的顺序,
一层层求出函数值. 3.已知函数值求自变量的步骤:若已知函数值求 x 的解,则遵循“由外到内”
三 试题研究
例 1. 已知
,若关于 的方程
恰好
有 个不相等的实数根,则实数 的取值范围是______________.
【解析】∵
,∴
,∴
∴当
或 时,
,当
时,
∴ 在 上单调递增,在 上单调递减,在
可作出 大致函数图象如图所示:令

上单调递增

时,方程
有一解;当 时,方程
有两解;
当 时,方程
有三解;
∵关于 的方程
,恰好有 4 个不相等实数根
∴关于 的方程
在和
上各有一解

,解得

综上:答案为

例 2.(13 安徽)若函数 f x x3 ax2 bx c 有极值点 x1, x2 ,且 f x1 x1 ,
则关于 x 的方程 3 f x2 2af x b 0 的不同实根的个数是(

A.3
ቤተ መጻሕፍቲ ባይዱB.4
C.5
D.6
解: f ' x 3x2 2ax b 由极值点可得:x1, x2 为 3x2 2ax b 0 ①的两根,观
察 到 方 程 ① 与 3 f x2 2af x b 0 结 构 完 全 相 同 , 所 以 可 得
3 f x2 2af x b 0 的两根为 f1 x x1, f2 x x2 ,其中 f1 x1 x1 ,

复合函数的零点问题(解析版)

复合函数的零点问题(解析版)

复合函数的零点问题(解析版)复合函数的零点问题(解析版)复合函数是数学中常见的一种函数形式,它由两个或多个基本函数按照一定的规则组合而成。

零点问题是指找出函数在定义域内使得函数取零值的自变量的取值。

一、复合函数的定义和性质复合函数是由两个或多个函数按照一定的运算规则组合而成的新函数。

设有函数f(x)和g(x),则复合函数f(g(x))表示先对自变量x进行g(x)的运算,然后再对结果进行f(x)的运算。

在复合函数的运算中,需要符合以下性质:1. 结合律:对于三个函数f(x),g(x)和h(x),复合函数f(g(h(x)))可以简写为(f∘g∘h)(x)。

2. 基本函数的定义域和值域:复合函数的定义域由其中的基本函数的定义域决定,值域受到基本函数值域的限制。

二、复合函数的求解方法对于复合函数的零点问题,可以通过以下方法进行求解:1. 代数法:将复合函数表示为等式,然后对方程进行变形和化简,最终解得零点的取值。

2. 几何法:将复合函数的图像与直线y=0相交的点作为复合函数的零点。

三、实例分析为了更好地理解复合函数的零点问题,下面以一个实例进行分析:例:已知函数f(x) = sin(x),g(x) = x-2,求复合函数f(g(x))的零点。

解:首先将复合函数表示为等式:f(g(x)) = 0sin(g(x)) = 0然后对方程sin(g(x)) = 0进行求解:由于sin函数的周期为2π,且在每个周期内有零点,因此可以得到:g(x) = 2kπ,其中k为整数。

将g(x) = 2kπ代入函数g(x) = x-2中:x-2 = 2kπ,解得x = 2kπ+2综上,复合函数f(g(x))的零点为x = 2kπ+2,其中k为整数。

四、结论与总结通过以上例子,我们可以看出复合函数的零点问题是通过将复合函数表示为等式,然后对方程进行求解来解决的。

根据实际情况选择合适的代数法或几何法进行求解,最终得到复合函数的零点的取值。

28复合函数的零点问题

28复合函数的零点问题

复合函数方程有解或根的个数问题类型一、(())=k f g x 或(())=k g f x方法:设()=t g x ,则()=k g t ,由()=k g t 求出t 的值或范围,然后结合图象由=y t 和y ()=g x 的交点个数即可。

例1(2019甘肃二诊文12)函数y =f (x )的图象关于直线x =2对称,如图所示,则方程(f(x ))2﹣5f (x )+6=0的所有根之和为( )A .8B .6C .4D .2例2.已知函数)(x f ,x ∈[﹣2,2]的图象如图,y =g (x )的图象如图,若函数y =f (g (x ))与y =g (f (x ))的零点个数分别为m ,n ,则m +n 的值是( )A .5B .6C .9D .12例3.已知函数()2,04sin ,0π⎧≤=⎨<≤⎩x x f x x x ,则集合{|(())0}==M x f f x 中元素的个数是( ) A .2 B .3 C .4 D .5例4.(2009•福建)函数2()(0)f x ax bx c a =++≠的图象关于直线2b x a=-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程2[()]()0m f x nf x p ++=的解集都不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}例5.已知函数()243f x x x =-+,若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根,则实数b 的取值范围是( )A .()2,0-B .()2,1--C .()0,1D .()0,2巩固练习:1.(1)已知函数()24=-f x x x ,若方程()()2-32=0+⎡⎤⎣⎦f x f x 的实根个数,(2)已知函数()24=-f x x x ,若方程()()22-32=0+⎡⎤⎣⎦f x af x a 的实根个数, 2.已知函数()y f x =和()y g x =在[]2,2-的图像如下,给出下列四个命题:(1)方程()0f g x =⎡⎤⎣⎦有且只有6个根 (2)方程()0g f x =⎡⎤⎣⎦有且只有3个根(3)方程()0f f x =⎡⎤⎣⎦有且只有5个根(4)方程()0g g x =⎡⎤⎣⎦有且只有4个根 则正确命题的个数是( )A .1B .2C .3D .43.设集合A=[0,1),B=[1,2],已知函数⎩⎨⎧∈-∈+=B x x A x x x f ,241)(,,若A x ∈0且A x f f ∈))((0,则0x 的取值范围是( )A. ]2141,(B.]121,(C. )2141,( D .),(1214.(2019•西湖区校级模拟)函数||()(0,1)x b f x a a a -=>≠的图象关于直线x b =对称,据此可推测,对于任意的非零实数a ,b ,m ,n ,p ,关于x 的方程2[()]()0m f x nf x p ++=的解集不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}5.(2015•南充模拟)已知函数1||,0()0,0x x f x x x ⎧+≠⎪=⎨⎪=⎩,则关于x 的方程2()()0f x bf x c ++=有5个不同实数解的充要条件是( )A .2b <-且0c >B .2b >-且0c <C .2b <-且0c =D .2b -且0c =6.(2005•上海)设定义域为R 的函数||1||,1()0,1lg x x f x x -≠⎧=⎨=⎩,则关于x 的方程2()()0f x bf x c ++=有7个不同的实数解得充要条件是( )A .0b <且0c >B .0b >且0c <C .0b <且0c =D .0b 且0c =7.(2018•长安区二模)已知函数11,1|1|()3,1x x f x x ⎧+≠⎪-=⎨⎪=⎩关于x 的方程2()()0f x bf x c ++=有3个不同的实数解1x ,2x ,3x ,则123(())f f x x x ++的值为( )A .12B .32C .2D .38.(2015秋•上海校级月考)设定义域为R 的函数1(1)|1|()1(1)x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,则b c +值为( )A .0B .1C .1-D .不能确定9.(2014•泉州模拟)设定义在R 上的函数1,3|3|()1,3x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x af x b ++=有5个不同实数解,则实数a 的取值范围是( )A .(0,1)B .(,1)-∞-C .(1,)+∞D .(-∞,2)(2--⋃,1)-10.(2011•柳州一模)设函数22,0()21,0x x f x x x x ⎧=⎨-+>⎩若关于x 的方程2()()f x af x =恰有三个不同的实数解,则实数a 的取值范围为( )A .(,0)-∞B .(0,1)C .[0,1]D .(1,)+∞11.(2018秋•青羊区校级期中)设函数22,0()log ,0x x f x x x ⎧⎪=⎨>⎪⎩若关于x 的方程2(())([()]1)0f x a f x --=恰有四个不同的实数解,则实数a 的取值范围为( )A .(0,1)B .(-∞,0)(1⋃,)+∞C .(-∞,0](1,)+∞D .(-∞,1)(1--⋃,0](1,)+∞12.(2013秋•青羊区校级期中)已知函数1,0(),0x x f x lnx x +⎧=⎨>⎩,则函数[()1]y f f x =+的零点个数( ) A .2 B .3 C .4 D .513.(2012•荆州模拟)已知()f x 为偶函数,当0x 时,2()(1)1f x x =--+,满足[f f (a )1]2=的实数a 的个数为( )A .2B .4C .6D .814.(2019•陕西二模)已知函数2,0()(1),0x e x f x x x ⎧=⎨->⎩,又函数2()()()1()g x f x tf x t R =++∈有4个不同的零点,则实数t 的取值范围是( )A .(,2)-∞-B .(2,)+∞C .(2,2)-D .(2,4)15.(2019•长沙一模)已知()|1|1x f x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( )A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)16.(2016•绍兴二模)已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是 .17.(2011•鼓楼区校级模拟)设定义在R 上的函数1,1|1|()1, 1.x x f x x ⎧≠⎪-=⎨⎪=⎩若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解1x ,2x ,3x ,则123x x x ++= .18.(2011•重庆模拟)已知函数()||3f x x =-,关于x 的方程2()4|()|0f x f x k -+=恰有8个不同的实根,则实数k 的取值范围是 .19.(2015•上海二模)设定义域为R 的函数,若关于x 的函数2||,0()2,0lgx x f x x x x >⎧=⎨--⎩,若关于x 的函数22()2()1y f x bf x =++有8个不同的零点,则实数b 的取值范围是 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数、分段函数零点个数问题1.已知函数⎩⎨⎧<≥=)0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确...的是【 】 A.若)(,41x g t =有一个零点 B.若)(,412-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点2、已知函数(0)()lg()(0)x e x f x x x ⎧≥=⎨-<⎩,则实数2t ≤-是关于x 的方程2()()0f x f x t ++=.有三个不同实数根的【 】A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3 、设定义域为R 的函数1251,0()44,0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++= 有5个不同的实数解,则m =【 】A 2B 6C 2或6D 4或64.已知函数1+(0)()0(=0)x x f x xx ⎧≠⎪=⎨⎪⎩则关于x 的方程 2()b ()0f x f x c ++= 有5个不同的实数解 的充要条件是【 】A b<-2且c>0B b>-2且c<0C b<-2且c=0D b 2c=0≥-且5.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2+f (x 2)的最大值是【 】A .13B .16C .18D .22 6 已知函数31+,>0()3,0x x f x x x x ⎧⎪=⎨⎪+≤⎩, 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可能...为【 】 A 3 B 4 C 5 D 67. 已知函数f(x)=⎩⎪⎨⎪⎧ ax +1,x ≤0,log 2x , x >0。

则下列关于函数y =f(f(x))+1的零点个数的判断正确的是【 】(A )当a >0时,有4个零点;当a <0时,有1个零点(B )当a >0时,有3个零点;当a <0时,有2个零点(C )无论a 为何值,均有2个零点(D )无论a 为何值,均有4个零点8、设R 上的函数2lg (>0)()-2(0)xx f x x x x ⎧=⎨-≤⎩ 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为【 】. A 2 B 3 C 5 D 79、已知函数()x x f x e=∈ (x R),若关于x 方程2()()10f x mf x m -+-=恰有4个不相等的实数根, 则实数m 的取值范围【 】 A 1(,2)(2,e)e B 1(,1)e C 1(1,1)e + D 1(,)e e10.已知函数),0()0,()(+∞⋃-∞是定义在x f 上的偶函数,当0>x 时,1)(4)(2),2(21,20,12)(|1|-=⎪⎩⎪⎨⎧>-≤<-=-x f x g x x f x x f x 则函数的零点个数为【 】A .4B .6C .8D .1011.已知函数()f x 的定义域为D ,若对任意12,x x D ∈,当12x x <时,都有12()()f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[0,1]上为非减函数,且满足以下三个条件:①(0)0f =;②1()()32x f f x =;③(1)2()f x f x -=-.则11()()38f f +=【 】 (A) 1 (B) 32 (C) 2 (D) 52 12.函数()f x 的定义域为R ,对任意实数x 满足(1)(3)f x f x -=-,且(1)(3)f x f x -=-.当l ≤x ≤2时,函数()f x 的导数()0f x '>,则()f x 的单调递减区间是【 】A .[2,21]()k k k Z +∈B .[21,2]()k k k Z -∈C .[2,22]()k k k Z +∈D .[22,2]()k k k Z -∈ 13.函数f (x )=23420122013123420122013x x x x x x ⎛⎫+-+-+-+ ⎪⎝⎭ cos2x 在区间[-3,3]上的零点的个数为【 】 A .3 B .4 C .5 D .614.已知函数 2342013()12342013x x x x f x x =+-+-+⋅⋅⋅+,2342013()12342013x x x x g x x =-+-+-⋅⋅⋅-, 设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为【 】A .8B .9C . 10D . 1115.已知函数()f x 的定义域为[]15-,,部分对应值如下表.()f x 的导函数()y f x '=的图象如图所示.下列关于函数()f x 的命题:① 函数()y f x =是周期函数; ② 函数()f x 在[]02,是减函数;③ 如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最大值为4;④ 当12a <<时,函数()y f x a =-有4个零点.其中真命题的个数是 【 】A .4个B .3个C .2个D .1个17.()f x 是定义在()11-,上的函数,对于(),11x y ∀∈-,,有()())1(xy y x f y f x f --=-成立,且当()1,0x ∈-时,()0f x >.给出下列命题:①()00f =; ②函数()f x 是偶函数;③函数()f x 只有一个零点;④)41()31()21(f f f <+.其中正确命题的个数是【 】A .1B .2C .3D .418.已知函数),4()0,(,,()(23+∞⋃-∞∈+++=k d c b d cx bx x x f 为常数),当时,0)(=-k x f只有一个实根;当k ∈(0,4)时,0)(=-k x f 只有3个相异实根,现给出下列4个命题: 中正确命题的序号是①04)(=-x f 和0)(='x f 有一个相同的实根;②0)(0)('==x f x f 和有一个相同的实根;③03)(=-x f 的任一实根大于01)1(=-f 的任一实根;④05)(=+x f 的任一实根小于02)(=-x f 任一实根.19、已知定义R 的函数()||1f x x =-,关于x 的方程2()()0f x f x k --=,给出下列四个命题中 真命题的序号有①存在K 值使方程恰有2个不同的实根 ②存在K 值使方程恰有4个不同的实根③存在K 值使方程恰有5个不同的实根 ④存在K 值使方程恰有8个不同的实根20.已知直角三角形ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,且不等式cb a 111++ cb a m ++≥恒成立,则实数m 的最大值是_ _ __复合函数、分段函数零点个数问题1、 已知函数⎩⎨⎧<≥=)0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确...的是【 D 】 A.若)(,41x g t =有一个零点 B.若)(,412-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点2、已知函数(0)()lg()(0)x e x f x x x ⎧≥=⎨-<⎩,则实数2t ≤-是关于x 的方程2()()0f x f x t ++=.有三个不同实数根的【 C 】A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3 、设定义域为R 的函数1251,0()44,0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++= 有5个不同的实数解,则m =【A 】A 2B 6C 2或6D 4或64、 已知函数1+(0)()0(=0)x x f x xx ⎧≠⎪=⎨⎪⎩则关于x 的方程 2()b ()0f x f x c ++= 有5个不同的实数解 的充要条件是【 C 】A b<-2且c>0B b>-2且c<0C b<-2且c=0D b 2c=0≥-且5.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2+f (x 2)的最大值是【A 】A .13B .16C .18D .22 6 、已知函数31+,>0()3,0x x f x x x x ⎧⎪=⎨⎪+≤⎩, 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可能...为【A 】 A 3 B 4 C 5 D 67. 已知函数f(x)=⎩⎪⎨⎪⎧ ax +1,x ≤0,log 2x , x >0。

则下列关于函数y =f(f(x))+1的零点个数的判断正确的是【 A 】(A )当a >0时,有4个零点;当a <0时,有1个零点(B )当a >0时,有3个零点;当a <0时,有2个零点(C )无论a 为何值,均有2个零点(D )无论a 为何值,均有4个零点8、设R 上的函数2lg (>0)()-2(0)xx f x x x x ⎧=⎨-≤⎩ 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为【D 】. A 2 B 3 C 5 D 79、已知函数()x x f x e=∈ (x R),若关于x 方程2()()10f x mf x m -+-=恰有4个不相等的实数根, 则实数m 的取值范围【 C 】 A 1(,2)(2,e)e B 1(,1)e C 1(1,1)e + D 1(,)e e10.已知函数),0()0,()(+∞⋃-∞是定义在x f 上的偶函数,当0>x 时,1)(4)(2),2(21,20,12)(|1|-=⎪⎩⎪⎨⎧>-≤<-=-x f x g x x f x x f x 则函数的零点个数为【 D 】A .4B .6C .8D .1011.已知函数()f x 的定义域为D ,若对任意12,x x D ∈,当12x x <时,都有12()()f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[0,1]上为非减函数,且满足以下三个条件:①(0)0f =;②1()()32x f f x =;③(1)2()f x f x -=-.则11()()38f f +=【B 】 (A) 1 (B) 32 (C) 2 (D) 52 12.函数()f x 的定义域为R ,对任意实数x 满足(1)(3)f x f x -=-,且(1)(3)f x f x -=-.当l ≤x ≤2时,函数()f x 的导数()0f x '>,则()f x 的单调递减区间是【 A 】A .[2,21]()k k k Z +∈B .[21,2]()k k k Z -∈C .[2,22]()k k k Z +∈D .[22,2]()k k k Z -∈ 13.函数f (x )=23420122013123420122013x x x x x x ⎛⎫+-+-+-+ ⎪⎝⎭ cos2x 在区间[-3,3]上的零点的个数为【 C 】 A .3 B .4 C .5 D .614.已知函数 2342013()12342013x x x x f x x =+-+-+⋅⋅⋅+,2342013()12342013x x x x g x x =-+-+-⋅⋅⋅-, 设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为【 C 】A .8B .9C . 10D . 1115.已知函数()f x 的定义域为[]15-,,部分对应值如下表.()f x 的导函数()y f x '=的图象如图所示.下列关于函数()f x 的命题:① 函数()y f x =是周期函数; ② 函数()f x 在[]02,是减函数;③ 如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最大值为4;④ 当12a <<时,函数()y f x a =-有4个零点.其中真命题的个数是 【 D 】A .4个B .3个C .2个D .1个16.O 是锐角三角形ABC 的外心,由O 向边BC ,CA ,AB 引垂线,垂足分别是D ,E ,F ,给出下列命题: ①0OA OB OC ++=; ②0OD OE OF ++=;③||OD :||OE :||OF =cosA :cosB :cosC;④R λ∃∈,使得()||||AB AC AD AB SINB AC SINCλ=+。

相关文档
最新文档