2020届安徽省淮南市-中考数学一模试卷(有答案)
〖精选4套试卷〗安徽省淮南市2020年中考第一次大联考数学试卷
2019-2020学年数学中考模拟试卷一、选择题1.下列计算错误的是( ) A .(﹣x )2•x 3=x 5 B .(﹣x 2y )3=x 6y 3 C .(﹣x )2•(﹣x )3=﹣x 5D .x 2+x 2=2x 22.下列计算正确的是( ) A .a+a =a 2 B .6a 3﹣5a 2=a C .(2x 5)2=4x 10D .a 6÷a 2=a 33.如图,AB 是☉O 的直径,弦CD ⊥AB 于点E,点P 在☉O 上,PB 与CD 交于点F,∠PBC=∠C.若∠PBC=22.5°,☉O 的半径R=2,则劣弧AC 的长度为 ( )A.πB.C.2πD.π4.已知△ABC ∽△DEF ,其中AB =6,BC =8,AC =12,DE =3,那么△DEF 的周长为( ) A.394B.263C.13D.265.某中学田径队的18名队员的年龄情况如下表: 年龄(单位:岁) 14 15 16 17 18 人数37341则这些队员年龄的众数和中位数分别是( ) A .15,15B .15,15.5C .15,16D .16,156.如图,60AOB ∠=o ,以点O 为圆心,以任意长为半径作弧交OA ,OB 于,C D 两点,分别以,C D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A.3B.3C.6D.337.如图,在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =,则下列三角函数表示正确的是( )A .3tan 4A =B .4tan 3B =C .3sin 5A =D .3cos 5A =8.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是( )A.16B.12C.13D.239.据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A.1.05×105B.0.105×10–4C.1.05×10–5D.105×10–710.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学知道自己的成绩后,要判断能否进入决赛,还需知道这9名同学成绩的()A.众数B.中位数C.平均数D.方差11.如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD∥OA交OB于点D,点I是△OCD的内心,连结OI,BI.若∠AOB=β,则∠OIB等于()A.180°12-βB.180°-βC.90°+12βD.90°+β12.方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≠0且k≥﹣1B.k≥﹣1C.k≠0且k≤﹣1D.k≠0或k≥﹣1二、填空题13.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=_______.14.计算:(2)0﹣1=_____.15.如图,点A在双曲线2x上,点B在双曲线kyx=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,且面积为3,则k=__________.16.解不等式组:345542x xx x+>⎧⎨-<-⎩①②请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得:______;(Ⅱ)解不等式②,得:______;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为:______.17.数据0.0007用科学记数法表示为____.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为_____.三、解答题19.已知a+1a=3(a>1),求242241111()()()()a a a aa a a a-⨯+⨯+⨯-的值.20.某学校准备购买A 、B 两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A 、B 两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)AB 甲 3 8 622 乙54402(1)求A 、B 两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A 种型号的篮球数量小于B 种型号的篮球,问A 种型号的篮球采购多少个?21.如图,在平面直角坐标系中,常数b <0,m >0,点A 、B 的坐标分别为(﹣2b,0)、(m ,2m+b),正方形BCDE 的顶点C 、D 分别在x 轴的正半轴上.(1)直接写出点D 和点E 的坐标(用含b 、m 的代数式表示); (2)求BCAC的值; (3)正方形BC′D′E′和正方形BCDE 关于直线AB 对称,点C′、D′、E′分别是点C 、D 、E 的对称点,C′D′交y 轴于点M ,D′N⊥x 轴,垂足为N ,连接MN . ①若点N 和点A 关于y 轴对称,求证:MN =MD′; ②若1114AD AO AD AO AO -=-+,求BCOC的值.22.已知,如图,A 点坐标是(1,3),B 点坐标是(5,1),C 点坐标是(1,1) (1)求△ABC 的面积是____; (2)求直线AB 的表达式;(3)一次函数y =kx+2与线段AB 有公共点,求k 的取值范围; (4)y 轴上有一点P 且△ABP 与△ABC 面积相等,则P 点坐标是_____.23.已知线段AB 与点O ,利用直尺和圆规按下列要求作△ABC (不写作法,保留作图痕迹). (1)在图①中,点O 是△ABC 的内心; (2)在图②中,点O 是△ABC 的重心.24.如图,AP 平分∠BAC ,∠ADP 和∠AEP 互补. (1)作P 到角两边AB ,AC 的垂线段PM ,PN . (2)求证:PD =PE .25.如图,排球运动员站在点M 处练习发球,将球从M 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足抛物线解析式.已知球达到最高2.6m 的D 点时,与M 点的水平距离EM 为6m .(1)在图中建立恰当的直角坐标系,并求出此时的抛物线解析式;(2)球网BC 与点M 的水平距离为9m ,高度为2.43m .球场的边界距M 点的水平距离为18m .该球员判断此次发出的球能顺利过网并不会出界,你认为他的判断对吗?请说明理由.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C B C A A D C C B AB13.1 14.0 15.516.(Ⅰ)x >-2 (Ⅱ)x <3 (Ⅲ)(Ⅳ)-2<x <3 17.4710-⨯ 18.2 三、解答题19【解析】 【分析】由已知13a a +=套用21a a ⎛⎫+ ⎪⎝⎭=221a a ++2可得221a a +=7,同理可得441a a +=47,21a a ⎛⎫- ⎪⎝⎭=21a a ⎛⎫+ ⎪⎝⎭-4=5,进而可得结果. 【详解】 解: ∵13a a+=(a >1), ∴21a a ⎛⎫+ ⎪⎝⎭=9,化简得221a a+=7, 两边平方,可得441a a+=49﹣2=47,∵21a a ⎛⎫- ⎪⎝⎭=221a a +﹣2=7﹣2=5,且a >1,∴1a a-, ∴242241111()()()()a a a a aa a a-⨯+⨯+⨯-= 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.20.(1)A 种型号的篮球的销售单价为26元/个,B 种型号的篮球的销售单价为68元/个;(2)A 种型号的篮球采购9个. 【解析】 【分析】(1)设A 种型号的篮球的销售单价为x 元/个,B 种型号的篮球的销售单价为y 元/个,根据总价=单价×数量结合甲、乙两校购买篮球所花费用及购买数量,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购买m 个A 种型号的篮球,则购买(20-m )个B 种型号的篮球,根据A 种型号的篮球数量小于B 种型号的篮球及购买总费用不多于1000元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数即可求出结论. 【详解】(1)设A 种型号的篮球的销售单价为x 元/个,B 种型号的篮球的销售单价为y 元/个,根据题意得:3862254402x y x y +=⎧⎨+=⎩,解得:2668x y =⎧⎨=⎩.答:A 种型号的篮球的销售单价为26元/个,B 种型号的篮球的销售单价为68元/个. (2)设购买m 个A 种型号的篮球,则购买(20﹣m)个B 种型号的篮球,根据题意得:202668(20)1000m mm m <-⎧⎨+-⎩…,解得:607≤m<10.又∵m 为整数, ∴m =9.答:A 种型号的篮球采购9个. 【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组. 21.(1)D(3m+b ,0),E(3m+b ,2m+b);(2)2;(3)①证明见解析;②1. 【解析】 【分析】(1)利用正方形性质得OA =-2b,OC =m ,CD =DE =BE =BC =2m+b ,OD =OC+CD =m+2m+b =3m+b ; (2)由AC =OC ﹣OA =m ﹣(﹣2b )得BC 2m b ;b ACm 2+=+ (3)①根据正方形和轴对称性质得∠ND'M =∠D'NM ; ②由1114AD AO AD AO AO-=-+,变形AD AO AD AO 1(AD AO)(AD AO)(AD AO)(AD AO)4AO +--=-++-,22()14AD AO AD AO AD AO AO +--=-,最后得AD =3AO ,由3m+32b =3(2b-)解得:b =﹣m 即可. 【详解】解:(1)∵四边形BCDE 是正方形∴∠ACB =∠BCD =∠CDE =∠E =90°,BC =CD =DE =BE ∵A(﹣2b,0),B(m ,2m+b), ∴OA =-2b,OC =m ,CD =DE =BE =BC =2m+b ∴OD =OC+CD =m+2m+b =3m+b ∴D(3m+b ,0),E(3m+b ,2m+b) (2)∵AC =OC ﹣OA =m ﹣(﹣2b )=m+2b ∴BC 2m b2b AC m 2+==+(3)①连接AC',∵正方形BC′D′E′和正方形BCDE 关于直线AB 对称∴AC'=AC ,∠AC'B =∠ACB =90° ∵正方形BC'D'E'中,∠BC'D'=90°∴∠AC'D'=90°+90°=180°,即点A 、C'、D'在同一直线上 ∵点N 和点A 关于y 轴对称,M 在y 轴上 ∴MN =MA ∴∠MNA =∠MAN ∵D'N ⊥x 轴∴∠D'NA =∠D'NM+∠MNA =90° ∴∠ND'M+∠MAN =90° ∴∠ND'M =∠D'NM ∴MN =MD′②∵1114AD AO AD AO AO-=-+∴AD AO AD AO 1(AD AO)(AD AO)(AD AO)(AD AO)4AO+--=-++-∴22()14AD AO AD AO AD AO AO +--=-∴22214AO AD AO AO=-∴AD 2﹣AO 2=8AO 2 ∴AD 2=9AO 2∴AD =3AO∵AD =OD ﹣OA =3m+b ﹣(2b -)=3m+32b ∴3m+32b =3(2b-) 解得:b =﹣m ∴221BC m b m m OC m m+-===. 【点睛】考核知识点:正方形性质和轴对称的性质.灵活运用性质,作辅助线是关键. 22.(1)4;(2)y =﹣12x+72;(3)0<k≤1或﹣15≤k<0;(4)(0,32)或(0,112). 【解析】 【分析】(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=4,∠C=90°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2是一次函数,所以k≠0,分两种情况进行讨论:①当k>0时,求出y=kx+2过A(1,3)时的k值;②当k<0时,求出y=kx+2过B(5,1)时的k值,进而求解即可;(4)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣12x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P 点坐标.【详解】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3﹣1=2,BC=5﹣1=4,∠C=90°,∴S△ABC=12AC•BC=12×2×4=4.故答案为4;(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴351k bk b+=⎧⎨+=⎩,解得1k27b2⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的表达式为y=﹣12x+72;(3)当k>0时,y=kx+2过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2与线段AB有公共点,则0<k≤1;当k<0时,y=kx+2过B(5,1),1=5k+2,解得k=﹣15,∴一次函数y=kx+2与线段AB有公共点,则﹣15≤k<0.综上,满足条件的k的取值范围是0<k≤1或﹣15≤k<0;(4)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.设直线CP的解析式为y=﹣12x+n,∵C点坐标是(1,1),∴1=﹣12+n,解得n=32,∴直线CP的解析式为y=﹣12x+32,∴P(0,32 ).设直线AB:y=﹣12x+72交y轴于点D,则D(0,72).将直线AB向上平移72﹣32=2个单位,得到直线y=﹣12x+112,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(0,112).综上所述,所求P点坐标是(0,32)或(0,112).故答案为(0,32)或(0,112).【点睛】本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.23.(1)见解析,(2)见解析【解析】【分析】(1)分别作∠OAC=∠OAB,∠OBA=∠OBC,两边交点为C,△ABC即为所求;(2)作AB的垂直平分线,根据重心的性质可确定出C点,则△ABC即为所求.【详解】解:(1)如图①,△ABC即为所求;(2)如图②,△ABC即为所求.【点睛】本题考查了尺规作图以及三角形内心和重心的性质,熟练掌握三角形内心是三角形内角角平分线交点,三角形重心是三边中线交点是解题关键.24.(1)画图见解析;(2)证明见解析.【解析】【分析】(1)根据题意作图即可;(2)由PM ⊥AB ,PN ⊥AC ,PA 平分∠BAC ,可得PM =PN ,再求出∠DPM =∠EPN ,证明△PMD ≌△PNE ,即可求解. 【详解】解:(1)线段PM ,PN 如图所示.(2)∵PM ⊥AB ,PN ⊥AC ,PA 平分∠BAC , ∴PM =PN∴∠PMA =∠PNA =90°, ∴∠MPN+∠MAN =180°, ∵∠ADP+∠AEP =180°, ∴∠DAE+∠DPE =180°, ∴∠MPN =∠DPE , ∴∠DPM =∠EPN , ∴△PMD ≌△PNE(ASA), ∴PD =PE . 【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键. 25.(1)见解析,21(6) 2.660y x =--+;(2)该球员的判断不对,球会出界,见解析. 【解析】 【分析】(1)直角坐标系的建立要使点的坐标容易确定,因此可以以点M 为坐标原点,建立平面直角坐标系,由题意即可确定点A ,E ,D 的坐标,已知顶点D 及抛物线上一点A 的坐标,可设顶点式,利用待定系数法求解析式即可;(2)利用(1)所求解析式可求出球运行的高度和水平距离,与题中所给的球网BC 的高度及球场的边界距M 点的水平距离进行大小比较即可判断能否过网能否出界. 【详解】 解:(1)如图,以点M 为坐标原点,建立平面直角坐标系,则点A ,E ,D 的坐标分别为(0,2),(6,0),(6,2.6)设球运行的高度y (m )与运行的水平距离x (m )的抛物线解析式为y =a (x ﹣h )2+k 由题意知抛物线的顶点为(6,2.6) 故y =a (x ﹣6)2+2.6将点A(0,2)代入得2=36a+2.6∴a=﹣1 60,故此时抛物线的解析式为y=﹣160(x﹣6)2+2.6(2)该球员的判断不对,理由如下:当x=9时,y=﹣160(x﹣6)2+2.6=2.45>2.43∴球能过网;当y=0时,﹣160(x﹣6)2+2.6=0解得:x1=6+>18,x2=6﹣(舍)故球会出界.【点睛】本题考查了抛物线解析式的求法及在实际生活中的应用,熟练掌握抛物线解析式的求法及其在实际问题中表示的具体意义是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A.AC 的长B.AD 的长C.BC 的长D.CD 的长2.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩3.若反比例函数3k y x+=的图像经过点()3,2-,则k 的值为( )A.9-B.3C.6-D.94.已知二次函数的图象如下,则一次函数与反比例函数在同一平面直角坐标系中的图象大致是( )A. B. C. D.5.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )A .12πB .24πC .36πD .48π6.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示: 成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50 人数23245211则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30 C .这些运动员的平均成绩是 2.25 D .这些运动员成绩的方差是 0.07257.在ABC ∆中,E 、F 是BC 边上的三等分点,BM 是AC 边上的中线,AE 、AF 分BM 为三段的长分别是x 、y 、z ,若这三段有x y z >>,则::x y z 等于( )A .3:2:1B .4:2:1C .5:2:1D .5:3:28.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=kx(k 为常数,k≠0)的图象上,正方形ADEF 的面积为4,且BF=2AF ,则k 值为( )A .4B .-4C .6D .-69.如图,△ABC 中,下面说法正确的个数是( )个. ①若O 是△ABC 的外心,∠A =50°,则∠BOC =100°; ②若O 是△ABC 的内心,∠A =50°,则∠BOC =115°; ③若BC =6,AB+AC =10,则△ABC 的面积的最大值是12; ④△ABC 的面积是12,周长是16,则其内切圆的半径是1.A.1 B.2 C.3 D.410.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD 的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A.322B.2C.22D.3211.如图,在△ABC中,∠B=70°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.40°B.45°C.50°D.60°12.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20°B.35°C.15°D.45°二、填空题13.某校初三(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的A处,用高为1.5米的仪器测得旗杆顶部B处的仰角为60°,如图所示,则旗杆的高度为_____米.(已知≈1.732结果精确到0.1米)14.不等式组8482(8)34xx>⎧⎨+<⎩的解集为__.15.若二次根式有意义,则的取值范围是_________.16.已知反比例函数y=的图象经过点(2,﹣1),则k=_____.17.如图,在⊙O中,C为优弧AB上一点,若∠ACB=40°,则∠AOB=___度.18.8-的立方根是__________.三、解答题19.在平面直角坐标系中B(﹣1,0),A(0,m),m>0,将线段AB线绕B点逆时针旋转90°得BC,AC的中点为D点.(1)m=2时,画图并直接写出D点的坐标;(2)若双曲线kyx=(x<0)过C,D两点,求反比例的解析式;(3)在(2)的条件下,点P在C点左侧,且在双曲线上,以CP为边长画正方形CPEF,且点E在x轴上,求P点坐标.20.在如图的方格纸中(每个小方格的边长都是1个单位)有一点O和△ABC.(1)请以点O为位似中心,把△ABC缩小为原来的一半(不改变方向),得到△A′B′C′;(2)请用适当的方式描述△A′B′C′的顶点A′、B′、C′的位置.21.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a≠0)顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定:抛物线与x轴围成的封闭区域称为“G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax2-2ax-3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2-3ax-3a经过(1,3).①求a的值;②在①的条件下,直接写出“G区域”内整点的个数.(3)如果抛物线y=ax2-2ax-3a在“G区域”内有4个整点,直接写出a的取值范围.22.央视“经典咏流传”开播以来受到社会广泛关注,我市也在各个学校开展了传承经典的相关主题活动“戏曲进校园”.某校对此项活动的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”.(1)被调查的总人数是 人,扇形统计图中B 部分所对应的扇形圆心角的度数为 ,并补全条形统计图;(2)若该校共有学生1800人,请根据上述调查结果估计该校学生中A 类有多少人;(3)在A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树状图或列表法求出被抽到的两个学生性别相同的概率.23.(1)计算:10014cos30|312(2018)2π-⎛⎫+-+- ⎪⎝⎭(2)先化简,再求值:22a 1a 1a 1a 1a 1--÷+--+,其中a =4. 24.如图,一次函数y =kx+b 和反比例函数my x=的图象相交于A (2,4)、B (﹣1,n )两点,一次函数的图象交x 轴于点D .(1)直接写出一次函数与反比例函数的解析式. (2)请结合函数图象,直接写出不等式mkx b x+<的解集. (3)过点A 作直线AC ⊥x 轴,垂足为点C ,过点B 的直线交x 轴于点E ,交直线AC 于点F ,若△ECF ∽△ACD ,求点E 的坐标.25.某个周末,小丽从家去园博园参观,同时妈妈参观结束从园博园回家,小丽刚到园博园就发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(小丽和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y(米)与小丽出发的时间x(分)之间的函数图象,请根据图象信息回答下列问题:(1)求线段BC的解析式;(2)求点F的坐标,并说明其实际意义;(3)与按原速度回家相比,妈妈提前了几分钟到家?并直接写出小丽与妈妈何时相距800米.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C A C B B D D C A C A13.914.6<x<915.16.-217.8018.-2三、解答题19.(1)见解析,33,22⎛⎫-⎪⎝⎭;(2)4yx-=;(3)见解析,点P坐标为(﹣2﹣2,2﹣2)【解析】【分析】(1)过点C作CM⊥x轴,由旋转的性质可得AB=BC,∠ABC=90°,由“AAS”可证△ABO≌△BCM,可得AO=BM=m,BO=CM=1,可得点C坐标,由中点坐标公式可求点D坐标;(2)先求点C,点D坐标,代入解析式可求反比例函数的解析式;(3)过点P作PQ⊥BE,过点C作CD⊥PQ,由“AAS”可证△CDP≌△PQE,可得PD=EQ,CD=PQ,由点P (x,y)(x<0),点C坐标(−4,1),可得y=−4−x,由反比例函数的性质可得xy=−4,可求x,y的值,即可求P点坐标.【详解】(1)过点C作CM⊥x轴,∵将线段AB线绕B点逆时针旋转90°∴AB=BC,∠ABC=90°∴∠ABO+∠CBM=90°∵∠AOB=90°,∴∠ABO+∠BAO=90°∴∠CBM=∠BAO,且BC=AB,∠CMB=∠AOB=90°∴△ABO≌△BCM(AAS)∴AO=BM=m,BO=CM=1∵m=2∴MO=3,∴点C(﹣3,1),且点A(0,2),AC的中点为D点.∴点D坐标为(32ABCABC ADESS S∆∆∆=-),故答案为:(32ABCABC ADESS S∆∆∆=-);(2)由(1)可得:AO=BM=m,BO=CM=1∴MO=1+m,∴点C(﹣1﹣m,1),且点A(0,m),AC的中点为D点.∴点D坐标(11,22m m --+)∵双曲线y=kx(x<0)过C,D两点,∴1×(﹣1﹣m)=1122m mk --+⨯=∴m=3,点C坐标(﹣4,1)∴k=﹣4,∴双曲线解析式:4yx-=;(3)如图,过点P作PQ⊥BE,过点C作CD⊥PQ,设点P(x,y)(x<0)∵四边形CPEF是正方形,∴CP=PE,∵PQ⊥BE,CD⊥PQ,∴∠PEB+∠EPQ=90°,∠EPQ+∠CPQ=90°∴∠CPQ=∠PEB,且PC=PE,∠CDP=∠PQE=90°∴△CDP≌△PQE(AAS)∴PD=EQ,CD=PQ,∵点P(x,y)(x<0),点C坐标(﹣4,1)∴CD=﹣4﹣x=PQ,PD=y﹣1=EQ,PQ=y,BQ=﹣x,∴y=﹣4﹣x,∵点P在C点左侧,且在双曲线上,∴xy=﹣4∴x(﹣4﹣x)=﹣4∴x1=222-+--x2=222∴y=﹣4﹣x=22∴点P坐标为(222--222).【点睛】本题反比例函数综合题,全等三角形的判定和性质,正方形的性质,待定系数法求解析式,中点坐标公式,反比例函数的性质,添加恰当辅助线构造全等三角形是本题的关键.20.(1)见解析;(2)见解析.【解析】【分析】运用相似的原理,进行图形的扩大或者缩小变换,要求熟练掌握相似作图.【详解】(1)利用三角形相似作图,连接OA,OB,OC,分别找出这三条线段的中点A′、B′、C′,顺次连接A′、B′、C′即可得到△A′B′C′;如图所示.(2)描述△A′B′C′的顶点A′、B′、C′的位置可建立坐标系用坐标来描述;也可说成点A′、B′、C′的位置分别为OA、OB、OC的中点等.故答案为:点A′、B′、C′的位置分别为OA、OB、OC的中点【点睛】考核知识点:位似图形的画法,相似三角形性质.理解相似三角形性质是关键.21.(1)顶点P的坐标为(1,-4a).(2)①a=-34.②“G区域”有6个整数点.(3)a的取值范围为-23≤a<-12或12<a≤23.【解析】【分析】(1)利用配方法将抛物线的解析式变形为顶点式,由此即可得出顶点P的坐标;(2)将点(1,3)代入抛物线解析式中,即可求出a值,再分析当x=0、1、2时,在“G区域”内整数点的坐标,由此即可得出结论;(3)分a<0及a>0两种情况考虑,依照题意画出图形,结合图形找出关于a的不等式组,解之即可得出结论.【详解】解:(1)∵y=ax2-2ax-3a=a(x+1)(x-3)=a(x-1)2-4a,∴顶点P的坐标为(1,-4a).(2)∵抛物线y=a(x+1)(x-3)经过(1,3),∴3=a(1+1)(1-3),解得:a=-34.当y=-34(x+1)(x-3)=0时,x1=-1,x2=3,∴点A(-1,0),点B(3,0).当x=0时,y=-34(x+1)(x-3)=94,∴(0,1)、(0,2)两个整数点在“G区域”;当x=1时,y=-34(x+1)(x-3)=3,∴(1,1)、(1,2)两个整数点在“G区域”;当x=2时,y=-34(x+1)(x-3)=94,∴(2,1)、(2,2)两个整数点在“G区域”.综上所述:此时“G区域”有6个整数点.(3)当x=0时,y=a(x+1)(x-3)=-3a,∴抛物线与y轴的交点坐标为(0,-3a).当a<0时,如图1所示,此时有{24332a a<-≤-≤,解得:-23≤a<-12; 当a >0时,如图2所示, 此时有{34232a a -≤-<--≥-, 解得:12<a≤23. 综上所述,如果G 区域中仅有4个整数点时,则a 的取值范围为-23≤a<-12或12<a≤23.【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)利用配方法将抛物线解析式变形为顶点式;(2)利用二次函数图象上点的坐标特征,寻找“G 区域”内整数点的个数;(3)依照题意,画出图形,观察图形找出关于a 的一元一次不等式组.22.(1)50,216°,图见解析;(2)A 类有180人;(3) 25【解析】 【分析】(1)用A 类人数除以它所占的百分比得到调查的总人数,用B 类人数所占的百分比乘以360°得到扇形统计图中B 部分所对应的扇形圆心角的度数,然后计算C 类的人数后补全条形统计图; (2)用1800乘以样本中A 类人数所占的百分比即可;(3)画树状图展示所有20种等可能的结果数,找出被抽到的两个学生性别相同的结果数,然后根据概率公式计算. 【详解】解:(1)5÷10%=50, 所以被调查的总人数是50人,扇形统计图中B 部分所对应的扇形圆心角的度数=360°×3050=216° C 类的人数为50﹣5﹣30﹣5=10(人), 条形统计图为:(2)1800×10%=180,所以根据上述调查结果估计该校学生中A 类有180人; (3)画树状图为:共有20种等可能的结果数,其中被抽到的两个学生性别相同的结果数为8, 所以被抽到的两个学生性别相同的概率=820 =25. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 23.(1)3﹣4;(2)11a +,15. 【解析】 【分析】1)根据实数的运算法则即可求出答案. (2)根据分式的运算法则即可求出答案. 【详解】解:(1312﹣3﹣2+1 =34; (2)原式=221a a -- •(a ﹣1)+11a a -+ =21a a -+ +11a a -+ =11a +, 当a =4时, 原式=15. 【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 24.(1)y 8x=、y =4x ﹣4;(2)x <﹣1或0<x <2;(3)点E 坐标为(31,0)或(﹣33,0). 【解析】【分析】(1)把点A坐标代入myx=可求出m的值,即可得出反比例函数的解析式,并B(-1,n)代入反比例函数解析式可得n的值,即可得出B点坐标,把A、B两点坐标代入y=kx+b可求出k、b的值,即可得一次函数解析式;(2)根据A、B坐标,结合图象即可得出不等式mkx bx+<的解集;(3)过点B作BM⊥x轴于点M,根据一次函数的解析式可求出D点坐标,根据A、B、D三点坐标可得AC=4,OC=2,OM =1,BM=8,OD=1,CD=1,由AC⊥x轴,BM⊥x轴可得△ECF∽△EMB,即可证明△ACD∽△EMB,根据相似三角形的性质可求出EM的长,即可求出OE的长,进而可得E点坐标.【详解】(1)把点A(2,4)代入反比例函数myx=表达式得:m=8,∴反比例函数的解析式为:y8x =,∵点B(-1,n)在反比例函数上,∴n=81-=-8.∴点B(﹣1,﹣8),将点A、B的坐标代入一次函数表达式得:428k bk b=+⎧⎨-=-+⎩,解得:44 kb=⎧⎨=-⎩,∴一次函数的解析式为:y=4x﹣4. (2)∵A(2,4),B(-1,-8)∴由图象可以看出不等式mkx bx+<的解集为:x<﹣1或0<x<2;(3)过点B作BM⊥x轴于点M,∵点A(2,4)、B(-1,-8)∴AC=4,OC=2,OM=1,BM=8,∵y=4x﹣4与x轴交于点D,∴当y=0时,x=1,即D(1,0)∴OD=1,CD=1,∵AC⊥x轴,BM⊥x轴,∴△ECF∽△EMB,∵△ECF∽△ACD,∴△ACD∽△EMB,∴EM BMAC CD=,即:841EM=,∴EM=32,∴OE=31或33,点E坐标为(31,0)或(﹣33,0).【点睛】本题考查相似三角形的判定与性质、待定系数法求反比例函数与一次函数的解析式,正确添加辅助线构建相似三角形是解题关键.25.(1)y =﹣50x+3000;(2)点F 的坐标为(20,2000),其实际意义为:小丽出发20分钟时,在离家2000米处与妈妈相遇;(3)妈妈提前了10分钟到家,小丽与妈妈相距800米的时间是443分钟,763分钟和37分钟. 【解析】 【分析】(1)由图象可知,点A(30,3000),点D(50,0),用待定系数法求出AD 的解析式,再将C 点横坐标代入即可求得点C 的纵坐标,再由点B(0,3000),同样可由待定系数法求得BC 的解析式;(2)待定系数法求出OA 的解析式,然后将其与BC 的解析式联立,可求得点F 的坐标,进而得其实际意义;(3)求出直线BC 与x 轴交点的横坐标,再与x 等于50相比较即可得妈妈提前回家的时间;小丽与妈妈相距800米有三种可能,分别求出即可. 【详解】解:(1)由图象可知,点A(30,3000),点D(50,0)设线段AD 的解析式为:y =kx+b ,将点A ,点D 坐标代入得300030050k bk b =+⎧⎨=+⎩ ,解得k 150b 7500=-⎧⎨=⎩,∴y =﹣150x+7500.将x =45代入上式得y =750, ∴点C 坐标为(45,750).设线段BC 的解析式为y =mx+n ,将(0,3000)和(45,750)代入得:300075045n m n =⎧⎨=+⎩ ,解得503000m n =-⎧⎨=⎩, ∴y =﹣50x+3000.答:线段BC 的解析式为y =﹣50x+3000.(2)设OA 的解析式为y =px ,将点A(30,3000)代入得:3000=30p , ∴p =100, ∴y =100x .由503000100y x y x =-+⎧⎨=⎩ 解得202000x y =⎧⎨=⎩,∴点F 的坐标为(20,2000),其实际意义为:小丽出发20分钟时,在离家2000米处与妈妈相遇. (3)在y =﹣50x+3000中,令y =0得:0=﹣50x+3000, ∴x =60,60﹣50=10,∴妈妈提前了10分钟到家.由|100x﹣(﹣50x+3000)|=800,得:x=443或x=763;由(﹣150x+7500)﹣(﹣50x+3000)=800,得x=37.答:妈妈提前了10分钟到家,小丽与妈妈相距800米的时间是443分钟,763分钟和37分钟.【点睛】本题是一次函数结合函数图象的综合应用,涉及到多次用待定系数法求解析式,求两直线交点坐标,结合函数图象分析数据等,难度较大.2019-2020学年数学中考模拟试卷一、选择题1.下列说法正确的是()A.负数没有倒数 B.﹣1的倒数是﹣1C.任何有理数都有倒数 D.正数的倒数比自身小2.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m3.如图,⊙O1与⊙O2相交于A、B两点,经过点A的直线CD分别与⊙O1、⊙O2交于C、D,经过点B的直线EF分别与⊙O1、⊙O2交于E、F,且EF∥O1O2.下列结论:①CE∥DF;②∠D=∠F;③EF=2O1O2.必定成立的有()A.0个B.1个C.2个D.3个4.在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B 落在CD边上的点E处,折痕AF交BC边于点F;②把△ADH翻折,点D落在AE边长的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则EHEF的值是( )A.54B.43C.53D.325.如图,小明站在自家阳台上A处观测到对面大楼底部C的俯角为α,A处到地面B处的距离AB=35m,则两栋楼之间的距离BC(单位:m)为()A .35tanαB .35sinαC .35sin αD .35tan α6.老师要求同学们设计一个测量某池塘两端A 、B 距离的方案,王兵设计的方案如下:如图,在池塘外选一点C ,测得∠CAB =90°,∠C =30°,AC =36m ,则可知AB 的距离为( )A .193mB .19mC .123mD .122m7.已知二次函数y =x 2﹣4x+a ,下列说法错误的是( ) A .当x <1时,y 随x 的增大而减小 B .若图象与x 轴有交点,则a≤4C .当a =3时,不等式x 2﹣4x+a >0的解集是1<x <3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a =﹣38.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是红球的概率是( ) A.B.C.D.9.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341A .众数是60B .平均数是21C .抽查了10个同学D .中位数是5010.如图,在△ABC 中,∠ACB =90°,分别以点A ,点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 、点N ,作直线MN 交AB 于点D ,交AC 于点D ,连接CD .若AE =3,BC =8,则CD 的长为( )A .4B .5C .6D .711.在同一直角坐标平面内,如果直线y =k 1x 与双曲线2k y x=没有交点,那么k 1和k 2的关系一定是( ) A.k 1+k 2=0 B.k 1•k 2<0 C.k 1•k 2>0 D.k 1=k 212.下列计算正确的是( )A .a 3+a 2=a 5B .a 8÷a 4=a 2C .(2a 3)2﹣a•a 5=3a 6D .(a ﹣2)(a+3)=a 2﹣6。
2020年安徽省中考数学一模试卷(含答案解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
安徽省淮南市2020年中考数学一模试卷D卷
安徽省淮南市2020年中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)山坡底部有一棵竖直的大树AB,小明从A处沿山坡前进20米到达C处,此时转身正好看到同一水平线上的树顶B.已知坡角,小明的眼睛到地面的距离为1.7米,则树高AB为()A . 20米B . 21.7米C . (10 +1.7)米D . 11.7米2. (2分) (2019七上·增城期中) 据广东省文化和旅游厅初步统计,2019年国庆黄金周全省共接待游客55 077 000人次,将数据55 077 000用科学记数法表示为()A . 5.5077×107B . 0.55077×107C . 5.5077×106D . 55.077×1063. (2分)(2019·南山模拟) 下列图形既是轴对称图形也是中心对称图形的是()A .B .C .D .4. (2分) (2018九上·铜梁月考) 下列调查中,最适合采用普查方式的是()A . 调查一批汽车的使用寿命B . 调查重庆全市市民“五•一”期间计划外出旅游C . 调查某航班的旅客是否携带了违禁物品D . 调查全国初三学生的视力情况5. (2分)小马虎在下面的计算中只做对了一道题,他做对的题目是()A .B .C .D .6. (2分) (2018九上·腾冲期末) 如图,中,,过点且平行于,若,则的度数为()A .B .C .D .7. (2分)(2016·江西) 将不等式3x﹣2<1的解集表示在数轴上,正确的是()A .B .C .D .8. (2分)(2018·吉林模拟) 如图, CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6, CD=12,则CE的值为()A . 3B . 4C . 5D . 69. (2分)(2017·惠阳模拟) 一元二次方程x2﹣4x+2=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根10. (2分)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是()A . 40°B . 60°C . 80°D . 120°11. (2分)关于x的方程的解是正数,则a的取值范围是()A . a>-1B . a>-1且a≠0C . a<-1D . a<-1且a≠-212. (2分)如图,四边形ABCD是⊙O的内接四边形,点E是DC延长线上一点,且CB=CE,连接BE,若∠E=40°,则∠A的度数为()A . 90°B . 100°C . 110°D . 80°13. (2分)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A .B .C .D .14. (2分)(2018·娄底模拟) 如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P.则下列结论:( 1 )图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;( 3 )CD+CE= OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个15. (2分) (2016九上·三亚期中) 把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A . y=﹣(x﹣1)2﹣3B . y=﹣(x+1)2﹣3C . y=﹣(x﹣1)2+3D . y=﹣(x+1)2+316. (2分) (2020九上·醴陵期末) 已知二次函数y=ax2+bx+c()的图像如图所示,则下列结论:(1)ac>0;(2)方程ax2+bx+c=0的两根之积小于0;(3)a+b+c<0;(4)ac+b+1 <0,其中符合题意的个数()A . 1个B . 2个C . 3个D . 4个二、填空题 (共3题;共6分)17. (2分)(2018·凉山) 分解因式 =________, =________.18. (1分)(2017·青山模拟) 如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y= 的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=________.19. (3分) (2016七上·南京期末) 如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为________.三、解答题 (共7题;共89分)20. (10分)(2019·张掖模拟) 如图,在△ABC中,AD是△ABC的中线,点E是AD的中点,连接BE并延长,交AC于点F.(1)根据题意补全图形.(2)如果AF=1,求CF的长.21. (12分)(2019·汇川模拟) 文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.22. (11分) (2019七上·南浔期中) 下面是按规律排列的一列数:第1个数:;第2个数:;第3个数:;…(1)分别计算这三个数的结果(直接写答案);(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.23. (15分)(2019·山西) 阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则 .如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI,∴ ,∴ ①,如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,∵DE是⊙O的直径,∴∠DBE=90°,∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF∽△EDB,∴ ,∴ ②,任务:(1)观察发现:, ________(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为________cm.24. (15分)(2016·江汉模拟) 如图,一次函数y1=﹣x+5的图象与反比例函数y2= (k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)当y2>y1>0时,写出自变量x的取值范围.25. (11分)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2(1)求抛物线的解析式;(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.26. (15分)(2020·广西模拟) 如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O的切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=,求AE的长.参考答案一、单选题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共6分)17-1、18-1、19-1、三、解答题 (共7题;共89分)20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
安徽省淮南市2020年中考数学一模试卷(I)卷
安徽省淮南市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·山西模拟) 据2018年2月9日,山西省统计局《2017年山西省人口变动情况抽样调查主要数据公报》显示,根据抽样调查推算,太原市2017年底常住人口约4 380 000人,在全省11个地市中排名第三.4 380 000用科学记数法可表示为()A . 438×104B . 4.38×105C . 4.38×106D . 0.438×1072. (2分) (2020九下·江阴期中) 下列图形中,是中心对称图形但不一定是轴对称图形的是()A . 等边三角形B . 平行四边形C . 菱形D . 圆3. (2分) (2020七下·西城期中) 下列运算中,正确的是()A .B .C .D .4. (2分)下列几何体中,主视图和俯视图都为矩形的是()A .B .C .D .5. (2分)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是()A . 个体B . 总体C . 样本容量D . 总体的一个样本6. (2分) (2020八上·哈尔滨月考) 若,则下列各式中一定不成立的是()A .B .C .D .7. (2分)(2014·绵阳) 在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()A .B .C .D .8. (2分)用配方法解一元二次方程x2-4x=5时,此方程可变形为()A . (x+2)2=1B . (x-2)2=1C . (x+2)2=9D . (x-2)2=99. (2分)若在同一坐标系中,直线y=k1x与双曲线无交点,则有()A . k1+k2>0B . k1+k2<0C . k1k2>0D . k1k2<010. (2分)挂钟的分针长10cm,经过45min,它的针尖转过的路程是()A . 15πcmB . 75πcmC . cmD . cm11. (2分)已知反比例函数y= (a≠0),当x>0时,它的图象y随x的增大而减小,那么二次函数y=ax2﹣ax的图象只可能是()A .B .C .D .12. (2分) (2019八上·漳州月考) 如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3 .若S1+S2+S3=60,则S2的值是()A . 15B . 20C . 25D . 30二、填空题 (共5题;共5分)13. (1分)如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为________ 千米.14. (1分)(2017·孝义模拟) 某广告公司欲招聘一名创作总监,对2名应试者进行了三项素质测试,他们的各项测试成绩如下表所示:应试者测试成绩创新能力计算机能力公关能力甲725088乙857445如果公司赋予“创新能力”、“计算机能力”、“公关能力”三项的权重为5:3:2,则本次招聘中应试者________将被录用(填“甲”或“乙”)15. (1分) (2020八下·沈阳期中) 如果不等式组的解集是x<m,则m的取值范围是________.16. (1分)(2014·苏州) 已知正方形ABCD的对角线AC= ,则正方形ABCD的周长为________.17. (1分)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为________.三、解答题 (共8题;共83分)18. (10分) (2018九上·桥东月考) 计算:(1)2cos60°+4sin60°•tan30°﹣cos245°(2)解方程:2x2-7x-4=019. (10分) (2019九上·叙州期中) 已知,如图所示,∠BCA=∠EDA.求证:(1)△ABC∽△ADE(2)DF·EF=FC·FB20. (10分)(2012·南京) 甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.21. (10分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.22. (10分) (2018八下·肇源期末) 如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M 从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.23. (10分)(2017·广陵模拟) 如图,⊙O是△ABC 的外接圆,AB=AC,BD是⊙O的直径,PA∥BC,与DB的延长线交于点P,连接AD.(1)求证:PA是⊙O的切线;(2)若AB= ,BC=4,求AD的长.24. (10分)(2020·铁西模拟) 如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C,连接(1)求反比例函数的解析式;(2)若点P在x轴上,且,求点P的坐标.25. (13分) (2017七下·路北期中) 如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为________,点D的坐标为________,S四边形ABDC________;(2)点Q在y轴上,且S△QAB=S四边形ABDC ,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP 之间的关系,并证明你的结论.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共83分)18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
安徽省2020年中考数学第一次模拟考试试题含答案解析
2020年中考数学第一次模拟考试【安徽卷】
数学
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符
合题目要求的)
1.|﹣9|的值是
A.9 B.﹣9
C.
1
9D .﹣
1
9
2.计算:(﹣a3)2÷a2=
A.﹣a3B.a3
C.a4D.a7
3.如图,是一个水平放置的几何体,它的俯视图是
A.B.
1。
安徽省2020年中考数学一模试卷解析版
中考数学一模试卷题号一二三总分得分一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b按照从小到大的顺序排列( )A. -b<-a<a<bB. -a<-b<a<bC. -b<a<-a<bD. -b<b<-a<a3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示( )A. 33×105B. 3.3×105C. 0.33×105D. 3×1054.若x=2是关于x的一元一次方程ax-2=b的解,则3b-6a+2的值是( )A. -8B. -4C. 8D. 45.如图,DE∥GF,A在DE上,C在GF上△ABC为等边三角形,其中∠EAC=80°,则∠BCG度数为( )A. 20°B. 10°C. 25°D. 30°6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有以下结论:①a<0;②abc>0;③a-b+c<0;④b2-4ac<0;其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为( )A. 10%B. 20%C. 25%D. 40%8.如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=6,BE=4,则AB长为( )A. 6B. 8C.D.9.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA-AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是( )A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值是______.11.把多项式3mx-6my分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:y=ax2+bx+c(a≠0)的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线y=x2-4x+1的伴随抛物线的解析式______.14.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:tan45°-|-2|-2-1+2(π-3.14)016.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为A(-1,1),B(-2,4),C(-3,2).(1)请画出△ABC关于原点O对称的△A1B1C1;(2)直接写出把△ABC绕点O顺时针旋转90°后,点C旋转后对应点C2的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=25小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+…+(2n-1)=______(用含n的代数式表示);(2)请根据你的发现计算:①1+3+5+7+...+99;②101+103+105+ (199)19.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD 段长为30km,求两高速公路间的距离(结果保留根号).20.如图,AC是⊙O的直径,AB与⊙O相切于点A,四边形ABCD是平行四边形,BC交⊙O于点E.(1)证明直线CD与⊙O相切;(2)若⊙O的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在△ABC中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且AD•OC=AB•OD,AF是∠BAC的平分线,交BC于点F,交DE于点G.求证:(1)CE⊥AB;(2)AF•DE=AG•BC.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表①所示.大中小载重(吨/台)201512运费(元/辆)150012001000司机及领队往返途中的生活费y(单位:元)与货车台数x(单位:台)的关系如图②所示.为此,公司支付领队和司机的生活费共8200元.(1)求出y与x之间的函数关系式及公司派出货车的台数;(2)设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为W(元),求W与小型货车台数P之间的函数关系式.(不写自变量取值范围);(3)若本次派出的货车每种型号不少于3台且各车均满载.①求出大、中、小型货车各多少台时总运费最少及最少运费?②由于油价上涨,大、中、小三种型号货车的运费分别增加500元/辆、300元/辆、a元/辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.答案和解析1.【答案】C【解析】解:A、不是中心对称图形,是轴对称图形,故此选项不合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,是轴对称图形,故此选项符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】C【解析】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和-a两个正数中,-a<b;在a和-b两个负数中,绝对值大的反而小,则-b<a.因此,-b<a<-a<b.故选:C.利用有理数大小的比较方法可得-a<b,-b<a,b>0>a进而求解.有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.3.【答案】B【解析】解:33万=330000=3.3×105,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:将x=2代入一元一次方程ax-2=b得2a-b=2∵3b-6a+2=3(b-2a)+2∴-3(2a-b)+2=-3×2+2=-4即3b-6a+2=-4故选:B.由x=2代入一元一次方程ax-2=b,可求得a与b的关系为(2a-b)=2;注意到3b-6a+2=3(b-2a)+2,将(2a-b)整体代入即可计算此题考查的是一元一次方程的解,在运算的过程中,可以利用整体代入进行求解.但要注意整体代入时,两者之间的符号的变化.5.【答案】A【解析】解:∵DE∥GF,∴∠ACG=∠EAC=80°,∵△ABC为等边三角形,∴∠ACB=60°,∴∠BCG=80°-60°=20°,故选:A.根据平行线的性质得出∠ACG=∠EAC=80°,再利用等边三角形的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质得出∠ACG=∠EAC=80°解答.6.【答案】B【解析】解:∵抛物线开口向下,∴a<0,所以①正确;∵抛物线的对称轴在y轴的右侧,∴a、b异号,即b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵x=-1时,y<0,即a-b+c<0,所以③正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以④错误.故选:B.利用抛物线开口方向对①进行判断;利用对称轴的位置得到b>0,利用抛物线与y轴的交点位置得到c>0,则可对②进行判断;利用自变量为-1对应的函数值为负数可对③进行判断;利用抛物线与x轴的交点个数和判别式的意义可对④进行判断.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.7.【答案】B【解析】解:设增长率为x,根据题意得2500(1+x)2=3600,解得:x1=0.2=20%,x1=-2.2(舍去),答:这两年投入教育经费的年平均增长百分率是20%.故选:B.根据2007年教育经费额×(1+平均年增长率)2=2009年教育经费支出额,列出方程即可.本题考查一元二次方程的应用--求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).8.【答案】C【解析】解:∵DE∥AB,∴∠BDE=∠ABD,∵BD是∠ABC的平分线,∴∠ABD=∠DBE,∴∠DBE=∠EDB,∴BE=DE,∵BE=4,∴DE=4,∵DE∥AB,∴△DEC∽△ABC,∴=,∴=,∴AB=,故选:C.首先求出DE的长,然后根据相似三角形的知识得到=,进而求出AB的长度.本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的判定与性质,解题的关键是利用三角形相似列出比例等式,此题难度不大.9.【答案】D【解析】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8-x,BP=4在Rt△BDQ中,DQ=CQ=(8-x),∴y=•(8-x)•4=-x+8,综上所述,y=.故选:D.作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8-x,BP=4,DQ=CQ=(8-x),利用三角形面积公式得y=-x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.10.【答案】-2【解析】解:过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=5×=,当P在AC上运动至垂足点D,△ABC绕点B旋转,点P的对应点P1在线段AB上时,EP1最小,最小值为BP1-BE=-2.过点B作BD⊥AC,D为垂足,在Rt△BCD中,根据BD=BC×sin45°求出BD的长,当P 在AC上运动至垂足点D,△ABC绕点B旋转,点P的对应点P1在线段AB上时,EP1最小.本题考查的是几何变换题,涉及到图形的旋转、锐角三角函数的定义等知识,难度适中.11.【答案】3m(x-2y)【解析】解:3mx-6my=3m(x-2y).故答案为:3m(x-2y).直接提取公因式3m,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】0【解析】【分析】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解、有理数的乘法.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x≥-,解不等式②得:x≤50,∴不等式组的解集为-≤x≤50,∴不等式组的整数解为-1,0,1…50,所以所有整数解的积为0,故答案为0.13.【答案】y=-x2+1【解析】解:∵抛物线y=x2-4x+1=(x-2)2-3,∴顶点坐标D为(2,-3),与y轴交点为C(0,1),设伴随抛物线的解析式为:y=ax2+1,把D(2,-3)代入得a=-1,∴伴随抛物线y=-x2+1,故答案为:y=-x2+1.先根据抛物线的解析式求出其顶点D和抛物线与y轴的交点C的坐标.然后根据C的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将D点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.本题考查了待定系数法求二次函数解析式,属于新定义题,难度适中,关键是正确理解题意再用待定系数法求函数解析式.14.【答案】1【解析】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC-CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD-DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴=,∴BE==1.故答案为:1.只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难.15.【答案】解:原式=-(2-)-+2=-2+-+2=.【解析】直接利用特殊角的三角函数值以及负整数指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.【答案】解:设买鹅的人数有x人,则这头鹅价格为(9x-11)文,根据题意得:9x-11=6x+16,解得:x=9,价格为:9×9-11=70(文),答:买鹅的人数有9人,鹅的价格为70文.【解析】设买鹅的人数有x人,则这头鹅价格为(9x-11)文,根据题意列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题意列出方程是解本题的关键.17.【答案】解:(1)△A1B1C1如图所示;(2)C2(2,3).【解析】(1)根据网格结构找出点A、B、C旋转后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点C绕点O顺时针旋转90°后的位置,然后写出坐标即可.本题考查了利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.【答案】n2【解析】解:(1)∵第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=25小正方形;……∴1+3+5+7+…+(2n-1)=()2=n2;故答案为:n2;(2)①1+3+5+7+…+99=()2=502=2500;②∵1+3+5+7+…+199=()2=10000,∴101+103+105+…+199=10000-2500=7500.(1)观察图形的变化可得规律,根据发现的规律即可猜想1+3+5+7+…+(2n-1)的值;(2)①根据(1)中的规律即可求解;②根据(1)中的规律和①的结果,即可求得101+103+105+…+199的值.本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律.19.【答案】解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD-CF=(30-)km,在Rt△DFG中,FG=DF•sin30°=(30-)×=(15-)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.【解析】过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG ,再根据EG=BE+BF+FG即可求解.此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.20.【答案】(1)证明:∵AB与⊙O相切于点A,∴∠BAC=90°.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=90°,即AC⊥CD,又∵AC是⊙O的直径,∴直线CD与⊙O相切于点C.(2)解:连接AE,如图所示.∵AC是⊙O的直径,∴∠AEC=90°.在Rt△ACE中,AC=10cm,CE=8cm,∴AE==6(cm).∵∠AEC=90°=∠BAC,∠ACE=∠BCA,∴△ACE∽△BCA,∴=,即=,∴AB=(cm).【解析】(1)根据切线的定义可得出∠BAC=90°,由平行四边形的性质可得出AB∥CD,利用平行线的性质可得出∠ACD=90°,再结合切线的定义可证出直线CD与⊙O相切于点C;(2)连接AE,则∠AEC=90°,在Rt△ACE中,利用勾股定理可求出AE的长,由∠AEC=90°=∠BAC,∠ACE=∠BCA可得出△ACE∽△BCA,再利用相似三角形的性质即可求出AB的长.本题考查了勾股定理、平行四边形的性质、平行线的性质、直线与圆的位置关系以及相似三角形的判定与性质,解题的关键是:(1)利用切线的定义及平行四边形的性质,找出∠ACD=90°;(2)利用相似三角形的判定定理,找出△ACE∽△BCA.21.【答案】证明:(1)∵AD•OC=AB•OD,∴,∵BD是AC边上的高,∴∠BDC=∠BDA=90°,△ADB和△ODC是直角三角形,∴Rt△ADB∽Rt△ODC,∴∠ABD=∠OCD,又∵∠EOB=∠DOC,∠DOC+∠OCD+∠ODC=180°,∠EOB+∠ABD+∠OEB=180°.∴∠OEB=90°,∴CE⊥AB;(2)在△ADB和△AEC中,∵∠BAD=∠CAE,∠ABD=∠OCD,∴△ADB∽△AEC,∴,即,在△DAE和△BAC中∵∠DAE=∠BAC,.∴△DAE∽△BAC,∵AF是∠BAC的平分线,∴,即AF•DE=AG•BC.【解析】(1)由已知得出,证明Rt△ADB∽Rt△ODC,得出∠ABD=∠OCD,证出∠OEB=90°,即可得出结论;(2)证明△ADB∽△AEC,得出,即,证明△DAE∽△BAC,由相似三角形的性质得出,即可得出结论.本题考查了相似三角形的判定与性质;熟记相似三角形的判定定理是解题的关键.22.【答案】解:(1)设y=kx+b,将点(0,200)和点(8,3400)分别代入解析式中得:,解得:,故解析式为:y=400x+200当y=8200时,400x+200=8200,解得x=20故公司派出了20台车.(2)设大型货车有m台,中型货车有n台,则有:,解得:;则W=1000p+1200n+1500m=1000p+1500×p+1200×(20-p)=-20p+24000.(3)由题知p≥3,m≥3,n≥3得,解得5≤p≤10且p为5的倍数.①∵-20<0,因为W随p的增大而减小,所以当p=10时,W最小且为23800元.故小、中、大型货车分别为10,4,6台时总运费最小且为23800元.②设总费用为:Q,由题意可得:Q=(1000+a)p+1500n+2000m,=(1000+a)p+1500(20-p)+2000×p-(a-200)p+30000.①当a-200>0,即a>200时,此时p=5,总费用最少,此时m=3,n=12;②当a-200=0,即a=200时,此时p=5或10时,总费用最少;③当a-200<0,即a<200时,此时p=10,总费用最少,此时m=6,n=4.【解析】(1)根据图中两点坐标便可求出y与x的函数关系式;(2)用p分别表示出中、大型货车的数量便可得出所求的函数关系式;(3)根据一次函数的走向和自变量的取值范围确定答案.此题主要考查了一次函数的应用以及二元一次方程的应用,根据已知得出函数关系式是解题关键.23.【答案】(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.【解析】本题是相似形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(3)中,需要通过作辅助线综合运用(1)(2)的结论和三角函数才能得出结果.(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGB=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.。
安徽省淮南市2020年中考第一次大联考数学试卷
安徽省淮南市2020年中考第一次大联考数学试卷一、选择题1.若函数y=2x+k的图象与y轴的正半轴相交,则函数kyx=的图象所在的象限是()A.第一、二象限B.第三、四象限C.第二、四象限D.第一、三象限2.函数y=21x-的自变量的取值范围是( )A.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠123.某游客为爬上3千米高的山顶看日出,先用1小时爬了1千米,休息0.5小时后,再用1.5小时爬上山顶.游客爬山所用时间l与山高h间的函数关系用图形表示是()A. B.C. D.4.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×1075.已知二次函数y=ax2+bx+c的图象如图所示,在以下四个结论中,正确的是()A.abc>0B.4a+2b+c<0C.a﹣b+c>0D.a+b>06.如图,在边长为2的等边三角形ABC中,以B为圆心,AB为半径作»AC,在扇形BAC内作⊙O与AB、BC、»AC都相切,则⊙O的周长等于()A.49πB.23πC.43πD.π7.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“我”字所在面相对的面上的汉字是()A.厉B.害C.了D.国8.在同一直角坐标系中,函数y=kx和y=kx﹣2的图象大致是()A.B.C.D.9.如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为()A. B. C. D.10.下列标志中,可以看作是轴对称图形的是( )A. B.C. D.11.如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD∥OA交OB于点D,点I是△OCD的内心,连结OI,BI.若∠AOB=β,则∠OIB等于()A .180°12-β B .180°-β C .90°+12β D .90°+β12.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解二、填空题13.计算20180(1)(32)---=_____.14.若2x 2+3与2x 2﹣4互为相反数,则x 为__________.15.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=12,则该等腰三角形的顶角为______度. 16.计算:038(2019)-+-= ______.17.已知(x+y )2=25,x 2+y 2=15,则xy =_____.18.如图,在Rt ABC ∆中,90ACB ︒∠=,分别以A 、B 为圆心,大于12AB 的长为半径画弧,两弧交于两点,过这两点作直线交BC 于点P ,连接AP ,当B Ð为______度时,AP 平分CAB ∠.三、解答题19.先化简,再求代数式2229963a a a a a ⎛⎫-+÷- ⎪+⎝⎭的值,其中3tan 602cos 45a =+o o . 20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨? 21.为响应我市中考改革,我市第四中学组织了一次全校2000名学生参加的“中考模拟”测试,测试结束后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次模拟测试的成绩分布情况,学校随机抽取了其中100名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表: 成绩x/分 频数 频率 50≤x<6050.0560≤x<70 10 0.10 70≤x<80 a 0.15 80≤x<90 30 b 90≤x≤100 400.40请根据所给信息,解答下列问题: (1)a=___,b=___; (2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在___分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次模拟测试的2000名学生中成绩“优”等的概率为多少?22.大唐芙蓉园是中国第一个全方位展示盛唐风貌的大型皇家园林式文化主题公园,全园标志性建筑一紫云楼为代表,展示了“形神升腾紫云景,天下臣服帝王心”的唐代帝王风范(如图①).小风和小花等同学想用一些测量工具和所学的几何知识测量“紫云楼”的高度,来检验自己掌握知识和运用知识的能力,他们经过研究需要两次测量:首先,在阳光下,小风在紫云楼影子的末端C 点处竖立一根标杆CD ,此时,小花测得标杆CD 的影长CE =2米,CD =2米;然后,小风从C 点沿BC 方向走了5.4米,到达G 处,在G 处竖立标杆FG ,接着沿BG 后退到点M 处时,恰好看见紫云楼顶端A ,标杆顶端F 在一条直线上,此时,小花测得GM =0.6米,小风的眼睛到地面的距离HM =1.5米,FG =2米.如图②,已知AB ⊥BM ,CD ⊥BM ,FG ⊥BM ,HM ⊥BM ,请你根据题中提供的相关信息,求出紫云楼的高AB .23.已知直线y 1=﹣x+2和抛物线222y kx kx =-相交于点A ,B .(1)当k =32时,求两函数图象的交点坐标; (2)二次函数y 2的顶点为P ,PA 或PB 与直线y 1=﹣x+2垂直时,求k 的值. (3)当﹣4<x <2时,y 1>y 2,试直接写出k 的取值范围.24.化简:23a 31a a-⎛⎫-÷ ⎪⎝⎭25.某教学网站策划了A 、B 两种上网学习的月收费方式:设每月上网学习的时间为x h.(Ⅰ)根据题意,填写下表:(Ⅱ)设A,B两种方式的收费金额分别为1y元和2y元,分别写出1y,2y与x的函数解析式;(Ⅲ)当60x>时,你认为哪种收费方式省钱?请说明理由.【参考答案】一、选择题二、填空题13.014.±1 215.3616.-117.518.三、解答题19.2【解析】【分析】先根据分式的运算法则进行化简,再把锐角三角函数值化简代入即可. 【详解】解:原式()()()233693a a a aa a a+--+ =÷+()23•3a aa a -=- 12,3323a a ==⨯+⨯-Q 32=+ ∴原式223232===+- 【点睛】本题考查了分式的化简求值,熟练掌握特殊角的三角函数值是解题的关键.20.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t. 【解析】 【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可; (2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量; (3)利用样本估计总体可得结果. 【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t).答:这100户居民3月份较2月份的平均节水量为1.48 t; (3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t. 【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想. 21.(1)a=15,b=0.30;(2)如图所示;见解析;(3)80≤x<90;(4)40%. 【解析】 【分析】(1)用抽取的总人数减去其它各段成绩的人数,即可求出a ;用频数除以被抽取的总数即可求出频率; (2)根据(1)求出的a 的值,可直接补全统计图; (3)根据中位数的定义即可判断;(4)利用样本估计总体的思想求出参加这次模拟测试的2000名学生中成绩“优”等的人数,再根据概率公式即可得出答案.【详解】(1)样本容量是:5÷0.05=100,a=100×0.15=15,b=30÷100=0.30;(2)补全频数分布直方图,如下:(3)一共有100个数据,按照从小到大的顺序排列后,第50个与第51个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80⩽x<90分数段;(4) ∵该校参加这次模拟测试的2000名学生中成绩“优”等的有:2000×0.4=800(人),∴该校参加这次模拟测试的2000名学生中成绩“优”等的概率为:8002000=40%.【点睛】本题考查频数分布直方图、频数分布表、中位数等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.22.紫云楼的高AB为39米.【解析】【分析】根据已知条件得到AB=BC,过H作HN⊥AB于N,交FG于P,设AB=BC=x,则HN=BM=x+5.4+0.6=x+6,AN=x﹣1.5,FP=0.5,PH=GM=0.6,根据相似三角形的性质即可得到结论.【详解】解:∵CD⊥BM,FG⊥BM,CE=2,CD=2,∴AB=BC,过H作HN⊥AB于N,交FG于P,设AB=BC=x,则HN=BM=x+5.4+0.6=x+6,AN=x﹣1.5,FP=0.5,PH=GM=0.6,∵∠ANH=∠FPH=90°,∠AHN=∠FHP,∴△ANH∽△FPH,∴AN NHPF PH=,即1.560.50.6x x-+=,∴x=39,∴紫云楼的高AB为39米.本题考查了相似三角形的应用,正确的识别图形是解题的关键. 23.(1)A(2,0),B(﹣23,83);(2)1或-133;(3) 1-2<k <14且k≠0. 【解析】 【分析】(1)联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩即可求交点; (2)当PA 与y 1=-x+2垂直时,k=1;当PB 与y 1=-x+2垂直时,k=-133; (3)当x=-4时,y 1>y 2,6>24k ;只有开口向上时成立,所以k >0; 【详解】 (1)当k =32时,22332y x x =-, 联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩, ∴20x y =⎧⎨=⎩或2383x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴A(2,0),B(﹣23,83); (2)222y kx kx =-的顶点P(1,﹣k),当PA 与y 1=﹣x+2垂直时,k =1; 当PB 与y 1=﹣x+2垂直时,k =﹣133; (3)当x =2时,y 1=y 2=0, 当x =﹣4时,y 1>y 2, 当k >0时, ∴6>24k , ∴k <14, ∴0<k <14; 当k <0时,直线与抛物线有一个交点时:-x+2=kx 2-2kx , ∵△=(1+2k )2=0, ∴k=1-2, ∴1-2<k <0; 综上所述;1-2<k <14且k≠0;本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握函数交点的求法,数形结合解不等式是解题的关键. 24.a 【解析】 【分析】根据分式的减法和除法可以解答本题. 【详解】23a 31a a-⎛⎫-÷ ⎪⎝⎭ =2a 3a a a 3-⋅- =a . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 25.(Ⅰ)见解析,(Ⅱ)127? 025? 10?050?0.68? 253140?50? x x y y x x x x ≤≤≤≤⎧⎧==⎨⎨-≥-≥⎩⎩,(Ⅲ)当x 60>时,收费方式A 省钱 【解析】 【分析】(Ⅰ)首先判断月包时上网时间和月上网时间的大小,然后根据月总费用=月使用费+超时单价×超过时间,进行计算即可(Ⅱ)根据收取费用=月使用费+超时单价×超过时间,可得出12y y 、关于x 的函数关系式,注意进行分段;(Ⅲ)当x 60>时,根据(Ⅱ)的解析式,求出1y 与2y 的差,根据一次函数的增减性得出省钱的收费方式. 【详解】 (Ⅰ)见表格(Ⅱ)当0x 25≤≤时,1;当x 25≥时,()1y 70.6x 250.6x 8=+-=-∴17?025? y 0.68? 25x x x ≤≤⎧=⎨-≥⎩;当0x 50≤≤时,2y 10=当x 50≥时,()2y 103x 503x 140=+-=- ∴210?050?y 3140? 50? x x x ≤≤⎧=⎨-≥⎩;(Ⅲ)当x 60>时,收费方式A 省钱当x 60>时,1y 0.6x 8=-,2y 3x 140=-; 设y=12y y 0.6x 83x 140 2.4x 132-=---=-+ ∵-2.40<,∴y 随x 的增大而减小 当x=60时,y=-12,∴当x 60>时,y 12<-,即y 0< ∴12y y <∴当x 60>时,收费方式A 省钱. 【点睛】本题考查一次函数的应用—方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。
安徽省淮南市2019-2020学年中考数学一模试卷含解析
安徽省淮南市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算正确的是( ) A .2a 2+3a 2=5a 4B .(﹣12)﹣2=4 C .(a+b )(﹣a ﹣b )=a 2﹣b 2D .8ab÷4ab=2ab2.如图,点A 、B 、C 在⊙O 上,∠OAB=25°,则∠ACB 的度数是( )A .135°B .115°C .65°D .50°3.将一次函数2y x =-的图象向下平移2个单位后,当0y >时,a 的取值范围是( ) A .1x >-B .1x >C .1x <-D .1x <4.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A .10B .22C .3D .55.如图,DE 是线段AB 的中垂线,AE //BC ,AEB 120o ∠=,AB 8=,则点A 到BC 的距离是()A .4B .3C .5D .66.把不等式组1x <-⎧⎨的解集表示在数轴上,下列选项正确的是( )A .B .C .D .7.已知点()2,4P -,与点P 关于y 轴对称的点的坐标是( ) A .()2,4--B .()2,4-C .()2,4D .()4,2-8.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .39.如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P 的坐标为( )A .(﹣4,﹣3)B .(﹣3,﹣4)C .(﹣3,﹣3)D .(﹣4,﹣4)10.如图,若a ∥b ,∠1=60°,则∠2的度数为( )A .40°B .60°C .120°D .150°11.13-的绝对值是( ) A .3B .3-C .13D .13-12.若不等式组的整数解共有三个,则a 的取值范围是( )A .5<a <6B .5<a≤6C .5≤a <6D .5≤a≤6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.14.计算:1275-=______. 15.因式分解:4ax 2﹣4ay 2=_____.16.如图,在⊙O 中,点B 为半径OA 上一点,且OA =13,AB =1,若CD 是一条过点B 的动弦,则弦CD 的最小值为_____.17.已知抛物线2y ax bx c =++开口向上且经过点()1,1,双曲线1y 2x=经过点()a,bc ,给出下列结论:bc 0①>;b c 0+>②;b ③,c 是关于x 的一元二次方程()21x a 1x 02a+-+=的两个实数根;a b c 3.--≥④其中正确结论是______(填写序号)18.若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C 等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?21.(6分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.22.(8分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?23.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.25.(10分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.26.(12分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤初一 1 2 3 6初二0 1 10 1 8 (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)年级平均数中位数众数初一84 88.5初二84.2 74(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性). 27.(12分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】A. 2a2+3a2=5a2,故本选项错误;B. (−12)-2=4,正确;C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;D. 8ab÷4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.2.B【解析】【分析】由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点 P ,连接 PA 、 PB. ∵OA=OB ,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键. 3.C【解析】直接利用一次函数平移规律,即k 不变,进而利用一次函数图象的性质得出答案. 【详解】将一次函数2y x =-向下平移2个单位后,得:22y x =--,当0y >时,则:220x -->,解得:1x <-,∴当0y >时,1x <-,故选C . 【点睛】本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键. 4.A 【解析】 【分析】先利用勾股定理计算出AB ,再在Rt △BDE 中,求出BD 即可; 【详解】解:∵∠C=90°,AC=4,BC=3, ∴AB=5,∵△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处, ∴AE=AC=4,DE=BC=3, ∴BE=AB-AE=5-4=1,在Rt △DBE 中,= 故选A. 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 5.A 【解析】 【分析】作AH BC ⊥于H.利用直角三角形30度角的性质即可解决问题.解:作AH BC ⊥于H .DE Q 垂直平分线段AB , EA EB ∴=, EAB EBA ∠∠∴=,AEB 120∠=o Q , EAB ABE 30∠∠∴==o ,AE //BC Q ,EAB ABH 30o ∠∠∴==, AHB 90∠=o Q ,AB 8=,1AH AB 42∴==, 故选A . 【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 6.C 【解析】 【分析】求得不等式组的解集为x <﹣1,所以C 是正确的. 【详解】解:不等式组的解集为x <﹣1. 故选C . 【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 7.C 【解析】 【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.解:点()2,4P -,与点P 关于y 轴对称的点的坐标是()2,4, 故选:C . 【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 8.B 【解析】 【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形. 【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个. 故选:B . 【点睛】此题考查由三视图判断几何体,解题关键在于识别图形 9.A 【解析】 【分析】延长A 1A 、B 1B 和C 1C ,从而得到P 点位置,从而可得到P 点坐标. 【详解】如图,点P 的坐标为(-4,-3).故选A .本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.10.C【解析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.11.C【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点13-到原点的距离是13,所以,13-的绝对值是13,故选C.【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.12.C【解析】【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<1.故选C.【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.16【解析】【分析】设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+53a=83a,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答. 【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=53a,m=a+b= a+53a=83a,因为1020m<<,所以10<83a<20,解得:154<a<152,又因为小长方形的边长为整数,a=4、5、6、7,因为b=53a,所以5a是3的倍数,即a=6,b=53a=10,m= a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.14.-【解析】原式==-故答案为:-15.4a(x﹣y)(x+y)【解析】【分析】首先提取公因式4a,再利用平方差公式分解因式即可.【详解】4ax2-4ay2=4a(x2-y2)=4a (x-y )(x+y ).故答案为4a (x-y )(x+y ).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.16.10【解析】【分析】连接OC ,当CD ⊥OA 时CD 的值最小,然后根据垂径定理和勾股定理求解即可.【详解】连接OC ,当CD ⊥OA 时CD 的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴,∴CD=5×2=10.故答案为10.【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .17.①③【解析】试题解析:∵抛物线2y ax bx c =++开口向上且经过点(1,1),双曲线12y x=经过点(a ,bc ),∴0112a a b c bc a ⎧⎪>⎪++=⎨⎪⎪=⎩,∴bc >0,故①正确;∴a >1时,则b 、c 均小于0,此时b+c <0,当a=1时,b+c=0,则与题意矛盾,当0<a <1时,则b 、c 均大于0,此时b+c >0,故②错误; ∴21(1)02x a x a+-+=可以转化为:2()0x b c x bc +++=,得x=b 或x=c ,故③正确; ∵b ,c 是关于x 的一元二次方程21(1)02x a x a +-+=的两个实数根,∴a ﹣b ﹣c=a ﹣(b+c )=a+(a ﹣1)=2a ﹣1,当a >1时,2a ﹣1>3,当0<a <1时,﹣1<2a ﹣1<3,故④错误;故答案为①③.18.4 yx【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=kx,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=4x,故答案为y=4 x .【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50;(2)16;(3)56(4)见解析【解析】【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D 等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(1)S=﹣3x1+14x,143≤x< 8;(1)5m;(3)46.67m1【解析】【分析】(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得S=x(14﹣3x),即所求的函数解析式为:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴1483x≤<;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x =3或5,当x =3时,长=14﹣9=15>10不成立,当x =5时,长=14﹣15=9<10成立,∴AB 长为5m ;(3)S =14x ﹣3x 1=﹣3(x ﹣4)1+48∵墙的最大可用长度为10m ,0≤14﹣3x≤10, ∴1483x ≤<, ∵对称轴x =4,开口向下, ∴当x =143m ,有最大面积的花圃. 【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.21.证明见解析.【解析】【分析】由题意易用角角边证明△BDE ≌△CDF ,得到DF=DE ,再用等量代换的思想用含有AE 和AF 的等式表示AD 的长.【详解】证明:∵CF ⊥AD 于,BE ⊥AD ,∴BE ∥CF ,∠EBD=∠FCD ,又∵AD 是△ABC 的中线,∴BD=CD ,∴在△BED 与△CFD 中,EBD FCD BED CFD BD CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△△BED ≌△CFD (AAS )∴ED=FD ,又∵AD=AF+DF ①,AD=AE-DE ②,由①+②得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.22.(1)购进A型台灯75盏,B型台灯25盏;(2)当商场购进A型台灯25盏时,商场获利最大,此时获利为1875元.【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.考点:1.一元一次方程的应用;2.一次函数的应用.23.(1)D(0);(1)C(11﹣,18);(3)B'(0),(10).【解析】【分析】(1)设OD为x,则x,在RT△ODA中应用勾股定理即可求解;(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,33),∴AO=3,BO=33∴AB=6∵折叠∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(33﹣OD)1.∴OD=3∴D(0,3)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴BD BCBO AB=且BD=AC,∴66 33BD-=∴BD=123﹣18∴OD=33﹣(123﹣18)=18﹣93∵tan∠ABO=3 OBAO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=3 BDCD=,∴CD=11﹣63∴D(11﹣63,113﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,∵BC=AB﹣AC∴BC=6﹣1=4若点B'落在A点右边,∵折叠∴BC=B'C=4,CE⊥OA∴=∴∴B'(0)若点B'落在A点左边,∵折叠∴BC=B'C=4,CE⊥OA∴=∴ 1∴B'(10)综上所述:B'(0),(10)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键. 24.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h 的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人, m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h ), 众数为1.5h ,中位数为=1.5h ;(3)估计每天在校体育锻炼时间大于等于1.5h 的人数约为250000×=160000人. 【点睛】本题主要考查数据的收集、 处理以及统计图表.25.见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC 是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.26.(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.【解析】【分析】(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、众数、中位数的统计意义回答.【详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.故答案为:1.分析数据:在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.故答案为:19,2.(2)初一年级掌握生态环保知识水平较好.因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.【点睛】本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.27.(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)∵1800×80300=1(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为1.。
2020届初三中考数学一诊联考试卷含参考答案 (安徽)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( )A.1 B.2 C.3 D.42.若等腰三角形的三边长均满足方程x2﹣7x+10=0,则此三角形的周长为()A.9 B.12 C.9或12 D.不能确定3.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.204.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D 在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣45.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC 边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A .B .C .D .6.若关于x 的不等式组27412x x x k ++⎧⎨-⎩<<的解集为x <3,则k 的取值范围为( )A .k >1B .k <1C .k ≥1D .k ≤1 7.如图是三个反比例函数y =1k x ,y =2k x ,y =3k x在x 轴上方的图象,由此观察k 1、k 2、k 3得到的大小关系为( )A .k 1>k 2>k 3B .k 2>k 3>k 1C .k 3>k 2>k 1D .k 3>k 1>k 28.如图,正方形ABCD 的边长为2,点O 为其中心.将其绕点O 顺时针旋转45°后得到正方形A 'B 'C 'D ',则旋转前后两正方形重叠部分构成的多边形的周长为( 212-== )A .16﹣B .﹣16C .12﹣D .﹣129.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发, 沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小10.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有( )A .12个B .10个C .8个D .6个二、填空题(共4题,每题4分,共16分)11.如图,已知A (4,0),B (3,3),以OA 、AB 为边作▱OABC ,则若一个反比例函数的图象经过C 点,则这个反比例函数的表达式为_____.12.ABC 中,DF 是AB 的垂直平分线,交BC 于D ,EG 是AC 的垂直平分线,交BC 于E ,若∠DAE=30°,则∠BAC 等于____________.13.如图,在矩形ABCD 中,AB=6,BC=4,点E 是边BC 上一动点,把△DCE 沿DE 折叠得△DFE ,射线DF 交直线CB 于点P ,当△AFD 为等腰三角形时,DP 的长为_____.14.不等式组3(1)7{243x x x x --≤+>, 的解集是_______________ 三、解答题(共6题,总分54分)15.如图,一次函数11y k x b =+,与反比例函数22k y x=交于点A (3,1)、B (-1,n ),y 1交y 轴于点C ,交x 轴于点D .(1)求反比例函数及一次函数的解析式;(2)求△OBD 的面积;(3)根据图象直接写出1k x b +>2k x的解集. 16.如图,△ACB 和△DCE 均为等腰三角形,点A 、D 、E 在同一条直线上,BC 和AE 相交于点O ,连接BE ,若∠CAB=∠CBA=∠CDE=∠CED=50°。
2020年安徽省中考数学一模试卷 (含解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。
淮南市2020年数学中考一模试卷(II)卷
淮南市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列说法正确的是()A . 一个数不是正数就是负数B . 带负号的数是负数C . 0℃表示没有温度D . 若a是正数,那么﹣a一定是负数2. (2分)﹣32的值为()A . 9B . -9C . -6D . 63. (2分)下列计算正确的是()A . + =B . ÷ =2C . ×(﹣)=3D . (﹣1)2=24. (2分)定义:若,则称a与b是关于数n的“平衡数”. 比如3与-4是关于-1的“平衡数”,5与12是关于17的“平衡数”. 现有与(k为常数)始终是关于数n的“平衡数”,则()A . 11B . 12C . 13D . 145. (2分)(2019·新宾模拟) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A . (6052,0)B . (6054,2)C . (6058,0)D . (6060,2)6. (2分) (2017七下·江苏期中) 下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共9题;共10分)7. (1分) (2019八上·浦东期末) 在实数范围内分解因式:3x2-6x+1=________.8. (1分) (2015七上·献县期中) (________)×(- )=1.9. (2分) (2017七上·柯桥期中) 如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,那么第二次“移位”后他所处的顶点的编号为________. 第181次“移位”后,则他所处顶点的编号是________.10. (1分) (2019八下·嘉兴开学考) 如果,则 ________11. (1分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的是π,则扇形半径为2.12. (1分) (2018九上·阜宁期末) 在△ABC中,(tanC-1)2 +∣ -2cosB∣=0,则∠A=________13. (1分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.14. (1分)(2018·溧水模拟) 如图,平行四边形ABCD的顶点A在函数y=(x>0)的图象上,其余点均在坐标轴上,则平行四边形ABCD的面积为________.15. (1分)(2018·溧水模拟) 小高从家骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间x(分钟)与离家距离y(千米)的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家需要的时间是________分钟.三、解答题 (共11题;共91分)16. (1分)一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为________ .17. (10分)(2018·溧水模拟)(1)计算:( -3+-)÷(- )(2)化简:( -)÷18. (8分)(2018·溧水模拟) 某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310(1)根据上述信息可知:甲命中环数的中位数是________环,乙命中环数的众数是________环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会________.(填“变大”、“变小” 或“不变”)19. (6分)(2018·溧水模拟) 一个不透明箱子中有2个红球,1个黑球和1个白球,四个小球的形状、大小完全相同.(1)从中随机摸取1个球,则摸到黑球的概率为________;(2)小明和小贝做摸球游戏,游戏规则如下.你认为这个游戏公平吗?请说明理由.20. (5分)(2018·溧水模拟) 某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?21. (10分)(2018·溧水模拟) 如图,等腰三角形ABC中,AB=AC.(1)用尺规作出圆心在直线BC上,且过A、C两点的⊙O;(注:保留作图痕迹,标出点O,并写出作法)(2)若∠B=30°,求证:AB与(1)中所作⊙O相切.22. (10分)(2018·溧水模拟) 现在正是草莓热销的季节,某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.(1)设第一、二次购进草莓的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这40箱草莓先按每箱60元销售了x箱,其余的按每箱35元全部售完.①求商店销售完全部草莓所获利润y(元)与x(箱)之间的函数关系式;②当x的值至少为多少时,商店才不会亏本.(注:按整箱出售,利润=销售总收入-进货总成本)23. (5分)(2018·溧水模拟) 一艘救生船在码头A接到小岛C处一艘渔船的求救信号,立即出发,沿北偏东67°方向航行10海里到达小岛C处,将人员撤离到位于码头A正东方向的码头B,测得小岛C位于码头B的北偏西53°方向,求码头A与码头B的距离.【参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】24. (10分)(2018·溧水模拟) 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:△ADG≌△CDG.(2)若=,EG=4,求AG的长.25. (15分)(2018·溧水模拟) 已知抛物线y=2x2+bx+c经过点A(2,-1) .(1)若抛物线的对称轴为x=1,求b,c的值;(2)求证:抛物线与x轴有两个不同的交点;(3)设抛物线顶点为P,若O、A、P三点共线(O为坐标原点),求b的值.26. (11分)(2018·溧水模拟) 正方形网格(边长为1的小正方形组成的网格纸,正方形的顶点称为格点)是我们在初中阶段常用的工具,利用它可以解决很多问题.(1)如图①中,△ABC是格点三角形(三个顶点为格点),则它的面积为________;(2)如图②,在4×4网格中作出以A为顶点,且面积最大的格点正方形(四个顶点均为格点);(3)人们发现,记格点多边形(顶点均为格点)内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb-1,其中m,n为常数.试确定m,n的值.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共9题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共11题;共91分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-2、23-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
〖6套试卷汇总〗安徽省淮南市2020年中考第一次大联考数学试卷
2020年数学中考模拟试卷一、选择题1.函数11y x =-中自变量x 的取值范围是( ) A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠ 2.如图,经过点B (﹣2,0)的直线y =kx+b 与直线y =4x+2相交于点A (﹣1,﹣2),4x+2<kx+b <0的解集为( )A.x <﹣2B.﹣2<x <﹣1C.x <﹣1D.x >﹣13.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点为60°角与直尺交点,点为光盘与直尺唯一交点,若,则光盘的直径是( ).A. B. C.6 D.34.在正方形ABCD 中,对角线AC=BD=12cm ,点P 为AB 边上的任一点,则点P 到AC ,BD 的距离之和为( )A .6cmB .7cmC .cmD .cm5.2018年4月10日,历时四个月的“2018中国茶叶区域公用品牌价值评估”结果出炉,信阳毛尖较去年增加3.61亿元,以63.52亿元蝉联品牌价值排行榜第二名,并被评选为“最具品牌带动力”的三大品牌之一.数据63.52亿元用科学计数法表示为( )A .83.6110⨯B .73.6110⨯C .863.5210⨯D .96.35210⨯6.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元A .8B .16C .24D .32 7.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是( )A .2011年我国的核电发电量占总发电量的比值约为1.5%B .2006年我国的总发电量约为25000亿千瓦时C .2013年我国的核电发电量占总发电量的比值是2006年的2倍D .我国的核电发电量从2008年开始突破1000亿千瓦时8.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A. B. C. D.9最接近的是( )A.1B.2C.3D.410.不等式组1211133x x x -≤⎧⎪⎨-<+⎪⎩的解集在数轴上表示正确的是( ) A.B. C . D .二、填空题11.已知四条线段a 、2、6、a +1成比例,则a 的值为_____.12.如图,在正方形ABCD 中,对角线BD。
2020年安徽省淮南市实验学校中考模拟数学试题一
2020年安徽省淮南市实验学校中考模拟数学试题一1.实数a b c 、、在数轴上的对应点的位置如图所示,则正确的结论是( )A .a c ->B .a b >C .0ab >D .3a >- 2.一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为( ) A .55.210⨯ B .55.210-⨯ C .45.210-⨯ D .65210-⨯ 3.如图,直线a b ∥,直线l 与a ,b 分别交于点A ,B ,过点A 作AC b ⊥于点C ,若∠1=50°,则2∠的度数为( )A .130︒B .50︒C .40︒D .25︒ 4.在下列图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 5.在某次体育测试中,九年级(1)班的15名女生仰卧起坐的成绩如表:则此次测试成绩的中位数和众数分别是( )A .46,48B .47,47C .47,48D .48,48 6.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC 的度数为( )A .30°B .45°C .60°D .90°7.如图,1l 反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,2l 反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为( )A .大于4吨B .等于5吨C .小于5吨D .大于5吨 8.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处 9.如图是北京2017年3月1日﹣7日的 2.5PM 浓度(单位:3/g m μ)和空气质量指数(简称AQI )的统计图,当AQI 不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的 2.5PM 浓度最高②这七天的 2.5PM 浓度的平均数是330/g m μ③这七天中有5天的空气质量为“优”④空气质量指数AQI 与 2.5PM 浓度有关其中说法正确的是( )A .②④B .①③④C .①③D .①④ 10.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,动点P 从点B 出发,在线段BC 上匀速运动,到达点C 时停止.设点P 运动的路程为x ,线段OP 的长为y ,如果y 与x 的函数图象如图2所示,则矩形ABCD 的面积是( )A .20B .24C .48D .6011.x 的取值范围为_____.12.分解因式: 244a b ab b -+=________.13.如图,△ABC 是⊙O 的内接正三角形,图中阴影部分的面积是12π,则⊙O 的半径为_____.14.关于x 的一元二次方程ax 2+2x +c =0(a ≠0)有两个相等的实数根,写出一组满足条件的实数a ,c 的值:a =_____,c =_____.15.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段a .求作:等腰ABC ∆,使,AB AC BC a ==,BC 边上的高为2a .作法:如图,(1)作线段BC a =;(2)作线段BC 的垂直平分线DE 交BC 于点F ;(3)在射线FD 上顺次截取线段FG GA a ==,连接,AB AC .所以ABC ∆即为所求作的等腰三角形.请回答:得到ABC ∆是等腰三角形的依据是:①_____:②_____.16.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:根据表中的数据,估计这种树苗移植成活的概率为_____(精确到0.1);如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约_____万棵.17.计算:()0020176cos 45π-+-. 18.解不等式2151132x x +--≥-,并把它的解集在数轴上表示出来. 19.如图,在△ABC 中,CD =CA ,CE ⊥AD 于点E ,BF ⊥AD 于点F .求证:∠ACE =∠DBF .20.已知2210250x xy y -+=,且0xy ≠,求代数式22232393x x x x y x y x y -÷+--的值. 21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?22.如图,四边形ABCD 是矩形,点E 在AD 边上,点F 在AD 的延长线上,且BE=CF . (1)求证:四边形EBCF 是平行四边形.(2)若∠BEC=90°,∠ABE=30°,ED 的长.23.如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0m y m x=≠的一个交点为B (-1,4). (1)求直线与双曲线的表达式; (2)过点B 作BC⊥x 轴于点C ,若点P 在双曲线m y x =上,且△PAC 的面积为4,求点P 的坐标.24.绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小组为了了解“共享单车”的使用情况,对本校教师在3月6日至3月10日使用单车的情况进行了问卷调查,以下是根据调查结果绘制的统计图的一部分:请根据以上信息解答下列问题:(1)3月7日使用“共享单车”的教师人数为人,并请补全条形统计图;(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢mobike 的教师有36人,求喜欢ofo 的教师的人数. 25.如图,AB 为O e 的直径,弦BC ,DE 相交于点F ,且DE AB ⊥于点G ,过点C 作O e 的切线交DE 的延长线于点H .(1)求证:HC HF =;(2)若O e 的半径为5,点F 是BC 的中点,tan HCF m ∠=,写出求线段BC 长的思路.26.已知y 是x 的函数,如表是y 与x 的几组对应值.小明根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①1x =-对应的函数值y 约为 ;②该函数的一条性质: .27.在平面直角坐标系xOy 中,抛物线21:C y x bx c =++与x 轴交于点,A B (点A 在点B 的左侧),对称轴与x 轴交于点(3,0),且4AB =.(1)求抛物线1C 的表达式及顶点坐标;(2)将抛物线1C 平移,得到的新抛物线2C 的顶点为(0,﹣1),抛物线1C 的对称轴与两条抛物线1C ,2C 围成的封闭图形为M .直线():0l y kx m k =+≠经过点B .若直线l 与图形M 有公共点,求k 的取值范围.28.已知在Rt BAC ∆中,090BAC ∠=,AB AC =,点D 为射线BC 上一点(与点B 不重合),过点C 作CE BC ⊥于点C ,且CE BD =(点E 与点A 在射线BC 同侧),连接AD ,ED .(1)如图1,当点D 在线段BC 上时,请直接写出ADE ∠的度数.(2)当点D 在线段BC 的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED 与AC 相交于点P ,若2AB =,直接写出CP 的最大值. 29.在平面直角坐标系xOy 中,点P 的坐标为(),a b ,点P 的变换点P '的坐标定义如下:当a b >时,点P '的坐标为(),a b -;当a b ≤时,点P '的坐标为(),b a -.(1)点()3,1A 的变换点A '的坐标是 ;点()4,2B -的变换点为B ',连接,OB OB ',则BOB '∠= °;(2)已知抛物线()22y x m =-++与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E .点P 在抛物线()22y x m =-++上,点P 的变换点为P '.若点P '恰好在抛物线的对称轴上,且四边形ECP D '是菱形,求m 的值;(3)若点F 是函数()2642y x x =---≤≤-图象上的一点,点F 的变换点为F ',连接FF ',以FF '为直径作M e ,M e 的半径为r ,请直接写出r 的取值范围.参考答案1.A【解析】【分析】由数轴得,0a b c <<<,a c b >>,再逐个选项分析判断即可.【详解】根据数轴可知:0a b c <<<,a c b >>,∴A.a c ->,正确;B. a b < ,故B 选项错误;C. 0ab <,故C 选项错误;D. 3a <-,故D 选项错误;故选A【点睛】本题考查利用数轴比较实数大小以及实数的乘法,熟练掌握相关知识点是解题关键. 2.B【解析】【分析】科学记数法表示较小的数,一般形式为:10n a -⨯,其中110a ≤<, n 等于原数由左边起第一个不为零的数字前面的0的个数.【详解】10n a -⨯,其中110a ≤<, n 等于原数由左边起第一个不为零的数字前面的0的个数. 50.000052 5.210-=⨯,故选:B .【点睛】本题主要考查用科学记数法表示较小的数,难度较低,熟练掌握科学记数法是解题关键. 3.C【解析】∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°–50°=40°,故选C.4.A【解析】【分析】轴对称图形定义:沿某一直线折叠,图形完全重合;中心对称图形定义:将图形绕某一点旋转180°,与原图形完全相同;根据定义逐个选项判断即可.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:A.【点睛】本题考查轴对称图形和中心对称图形的识别,熟练掌握轴对称和中心对称定义是解题关键. 5.C【解析】【分析】中位数:中间的数字;众数:出现次数最多的数字;根据定义即可解答.【详解】由于一共有15个数据,∴其中位数为第8个数据,即中位数为47,∵48出现次数最多,有5次,∴众数为48,故选:C.【点睛】本题考查数据中的中位数和众数,难度较低,熟练掌握中位数和众数的定义是解题关键. 6.B【解析】分析:接OB ,OC ,根据四边形ABCD 是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB ,OC ,∵四边形ABCD 是正方形,∴∠BOC=90°, ∴∠BPC=12∠BOC=45°. 故选B .点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.D【解析】【分析】根据函数图象比较函数大小即可解决问题.【详解】由图可得,当05x <<时,收入小于成本;当5x =时,收入等于成本;当5x >时,收入大于成本.故选:D .【点睛】本题考查根据函数图象比较函数大小,难度适中,准确分析函数图象是解题关键.8.B【解析】【分析】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.9.D【解析】【分析】根据 2.5PM 浓度统计图可判断①;利用平均数公式可判断②;根据第二个图可判断③;综合分析一、二图,可判断④.【详解】由第一个图的纵坐标,得①3月4日的 2.5PM 浓度最高,故①符合题意; ②373682831416634.85/7g m μ++++++=,故②不符合题意; ③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意;④空气质量指数AQI 与 2.5PM 浓度有关,故④符合题意;故选:D .【点睛】本题考查折线统计图的分析,熟练掌握折线统计图的分析是解题关键.10.C【解析】【分析】结合图2可知,当OP BC ⊥时,4,3BP CP OP ===,利用矩形的性质即可求得AB 和BC 的长,即可解决问题.【详解】如图2所示,当OP BC ⊥时,4,3BP CP OP ===,所以26,28AB OP BC BP ====,所以矩形ABCD 的面积6848=⨯=.故选:C .【点睛】本题考查了矩形的性质以及函数图象的分析,从函数图象中获得信息是解题关键.11.2x ≥-.【解析】【分析】根据二次根式有意义的条件:二次根号下被开方数≥0,即可解答.【详解】根据题意得,20x +≥,解得2x ≥-.故答案为:2x ≥-.【点睛】本题考查二次根式有意义的条件,熟练掌握二次根号下被开方数≥0是解题关键.12.2(2)b a -【解析】【分析】先提取公因式b ,再利用完全平方公式(222)2(a ab b a b ±+=±)因式分解.【详解】解:22244(44)(2)a b ab b b a a b a -+=-+=-.故答案为:2(2)b a -.【点睛】本题考查综合运用提公因式法和公式法因式分解.本题属于基础题,当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应先提公因式,再用完全平方公式.13.6【解析】【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【详解】∵△ABC 是等边三角形,∴∠C =60°,根据圆周角定理可得∠AOB =2∠C =120°,设⊙O 的半径为r ,∵阴影部分的面积是12π, ∴212012360r ππ⨯=, 解得:r =6,故答案为:6.【点睛】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.14.11.【解析】【分析】根据方程的系数结合根的判别式,即可得出△=4-4ac=0,取a=1找出c值即可.【详解】∵关于x的一元二次方程ax2+2x+c=0(a≠0)有两个相等的实数根,∴△=22﹣4ac=0,∴ac=1,即当a=1时,c=1.故答案为:1,1【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.15.线段垂直平分线上的点到线段两个端点的距离相等;有两条边相等的三角形是等腰三角形.【解析】【分析】根据题意可知:DE垂直平分BC,根据线段垂直平分线定理得到AB=AC,进而得到三角形ABC是等腰三角形,将定理填入题中即可.【详解】根据题意知,∵DE垂直平分BC,=,∴AB AC∆是等腰三角形,∴ABC其依据是:①线段垂直平分线上的点到线段两个端点的距离相等;②有两条边相等的三角形是等腰三角形,故答案为:线段垂直平分线上的点到线段两个端点的距离相等、有两条边相等的三角形是等腰三角形.【点睛】本题考查线段垂直平分线定理以及等腰三角形的判定,熟练掌握相关性质定理是解题关键.16.0.9;5.【解析】【分析】观察表格内的数据可知,随着样本数量不等增加,这种幼树移植成活率稳定的0.9左右;再利用成活率=mn,即0.9=4.5n,即可解决问题.【详解】由表格数据可得,随着样本数量不等增加,这种幼树移植成活率稳定的0.9左右,故这种幼树移植成活率的概率约为0.9.∵该地区计划成活4.5万棵幼树,∴那么需要移植这种幼树大约4.5÷0.9=5万棵故本题答案为:0.9;5.【点睛】本题考查用样本估计总体,熟练掌握相关计算公式为解题关键.17.3.【解析】【分析】利用零指数幂、特殊角的三角函数值、立方根以及绝对值分别化简计算求出答案.【详解】原式1623=+-=.【点睛】本题考查零指数幂、特殊角的三角函数值、立方根以及绝对值的混合运算,熟练掌握各个知识点是解题关键.18.1x≤,不等式的解集在数轴上表示见解析.【解析】【分析】利用不等式的性质解不等式即可.【详解】2151132x x +--≥- 解:去分母,得:()()2213516x x +--≥-.去括号,的:421536x x +-+≥-.移项、合并,得:1111x -≥-.系数化为1,的:1x ≤.不等式的解集在数轴上表示如下:.【点睛】本题考查解一元一次不等式,熟练掌握不等式的性质是解题关键,19.见解析【解析】【分析】根据等腰三角形的三线合一求出∠ACE=∠DCE ,再证明CE ∥BF ,根据平行线的性质得到结论.【详解】∵CD =CA ,CE ⊥AD ,∴∠ACE=∠DCE ,∵BF ⊥AD ,∴CE ∥BF ,∴∠DBF=∠DCE,∴∠ACE =∠DBF .【点睛】此题考查等腰三角形的三线合一的性质,平行线的判定及性质.20.3x x y +,原式58=. 【解析】【分析】先将分式化简,再利用完全平方公式求得x 与y 的关系,代入化简后的代数式即可解决问题.【详解】 原式()()23233333x x x y x x y x y x y x x y-=-⨯=++-+, ∵2210250x xy y -+=,∴()250x y -=.∴5x y =, ∴原式55538y y y ==+. 【点睛】本题考查了分式的化简以及完全平方公式,难点在于利用完全平方公式求得x 与y 的关系,熟练掌握相关知识点是解题关键.21.用于练习的宣纸的单价是0.2元∕张.【解析】【分析】设用于练习的宣纸的单价是x 元∕张,则用于创作的宣纸的单价是(x +1)元∕张,根据题意,列出分式方程,解答即可.【详解】设用于练习的宣纸的单价是x 元∕张. 由题意,得7201201x x=+, 解得0.2x =.经检验,0.2x =是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.【点睛】本题考查分式方程的应用,审清题意,找到等量关系列出分式方程是解题关键,注意最后检验.22.(1)证明见解析(2)3【解析】试题分析:(1)由AB=CD,BE=CF,可证Rt△BAE≌Rt△CDF,从而证得BE∥CF,即可得证;(2)由题意可知∠2=30°,∠1=∠3=60°,在直角△ABE中求出AE,BE,在直角△BEC 中求出BC的长,即可求出ED的长.试题解析:(1)证明:∵四边形ABCD是矩形,∴∠A=∠CDF=∠ABC=90°,AB=DC,AD=BC,在Rt△BAE和Rt△CDF中,,∴Rt△BAE≌Rt△CDF,∴∠1=∠F,∴BE∥CF,又∵BE=CF,∴四边形EBCF是平行四边形.(2)解:∵Rt△BAE中,∠2=30°,AB=,∴AE=AB•tan∠2=1,,∠3=60°,在Rt△BEC中,,∴AD=BC=4,∴ED=AD﹣AE=4﹣1=3.点睛:本题主要考查了矩形的性质、平行四边形的判定、直角三角形的全等的判定和性质、解直角三角形和勾股定理,矩形是特殊的平行四边形,具有平行四边形的所有的性质,在矩形中求线段的长通常构建直角三角形用勾股定理求解.23.(1)直线的表达式为3y x =-+,双曲线的表达方式为4y x=-;(2)点P 的坐标为1(2,2)P -或2(2,2)P -【解析】分析:(1)将点B (-1,4)代入直线和双曲线解析式求出k 和m 的值即可;(2)根据直线解析式求得点A 坐标,由S △ACP =12AC •|y P |=4求得点P 的纵坐标,继而可得答案.详解:(1)∵直线()30y kx k =+≠与双曲线y = m x(0m ≠)都经过点B (-1,4), 34,14k m ∴-+==-⨯,1,4k m ∴=-=-,∴直线的表达式为3y x =-+,双曲线的表达方式为4y x=-.(2)由题意,得点C 的坐标为C (-1,0),直线3y x =-+与x 轴交于点A (3,0), 4AC ∴=, ∵142ACP P S AC y ∆=⋅=, 2P y ∴=±,点P 在双曲线4y x=-上, ∴点P 的坐标为()12,2P -或()22,2P -.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.24.(1)3月7日使用“共享单车”的教师人数为30人,补全条形统计图如图所示,见解析;(2)喜欢ofo 的教师有32人.【解析】【分析】(1)结合条形统计图和折线统计图可知,6日~7日的增长率为50%,即可列出算式得到结论,再补全统计图即可;(2)先求出教师总人数,再乘以“喜欢ofo 的教师”所占百分比即可解答.【详解】(1)3月7日使用“共享单车”的教师人数为:20(1+50%)=30人,补全条形统计图如图所示.(2)36÷45%=80. 80×(1﹣45%﹣15%)=32(人).答:喜欢ofo 的教师有32人.【点睛】本题考查的是条形统计图、折线统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.25.(1)见解析;(2)求解思路见解析.【解析】【分析】(1)连接OC ,根据切线定理可知02190∠+∠=,根据DE AB ⊥得到03490∠+∠=,利用同圆半径相等得到14∠=∠,进而得到23∠∠=,再利用对顶角以及等量代换即可完成.(2)思路一:①OF 过圆心且点F 是BC 的中点,由垂径定理可得2BC CF =,090OFC ∠=;②由6∠与1∠互余,2∠与1∠互余可得62∠=∠,从而可知tan 6m ∠=;③在Rt OFC ∆中,由tan 6CF OF π∠==,可设OF x =,CF mx =,由勾股定 理,得()2225x mx +=,可解得x 的值;④由22BC CF mx ==,可求BC 的长.思路二:连接AC ,如图3.①由AB 是O e 的直径,可得ACB ∆是直角三角形,知6∠与4∠互余,又DE AB ⊥可知3∠与4∠互余,得63∠=∠;②由63∠=∠,32∠=∠,可得62∠=∠,从而可知tan 6m ∠=;③在Rt ACB ∆中,由tan 6BC AC π∠==,可设,AC x BC mx ==, 由勾股定理,得()22210x mx +=,可解得x 的值;④由BC mx =,可求BC 的长.【详解】(1)证明:连接OC ,如图1.∵CH 是O e 的切线,∴02190∠+∠=,∵DE AB ⊥,∴03490∠+∠=,∵OB OC =,∴14∠=∠,∴23∠∠=,又∵53∠=∠,∴25∠=∠,∴HC HF =.(2)求解思路如下:思路一:连接OF ,如图2.①OF 过圆心且点F 是BC 的中点,由垂径定理可得2BC CF =,090OFC ∠=; ②由6∠与1∠互余,2∠与1∠互余可得62∠=∠,从而可知tan 6m ∠=;③在Rt OFC ∆中,由tan 6CF OF π∠==,可设OF x =,CF mx =,由勾股定理,得()2225x mx +=,可解得x 的值;④由22BC CF mx ==,可求BC 的长.思路二:连接AC ,如图3.①由AB 是O e 的直径,可得ACB ∆是直角三角形,知6∠与4∠互余,又DE AB ⊥可知3∠与4∠互余,得63∠=∠;②由63∠=∠,32∠=∠,可得62∠=∠,从而可知tan 6m ∠=;③在Rt ACB ∆中,由tan 6BC ACπ∠==,可设,AC x BC mx ==,由勾股定理,得()22210x mx +=,可解得x 的值;④由BC mx =,可求BC 的长.【点睛】本题考查切线的性质、垂径定理、解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.26.(1)如图所求;见解析;(2)①1.5,②当2x <时,y 随x 的增大而减小.【解析】【分析】(1)根据表格描点、连线即可;(2)结合函数图象写出一条函数性质即可.【详解】(1)如图所求;(2)①1x =-对应的函数值y 约为1.5;②当2x <时,y 随x 的增大而减小,(答案不唯一);故答案为:1.5,当2x <时,y 随x 的增大而减小.【点睛】本题考查了画函数图象以及函数性质,熟练掌握函数的性质是解题关键.27.(1)抛物线1C 的表达式为265y x x =-+,抛物线1C 的顶点为()3,4D -;(2)k 的取值范围是42k -≤≤且0k ≠.【解析】【分析】(1)利用对称轴与x 轴交于点(3,0),AB=4,可得A 、B 坐标,将A 、B 坐标代入21:C y x bx c =++可得解析式,化成顶点式求得抛物线顶点坐标;(2)利用平移后的2C 的顶点为(0,﹣1)可得抛物线C 2的解析式,易得抛物线1C 的对称轴3x =与抛物线2C 的交点为E ,当直线l 过点()5,0B 和点()3,4D -时,代入():0l y kx m k =+≠可得BD k ,将()5,0B 和点()3.4E -代入():0l y kx m k =+≠可得BE k ,易得k 的取值范围.【详解】(1)∵抛物线1C 的对称轴与x 轴交于点(3,0),∴抛物线1C 的对称轴为直线3x =.又∵4AB =,∴()()1,0,5,0A B .∴1+b+c=02550b c ⎧⎨++=⎩ 解得65b c =-⎧⎨=⎩∴抛物线1C 的表达式为265y x x =-+.即()234y x =--.∴抛物线1C 的顶点为()3,4D -.(2)∵平移后得到的新抛物线2C 的顶点为()0,1-,∴抛物线2C 的表达式为21y x =-.∴抛物线1C 的对称轴3x =与抛物线2C 的交点为()3,8E①当直线l 过点()5,0B 和点()3,4D -时,得5034k m k m +=⎧⎨+=-⎩解得2BD k =.②当直线l 过点()5,0B 和点()3.4E -时,得5038k m k m +=⎧⎨+=⎩解得4BE k =-∴结合函数图象可知,k 的取值范围是42k -≤≤且0k ≠.【点睛】本题主要考查了二次函数的性质和二次函数图象与几何变换,利用代入法求交点是解答此题的关键.28.(1)045ADE ∠=;(2)补全图形,如图所示,见解析;结论成立.证明见解析;(3)CP 的最大值为1.【解析】【分析】(1)先判断出ABD ACE ∆≅∆,进而得出,AD AE BAD CAE =∠=∠,即可判断出DAE ∆是等腰直角三角形;(2)直接根据题意画出图形,同(1)的方法即可得出结论;(3)先判断出PC 最大,即可得出AP 最小,利用点到直线的距离最小,得出DE AC ⊥时,AP 最小,最后利用等腰直角三角形的性质即可得出结论.【详解】(1)如图1,连接AE ,∵在Rt BAC ∆中,090,BAC AB AC ∠==,∴045B ACB ∠=∠=.∵CE BC ⊥,∴090BCE ∠=.∴0345∠=.∴3B ∠=∠.又∵,AB AC BD CE ==,∴ABD ACE ∆≅∆.∴,AD AE BAD CAE =∠=∠.∴090DAE BAC ∠=∠=.∴DAE ∆是等腰直角三角形.∴045ADE ∠=.(2)补全图形,如图2所示,结论成立.证明:如图,连接AE ,∵在Rt BAC ∆中,090,BAC AB AC ∠==, ∴0145B ∠=∠=.∵CE BC ⊥,∴090BCE ∠=.∴0245∠=.∴2B ∠=∠.又∵,AB AC BD CE ==,∴ABD ACE ∆≅∆.∴,AD AE BAD CAE =∠=∠.∴090DAE BAC ∠=∠=.∴DAE ∆是等腰直角三角形.∴0345ADE ∠=∠=.(3)由(1)知,ADE ∆是等腰直角三角形, ∵2AB =,∴2AC =,当AP 最小时,CP 最大,即:DE AC ⊥时,AP 最小,∵0045,45ADE ACB ∠=∠=,∴11,22AD BC AD BC ⊥===在Rt ADP ∆中,12AP AD ==, ∴1CP AC AP =-=.即:CP 的最大值为1.【点睛】此题是三角形综合题,主要考查了全等三角形的性质和判定,等腰直角三角形的性质和判定,极值的确定,解本题的关键是构造全等三角形,判断出ADE ∆是等腰直角三角形是等腰直角三角形,是一道中等难度的中考常考题.29.(1)(﹣3,1);90°;(2)8m =或2m =或3m =;(3)r r ≤≤. 【解析】【分析】 (1)依据对应的定义可直接得点A '、B '的坐标,然后依据题意画出图形,过点B 作BC y ⊥轴,垂足为C ,过点B D y '⊥轴,垂足为D .接下来证明Rt BCO Rt ODB '∆≅∆.由全等三角形的性质得到BOC B '∠=∠,然后可求得90BOB ︒'∠=.(2)抛物线()22y x m =-++的顶点E 的坐标为E (-2,m ),m>0,设点P 的坐标为 ()()2,2x x m -++,①若()22x x m >-++,则点P '的坐标为()()2,2P x x m '--++. 然后依据点P'恰好在抛物线的对称轴上,且四边形ECP D '是菱形,可得到关于x 和m 的方程组,从而可求得m 的值;②若()22x x m ≤-++,则点P '的坐标为()()22,P x m x '+-.同理可列出关于x 、m 的方程组,从而求得m 的值;(3)设点F 的坐标为(),26x x --,依据题意可得到点F '的坐标为()26,x x +,然后依据两点间的距离公式可得到FF '的长度与x 的函数关系式,从而可求得FF '的取值范围,然后可求得r 的取值范围.【详解】(1)∵点()3,1A ,3>1,∴点A 的对应点A '的坐标是(﹣3,1).∵()4,2B -,﹣4<2,∴点B 的变换点为B '的坐标为(﹣2,﹣4).过点B 作BC y ⊥轴,垂足为C ,过点B D y '⊥轴,垂足为D .∵()()4,22,4B B '---、,∴2,4OC B D BC OD '====.在Rt BCO ∆和Rt ODB '∆中BC OD BCO ODB CO B D '=⎧⎪∠=∠⎨='⎪⎩,∴Rt BCO Rt ODB '∆≅∆.∴BOC B '∠=∠.∵90B B OD ︒''∠+∠=,∴90B OD BOC ︒'∠+∠=.∴90BOB ︒'∠=.故答案为:(﹣3,1);90°.(2)由题意得()22y x m =-++的顶点E 的坐标为()2,,0E m m ->. ∵点P 在抛物线()22y x m =-++上,∴设点P 的坐标为()()2,2x x m -++.①若()22x x m >-++,则点P '的坐标为()()2,2P x x m '--++. ∵点P '恰好在抛物线的对称轴上,且四边形ECP D '是菱形,∴()222x x m m -=-⎧⎪⎨-++=-⎪⎩∴8m =,符合题意。
2020年安徽省中考数学一模试卷(有答案解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,,b,按照从小到大的顺序排列A. B.C. D.3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示A. B. C. D.4.若是关于x的一元一次方程的解,则的值是A. B. C. 8 D. 45.如图,,A在DE上,C在GF上为等边三角形,其中,则度数为A. B. C. D.6.二次函数的图象如图所示,现有以下结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为A. B. C. D.8.如图,中,BD是的平分线,交BC于E,,,则AB长为A. 6B. 8C.D.9.如图,在等腰中,,,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发,以的速度沿方向运动到点C停止,若的面积为,运动时间为,则下列最能反映y与x之间函数关系的图象是A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角中,,,,将绕点B按逆时针方向旋转,得到点E为线段AB中点,点P是线段AC上的动点,在绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是______.11.把多项式分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式______.14.如图,在等腰中,,,点D在底边BC 上,且,将沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:16.九章算术是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为,,.请画出关于原点O对称的;直接写出把绕点O顺时针旋转后,点C旋转后对应点的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第个图形中有1个正方形;第个图形有个小正方形;第个图形有个小正方形;第个图形有小正方形;根据上面的发现我们可以猜想:______用含n的代数式表示;请根据你的发现计算:;.19.如图,在同一平面内,两条平行高速公路和间有一条“Z”型道路连通,其中AB段与高速公路成角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离结果保留根号.20.如图,AC是的直径,AB与相切于点A,四边形ABCD是平行四边形,BC交于点E.证明直线CD与相切;若的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且,AF是的平分线,交BC于点F,交DE于点G.求证:;.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表所示.大中小载重吨台201512运费元辆150012001000司机及领队往返途中的生活费单位:元与货车台数单位:台的关系如图所示.为此,公司支付领队和司机的生活费共8200元.求出y与x之间的函数关系式及公司派出货车的台数;设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为元,求W与小型货车台数P之间的函数关系式.不写自变量取值范围;若本次派出的货车每种型号不少于3台且各车均满载.求出大、中、小型货车各多少台时总运费最少及最少运费?由于油价上涨,大、中、小三种型号货车的运费分别增加500元辆、300元辆、a元辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.求证:;求证:∽;如图2,若AD、BC所在直线互相垂直,求的值。
2020届初三中考数学一诊联考试卷含答案解析 (安徽)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.在如图的数轴上,A,B两点表示的数分别是a,b,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定2.丹东地区人口约为245万,245万用科学记数法表示正确的是()A.245×104B.2.45×106C.24.5×105D.2.45×107 3.2018的倒数是()A.2018 B.12018 C.12018D.﹣20184.如图,将△ABC 绕点C 顺时针旋转36°,点B 的对应点为点E ,点A 的对应点为点D ,此时点E 恰好落在边AC 上时,连接AD ,若AB =BC ,AC =2,则AB 的长度是( )A 1B .1CD .325.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是( )A .116B .12C .38 D .9166.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x ,那么x 满足的方程为( )A .210(1)36.4x +=B .21010(1)36.4x ++=C .10+10(1+x )+10(1+2x )="36.4"D .21010(1)10(1)36.4x x ++++=7.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为( )A .16B .15C .14D .138.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是( )A .4个B .5个C .6个D .7个9.若关于x 的分式方程21133x m x x--=--的解为正数,且关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,则符合条件的所有整数m 的取值之和为( ) A .﹣7 B .﹣9 C .﹣12 D .﹣1410.下列多项式中,能因式分解的是( )A .22m n +B .21m m -+C .221m m -+D .221m m +-二、填空题(共4题,每题4分,共16分)11.已知关于x 的一元二次方程x 2+kx ﹣6=0有一个根为12-,则方程的另一个根为_____.12.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____.13.如图,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,连接AE .如果2tan 3DFC ∠=,那么BD AE 的值是_____.14.如图,矩形ABCD 中,AB =2,AD =4,以A 为圆心AD 为半径作弧与BC 交于点E ,再以C 为圆心,CD 为半径作弧交BC 于点F ,则图中阴影部分的面积为_____.三、解答题(共6题,总分54分)15.已知二次函数24y ax bx =+-(a >0)的图象与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA=1:2,直线BD 与y 轴交于点E ,连接BC ,①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.16.在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A 地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B 地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.17.先化简代数式211aa aa a+⎛⎫⎛⎫+÷-⎪ ⎪⎝⎭⎝⎭,再从﹣1,0,3中选择一个合适的a的值代入求值.18.先化简,再求值:2221322442x x x x x x x x --⎛⎫⎛⎫-÷- ⎪ ⎪++++⎝⎭⎝⎭,其中x 满足方程x 2﹣6x +8=0.19.“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是 ; (4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?20.已知:抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =﹣1,与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (﹣3,0)、C (0.﹣2).求这条抛物线的函数表达式.。
【精选3份合集】安徽省淮南市2020年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.4解析:C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC 与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC 与△DEF 的面积比为4:1.故选C .【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.2.如图,65,AFD CD EB ∠=︒∕∕,则B Ð的度数为( )A .115°B .110°C .105°D .65°解析:A【解析】【分析】根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.【详解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°−65°=115°,故选:A .【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.3.若一次函数y =(2m ﹣3)x ﹣1+m 的图象不经过第三象限,则m 的取值范图是()A .1<m <32 B .1≤m<32 C .1<m≤32 D .1≤m≤32解析:B【解析】【分析】根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m 的图象不经过第三象限,∴23010m m <-⎧⎨-+≥⎩,解得1≤m<32.故选:B.【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.4.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④解析:B【解析】【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.5.下列函数中,y随着x的增大而减小的是()A .y=3xB .y=﹣3xC .3y x =D .3y x=- 解析:B【解析】 试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x=,每个象限内,y 随着x 的增大而减小,故此选项错误; D 、3y x=-,每个象限内,y 随着x 的增大而增大,故此选项错误; 故选B . 考点:反比例函数的性质;正比例函数的性质.6.已知点P (a ,m ),Q (b ,n )都在反比例函数y=2x -的图象上,且a <0<b ,则下列结论一定正确的是( )A .m+n <0B .m+n >0C .m <nD .m >n 解析:D【解析】【分析】根据反比例函数的性质,可得答案.【详解】∵y=−2x的k=-2<1,图象位于二四象限,a <1,∴P(a ,m )在第二象限,∴m>1;∵b>1,∴Q(b ,n )在第四象限,∴n<1.∴n<1<m ,即m >n ,故D 正确;故选D .【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k <1时,图象位于二四象限是解题关键.7.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A.35°B.45°C.55°D.65°解析:C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.8.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.解析:A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.。
安徽省淮南市2019-2020学年中考数学一月模拟试卷含解析
安徽省淮南市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+ B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+2.下列运算正确的是( ) A .5ab ﹣ab=4 B .a 6÷a 2=a 4 C .112a b ab+= D .(a 2b )3=a 5b 33.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A .8B .9C .10D .114.a 、b 互为相反数,则下列成立的是( ) A .ab=1B .a+b=0C .a=bD .a b=-1 5.计算1+2+22+23+…+22010的结果是( ) A .22011–1 B .22011+1C .()20111212- D .()201112+126.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x 件,乙种奖品y 件.依题意,可列方程组为( ) A .204030650x y x y +=⎧⎨+=⎩B .204020650x y x y +=⎧⎨+=⎩C .203040650x y x y +=⎧⎨+=⎩D .704030650x y x y +=⎧⎨+=⎩7.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A .2B .3C .5D .78.矩形具有而平行四边形不具有的性质是( ) A .对角相等 B .对角线互相平分 C .对角线相等D .对边相等9.如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若PM =2.5cm ,PN =3cm ,MN =4cm ,则线段QR 的长为( )A .4.5cmB .5.5cmC .6.5cmD .7cm10.已知正多边形的一个外角为36°,则该正多边形的边数为( ). A .12B .10C .8D .611.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:612.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v二、填空题:(本大题共6个小题,每小题4分,共24分.)13.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.14.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.15.不等式组29611x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为_____.16.在线段AB 上,点C 把线段AB 分成两条线段AC 和BC,如果AC BCAB AC=,那么点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点,当MN=1 时,PM 的长是_____.17.计算:(﹣2a3)2=_____.18.分解因式:(2a+b)2﹣(a+2b)2= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)20.(6分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).21.(6分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.22.(8分)如图,已知矩形 OABC 的顶点A 、C 分别在 x 轴的正半轴上与y 轴的负半轴上,二次函数228255y x x =--的图像经过点B 和点C .(1)求点 A 的坐标;(2)结合函数的图象,求当 y<0 时,x 的取值范围.23.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下. 频数分布表 组别 一二三四五六七销售额 1619x <… 1922x <… 2225x <… 2528x <… 2831x <… 3134x <…频数7 932b2数据分析表 平均数 众数 中位数 20.318请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.24.(10分)如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数2ky x=图象的一个交点为M (﹣2,m ). (1)求反比例函数的解析式;(2)求点B到直线OM的距离.25.(10分)李宁准备完成题目;解二元一次方程组48x yx y-=⎧⎨+=-⎩W,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组438x yx y-=⎧⎨+=-⎩;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?26.(12分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E F上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.27.(12分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可. 【详解】解:根据图象,设函数解析式为()2y a x h k =-+ 由图象可知,顶点为(1,3) ∴()213y a x =-+,将点(0,0)代入得()20013a =-+ 解得3a =- ∴()2313y x =--+ 故答案为:D . 【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式. 2.B 【解析】 【分析】由整数指数幂和分式的运算的法则计算可得答案. 【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a ba b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误; 故本题正确答案为B. 【点睛】 幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数) (3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n) (5)零次幂:01a =(a≠0) (6) 负整数次幂: 1pp a a-=(a≠0, p 是正整数). 3.A 【解析】分析:根据多边形的内角和公式及外角的特征计算. 详解:多边形的外角和是360°,根据题意得: 110°•(n-2)=3×360° 解得n=1. 故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决. 4.B 【解析】 【分析】依据相反数的概念及性质即可得. 【详解】因为a 、b 互为相反数, 所以a+b=1, 故选B . 【点睛】此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1. 5.A 【解析】 【分析】可设其和为S ,则2S=2+22+23+24+…+22010+22011,两式相减可得答案. 【详解】设S=1+2+22+23+…+22010① 则2S=2+22+23+…+22010+22011② ②-①得S=22011-1. 故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.6.A【解析】【分析】根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为20 4030650x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.7.C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.8.C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C.9.A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质10.B【解析】【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.11.C【解析】【分析】根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC 面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【详解】解:连接CE,∵AE∥BC,E为AD中点,∴12 AE AFBC FC==.∴△FEC面积是△AEF面积的2倍.设△AEF面积为x,则△AEC面积为3x,∵E为AD中点,∴△DEC面积=△AEC面积=3x.∴四边形FCDE面积为1x,所以S△AFE:S四边形FCDE为1:1.故选:C.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.12.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4或1【解析】∵两圆内切,一个圆的半径是6,圆心距是2,∴另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1.【点睛】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.14.87 2【解析】【分析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.【详解】∵四边形ABCD、CEFG均为正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,=∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴23DF DGDI AD==,即2923=,解得:DI=329,∴矩形DFHI的面积是=DF•DI=32987 292⨯=,故答案为:872.【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.15.k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案为k≥1.1651 -【解析】【分析】设PM=x,根据黄金分割的概念列出比例式,计算即可.【详解】设PM=x,则PN=1-x,由PM PNMN PM=得,11x xx-=,化简得:x2+x-1=0,解得:x1=512,x2=512-(负值舍去),所以PM的长为512.【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割.17.4a1.【解析】【分析】根据积的乘方运算法则进行运算即可.【详解】原式64.a =故答案为64.a【点睛】考查积的乘方,掌握运算法则是解题的关键.18.3(a+b )(a ﹣b ).【解析】(2a+b )2﹣(a+2b )2=4a 2+4ab+b 2-(a 2+4ab+4b 2)= 4a 2+4ab+b 2-a 2-4ab-4b 2=3a 2-3b 2=3(a 2-b 2)=3(a+b)(a-b)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.缆车垂直上升了186 m .【解析】【分析】在Rt ABC △中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF V 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC △中,斜边AB=200米,∠α=16°,sin 200sin1654BC AB α=⋅=⨯︒≈(m ), 在Rt BDF V 中,斜边BD=200米,∠β=42°,sin 200sin42132DF BD β=⋅=⨯︒≈,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.20.(1)见解析;(2)8 3π【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=12∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵1302OAD BAC∠=∠=o,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积= S扇形ODE = 601683603ππ⨯⨯=.21.(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】【分析】 (1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间; (2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED 对应的函数表达式为y=mx+n(m≠0) 将点14(,0)(,60)33、代入y=mx+n ,得:10 3460, 3mnm n⎧+=⎪⎪⎨⎪+=⎪⎩解得:6020mn=⎧⎨=-⎩,∴线段ED对应的函数表达式为146020().33y x x=-≤≤解方程组80606020,y xy x=-+⎧⎨=-⎩得471007xy⎧=⎪⎪⎨⎪=⎪⎩,∴机场大巴与货车相遇地到机场C的路程为1007km.【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.22.(1)(40),;(2)15x-<<【解析】【分析】(1)当0x=时,求出点C的坐标,根据四边形OABC为矩形,得出点B的坐标,进而求出点A即可;(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出.【详解】解:(1)当0x=时,函数228255y x x=--的值为-2,∴点C的坐标为(0,2)-∵四边形OABC为矩形,,2OA CB AB CO∴===解方程2282255x x--=-,得120,4x x==.∴点B的坐标为(4)2-,.∴点A的坐标为(40),.(2)解方程2282055x x --=,得121,5x x =-=. 由图象可知,当0y <时,x 的取值范围是15x -<<.【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.23. (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】【分析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在2225x <…范围内的数据有3个,在2831x <…范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.24.(1)22y x =-(2 【解析】【分析】(1)根据一次函数解析式求出M 点的坐标,再把M 点的坐标代入反比例函数解析式即可;(2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C ,根据一次函数解析式表示出B 点坐标,利用△OMB 的面积=12×BO×MC 算出面积,利用勾股定理算出MO 的长,再次利用三角形的面积公式可得12OM•h ,根据前面算的三角形面积可算出h 的值. 【详解】解:(1)∵一次函数y 1=﹣x ﹣1过M (﹣2,m ),∴m=1.∴M (﹣2,1).把M (﹣2,1)代入2k yx =得:k=﹣2. ∴反比列函数为22y x=-. (2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C .∵一次函数y 1=﹣x ﹣1与y 轴交于点B ,∴点B 的坐标是(0,﹣1).∴OMB 1S 1212∆=⨯⨯=. 在Rt △OMC 中,2222OM=OC +CM 1+25==∵OMB 15S OM h 2∆=⋅⋅=,∴2555=. ∴点B 到直线OM 的距离为255 25.(1)15x y =-⎧⎨=-⎩;(2)-1 【解析】【分析】 (1)②+①得出4x=-4,求出x ,把x 的值代入①求出y 即可;(2)把x=-y 代入x-y=4求出y ,再求出x ,最后把x 、y 代入②求出答案即可.【详解】解:(1)438x y x y -=⎧⎨+=-⎩①② ①+②得,1x =-.将1x =-时代入①得,5y =-,∴15x y =-⎧⎨=-⎩. (2)设“□”为a ,∵x、y是一对相反数,∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程组的解是22 xy=⎧⎨=-⎩,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原题中“□”是-1.【点睛】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.26.(1)450、63;⑵36°,图见解析;(3)2460 人.【解析】【分析】(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择B类的人数所占的百分比,即可求出选择B类的人数.(2)求出E类的百分比,乘以360o即可求出E类对应的扇形圆心角α的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果.【详解】(1) 参与本次问卷调查的学生共有:16236%450÷=(人);选择B类的人数有:4500.1463.⨯=故答案为450、63;(2)E类所占的百分比为:136%14%20%16%4%10%.-----=E类对应的扇形圆心角α的度数为:36010%36.⨯=o o选择C类的人数为:45020%90⨯=(人).补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省淮南市中考数学一模试卷一、选择题(本大题共8小题,每小题4分,满分32分)1.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.22.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米3.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.4.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°5.若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k<5 B.k≥5,且k≠1 C.k≤5,且k≠1 D.k>56.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°7.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤8.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共7小题,每小题4分,共20分)9.不等式组的解集是.10.分解因式:x3﹣2x2+x=.11.妈妈给小明买笔记本和圆珠笔.已知每本笔记本4元,每支圆珠笔3元,妈妈买了m本笔记本,n支圆珠笔.妈妈共花费元.12.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.13.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,=.则S△BCF14.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为.15.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.三、解答题(本大题共7小题,每小题5分,满分60分)16.计算:|﹣3|+tan30°﹣﹣10.17.先化简,再求值:(﹣x﹣1)÷,选一个你喜欢的数代入求值.18.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.19.某高校学生会在食堂发现同学们就餐时剩余饭菜较多,浪费严重,为了让同学们珍惜粮食,养成节约的好习惯,校学生会随机抽查了午餐后部分同学饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名.(2)把条形统计图补充完整.(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?20.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B 两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤的解集.21.如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE 的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=,求⊙O的半径r及sinB.22.如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以1cm/s 的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.安徽省淮南市XX中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,满分32分)1.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.2【考点】多项式乘多项式.【分析】依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.【解答】解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.【点评】本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.2.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.【点评】本题考查了简单组合体的三视图的知识,主视图是从物体的正面看得到的视图.4.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°【考点】旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt △A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.5.若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k<5 B.k≥5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式.【分析】根据一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选C.【点评】本题考查了根的判别式以及一元二次方程的定义,根据根的判别式以及二次项系数非零找出关于k的一元一次不等式组是解题的关键.6.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.【点评】本题考查了平行线的性质,解答本题用到的知识点为:两直线平行,内错角相等;角平分线分得相等的两角.7.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤【考点】一次函数的性质.【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【解答】解:将A(1,1)代入直线中,可得+b=1,解得b=;将B(3,1)代入直线中,可得+b=1,解得b=﹣;将C(2,2)代入直线中,可得1+b=2,解得b=1.故b的取值范围是﹣≤b≤1.故选B.【点评】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y 随x的增大而减小,函数从左到右下降.8.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.4【考点】一次函数图象上点的坐标特征;勾股定理的逆定理.【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.【解答】解:如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),②当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),③若∠C为直角则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心的圆与直线y=﹣的交点上.过点E作x轴的垂线与直线的交点为F(﹣3,),则EF=∵直线y=﹣与x轴的交点M为(,0),∴EM=,FM==∵E到直线y=﹣的距离d==5∴以线段AB为直径、E(﹣3,0)为圆心的圆与直线y=﹣恰好有一个交点.所以直线y=﹣上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选:C.【点评】本题考查的是一次函数综合题,在解答此题时要分三种情况进行讨论,关键是根据圆周角定理判断∠C为直角的情况是否存在.二、填空题(本大题共7小题,每小题4分,共20分)9.不等式组的解集是x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.分解因式:x3﹣2x2+x=x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.妈妈给小明买笔记本和圆珠笔.已知每本笔记本4元,每支圆珠笔3元,妈妈买了m本笔记本,n支圆珠笔.妈妈共花费4m+3n元.【考点】列代数式.【分析】先求出买m本笔记本的钱数和买n支圆珠笔的钱数,再把两者相加即可.【解答】解:每本笔记本4元,妈妈买了m本笔记本花费4m元,每支圆珠笔3元,n支圆珠笔花费3n,共花费(4m+3n)元.故答案为:4m+3n.【点评】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.12.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于130°.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.【解答】解:∵∠A=115°∴∠C=180°﹣∠A=65°∴∠BOD=2∠C=130°.故答案为:130°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.13.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,=4.则S△BCF【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴,=()2,∵E是边AD的中点,∴DE=AD=BC,∴=,=1,∴△DEF的面积=S△DEC∴=,=4;∴S△BCF故答案为:4.【点评】本题考查的是平行四边形的性质、相似三角形的判定和性质;掌握三角形相似的判定定理和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.14.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.15.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【考点】旋转的性质;全等三角形的判定;菱形的判定;正方形的性质.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理△AEF≌△GEF,可得EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误.故答案为①②③.【点评】本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.三、解答题(本大题共7小题,每小题5分,满分60分)16.计算:|﹣3|+tan30°﹣﹣10.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】将tan30°=、10=1代入原式,再根据实数的运算即可求出结论.【解答】解:|﹣3|+tan30°﹣﹣10,=3+×﹣2﹣1,=3+1﹣2﹣1,=3﹣2.【点评】本题考查了实数的运算、绝对值、零指数幂以及特殊角的三角函数值,熟练掌握实数混合运算的运算顺序是解题的关键.17.先化简,再求值:(﹣x﹣1)÷,选一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】首先把括号内的分式约分,然后通分相加,把除法转化为乘法,计算乘法即可化简,然后化简x的值,代入求解即可.【解答】解:原式=[﹣(x+1)]•=[﹣(x+1)]•=•=1﹣(x﹣1)=2﹣x.当x=0时,原式=2.【点评】本题考查了分式的化简求值,正确对所求的分式进行通分、约分是关键.18.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.【考点】平行四边形的判定与性质;三角形中位线定理.【专题】证明题.【分析】由DE、DF是△ABC的中位线,根据三角形中位线的性质,即可求得四边形AEDF是平行四边形,又∠BAC=90°,则可证得平行四边形AEDF是矩形,根据矩形的对角线相等即可得EF=AD.【解答】证明:∵DE,DF是△ABC的中位线,∴DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴平行四边形AEDF是矩形,∴EF=AD.【点评】此题考查了三角形中位线的性质,平行四边形的判定与矩形的判定与性质.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用.19.某高校学生会在食堂发现同学们就餐时剩余饭菜较多,浪费严重,为了让同学们珍惜粮食,养成节约的好习惯,校学生会随机抽查了午餐后部分同学饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名.(2)把条形统计图补充完整.(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B 两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.【解答】解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标(﹣2,10),B(0,6),A(3,0),∴解得,∴一次函数为y=﹣2x+6.∵反比例函数y=经过点C(﹣2,10),∴n=﹣20,∴反比例函数解析式为y=﹣.(2)由解得或,故另一个交点坐标为(5,﹣4).(3)由图象可知kx+b≤的解集:﹣2≤x<0或x≥5.【点评】本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围,属于中考常考题型.21.如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE 的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=,求⊙O的半径r及sinB.【考点】切线的判定.【分析】(1)连接OA、OD,如图,根据垂径定理得OD⊥BC,则∠D+∠OFD=90°,再由AB=BF,OA=OD得到∠BAF=∠BFA,∠OAD=∠D,加上∠BFA=∠OFD,所以∠OAD+∠BAF=90°,则OA ⊥AB,然后根据切线的判定定理即可得到AB是⊙O切线;(2)先表示出OF=4﹣r,OD=r,在Rt△DOF中利用勾股定理得r2+(4﹣r)2=()2,解方程得到r的值,那么OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.然后在Rt△AOB中利用勾股定理得AB2+OA2=OB2,即AB2+32=(AB+1)2,解方程得到AB=4的值,再根据三角函数定义求出sinB.【解答】(1)证明:连接OA、OD,如图,∵点D为CE的下半圆弧的中点,∴OD⊥BC,∴∠EOD=90°,∵AB=BF,OA=OD,∴∠BAF=∠BFA,∠OAD=∠D,而∠BFA=∠OFD,∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°,∴OA⊥AB,∴AB是⊙O切线;(2)解:OF=CF﹣OC=4﹣r,OD=r,DF=,在Rt△DOF中,OD2+OF2=DF2,即r2+(4﹣r)2=()2,解得r1=3,r2=1(舍去);∴半径r=3,∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.在Rt△AOB中,AB2+OA2=OB2,∴AB2+32=(AB+1)2,∴AB=4,OB=5,∴sinB==.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理以及锐角三角函数的定义.22.如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以1cm/s 的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.【考点】四边形综合题.【分析】(1)当点Q在线段AD上时,如图1,根据四边相等的四边形是菱形证明四边形APRQ 是菱形,则QR=AP=t;(2)如图2,当点Q在线段AD上运动时,点R的运动的路程长为AR,当点Q在线段CD上运动时,点R的运动的路程长为CR,分别求长并相加即可;(3)分两种情况:①当0<t≤时,四边形APRQ与△ACD重叠部分图形的面积是菱形APRQ的面积,②当<t≤2时,四边形APRQ与△ACD重叠部分图形的面积是五边形APFMQ的面积,分别计算即可;(4)分两种情况:①当∠BRQ=90°时,如图6,根据BQ=2RQ列式可得:t=;②当∠BQR=90°时,如图7,根据BR=2RQ列式可得:t=.【解答】解:(1)由题意得:AP=t,当点Q在线段AD上时,如图1,∵△ABC是等边三角形,∴∠A=∠B=60°,∵PQ∥BC,∴∠PQA=∠B=60°,∴△PAQ是等边三角形,∴PA=AQ=PQ,∵△PQR是等边三角形,∴PQ=PR=RQ,∴AP=PR=RQ=AQ,∴四边形APRQ是菱形,∴QR=AP=t;(2)当点Q在线段AD上运动时,如图2,点R的运动的路程长为AR,由(1)得:四边形APRQ是菱形,∴AR⊥PQ,∵PQ∥BC,∴AR⊥BC,∴RC=BC=×4=2,由勾股定理得:AR===2;当点Q在线段CD上运动时,如图2,点R的运动的路程长为CR,∴AR+CR=2+2,答:点R运动的路程长为(2+2)cm;(3)当R在CD上时,如图3,∵PR∥AD,∴△CPR∽△CAD,∴,∴,4t=8﹣2t,t=,①当0<t≤时,四边形APRQ与△ACD重叠部分图形的面积是菱形APRQ的面积,如图4,过P作PE⊥AB于E,∴PE=AP•sin60°=t,∴S=AQ•PE=t2,②当<t≤2时,四边形APRQ与△ACD重叠部分图形的面积是五边形APFMQ的面积,如图5,在Rt△PCF中,sin∠PCF=,∴PF=PC•sin30°=(4﹣t)=2﹣t,∴FR=t﹣(2﹣t)=t﹣2,∴tan60°=,∴FM=×(t﹣2),∴S=S菱形APRQ ﹣S△FMR=t2﹣FR•FM=﹣(t﹣2)××(t﹣2),∴S=﹣+3﹣2;综上所述,当点Q在线段AD上时,S与t之间的函数关系式为:S=;(4)①当∠BRQ=90°时,如图6,∵四边形APRQ是菱形,∴AP=AQ=RQ=t,∴BQ=4﹣t,∵∠AQP=∠PQR=60°,∴∠RQB=180°﹣60°60°=60°,∴∠RBQ=30°,∴BQ=2RQ,4﹣t=2t,3t=4,t=;②当∠BQR=90°时,如图7,同理得四边形CPQR是菱形,∴PC=RQ=RC=4﹣t,∴BR=t,∵∠CRP=∠PRQ=60°,∴∠QRB=60°,∴∠QBR=30°,∴BR=2RQ,∴t=2(4﹣t),t=,综上所述,以点B、Q、R为顶点的三角形是直角三角形时t的值是或.【点评】本题是四边形和三角形的综合题,考查了等边三角形的性质和判定、菱形的性质和判定、动点运动问题、二次函数等知识,熟练掌握菱形和等边三角形的性质与判定是关键,利用数形结合的思想解决重叠部分图形的面积问题.。