大学物理练习题(下)
大学物理(下)练习题
大学物理(下)练习题大学物理习题集第六章 光的干涉6.1 在空气中做杨氏双缝干涉实验,缝间距为d = 0.6mm ,观察屏至双缝间距为D = 2.5m ,今测得第3级明纹与零级明纹对双缝中心的张角为2.724×10-3rad ,求入射光波长及相邻明纹间距.[解答]根据双缝干涉公式sin θ = δ/d ,其中sin θ≈θ,d = kλ = 3λ,可得波长为 λ = d sin θ/k = 5.448×10-4(mm) = 544.8(nm).再用公式sin θ = λ/d = Δx/D ,得相邻明纹的间距为 Δx = λD/d = 2.27(mm).[注意]当θ是第一级明纹的张角时,结合干涉图形,用公式sin θ = λ/d = Δx/D 很容易记忆和推导条纹间隔公式.6.2 如图所示,平行单色光垂直照射到某薄膜上,经上下两表面反射的两束光发生干涉,设薄膜厚度为e ,n 1>n 2,n 2<n 3,入射光在折射率为n 1的媒质中波长为λ,试计算两反射光在上表面相遇时的位相差.[解答]光在真空中的波长为λ0 = n 1λ. 由于n 1>n 2,所以光从薄膜上表面反射时没有半波损失;由于n 1>n 2,所以光从薄膜下表面反射时会产生半波损失,所以两束光的光程差为 δ = 2n 2e +λ0/2,位相差为:21012/222n e n n λδϕππλλ+∆==.6.3用某透明介质盖在双缝干涉装置中的一条缝,此时,屏上零级明纹移至原来的第5条明纹处,若入射光波长为589.3nm ,介质折射率n = 1.58,求此透明介质膜的厚度.[解答]加上介质膜之后,就有附加的光程差δ = (n – 1)e , 当δ = 5λ时,膜的厚度为:e = 5λ/(n – 1) = 5080(nm) = 5.08(μm).6.4 为测量在硅表面的保护层SiO 2的厚度,可将SiO 2的表面磨成劈尖状,如图所示,现用波长λ = 644.0nm 的镉灯垂直照射,一共观察到8根明纹,求SiO 2的厚度.[解答]由于SiO 2的折射率比空气的大,比Si 的小,所以半波损失抵消了,光程差为:δ = 2ne . 第一条明纹在劈尖的棱上,8根明纹只有7个间隔,所以光程差为:δ = 7λ. SiO 2的厚度为:e = 7λ/2n = 1503(nm) = 1.503(μm).6.5 折射率为1.50的两块标准平板玻璃间形成一个劈尖,用波长λ = 5004nm 的单色光垂直入射,产生等厚干涉条纹.当劈尖内充满n = 1.40的液体时,相邻明纹间距比劈尖内是空气时的间距缩小Δl = 0.1mm ,求劈尖角θ应是多少?[解答]空气的折射率用n 0表示,相邻明纹之间的空气的厚度差为Δe 0 = λ/2n 0;明纹之间的距离用ΔL 0表示,则:Δe 0 = θΔL 0, 因此:λ/2n 0 = θΔL 0.当劈尖内充满液体时,相邻明纹之间的液体的厚度差为:Δe = λ/2n ; 明纹之间的距离用ΔL 表示,则:Δe = θΔL ,n 1 n 2 λ n 3(1) (2)图6.2n 1=1.00 n 2=3.42 λn =1.50 Si SiO 2图6.4因此:λ/2n = θΔL .由题意得Δl = ΔL 0 – ΔL ,所以劈尖角为00()11()22n n l n nlnn λλθ-=-=∆∆= 7.14×10-4(rad).6.6 某平凹柱面镜和平面镜之间构成一空气隙,用单色光垂直照射,可得何种形状的的干涉条纹,条纹级次高低的大致分布如何?[解答]这种情况可得平行的干涉条纹,两边条纹级次低,越往中间条纹级次越高,空气厚度增加越慢,条纹越来越稀.6.7设牛顿环实验中平凸透镜和平板玻璃间有一小间隙e 0,充以折射率n 为1.33的某种透明液体,设平凸透镜曲率半径为R ,用波长为λ0的单色光垂直照射,求第k 级明纹的半径.[解答] 第k 级明纹的半径用r k 表示,则 r k 2= R 2 – (R – e )2 = 2eR .光程差为δ = 2n (e + e 0) + λ0/2 = kλ0,解得0012()22e k e n λ=--, 半径为: 001[()2]2k r k e R nλ=--.6.8 白光照射到折射率为1.33的肥皂上(肥皂膜置于空气中,若从正面垂直方向观察,皂膜呈黄色(波长λ = 590.5nm ),问膜的最小厚度是多少?[解答]等倾干涉光程差为:δ = 2nd cos γ + δ`,从下面垂直方向观察时,入射角和折射角都为零,即γ = 0;由于肥皂膜上下两面都是空气,所以附加光程差δ` = λ/2.对于黄色的明条纹,有δ = kλ,所以膜的厚度为:(1/2)2k d nλ-=.当k = 1时得最小厚度d = 111(nm).6.9光源发出波长可继续变化的单色光,垂直射入玻璃板的油膜上(油膜n = 1.30),观察到λ1 = 400nm 和λ2 = 560nm 的光在反射中消失,中间无其他波长的光消失,求油膜的厚度.[解答]等倾干涉光程差为;δ = 2nd cos γ + δ`,其中γ = 0,由于油膜的折射率比空气的大、比玻璃的小,所以附加光程差δ` = 0.对于暗条纹,有δ = (2k + 1)λ/2, 即 2nd = (2k 1 + 1)λ1/2 = (2k 2 + 1)λ2/2.由于λ2 > λ1,所以k 2 < k 1,又因为两暗纹中间没有其他波长的光消失,因此k 2 = k 1 – 1.光程差方程为两个:2nd /λ1 = k 1 + 1/2,2nd /λ2 = k 2 + 1/2, 左式减右式得:2nd /λ1 - 2nd /λ2 = 1,解得:12212()d n λλλλ=-= 535.8(nm).6.10 牛顿环实验装置和各部分折射率如图所示,试大致画出反射光干涉条纹的分布. [解答]右边介质的折射率比上下两种介质的折射率大,垂直入射的光会有半波损失,中间出现暗环;左边介质的折射率 介于上下两种介质的折射率之间,没有半波损失, 平面镜 柱面镜图6.6λ 图6.71.621.50 1.75 1.62 1.50 图6.10λR r e 0e中间出现明环.因此左右两边的明环和暗是交错的, 越往外,条纹级数越高,条纹也越密.6.11 用迈克尔逊干涉仪可测量长度的微小变化,设入射光波长为534.9nm ,等倾干涉条纹中心冒出了1204条条纹,求反射镜移动的微小距离.[解答]反射镜移动的距离为Δd = mλ/2 = 3.22×105nm = 0.322(mm).6.17 在迈克尔逊干涉仪一支光路中,放入一折射率为n 的透明膜片,今测得两束光光程差改变为一个波长λ,求介质膜的厚度.[解答]因为δ = 2(n – 1)d = λ,所以d = λ/2(n – 1).第七章 光的衍射7.1 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,并垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第三级衍射极小相重合,试问:(1)这两种波长之间有什么关系;(2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? [解答](1)单缝衍射的暗条纹形成条件是δ = a sin θ = ±k`λ,(k` = 1,2,3,…),当条纹重合时,它们对应同一衍射角,因此λ1 = 3λ2.(2)当其他极小重合时,必有k 1`λ1 = k 2`λ2, 所以 k 2` = 3k 1`.7.2 单缝的宽度a = 0.40mm ,以波长λ = 589nm 的单色光垂直照射,设透镜的焦距f = 1.0m .求:(1)第一暗纹距中心的距离; (2)第二明纹的宽度;(3)如单色光以入射角i = 30º斜射到单缝上,则上述结果有何变动? [解答](1)单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…),当k` = 1时,y 1 = fλ/a = 1.4725(mm).(2)除中央明纹外,第二级明纹和其他明纹的宽度为Δy = y k`-1 - y k` = fλ/a = 1.4725(mm). (3)当入射光斜射时,光程差为 δ = a sin θ – a sin φ = ±k`λ,(k` = 1,2,3,…). 当k` = 1时,可得 sin θ1 = sin φ ± λ/a = 0.5015和0.4985, cos θ1 = (1 – sin 2θ1)1/2 = 0.8652和0.8669.两条一级暗纹到中心的距离分别为y 1 = f tan θ1 = 579.6(mm)和575.1(mm). 当k` = 2时,可得sin θ2 =a sin φ ± λ/a = 0.5029和0.4971,cos θ2 = (1 – sin 2θ2)1/2= 0.8642和0.8677. 两条二级暗纹距中心的距离分别为:y 2 = f tan θ2 = 581.9(mm)和572.8(mm).φ θ a O第二明纹的宽度都为Δy = y 2 – y 1 = 2.3(mm),比原来的条纹加宽了.7.3 一单色平行光垂直入射于一单缝,若其第三级衍射明纹位置正好和波长为600 nm 的单色光垂直入射该缝时的第二级衍射明纹位置一样,求该单色光的波长.[解答]除了中央明纹之外,单缝衍射的条纹形成的条件是sin (21)2a k λδθ==±+,(k = 1,2,3,…).当条纹重合时,它们对应同一衍射角,因此(2k 1 + 1)λ1 = (2k 2 + 1)λ2, 解得此单色光的波长为12122121k k λλ+=+= 428.6(nm).7.4 以某放电管发出的光垂直照射到一个光栅上,测得波长λ1 = 669nm 的谱线的衍射角θ = 30º.如果在同样的θ角处出现波长λ2 = 446nm 的更高级次的谱线,那么光栅常数最小为多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2,方程可化为两个:(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为:212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 3/2,所以当k 1 = 2时,. k 2 = 3,因此光栅常数最小值为:2112()sin a b λλλλθ+=-= 2676(nm).7.5 一衍射光栅,每厘米有400条刻痕,刻痕宽为1.5×10-5m ,光栅后放一焦距为1m 的的凸透镜,现以λ = 500nm 的单色光垂直照射光栅,求:(1)透光缝宽为多少?透光缝的单缝衍射中央明纹宽度为多少? (2)在该宽度内,有几条光栅衍射主极大明纹? [解答](1)光栅常数为:a + b = 0.01/400 = 2.5×10-5(m), 由于刻痕宽为b = 1.5×10-5m ,所以透光缝宽为:a =(a + b ) – b = 1.0×10-5(m).根据单缝衍射公式可得中央明纹的宽度为:Δy 0 = 2fλ/a = 100(mm). (2)由于:(a + b )/a = 2.5 = 5/2,因此,光栅干涉的第5级明纹出现在单缝衍射的第2级暗纹处,因而缺级;其他4根条纹各有两根在单缝衍射的中央明纹和一级明纹中,因此单缝衍射的中央明纹宽度内有5条衍射主极大明纹,其中一条是中央衍射明纹.7.6 波长为600 nm 的单色光垂直入射在一光栅上,第二、第三级主极大明纹分别出现在sin θ = 0.2及sin θ = 0.3处,第四级缺级,求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)屏上一共能观察到多少根主极大明纹? [解答](1)(2)根据光栅方程得:(a + b )sin θ2 = 2λ; 由缺级条件得(a + b )/a = k/k`,其中k` = 1,k = 4.解缺级条件得b = 3a ,代入光栅方程得狭缝的宽度为:a = λ/2sin θ2 = 1500(nm). 刻痕的宽度为:b = 3a = 4500(nm), 光栅常数为:a + b = 6000(nm).(3)在光栅方程(a + b )sin θ = kλ中,令sin θ =1,得:k =(a + b )/λ = 10. 由于θ = 90°的条纹是观察不到的,所以明条纹的最高级数为9.又由于缺了4和8级明条纹,所以在屏上能够观察到2×7+1 = 15条明纹.7.7 以氢放电管发出的光垂直照射在某光栅上,在衍射角θ = 41º的方向上看到λ1 =656.2nm 和λ2 = 410.1nm 的谱线重合,求光栅常数的最小值是多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2, 方程可化为两个(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为;212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 1.6 = 16/10 = 8/5,所以当k 1 = 5时,. k 2 = 8,因此光栅常数最小值为:21123()sin a b λλλλθ+=-= 5000(nm).其他可能值都是这个值的倍数.7.8 白光中包含了波长从400nm 到760nm 之间的所有可见光谱,用白光垂直照射一光栅,每一级衍射光谱是否仍只有一条谱线?第一级衍射光谱和第二级衍射光谱是否有重叠?第二级和第三级情况如何?[解答]方法一:计算法.根据光栅方程(a + b )sin θ = kλ,对于最短波长λ1 = 400nm 和最长波长λ2 = 760nm 的可见光,其衍射角的正弦为sin θ1 = kλ1/(a + b )和sin θ2 = kλ2/(a + b ),数值如下表所示.可见第一级衍射光谱与第二级衍射光谱没有重叠,第二级衍射光谱与第三级衍射光谱从量值1200到1520是重叠的,第三级衍射光谱与第四级衍射光谱从量值1600到2280是重叠的.方法二:曲线法。
大学物理(下)习题
E
Q
E
r
l
Pe
r l
r
2
l /4
2
3/2
E
r
3
p 4 π 0 r
3
q
q
结论:电偶极子中垂线上,距离中心较远处一点
的场强,与电偶极子的电矩成正比,与该点离中心 的距离的三次方成反比,方向与电矩方向相反。
当r R 高斯面内电荷为 0
高斯面 E 0
均匀带电球壳
rR
高斯面
结果表明:
Q
均匀带电球壳外的场强 分布正像球面上的电荷 都集中在球心时所形成 的点电荷在该区的场强 分布一样。在球面内的 场强均为零。
R
r
例5:求无限大均匀带电平板的场强分布。
设面电荷密度为 e 。
解:由于电荷分布对于求场点 p到平面的垂线 op 是对称的, 所以 p 点的场强必然垂直于该 平面。
3 rR Q E r r 3 1 3 1 3 0 r1 4π 0 r1
r1 R
Q
E
r 1 Q E r2 r 3 2 3 0 4π 0 R
r2 R
r
R
例4:均匀带电的球壳内外的场强分布。 设球壳半径为 R,所带总电量为 Q。 解:场源的对称性决定着场强分布的对称性。
需注意方向:
A
C
B
由图可知,在A 区和B区场强均为零。C 区场强 的方向从带正电的平板指向带负电的平板。 场强大小为一个带电平板产生的场强的两倍。
2 0
EC E E 2
0
A
大学物理习题(下)答案解析
一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;332663223(C),or ;A;(D),;A4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ](A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理(下)期末练习题
y .× × × +q,m × × × B × × × x v × × × ( )
mv 2mv 2mv mv , (2) y , (3) y ,(4) y qB qB qB qB
答案(2) 23 如右图所示,真空中一载有电流为 I 的无限长直导线, 在中间弯曲成直角,在同平面内离它折点为 R 的 P 点的磁 R P 感强度大小是 (1) 答案(4) 。 (3)0 ,(4)
O O
I A B I
28、无限长直导线弯成半径为 R 的 1/4 圆弧, 当通以电流都为 I 时,则在圆心 O 点的磁 感强度大小等于( ) I R O (D)0 。
(A)
0 I
8R
,(B)
0 I
4R
,(C)
0 I
2R
4.(本题 3 分) 一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强. 答案(A) 4.(本题 3 分) 一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同.
m/s,则振幅 A =__0.05 m ,初相 =___ 17.(本题 3 分)
5/9
-0.205(或-36.9°)_______.
为理想而奋斗!
已知两个简谐振动的振动曲线如图所示.两 2 简谐振动的最大速率之比为___1∶1. 1 o -1 -2
x(cm) x2 x1 1 2 3 4 t(s)
A' BC
A
2 2 1/ 2 B (BA BC ) 7.02 10 4 T
大学物理练习题(下)
第十一章真空中的静电场1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.LP2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为ˍˍˍ,通过立方体一面的电场强度通量是ˍˍˍ,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是ˍˍˍ,(2)另外三个面每个面的电通量是ˍˍˍ。
3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是()A.ER2π B.R22πC. ER22π D. ER221π4.根据高斯定理的数学表达式⎰∑⋅=SqSE/dεϖϖ可知下述各种说法中,正确的是()(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( )EOr(A)E∝1/r6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2图11-3)(R L L <<∆∆,则圆弧中心O 点的电场强度和电势分别为( ) A.R Q i L R L Q 0204,4πεπε-∆-ρ B.RQ i L R L Q 02024,8πεεπ-∆-ρ C.RQ i L R L Q 0204,4πεπερ∆ D.RL L Q i L R L Q 0204,4πεπε∆-∆-ρ7.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P点的场强大小和电势分别为( ) (A) E =0,U =r a ln 20ελπ. (C) E =r 02ελπ,U =rb ln 20ελπ (B) E =0,U =a b ln 20ελπ (D) E =r 02ελπ,U =a b ln 20ελπ.9.如图,在点电荷+Q ,-Q 产生的电场中,abcd 为同一直线上等间距的四个点,若将一点电荷+q 0由b 点移到d 点,则电场力( )A. 作正功;B. 作负功;C.不作功;D.不能确定图11-6 a b c d +Q-Q 图11-910.说明下列各式的物理意义(1)l d E ρρ⋅(2)l d E b a ρρ⋅⎰(3)l d E L ρρ⋅⎰(4)S d E ρρ⋅11.已知某静电场的电势函数)(14121222SI y y x x U --=,由场强和电势梯度的关系式可得点(2,3,0)处的场强E ρ=ˍˍˍi ρ+ˍˍˍj ρ+ˍˍˍk ρ(SI)答案:1.()d L d q +π04ε 2. 00024,0,6,εεεq q q 3.A4.C5.C6. A7. 10cm8.B9.A10. (1)l d E ρρ⋅表示电场力对单位正电荷所做的元功。
大学物理(下)练习题
大学物理(下)练习题第十章10-8一均匀带电的半圆形弧线,半径为R ,所带电量为Q ,以匀角速度ω绕轴OO /转动,如图所示,求O 点处的磁感应强度。
解:此题可利用运动电荷产生的磁场计算,也可利用圆电流产生的磁场计算。
以下根据圆电流在轴线产生的磁感应强度来计算的。
如图电荷dq 旋转在O 处产生的磁感应强度为3202R dIr dB μ=3202)sin (2RR Rd θπωθλμ= ⎰πθθπλωμ=020sin 4d B 240ππλωμ=80λωμ= RQπωμ=80 方向沿轴线向上。
10-15一半径为R 的无限长半圆柱面形导体,与轴线上的长直导线载有等值反向的电流I ,如图所示。
试求轴线上长直导线单位长度所受的磁力。
解:此电流结构俯视如图,圆柱面上的电流 与轴线电流反向,反向电流电流相斥,如图,对 称分析可知,合力沿x 轴正向,有θππμ==Rd R IR I BldI dF 20θπμ=d RI 2202=θ=⎰sin dF F θθπμ⎰πd RI 0220sin 2 RI 220πμ=习题 10-8图习题 10-15图x10-16半径为R 的圆形线圈载有电流I 2,无限长载有电流I 1的直导线沿线圈直径方向放置,求圆形线圈所受到的磁力。
解:此电流结构如图,对称分析可知,合力沿x 轴负向,有r I dl I dF πμ=2102θθπμ=Rd R I I cos 2210θθπμ=d II cos 2210=θ=⎰cos dF F θθθπμ=⎰πd I I cos cos 220210⎰πθπμ=202102d II 210I μ=10-19一半径为R 的薄圆盘,放在磁感应强度为B的均匀磁场中,B 的方向与盘面平行,如图所示,圆盘表面的电荷面密度为σ,若圆盘以角速度ω绕其轴线转动,试求作用在圆盘上的磁力矩。
解:圆盘上任一薄层电荷运转时产生的电流为dI ,其对应的磁矩为rdr r rdrr dI dm σω=ππωπσ=π=2222 整个圆盘的磁矩为44R rdr dm m Rσωπ=σω==⎰⎰作用在圆盘上的磁力矩为B m M ⨯====mB mB M 090sin B R 44σωπ,方向垂直纸面向里。
大学物理下考试题及答案
大学物理下考试题及答案一、选择题(每题2分,共20分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100m/sB. 300m/sC. 1000m/sD. 3×10^8 m/s答案:D2. 一个物体的动能是其势能的两倍,如果物体的总能量是E,那么它的势能U是多少?A. E/2B. E/3C. 2E/3D. E答案:B3. 在理想气体状态方程PV=nRT中,P代表的是:A. 温度B. 体积C. 压力D. 气体常数答案:C4. 下列哪个现象不是由量子力学效应引起的?A. 光电效应B. 原子光谱C. 超导现象D. 布朗运动答案:D5. 一个电子在电场中受到的电场力大小是1.6×10^-19 N,如果电子的电荷量是1.6×10^-19 C,那么电场强度E是多少?A. 1 N/CB. 10 N/CC. 100 N/CD. 1000 N/C答案:A6. 根据狭义相对论,一个物体的质量m与其静止质量m0之间的关系是:A. m = m0B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * sqrt(1 - v^2/c^2)D. m = m0 * (1 - v^2/c^2)答案:C7. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是:A. h = 1/2 gt^2B. h = gt^2C. h = 2gtD. h = gt答案:A8. 在双缝干涉实验中,相邻的明亮条纹之间的距离是相等的,这种现象称为:A. 单缝衍射B. 多缝衍射C. 双缝干涉D. 薄膜干涉答案:C9. 一个电路中的电阻R1和R2并联,总电阻Rt可以用以下哪个公式计算?A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = (R1 * R2) / (R1 + R2)答案:C10. 根据热力学第一定律,一个系统吸收了100 J的热量,同时对外做了50 J的功,那么系统的内能增加了多少?A. 50 JB. 100 JC. 150 JD. 200 J答案:B二、填空题(每题2分,共20分)11. 光的粒子性质在________现象中得到了体现。
大学物理(下)练习题
一、填空题1、一竖直悬挂的轻质弹簧的下端挂上质量m 的小球后,其平衡状态下弹簧伸长0l ,则该弹簧的劲度系数=k 0l m g,该弹性振子的振动周期=T gl 02π。
2、一质点作简谐运动,其振动曲线如题2图所示。
根据此图,它的振幅=A cm 4,用余弦函数描述时初 相位=ϕ32π-,P 点的速度方向 向下 。
3、已知某简谐运动的振动曲线如题3图所示,则此简谐运动的运动方程为:)365cos(4ππ-=t x 。
4、一简谐运动的振动曲线如题4图所示,则相应的以余弦函数表示的该振动方程为=x )2cos(04.0ππ-t 。
5、如题5图所示0=t 时一沿x 轴正方向传播的平面简谐波的波形曲线,则:(1)此平面简谐波的振幅=A cm 2,=λm 40,(2)0=t 时O 、P 两处质点的速度方向: O 向下,P 向上 。
6、一质点作简谐振动,其振动曲线如题6图所示,根据此图,它的周期T= 3.43s ,用余弦函数描述时初相位=ϕπ32-。
7、一质点沿x 轴以0=x 为平衡位置坐简谐振动,频率为0.25Hz ,0=t 时cm x 37.0-=,而速度等于零,则振幅A=0.37cm ,振动的数值表达式为)21cos(37.0ππ±=t x 。
8、已知弹性媒质中平面波波动方程为()Cx Bt A y -=cos ,式中A 、B 、C 均为恒量,则波的振幅为 A ,波速为CB ,频率为π2B ,波长为C π2 。
9、已知一简谐运动的运动方程为)5310cos(41π+=t x ,另有一同方向的简谐运动)10cos(62φ+=t x ,则合振幅的最大值为cm 10,此时φ值最小为53π。
(1x 、2x 单位为cm )10、题10图所画的是两个简谐运动的振动曲线, 若这两个简谐运动可叠加,则合成的余弦振动的 合振幅为2A,初相位为0。
11、某一简谐运动的振动方程为m t x )22cos(5.01ππ+=,另一个同频率、同振幅的简谐运动2的相位落后2π。
大学物理习题下(完整版)
物理(下)作业专业班级:姓名:学号:第十章真空中的静电场(1)一、选择题1、根据电场强度定义式0/q F E(0q 为正的实验点电荷),下列说法中哪个是正确的?(A)、若场中某点不放实验电荷0q ,则F =0,从而E=0;(B)、电场中某点场强的大小与实验点电荷q 0的大小成反比;(C)、电场中某点场强的方向,就是正电荷在该点所受电场力的方向;(D)、以上说法都不正确。
[]2、如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)xq04 ;(B)30xqa;(C)302xqa;(D)204xq 。
[]3、(2010年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互作用力为F ,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变为:(A)F/2;(B)F/4;(C)3F/8;(D)F/10.[]二、填空题1、一电量为–5×10―9C 的试验电荷放在电场中某点时,受到20×10―9N 向下的力,则该点的电场强度大小为___________________,方向__________________。
2、(2011年电子科技大学)由一根绝缘细线围成的边长为l 的正方形线框,今使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度大小E=__________________。
3、铁原子核里两质子间相距4.0×10-15米,每个质子的电荷都是1.6×10-19库仑,则它们之间的库仑力应为______________牛顿。
三、计算题1、(2012年深圳大学)如图,在O x 轴上有长为a 的细杆OM ,其电荷线密度为Cx ,其中C为大于零的常量,求:(1)在OM 延长线上距M点为b的P点的电场强度的大小;(2)如果在P点放置一个带电量为+q 的点电荷,该点电荷所受库仑力大小为多少?2、有一半径为R的半圆细环上均匀地分布电荷Q,若在其环心处放置一电荷量为q的点电荷,求该点电荷q所受到的电场力的大小及方向。
大学物理(下)练习题及答案
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
大学物理下册习题及答案
大学物理下册习题及答案热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示.(B)不是平衡过程,但它能用P—V图上的一条曲线表示.(C)不是平衡过程,它不能用P—V图上的一条曲线表示.(D)是平衡过程,但它不能用P—V图上的一条曲线表示. [ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程.(2)热平衡过程一定是可逆过程.(3)热平衡过程是无限多个连续变化的平衡态的连接.(4)热平衡过程在P—V图上可用一连续曲线表示.(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升.(3)冰溶解为水.(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程.(2)准静态过程一定是可逆过程.(3)不可逆过程就是不能向相反方向进行的过程.(4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程.(2)平衡过程一定是可逆的.(3)不可逆过程一定是非平衡过程.(4)非平衡过程一定是不可逆的.(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[ ](A)一定都是平衡态.(B)不一定都是平衡态.(C)前者一定是平衡态,后者一定不是平衡态.(D)后者一定是平衡态,前者一定不是平衡态.7、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程 [ ](A)一定都是平衡过程.(B)不一定是平衡过程.(C)前者是平衡态,后者不是平衡态.(D)后者是平衡态,前者不是平衡态.8、一定量的理想气体,开始时处于压强,体积,温度分别为P1、V1、T1,的平衡态,后来变到压强、体积、温度分别为P2、V2、T2的终态.若已知V2 > V1, 且T2 = T1 , 则以下各种说法正确的是: [ ](A)不论经历的是什么过程,气体对外净做的功一定为正值.(B)不论经历的是什么过程,气体从外界净吸的热一定为正值.(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D)如果不给定气体所经历的是什么过程,则气体在过程中对外净做功和外界净吸热的正负皆无法判断.二、填空题:1、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的.2、设在某一过程P中,系统由状态A变为状态B,如果______________________________________________________,则过程P为可逆过程;如果______________________________________________________则过程P为不可逆过程.3、同一种理想气体的定压摩尔热容C p大于定容摩尔热容C v,其原因是_____________________________________________________________________.4、将热量Q传给一定量的理想气体,(1)若气体的体积不变,则热量转化为________________________________.(2)若气体的温度不变,则热量转化为________________________________.(3)若气体的压强不变,则热量转化为________________________________.5、常温常压下,一定量的某种理想气体(可视为刚性分子自由度为i),在等压过程中吸热为Q,对外作功为A,内能增加为ΔE,则A / Q = ____________. ΔE / Q = _____________.6、3 mol的理想气体开始时处在压强P1 = 6 at m、温度T1 = 500K的平衡态.经过一个等温过程,压强变为P2 = 3 atm.该气体在等温过程中吸收的热量为Q = _____________J.(摩尔气体常量R = 8.31 J•mol-1•K-1)7、2 mol单原子分子理想气体,经一等容过程后,温度从200K上升到500K,若该过程为准静态过程,气体吸收的热量为_________;若为不平衡过程,气体吸收的热量为___________.8、卡诺制冷机,其低温热源温度为T2 = 300 K,高温热源温度为T1 = 450 K,每一循环从低温热源吸收Q2 = 400 J.已知该制冷机的制冷系数为1212TTTAQw-==(式中A为外界对系统作的功),则每一循环中外界必须作功A = _________.三、计算题:1、有1 mol刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27˚C,若经过一绝热过程,使其压强增加到16 atm .试求:(1)气体内能的增量;(2)在该过程中气体所作的功;(3)终态时,气体的分子数密度.(1 atm = 1.013×105 Pa,玻耳滋曼常数k = 1.38×10-23J•K-1摩尔气体常量R=8.31J•mol-1•K-1)2、如图所示,a b c d a为1 mol单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量;(2)气体循环一次对外做的净功;(3)证明Ta Tc = T b T d.3、一气缸内盛有一定量的单原子理想气体.若绝热压缩使其容积减半,问气体分子的平均速率为原来的几倍?热力学(二)1、理想气体向真空作绝热膨胀. [ ](A)膨胀后,温度不变,压强减小.(B)膨胀后,温度降低,压强减小.(C)膨胀后,温度升高,压强减小.(D)膨胀后,温度不变,压强不变.2、氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使他们在体积不变情况下吸收相等的热量,则 [ ](A)它们的温度升高相同,压强增加相同.(B)它们的温度升高相同,压强增加不相同.(C)它们的温度升高不相同,压强增加不相同.(D)它们的温度升高不相同,压强增加相同.3、一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H2和O2.开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A)H2比O2温度高.(B)O2比H2温度高.(C)两边温度相等且等于原来的温度.(D)两边温度相等但比原来的温度降低了.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Po,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是[ ](A)Po (B)Po/2 (C)2 r / Po (D)Po/2 r ( r = Cp / Cv )5、1 mol理想气体从P-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta < Tb,则这两过程中气体吸收的热量Q1和Q2的关系是 [ ](A)Q1 > Q2 > 0 (B)Q2 > Q1 > 0 (C)Q2 < Q1 < 0(D)Q1 < Q2 < 0 (E)Q1 = Q2 > 06、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子理想气体),它们的温度和压强都相等,现将5 J的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 [ ](A)6 J (B)5 J(C)3 J (D)2 J7、一定量的理想气体经历acb过程时吸热200 J.则经历acbda过程时,吸热为(A)–1200 J (B)–1000 J(C)–700 J (D)1000 J [ ]8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比A / Q等于 [ ](A)1 / 3 (B)1 / 4(C)2 / 5 (D)2 / 79、如果卡诺热机的循环曲线所包围的面积从图中的a b c d a增大为a b’c’d a,那么循环ab cda与a b’c’da所作的净功和热机效率变化情况是: [ ](A)净功增大,效率提高. (B)净功增大,效率降低.(C)净功和效率都不变. (D)净功增大,效率不变.一、填空题:1、如图所示,已知图中画不同斜线的两部分分别为S1和S2,那么(1)如果气体的膨胀过程为a—1—b,则气体对外做功A= ;(2)如果气体进行a—2—b—1—a的循环过程,则它对外做功A =2、已知1 mol的某种理想气体(可视为刚性分子),在等压过程中温度上升1 K,内能增加了20.78 J,则气体对外做功为__________,气体吸收热量为__________.3、刚性双原子分子的理想气体在等压下膨胀所作的功为A,则传递给气体的热量为___ ____________.4、热力学第二定律的克劳修斯叙述是:_________________________________________;开尔文叙述是____________________________________________.5、从统计的意义来解释:不可逆过程实质上是一个________________________________________的转变过程.一切实际过程都向着____________________________________________的方向进行.6、由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边是真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_________(升高、降低或不变),气体的熵___________(增加、减小或不变).二、计算题:1、一定量的单原子分子理想气体,从A态出发经等压过程膨胀到B态,又经绝热过程膨胀到C态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.2、如果一定量的理想气体,其体积和压强依照V = a / 的规律变化,其中a为已知常数.试求:(1)气体从体积V1膨胀到V2所作的功;(2)体积为V1时的温度T1与体积为V2时的温度T2之比.3、一卡诺热机(可逆的),当高温热源的温度为127°C、低温热源温度为27°C时,其每次循环对外作净功8000 J.今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功10000 J.若两个卡诺循环都工作在相同的两条绝缘线之间,试求:(1)第二个循环热机的效率;(2)第二个循环的高温热源的温度.4、一定量的刚性双原子分子的理想气体,处于压强P1= 10 atm、温度T1 = 500K的平衡态,后经历一绝热过程达到压强P2 = 5 atm、温度为T2的平衡态.求T2.热力学(三)一、选择题1、设高温热源的热力学温度是低温热源的热力学温度的n倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A) n倍 (B) n–1倍(C) 倍 (D) 倍 [ ]2、一定量理想气体经历的循环过程用V-T曲线表示如题2图,在此循环过程中,气体从外界吸热的过程是(A) A→B (B) B→C(C) C→A (D) B→C和C→A [ ]3、所列题3图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的标号. [ ]V P (A)P (B)绝热绝热C B 等温等容等容O V O 等温 VP 等压(C)P (D)A 等温绝热绝热绝热绝热O T O V O V题图题3图4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分),分割为S1和S2,则二者的大小关系是(A) S1 > S2 (B) S1 = S2(C) S1 < S2 (D) 无法确定 [ ]PS2 S1V.对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]6、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ ]7、一定量的理想气体向真空作绝热自由膨胀,体积由V1增至V2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加. [ ]8、给定理想气体,从标准状态 (P0,V0,T0)开始作绝热膨胀,体积增大到3倍,膨胀后温度T、压强P与标准状态时T0、P0之关系为 (γ为比热比) [ ](A) T = ( ) r T0 ; P = ( ) r-1 P0. (B) T = ( ) r-1 T0 ; P = ( ) r P0.(C) T = ( ) -r T0 ; P = ( ) r-1 P0. (D) T = ( ) r-1 T0 ; P = ( ) -r P0.一、填空题:1、在P-V图上(1) 系统的某一平衡态用来表示;(2) 系统的某一平衡过程用来表示;(3) 系统的某一平衡循环过程用来表示.2、P-V图上的一点,代表;P-V图上任意一条曲线,表示;3、一定量的理想气体,从P-V图上状态A出发,分别经历等压、等温、绝热三种过程,由体积V1膨胀到体积V2,试画出这三种过程的P—V图曲线,在上述三种过程中:(1)气体对外作功最大的是过程;(2) 气体吸热最多的是过程;V2( 均视为刚性分子的理想气体),它们的质量比为m1:m2E1:E2 = ,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为A1:A2 = .(各量下角标1表示氢气,2表示氦气)5、质量为2.5 g的氢气和氦气的混合气体,盛于某密闭的气缸里 ( 氢气和氦气均视为刚性分子的理想气体),若保持气缸的体积不变,测得此混合气体的温度每升高1K,需要吸收的热量等于2.25 R ( R为摩尔气体常量).由此可知,该混合气体中有氢气 g,氦气 g;若保持气缸内的压强不变,要使该混合气体的温度升高1K,则该气体吸收的热量为 . (氢气的M mol = 2×10 -3 kg,氦气的M mol = 4×10 -3 kg)6、一定量理想气体,从A状态 (2P1,V1) 经历如图所示的直线过程变到B状态 (P1,2V1),则AB过程中系统作功A = ;内能改变△E = .第6题图第7题图7、如图所示,理想气体从状态A出发经ABCDA循环过程,回到初态A点,则循环过程中气体净吸的热量Q = .8、有一卡诺热机,用29kg空气为工作物质,工作在27℃的高温热源与–73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大2.718倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3kg·mol-1)二、计算题:1、一定量的某种理想气体,开始时处于压强、体积、温度分别为P0 = 1.2×106 P0,V0 = 8.31×10-3m3,T0 = 300K的初态,后经过一等容过程,温度升高到T1 = 450 K,再经过一等温过程,压强降到P = P0的末态.已知该理想气体的等压摩尔热容与等容摩尔热容之比C P/C V=5/3,求:(1)该理想气体的等压摩尔热容C P和等容量摩尔热容C V.(2)气体从始态变到末态的全过程中从外界吸收的热量.2、某理想气体在P-V图上等温线与绝热线相交于A点,如图,已知A点的压强P1=2×105P0,体积V1 = 0.5×10-3 m3,而且A点处等温线斜率与绝热线斜率之比为0.714,现使气体从A点绝热膨胀至B点,其体积V2 = 1×10-3 m3,求(1) B 点处的压强;(2) 在此过程中气体对外作的功.3、1 mol单原子分子的理想气体,经历如图所示的可逆循环,联结AC两点的曲线III的方程为P = P0 V2 / V20,A点的温度为T0.(1)试以T0,R表示I、II、III过程中气体吸收的热量.(2)求此循环的效率.(提示:循环效率的定义式η= 1– Q2 / Q1, Q1循环中气体吸收的热量,Q2为循环中气体放出的热量).气体动理论 (一)一、选择题:1、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为P1和P2,则两者的大小关系是:(A) P1 > P2 (B) P1 < P2(C) P1 = P2 (D) 不确定的. [ ]2、若理想气体的体积为V,压强为P,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为:(A) PV / m . (B) PV/(KT).(C) PV / (RT). (D) PV/(mT). [ ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1kg某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气质量为:[ ](A) 1 / 16 kg (B) 0.8 kg(C) 1.6 kg (D) 3.2 kg4、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态,A种气体的分子数密度为n1,它产生的压强为P1,B种气体的分子数密度为2 n1,C种气体的分子数密度为3 n1,则混合气体的压强P为(A) 3 P1 (B) 4 P1(C) 5 P1 (D) 6 P1 [ ]5、一定量某理想气体按PV2 = 恒量的规律膨胀,则膨胀后理想气体温度(A) 将升高 (B) 将降低(C) 不变 (D)升高还是降低,不能确定 [ ]6、如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大?(A)氧气的密度大. (B)氢气的密度大.(C)密度一样大. (D)无法判断. [ ]一、填空题:1、对一定质量的理想气体进行等温压缩,若初始时每立方米体积内气体分子数为1.96×1024,当压强升高到初值的两倍时,每立方米体积内气体分子数应为 .2、在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) .3、某理想气体在温度为27℃和压强为1.0×10-2 atm情况下,密度为11.3 g / m3,则这气体的摩尔质量M= .(摩尔气体常量R = 8.31 J·mol-1·K-1)mol4、在定压下加热一定量的理想气体,若使其温度升高1K时,它的体积增加了0.005倍,则气体原来的温度是 .5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1) p d V = (M / M mol) R d T表示过程.(2) V d p = (M / M mol) R d T表示过程.(3) p d V + V d p = 0 表示过程.6、氢分子的质量3.3×10 –24 g,如果每秒有1023个氢分子沿着与容器器壁的法线成45°角的方向以105cm·s-1的速率撞击在2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为 .7、一气体分子的质量可以根据该气体的定容比热容来计算,氩气的定容比热容Cv = 0.314 kJ·kg-1·K-1,则氩原子的质量m = .(1 k c a l = 4.18×103 J)8、分子物理是研究的学科,它应用的基本方法是方法.9、解释下列分子运动论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:;二、计算题:1、黄绿光的波长是5000 Å (1 Å =10-10m),理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻耳兹曼常量k = 1.38×10 -23J·K-1)2、两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示,当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央,试问,当左边容器温度由0℃增到5℃,而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动?3、假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T相等.试根据玻璃尔兹曼分布律计算大气层分子的平均重力势能εp.(已知积分公式 X n e -ax d x = n !/ a n+1)热力学(一) (答案)一、 1.C 2.B 3.D 4.D 5.A 6.B 7.B 8.D二、 1.物体作宏观位移,分子之间的相互作用.2.能使系统进行逆向变化,回复状态,而且周围一切都回复原状.系统不能回复到初;态;或者系统回复到初态时,周围并不能回复原状.3.在等压升温过程中,气体要膨胀而作功,所以要比气体等体升温过程多吸收一部分热量.4.(1)气体的内能,(2)气体对外所做的功,(3)气体的内能和对外所做的功5.2/i+2,i/i+2 6.8.64×103 7.7.48×103 J ,7.48×103 J8.200J热力学(二)答案一、1.A 2.C 3.B 4.B 5.A 6.C 7.B 8.D 9.D二、1.S1+S2,-S1 2. 8.31J, 29.09J 3.7A/24、不可能把热量从低温物体自动传到高温物体而不引起外界变化不可能制造出这样循环工作的热机,它只从单一热源吸热来作功,而不放出热量给其他物体,或者说不使外界发生任何变化.5. 从概率较小的状态到概率较大的状态,状态概率增大(或熵增大)6.不变; 增加热力学(三)答案一、1、C 2、A 3、B 4、B 5、C 6、A 7、A 8、D二、1、一个点,一条曲线,一条封闭线 2、(参看1题)3、等压,等压 4、1:2,5:3,5:7 5、1.5,1,3.25R 6、23P 1V 1,0 7、1.62×104J 8、33.3%,831×105J气体动理论(一)答案一、1.C 2. B 3.C 4.D 5.B 6.A二、1、3.92×1024 2、(1)沿空间各方向运动的分子数相等;(2)v x 2=v y 2=v z 23、27.9g/mol4、200K5、等压,等容,等温6、2.33×103 Pa7、6.59×10-26 kg8、物体热现象和热运动规律、统计9、(1)描述物体运动状态的物理量;(2)表征个别分子状况的物理量,如分子大小、质量、速度等;(3)表征大量分子集体特征的物理量,如P 、V 、T 、C 等.气体动理论(二) 答案。
大学物理(下)习题精选
1. 磁场复习题1、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
(提示:无限长载流平板可看成许多无限长的载流直导线组成) 解:利用无限长载流直导线的公式求解。
(1)取离P 点为X 宽度为dx 的无限长载流细条,它的电流di=δdx(2)这载流长条在P 点产生的磁感应强度xdxx di dB o o πδμπμ22==方向垂直纸面向里。
(3)所有载流长条在P 点产生的磁感应强度的方向都相同,所以载流平板在P 点产生的磁感应强度⎰⎰+===+bb a x x dx dB B o b a bln 22πδμπδμο,方向垂直纸面向里。
2、书上习题7-16解:(1)取半径为r 的园为回路 ()()22222a r ab I rB -⋅-=ππμπ 所以, ()r a r ab IB 222202-⨯-=πμ (2) ⎰⋅=bardr j I π2⎰⋅=bardr Kr π23233a b K -⋅=π 因此,()3323a b IK -=π又根据环路定理,⎰⋅⋅=rrdr Kr rB απμπ22032330a r K -⋅=πμ故有 3333033023a b a r r I a r r K B --⋅=-⋅=∴πμμ3、如图所示,长直导线中通有电流I=5A ,另一矩形线框共1000匝,宽a =10cm ,长L=20cm , 以s m v /2=的速度向右平动,求当cm d 10=线圈中的感应电动势。
解:xIB πμ20=,设绕行方向为顺时针方向,则BLdx BdS d ==φ yay IL x ILdx d ay yay y +===⎰⎰++ln2200πμπμφφ =-=dt d Nφε)(20a y y vaIL N +πμ 当cm d y 10==时 ,mV 21.0)1.01.0(21.021042.0510007=+⨯⨯⨯⨯⨯=-ππε*上题中若线圈不动,而长导线中通有交变电流t i π100sin 5=A, 线圈内的感应电动势为多大? 解:同上有:yay IL x ILdx d ay yay y+===⎰⎰++ln2200πμπμφφ =-=dtd Nφε t y a y t L N πππμ100cos 1.02.0ln 2.010********ln 100cos 25070⨯⨯⨯⨯⨯-=+⨯-=- t π100cos 104.42-⨯-=V*上题中若线圈向右平动,而长导线中仍有交变电流,则线圈内感应电动势又为多大? 线圈在向右平动的同时,电流也在变化,则有=-=dt d Nφεy a y dt Ldi N +-ln 2/0πμ+)(20a y y vaiL N +πμ t π100cos 104.42-⨯-=+t π100sin 100.23-⨯I4、一无限长直导线通有电流I=I o e -3t ,一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示。
大学物理下练习题答案
大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。
( D )以上说法都不正确。
3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A ) i a02πελ.(B) 0.(C)i a 04πελ. (D) )(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C )(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向.(D) 大小为)2022a q πε, 方向沿y 轴负向.5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) πR 2E .(B) πR 2E /2 . (C) 2πR 2E .(D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+λ-λ∙ (0, a ) xy O图1.1图1.2图1.3(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。
大学物理知识题(下)
习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )a Q 032πε (C )a Q 06πε (D )a Q 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302r U R (B )R U 0 (C )20r RU (D )rU1-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q、电场强度的大小E和电场能量W将发生如下变化(A)Q增大,E增大,W增大。
(B)Q减小,E减小,W减小。
(C)Q增大,E减小,W增大。
(D)Q增大,E增大,W减小。
1-5 一半径为R的均匀带电圆盘,电荷面密度为 ,设无穷远处为电势零点,则圆盘中心O点的电势U0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为-q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
1-9 如图所示,半径分别为R 1和R 2(R 2 > R 1)的两个同心导体薄球壳,分别带电量Q 1和Q 2,今A B O将内球壳用细导线与远处半径为r 的导体球相连,导体球原来不带电,试求相连后导体球所带电量q 。
大学物理下册练习及答案
电磁学 磁力图所示,一电子经过A 点时,具有速率s m /10170⨯=υ。
(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场大小和方向;(2) 求电子自A 运动到C 所需的时间。
解:(1)电子所受洛仑兹力提供向心力 Rv m B ev 200=得出T eR mv B 3197310101.105.0106.11011011.9---⨯=⨯⨯⨯⨯⨯== 磁场方向应该垂直纸面向里。
(2)所需的时间为s v R T t 870106.110105.0222-⨯=⨯⨯===ππ eV 3100.2⨯的一个正电子,射入磁感应强度B =0.1T 的匀强磁场中,其速度矢量与B 成B 的方向。
试求这螺旋线运动的周期T 、螺距h 和半径r 。
解:正电子的速率为731193106.21011.9106.110222⨯=⨯⨯⨯⨯⨯==--m E v k m/s 做螺旋运动的周期为101931106.31.0106.11011.922---⨯=⨯⨯⨯⨯==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --⨯=⨯⨯⨯⨯==T v h m半径为3197310105.1.0106.189sin 106.21011.989sin ---⨯=⨯⨯⨯⨯⨯⨯==eB mv rm d =1.0mm ,放在B =1.5T 的磁立方厘米有8.42210⨯个自由电子,每个电子的电荷19106.1-⨯-=-e C ,当铜片中有I =200A 的电流流通时,(1)求铜片两侧的电势差'aa U ;(2)铜片宽度b 对'aa U 有无影响?为什么?解:(1)531928'1023.2100.1)106.1(104.85.1200---⨯-=⨯⨯⨯-⨯⨯⨯==nqd IB U aa V ,负号表示'a 侧电势高。
(2)铜片宽度b 对'aa U =H U 无影响。
大学物理考试卷及答案下
汉A一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得3分,共15分)1、强度为的自然光,经两平行放置的偏振片,透射光强变为,若不考虑偏振片的反射和吸收,这两块偏振片偏振化方向的夹角为【】A。
30º;B。
45º;C.60º;D。
90º.2、下列描述中正确的是【】A。
感生电场和静电场一样,属于无旋场;B。
感生电场和静电场的一个共同点,就是对场中的电荷具有作用力;C.感生电场中可类似于静电场一样引入电势;D。
感生电场和静电场一样,是能脱离电荷而单独存在.3、一半径为R的金属圆环,载有电流,则在其所围绕的平面内各点的磁感应强度的关系为【】A。
方向相同,数值相等; B。
方向不同,但数值相等;C.方向相同,但数值不等;D.方向不同,数值也不相等。
4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【】A。
感生电场和涡旋磁场; B。
位移电流和位移电流密度;C。
位移电流和涡旋磁场; D.位移电流和感生电场.5、当波长为λ的单色光垂直照射空气中一薄膜(n〉1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【】A。
; B。
;C. ;D。
;二、填空题(本大题共15小空,每空2分,共30 分.)6、设杨氏双缝缝距为1mm,双缝与光源的间距为20cm,双缝与光屏的距离为1m.当波长为0。
6μm的光正入射时,屏上相邻暗条纹的中心间距为.7、一螺线管的自感系数为0。
01亨,通过它的电流为4安,则它储藏的磁场能量为焦耳。
8、一质点的振动方程为(SI制),则它的周期是,频率是,最大速度是。
9、半径为R的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设为已知,则感生电场在r〈R区域为,在r〉R区域为.10、一个电子射入的均匀磁场中,当电子速度为时,则电子所受的磁力=。
11、自然光入射到两种媒质的分界面上,当入射角等于布儒斯特角i B时,反射光线与Id折射光线之间的夹角等于.12、铝的逸出功为4。
大学物理(下册)习题与答案
大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。
大学物理习题下
大学物理习题下文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )aQ 032πε (C )aQ 06πε (D )aQ 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302r U R (B )R U 0 (C )20r RU (D )rU1-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q 、电场强度的大小E 和电场能量W 将发生如下变化(A )Q 增大,E 增大,W 增大。
(B )Q 减小,E 减小,W 减小。
(C )Q 增大,E 减小,W 增大。
(D )Q 增大,E 增大,W 减小。
1-5 一半径为R 的均匀带电圆盘,电荷面密度为 ,设无穷远处为电势零点,则圆盘中心O 点的电势U 0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章真空中的静电场1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.L2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为ˍˍˍ,通过立方体一面的电场强度通量是ˍˍˍ,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是ˍˍˍ,(2)另外三个面每个面的电通量是ˍˍˍ。
3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是()A.ER2π B.R22πC. ER22π D. ER221π4.根据高斯定理的数学表达式⎰∑⋅=SqSE/dε可知下述各种说法中,正确的是()(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( )EOr(A)E∝1/r6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2图11-3)(R L L <<∆∆,则圆弧中心O 点的电场强度和电势分别为( )A.R Q i L R L Q 0204,4πεπε-∆- B.R Q i L R L Q 02024,8πεεπ-∆- C.RQ i L R L Q 0204,4πεπε ∆ D.RL L Q i L R L Q 0204,4πεπε∆-∆-7.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为( )(A) E =0,U =r a ln 20ελπ. (C) E =r 02ελπ,U =rb ln 20ελπ (B) E =0,U =a b ln 20ελπ (D) E =r 02ελπ,U =ab ln 20ελπ.9.如图,在点电荷+Q ,-Q 产生的电场中,abcd 为同一直线上等间距的四个点,若将一点电荷+q 0由b 点移到d 点,则电场力( ) A. 作正功; B. 作负功; C.不作功; D.不能确定图11-6 a c +Q -Q图11-910.说明下列各式的物理意义(1)l d E⋅(2)l d E ba⋅⎰(3)l d E L⋅⎰(4)S d E⋅11.已知某静电场的电势函数)(14121222SI y y x x U --=,由场强和电势梯度的关系式可得点(2,3,0)处的场强E =ˍˍˍi +ˍˍˍj+ˍˍˍk (SI)答案: 1.()d L d q+π04ε2.0024,0,6,εεεqq q 3.A 4.C 5.C 6. A 7. 10cm 8.B 9.A10. (1)l d E⋅表示电场力对单位正电荷所做的元功。
(2)l d E ba⋅⎰表示在静电场中,单位正电荷从a 移到b 时,电场力所做的功(3)l d E L⋅⎰=0表示静电场中,单位正电荷沿任意闭合回路一周,电场力所做的功为0。
这使静电场环路定理,说明静电场是保守力场。
(4)S d E⋅表示通过面积元dS 的电场强度通量11. 132,132,0第十二章 静电场中的导体和电介质1.图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的不带电的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为:(A)204r QE επ=,r Q U 04επ=.(B) 0=E ,104r QU επ=. (C)0=E ,r Q U 04επ=. (D) 0=E ,204r QU επ=2. 半径为R 的金属球与地连接.在与球心O 相距d =2R 处有一电荷为q 的点电荷.如图所示,设地的电势为零,则球上的感应电荷q '为 (A) 0. (B) 2q . (C) -q. (D) -q .3.A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 (A)S Q 012ε . (B) SQ Q 0212ε-. (C) SQ01ε. (D) S Q Q 0212ε+.+Q +Q 2A B4.如图所示,两块很大的导体平板平行放置,面积都是S ,有一定厚度,带电荷分别为Q 1和Q 2.如不计边缘效应,则A 、B 、C 、D 四个表面上的电荷面密度分别为_____________ 、 ______________、_____________、____________.5.点电荷+Q 位于金属球壳的中心,球壳的内、外半径分别为R 1,R 2,所带净电荷为0,设无穷远处电势为0,如果移去球壳,则下列说法正确的是: A.B 点电势增加B. A 点电势增加C. B 点电场强度增加D.A 点电场强度增加6.在一个原来不带电的外表面为球形的空腔导体A 内,放一带有电荷为+Q 的带电导体B ,则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论: (A) U A = U B . (B) U A > U B . (C) U A < U B . (D) 因空腔形状不是球形,两者无法比较.7.一空心导体球壳带电荷q ,当在球壳内偏离球壳中心某处再放一电荷为q 的点电荷时,则导体球壳上的电荷分布为(A) 内表面不均匀分布q -,外表面均匀分布q 2. (B) 内表面均匀分布q -,外表面均匀分布q 2 (C) 内表面不均匀分布q -,外表面不均匀分布q 2 (D) 内表面均匀分布q -,外表面不均匀分布q 2 8.在一点电荷产生的静电场中,一块 电介质如图放置,以点电荷所在处为球 心做一球形闭合面,则对此球形闭合面(A)高斯定理成立,且可用它求出闭合面上各点的场强。
(B)高斯定理成立,但不能用它求出闭合面上各点的场强。
(C)由于电介质不对称分布,高斯定理不成立(D)即使电介质对称分布,高斯定理也不成立9.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,相对介电常数为εr ,壳外是真空.则在壳外P 点处(设r OP =)的场强和电位移的大小分别为 (A) E = Q / (4πε0εr r 2),D = Q / (4πε0r 2).(B) E = Q / (4πεr r 2),D = Q / (4πr 2). (C) E = Q / (4πε0r 2),D = Q / (4πr 2).2D = Q / (4πε0r 2).p10. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 极板上电荷减少,C 2极板上电荷不变.11.一平行板电容器,两板间距离为d ,若插入一面积与极板面积相同而厚度为d / 2 的、相对介电常量为εr的各向同性均匀电介质板(如图所示),则插入介质后的电容值与原来的电容值之比C / C 0为(A)11+r ε. (B) 1+r r εε. (C) 12+r εε. (D) 12+r ε.12.真空中有一带电球体和一均匀带电球面,如果它们的半径和所带的总电量都相等,则 (A)球体的静电能等于球面的静电能 (B)球体的静电能大于球面的静电能 (C)球体的静电能小于球面的静电能 (D)不能确定13. 圆柱形电容器的两个同轴圆柱面带有等量异号电荷+Q 和-Q ,长度均为l ,半径分别为b a 和,a b l ->>,两圆柱面之间充有介电常数为ε的均匀电介质。
求(1)在半径为l dr b r a r 、长度为、厚度为)(<<的圆柱薄壳中任一点处,电场的能量密度和整个薄壳中的能量;(2)电介质中的总能量;(3)能否由此总能量推算出圆柱形电容器的电容?答案1. D2. C3. C4. )2/()(21S Q Q + )2/()(21S Q Q - )2/()(12S Q Q - )2/()(21S Q Q +5. B6. C7. A8. B9. C 10. C 11. C 12. B13.(1) 22228l r Q επ,r rl Q d 42πε ;(2) a b l Q ln 42πε;(3)ab l ln 2πε 第十四章 稳恒磁场1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中心处的磁感强度的大小B =________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) l I B π=0122μ,lIB π=0222μ (C) 01=B ,lI B π=0222μ.(D) l IB π=0122μ,02=B .a3. 在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源(如图).三角形框每边长为l ,则在该正三角框中心O 点处磁感强度的大小B =_________________________. 4.如图所示,实线为载流导线,通以电流I ,A 、B 各伸延到无限远处,在圆心O 处是磁感应强度为:( )A .R I R I 4200μπμ+;B .R I 40πμC .R I R I 8200μπμ+;D .R I 40πμ5.一弯曲的载流导线在同一平面内,形状如图(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远处),则O 点磁感强度的大小B =_____________________.6.半径为 0.5 cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I = 3 A 的电流.作一个半径r = 5 cm 、长l = 5 cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感强度B沿曲面的积分=⋅⎰⎰S B d ________________________.7.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅Ll Bd 等于(A)I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.8.一流有恒定电流I 的闭合线圈,方向如图,求出磁感应强度沿图中6条闭合曲线的环路积分(积分方向为曲线中箭头所示)。