固体激光器原理固体激光器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体激光器原理-固体激光器

固体激光器发展历程

固体激光器发展历程

固体激光器用固体激光材料作为工作物质的激光器。1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。

这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:(1)过渡金属离子;(2)大多数镧系金属离子;(3)锕系金属离子。这些掺杂到固体基质中的金属离子的主要特点是:

具有比较宽的有效吸收光谱带,深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。用作晶体类基质的人工晶体主要有:刚玉

、钇铝石榴石、钨酸钙、氟化钙等,以及铝酸钇、铍酸镧等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;http://具有良好的光谱特性、光学透射率特性和高度的光学均匀性;具有适于长期激光运转的物理和化学特性。晶体激光器以红宝石和掺钕钇铝石榴石为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。

工作物质

固体激光器的工作物质,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。这种工作物质一般应具有良好的物理-化学性质、窄的荧光谱线、强而宽的吸收带和高的荧光量子效率。

玻璃激光工作物质容易制成均匀的大尺寸材料,可用于高能量或高峰值功率激光器。但其荧光谱线较宽,热性能较差,不适于高平均功率下工作。常见的钕玻璃有硅酸盐、磷酸盐和氟磷酸盐玻璃。80年代初期,研制成功折射率温度系数为负值的钕玻璃,可用于高重复频率的中、小能量激光器。

晶体激光工作物质一般具有良好的热性能和机械性能,窄的荧光谱线,但获得优质大尺寸材料的晶体生长技术复杂。60年代以来已有300种以上掺入各种稀土金属或过渡金属离子氧化物和氟化物晶体实现了激光振荡。常用的激光晶体有红宝石(Cr:Al2O3,波长6943

埃)、掺钕钇铝石榴石、氟化钇锂(LiYF4,简称YLF;Nd:YLF,波长或微米;Ho:Er:Tm:YLF,波长微米)等。

1973年以来又有一类自激活激光晶体。它的激活离子是晶体的一个化学组分,因而激活离子浓度高,不致产生荧光猝灭。这种晶体的激光增益高,抽远阈值低。主要品种有

五磷酸钕(NdP5O14)、四磷酸锂钕(NdLiP4O12)和硼酸铝钕等。它们多用熔盐法生长,晶体尺寸小,可用于小型固体激光器。

已研制成的还有多种具有宽带荧光特性的可调谐激光晶体,如终端声子跃迁的金绿宝石、掺镍氟化镁、5d→4f 跃迁的掺铈氟化钇锂和碱卤化物的色心激光晶体。

激励源

固体激光器以光为激励源。常用的脉冲激励源有充氙闪光灯;连续激励源有氪弧灯、碘钨灯、钾铷灯等。在小型长寿命激光器中,可用半导体发光二极

管或太阳光作激励源。一些新的固体激光器也有采用激光激励的。

固体激光器由于光源的发射光谱中只有一部分为工作物质所吸收,加上其他损耗,因而能量转换效率不高,一般在千分之几到百分之几之间。

特性

固体激光器可作大能量和高功率相干光源。红宝石脉冲激光器的输出能量可达千焦耳级。经调Q和多级放大的钕玻璃激光系统的最高脉冲功率达10瓦。钇铝石榴石连续激光器的输出功率达百瓦级,多级串接可达千瓦。

固体激光器运用Q开关技术,可以得到纳秒至百纳秒级的短脉冲,采用锁模技术可得到皮秒至百皮秒量级的超短脉冲。

由于工作物质的光学不均匀性等原因,一般固体激光器的输出为多模。若选用光学均匀性好的工作物质和采取精心设计谐振腔等技术措施,可得到光束发散角接近衍射极限的基横模(TEM00)

激光,还可获得单纵模激光。

应用和趋势

固体激光器在军事、加工、医疗和科学研究领域有广泛的用途。它常用于测距、跟踪、制导、打孔、切割和焊接、半导体材料退火、电子器件微加工、大气检测、光谱研究、外科和眼科手术、等离子体诊断、脉冲全息照相以及激光核聚变等方面。固体激光器还用作可调谐染料激光器的激励源。

固体激光器的发展趋势是材料和器件的多样化,包括寻求新波长和工作波长可调谐的新工作物质,提高激光器的转换效率,增大输出功率,改善光束质量,压缩脉冲宽度,提高可靠性和延长工作寿命等。固体激光器原理及应用固体激光器原理及应用

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。本论文先从基本原理和结构介绍固体激光器,最后介绍其在监测,检测,制造业,医学,航天等五个方面的应用

及未来的发展方向。

关键词:固体激光器基本原理基本结构应用

1 激光与激光器

激光

激光

激光是在1960 年正式问世的。但是,激光的历史却已有100多年。确切地说,远在1893年,在波尔多一所中学任教的物理教师布卢什就已经指出,两面靠近和平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。1917年爱因斯坦提出“ 受激辐射” 的概念,奠定了激光的理论基础。激光,又称镭射,英文叫“LASER”,是“Light Amplification by Stimu Iatad Emission of Radiation”的缩写,意思是“受激发射的辐射光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发

射”改称“激光”。

产生激光的条件

产生激光有三个必要的条件:

1) 有提供放大作用的增益介质作为激光工作物质,其激活粒子有适合于产生受激辐射的能级结构;

2) 有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;

3) 有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。

激光的特点

与普通意义上的光源相比较,激光主要有四个显著的特点:方向性好、亮度极高、单色性好、相干性好。

激光器

激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生

相关文档
最新文档