2019_2019学年高中数学第二章解析几何初步2.1.3两条直
高中数学第2章平面解析几何2.2直线及其方程2.2.3两条直线的位置关系第2课时两条直线的垂直课件新
(2)A,B 两点在直线 l 的同侧,P 是直线 l 上的一点, 则||PB|-|PA||≤|AB|, 当且仅当 A,B,P 三点共线时, ||PB|-|PA||取得最大值,为|AB|, 点 P 即是直线 AB 与直线 l 的交点, 又直线 AB 的方程为 y=x-2, 解yx= -x2-y+28,=0, 得xy= =1120, , 故所求的点 P 的坐标为(12,10).
2.常用对称的特例 (1)A(a,b)关于 x 轴的对称点为 A′(a,-b); (2)B(a,b)关于 y 轴的对称点为 B′(-a,b); (3)C(a,b)关于直线 y=x 的对称点为 C′(b,a); (4)D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); (5)P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); (6)Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).
解
题型四 平行与垂直的综合应用
例 4 已知 A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接 A,B,
C,D 四点,试判定图形 ABCD 的形状.
[解] 由题意知 A,B,C,D 四点在坐标平面内的位置,如图所示,由
斜率公式可得
kAB=2-5--34=13,
kCD=-0- 3-36=13,
mn--02=-2, 则
m+2 n+0 2 -2· 2 +8=0,
解得mn==8-,2,
故 A′(-2,8).
解
因为 P 为直线 l 上的一点, 则|PA|+|PB|=|PA′|+|PB|≥|A′B|, 当且仅当 B,P,A′三点共线时,|PA|+|PB|取得最小值,为|A′B|,点 P 即是直线 A′B 与直线 l 的交点, 解xx= -- 2y+2,8=0, 得xy= =- 3,2, 故所求的点 P 的坐标为(-2,3).
2018-2019学年高中数学 第2章 平面解析几何初步 2.1 直线与方程 2.1.3 两条直
2.1.3 两条直线的平行与垂直[学业水平训练]1.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =________;若l 1∥l 2,则b =________.解析:l 1⊥l 2时,k 1k 2=-1,由一元二次方程根与系数的关系得k 1k 2=-b 2,∴-b 2=-1,得b =2.l 1∥l 2时,k 1=k 2,即关于k 的二次方程2k 2-3k -b =0有两个相等的实根,∴Δ=(-3)2-4×2·(-b )=0,即b =-98. 答案:2 -982.设a ∈R ,如果直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行,那么a =________.解析:当a =0时,l 1:y =12,l 2:x +y +4=0,这两条直线不平行;当a =-1时,l 1:x -2y +1=0,l 2:x +4=0,这两条直线不平行;当a ≠0且a ≠-1时,l 1:y =-a 2x +12,l 2:y =-1a +1x -4a +1,由l 1∥l 2得-a 2=-1a +1且12≠-4a +1,解得a =-2或a =1. 答案:-2或13.如图,已知△ABC 的三个顶点坐标分别为A (-1,1),B (1,5),C (-3,2),则△ABC 的形状为________.解析:因为k AB =1-5-1-1=-4-2=2,k AC =1-2-1--=-12,所以k AB ·k AC =-1,且A 、B 、C 、D 4点不共点,所以AB ⊥AC ,即∠BAC =90°.所以△ABC 是直角三角形.答案:直角三角形4.已知A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥CD ;③AC ∥BD ;④AC ⊥BD ,其中正确的序号为________.解析:k AB =-4-26--=-35,k CD =12-62-12=-35,且A 、B 、C 、D 4点不共线,所以AB ∥CD ,k AC =6-212--=14,k BD =12--2-6=-4, k BD ·k AC =-1,所以AC ⊥BD .答案:①④5.已知P (-2,m ),Q (m,4),M (m +2,3),N (1,1),若直线PQ ∥直线MN ,则m =________. 解析:当m =-2时,直线PQ 的斜率不存在,而直线MN 的斜率存在,MN 与PQ 不平行,不合题意;当m =-1时,直线MN 的斜率不存在,而直线PQ 的斜率存在,MN 与PQ 不平行,不合题意;当m ≠-2且m ≠-1时,k PQ =4-m m --=4-m m +2, k MN =3-1m +2-1=2m +1,因为直线PQ ∥直线MN , 所以k PQ =k MN ,即4-m m +2=2m +1,解得m =0或m =1.经检验m =0或m =1时直线MN ,PQ 都不重合.综上,m 的值为0或1.答案:0或16.已知两条直线ax +4y -2=0与直线2x -5y +c =0互相垂直,垂足为(1,b ),则a +c -b =________.解析:∵k 1k 2=-1,∴a =10.∵垂足(1,b )在直线10x +4y -2=0上,∴b =-2.将(1,-2)代入2x -5y +c =0得c =-12,故a +c -b =0.答案:07.(1)求与直线y =-2x +10平行,且在x 轴、y 轴上的截距之和为12的直线的方程;(2)求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程.解:(1)设所求直线的方程为y =-2x +λ,则它在y 轴上的截距为λ,在x 轴上的截距为12λ,则有λ+12λ=12, ∴λ=8.故所求直线的方程为y =-2x +8,即2x +y -8=0.(2)法一:由直线方程2x +3y +5=0得直线的斜率是-23, ∵所求直线与已知直线平行,∴所求直线的斜率也是-23. 根据点斜式,得所求直线的方程是y +4=-23(x -1), 即2x +3y +10=0.法二:设所求直线的方程为2x +3y +b =0,∵直线过点A (1,-4),∴2×1+3×(-4)+b =0,解得b =10.故所求直线的方程是2x +3y +10=0.8.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判断▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧ 0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧ a =-1,b =6,∴D (-1,6).(2)∵k AC =4-23-1=1,k BD =6-0-1-5=-1, ∴k AC ·k BD =-1,∴AC ⊥BD .∴▱ABCD 为菱形.[高考水平训练]1.已知A (1,-1),B (2,2),C (3,0)三点,若存在点D ,使CD ⊥AB ,且BC ∥AD ,则点D 的坐标为________.解析:设点D 的坐标为(x ,y ).因为k AB =2--2-1=3,k CD =y x -3, 且CD ⊥AB ,所以k AB ·k CD =-1,即3×yx -3=-1. ①因为k BC =2-02-3=-2,k AD =y +1x -1, 且BC ∥AD ,所以k BC =k AD ,即-2=y +1x -1, ② 由①②得x =0,y =1,所以点D 的坐标为(0,1).答案:(0,1)2.△ABC 的顶点A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,则m 的值为________.解析:若∠A 为直角,则AC ⊥AB ,所以k AC ·k AB =-1,即m +12-5·1+11-5=-1,得m =-7; 若∠B 为直角,则AB ⊥BC ,所以k AB ·k BC =-1,即1+11-5·m -12-1=-1,得m =3; 若∠C 为直角,则AC ⊥BC ,所以k AC ·k BC =-1,即m +12-5·m -12-1=-1,得m =±2. 综上可知,m =-7或m =3或m =±2.答案:-7或±2或33.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值. 解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-m +, k CD =3m +2-m 3--m =m +m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.4.在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t,2+t ),R (-2t,2),其中t >0.试判断四边形OPQR 的形状.解:如图所示,由已知两个点的坐标得:k OP =t -01-0=t , k RQ =+t -2-2t --2t=t , k OR =2-0-2t -0=-1t. k PQ =t -+t 1--2t =-1t, 所以k OP =k RQ ,k OR =k PQ ,所以OP ∥RQ ,OR ∥PQ ,所以四边形OPQR 是平行四边形;又k OP ·k OR =t ·(-1t)=-1, 所以OP ⊥OR ,∠POR 是直角, 所以四边形OPQR 是矩形;过点P 作PA ⊥x 轴,垂足为A , RB ⊥x 轴,垂足为B ,那么由勾股定理得: OP 2=OA 2+AP 2=1+t 2.∴OP =1+t 2,OR 2=OB 2+BR 2=(-2t )2+22=4(1+t 2),∴OR =21+t 2.∴OP ≠OR ,所以四边形OPQR 不是正方形, 综上可知,四边形OPQR 是矩形.。
高中数学 第二章 平面解析几何初步 2.1 平面直角坐标
2.1 平面直角坐标ຫໍສະໝຸດ 中的基本公式课程目标1.理解实数与数轴上的点的对应关 系,理解实数与位移的对应关系. 2.掌握数轴上两点间的距离公式,理 解数轴上的向量加法的坐标运算. 3.探索并掌握平面直角坐标系中两 点的距离公式和中点公式. 4.通过对两点的距离求解过程的探 索,进一步体会“坐标法”的基本思 想,学会构造直角三角形解决问题的 基本思路.
思考 4 点 P(x,y)关于点 G(x0,y0)的对称点的坐标是什么?
提示:点 P(x,y)关于点 G(x0,y0)的对称点的坐标为(2x0-x,2y0-y).
思考 5 教材中的“?”
如果数轴上的单位长取作 1 cm,你能在数轴上标出数 0.001,0.000 1 和 2对应的点吗?你能说明在数轴上确实存在这些点吗?
若 AB∥x 轴或与 x 轴重合,则|AB|=|x2-x1|;若 AB∥y 轴或与 y 轴重合,则 |AB|=|y2-y1|.
思考 3 算术平方根 ������2 + ������2的几何意义是什么?
提示: ������2 + ������2表示点(x,y)到原点的距离.
3.中点公式 (1)直线上的中点坐标公式. 已知数轴上两点 A(x1),B(x2),则线段 AB 的中点 M 的坐标为������1+2������2. (2)平面内的中点坐标公式. 设平面内两点 A(x1,y1),B(x2,y2)的中点 M(x,y),则 x=������1+2������2,y=������1+2 ������2.
2.平面直角坐标系中的基本公式 平面直角坐标系中两点 A(x1,y1),B(x2,y2)的距离公
式:d(A,B)= (������2-������1)2 + (������2-������1)2.
【K12教育学习资料】2018-2019学年高中数学 第二章 解析几何初步 2.1.3 两条直线的位
2.1.3 两条直线的位置关系[A.基础达标]1.下列说法正确的是( )A .如果两条直线平行,则它们的斜率相等B .如果两条直线垂直,则它们的斜率互为负倒数C .如果两条直线斜率之积为-1,则这两条直线互相垂直D .如果直线的斜率不存在,则这条直线一定平行于y 轴解析:选C.不论两直线平行还是垂直都要考虑两直线斜率不存在的情况,A 、B 忽略斜率不存在,D 忽略了直线与y 轴重合.2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解析:选A.直线x -2y -2=0的斜率为12,所以所求直线的斜率为12.故所求直线方程为y -0=12(x -1),即x -2y -1=0. 3.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0解析:选B.因为k AB =2-11-3=-12, 所以所求直线的斜率为2.又线段AB 的中点为⎝ ⎛⎭⎪⎫2,32, 故线段AB 的垂直平分线方程为y -32=2(x -2), 即4x -2y -5=0.4.已知点A (m ,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( )A .1B .0C .0或2D .0或1解析:选D.因为AB ∥CD ,所以m +4-32m -m =2-0m +1-1, 解得m =1.当m =0时,直线AB 为y 轴,直线CD 为x =1,两直线平行,故若两直线平行则m =0或1.5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( )A .梯形B .平行四边形C .菱形D .矩形解析:选B.如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-316, 故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直.所以四边形ABCD 为平行四边形.6.已知直线l 1:2x +(λ+1)y -2=0,l 2:λx +y -1=0,若l 1∥l 2,则λ的值是________. 解析:因为l 1∥l 2,所以2×1-(λ+1)λ=0,即λ2+λ-2=0,解得λ=-2或λ=1.当λ=1时,l 1与l 2重合,不符合题意.所以λ=-2.答案:-27.已知直线l 1过点A (-2,3),B (4,m ),直线l 2过点M (1,0),N (0,m -4),若l 1⊥l 2,则常数m 的值是________.解析:由已知得k AB =m -34-(-2)=m -36, k MN =m -4-1=4-m . 因为AB ⊥MN ,所以m -36×(4-m )=-1, 即m 2-7m +6=0,解得m =1或m =6,经检验m =1或m =6适合题意.答案:1或68.已知点P (0,-1),点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标是________.解析:依题意设点Q 的坐标为(a ,b ),则有⎩⎪⎨⎪⎧a -b +1=0,b +1a·⎝ ⎛⎭⎪⎫-12=-1, 解得⎩⎪⎨⎪⎧a =2,b =3.故点Q 的坐标为(2,3). 答案:(2,3)9.已知定点A (-1,3),B (4,2),以A ,B 为直径作圆与x 轴有交点C ,求交点C 的坐标.解:因为以线段AB 为直径的圆与x 轴相交于点C ,所以AC ⊥CB .据题设条件可知AC 与BC 的斜率均存在(如图),设C (x ,0),则k AC =-3x +1,k BC =-2x -4. 所以-3x +1·-2x -4=-1,解得x =1或2. 所以C (1,0)或C (2,0).10.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判定▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧0-25-1=b -4a -3,b -2a -1=4-03-5.解得⎩⎪⎨⎪⎧a =-1,b =6.所以D (-1,6). (2)因为k AC =4-23-1=1,k BD =6-0-1-5=-1, 所以k AC ·k BD =-1.所以AC ⊥BD .所以▱ABCD 为菱形.[B.能力提升]1.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C.由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1, 故y +52·⎝⎛⎭⎪⎫-y -66=-1, 解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).2.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)四点所组成的图形是( )A .平行四边形B .直角梯形C .等腰梯形D .以上都不对解析:选B.观察知连接后各边所在直线斜率都存在.因为k AB =5-32-(-4)=13,k CD =0-3-3-6=13,所以AB ∥CD .又k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12,所以AD 与BC 不平行,且AD ⊥CD .所以四边形ABCD 为直角梯形.3.若直线l 经过点(a -2,-1)和(-a -2,1)且与经过点(-2,1),斜率为-23的直线垂直,则实数a 的值为________.解析:由题意知两直线的斜率均存在,且直线l 与斜率为-23的直线垂直,则直线l 的斜率为32,于是32=1-(-1)(-a -2)-(a -2)=2-2a =-1a ,解得a =-23. 答案:-234.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析:由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8,故面积最小时k =18. 答案:185.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4-(-m -3)=2-(m +1), k CD =3m +2-m 3-(-m )=2(m +1)m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.6.(选做题)直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,且直线l 1与l 2平行,l 2是线段AB 的垂直平分线,A (1,m -1),B (m ,2),试求m 的值.解:因为直线l 1的倾斜角为30°+30°=60°,所以直线l 1的斜率k 1=tan 60°= 3.又直线AB 的斜率为m -1-21-m =m -31-m, 所以AB 的垂直平分线l 2的斜率k 2=m -1m -3. 因为直线l 1与l 2平行,所以k 1=k 2, 即3=m -1m -3,解得m =4+ 3.。
高中数学 第二章 解析几何初步2.1.2.1 直线方程的点斜式
一般式推导
01 已知直线上一点$P_1(x_1, y_1)$和斜率k,则直线 的点斜式为$y - y_1 = k(x - x_1)$。
02 将点斜式展开,得到$y = kx - kx_1 + y_1$。
02 整理后可得一般式:$kx - y + (y_1 - kx_1) = 0$ ,其中A=k,B=-1,C=$y_1 - kx_1$。
已知直线上一点和斜率,可以直接套用点斜式求 出直线方程。
02 判断两直线是否平行
若两直线斜率相等且不重合,则两直线平行。利 用点斜式可以方便地求出两直线的斜率并进行比 较。
03 解决与直线相关的问题
如求点到直线的距离、判断点是否在直线上等, 都可以通过点斜式进行求解。
03
两点式直线方程
两点式定义
直线方程形式
点斜式
已知直线上一点 $(x_1, y_1)$ 和斜率 $m$,则直线方程可 表示为 $y - y_1 = m(x - x_1)$。
斜截式
已知直线斜率 $m$ 和在 $y$ 轴上的截距 $b$,则直线方程可 表示为 $y = mx + b$。
两点式
已知直线上两点 $(x_1, y_1)$ 和 $(x_2, y_2)$,则直线 方程可表示为 $frac{y - y_1}{y_2 - y_1} = frac{x - x_1}{x_2 x_1}$。
直线方程在几何中的应用
平行与垂直判断
平行直线
两条直线的斜率相等且不重合, 则这两条直线平行。
垂直直线
两条直线的斜率互为相反数的倒 数,则这两条直线垂直。
距离计算
点到直线距离
利用点到直线距离公式,可以求出点 到直线的垂直距离。
北师大版高中数学必修2第二章《解析几何初步》2.1《直线与直线的方程(5)》教案
第五课时 直线的一般式方程一、教学目标1、知识与技能:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
二、教学重点、难点1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
三、教学方法:探析交流法 四、教学过程问 题设计意图 师生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于yx ,的二元一次方程表示吗?(2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系。
教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。
对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。
为此要对B 分类讨论,即当0≠B 时和当B=0时两种情形进行变形。
然后由学生去变形判断,得出结论:关于y x ,的二元一次方程,它都表示一条直线。
教师概括指出:由于任何一条直线都可以用一个关于y x ,的二元一次方程表示;同时,任何一个关于y x ,的二元一次方程都表示一条直线。
我们把关于关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程的一般式的与其他形 学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:问 题设计意图 师生活动式的不同点。
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x 轴垂直的直线。
北师大版必修2高中数学第2章《解析几何初步》1两条直线的位置关系导学案
高中数学 第2章《解析几何初步》1两条直线的位置关系导学案北师大版必修2【学习目标】1.理解两条直线平行与垂直的充要条件;2.能根据直线的方程判断两条直线的位置关系.【重点难点】重点:理解直线平行与垂直的充要条件,能判断两条直线的位置关系. 难点:直线斜率为零或不存在时的位置关系讨论.【自主学习】1.两条直线平行:如果两条不重合的直线1l :11b x k y +=和2l :22b x k y +=(21b b ≠)若12//l l ,则 ;反之,若21k k =,则 .如果两条直线的斜率都不存在,那么它们的位置关系是或 .2.两条直线垂直:设两条直线1l :11b x k y +=和2l :22b x k y +=若12l l ⊥,则 ;反之,若1-k k 21=∙,则 .特别地,如果一条直线1l 的斜率不存在...且方程为x=a ,另一条直线2l 的斜率为0且方程为y=b,那么它们的位置关系是 .3.判断下列各对直线是否平行或垂直:(1)1l :2x 3y +=与2l :5x 3y +=;(2)1l :1x 2y +=与2l :x 3y =;(3)1l :6y 3x 5=+与2l :5y 5x 3=-;(4)1l :2x 4y +=与2l :3x 41-y +=;(5)1l :3y =与2l :15x =(6)1l :2x =与2l :7x =【合作探究】1.已知直线09y 4x 3=--与02y 2ax =++垂直,求a 的值.2.求m 的值,使过点A(m,1),B(-1,m)的直线与过点P(1,2), Q(-5,0)的直线.(1)平行;(2)垂直.【课堂小结】。
高中数学 两条直线的平行与垂直---垂直
l1 l2
y2
0
x1
x
l1 l2
Page
5
y
T
L1
2.k1和k2都存在情况下的垂直 如图,两直线L1与L2垂直
ST PQ k1 = ,k2 PS QR
O
P Q R
S
x L2
即 反之:
由于TPS RPQ,所以RtPST ∽ RtPQR ST QR 1 故 从而 k 1 PS PQ k2
两直线斜率存在吗? 斜率存在时,怎样确定两直线垂直?
Page
11
3 例2(2)已知直线L1的斜率k1 , 直线L2经过点A(3a,-2), 4 2 B(0,a +1),且L1 L2,求实数a的值.
由两直线垂直,能得到什么结论? 它与a有关系吗?
Page
12
例3、已知三角形的顶点A(2,4),B(1,-2),C(-2,3), 求BC边上的高AD所在的直线方程.
Page 16
Page
17
y
C
D -4
分析:
A
3
确定直线方程需要几个条件? 已知什么?
o
-3
2
x
还缺什么? 怎么解决?
B
Page
13
练习2:
一、判断下列两直线是否垂直,并说明理由.
(1) l1 : y 3x 1
1 l2 : y x 8 3
l2 : Байду номын сангаас x 3 y 7
(2) l1 : 3x 4 y 6
第2章 平面解析几何初步
2.1.3 两条直线的平行与垂直
---垂直
一、复习提问:
当直线 l1和直线 l 2有斜截式方程
高中数学第二章解析几何初步2.1.3两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2
高中数学第二章解析几何初步2.1.3两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2课后篇巩固探究A组基础巩固1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0解析设直线方程为x-2y+c=0(c≠-2),又经过(1,0),故c=-1,所求方程为x-2y-1=0.答案A2.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7B.0或7C.0D.4解析∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或m=7,经检验都符合题意.故选B.答案B3.直线l1:kx+(1-k)y-3=0和l2:(k-1)x+(2k+3)y-2=0互相垂直,则k的值为()A.-3或-1B.3或1C.-3或1D.-1或3解析若1-k=0,即k=1,直线l1:x=3,l2:y=,显然两直线垂直.若k≠1,直线l1,l2的斜率分别为k1=,k2=.由k1k2=-1,得k=-3.综上k=1或k=-3,故选C.答案C4.已知点A(1,2),B(3,1),线段AB的中点D,则线段AB的垂直平分线的方程是()A.4x+2y-5=0B.4x-2y-5=0C.x+2y-5=0D.x-2y-5=0解析因为k AB==-,所以所求直线的斜率为2.又线段AB的中点D为,所以线段AB的垂直平分线方程为y-=2(x-2),即4x-2y-5=0.答案B5.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)四点所组成的图形是()A.平行四边形B.直角梯形C.等腰梯形D.以上都不对解析由斜率公式可得k AB=k CD=,而k AD=-3,k BC=-.所以AB∥CD,且AD与BC不平行.所以四边形ABCD为梯形.又k AD·k AB=-1,所以AD⊥AB,所以四边形ABCD为直角梯形.答案B6.已知A(3,),B(2,0),直线l与AB平行,则直线l的倾斜角为.解析由已知得k AB=,因此k l=k AB=.因为tan60°=,所以直线l的倾斜角为60°.答案60°7.已知点P(0,-1),点Q在直线x-y+1=0上,若直线PQ垂直于直线x+2y-5=0,则点Q的坐标是.解析依题意设点Q的坐标为(a,b),则有解得故点Q的坐标为(2,3).答案(2,3)8.已知l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则下列说法正确的是(填序号).①若l1⊥l2,则A1A2+B1B2=0②若l1⊥l2,则=-1③若A1A2+B1B2=0,则l1⊥l2④若=-1,则l1⊥l2.解析当B1,B2均不为0时,由两条直线垂直可得-=-1,即A1A2+B1B2=0;当B1=0,A2=0或A1=0,B2=0时,两条直线也垂直,并满足A1A2+B1B2=0.由此可知①③④正确,②错.答案①③④9.(1)求与直线5x+3y-10=0平行且与x轴的交点到原点的距离为2的直线方程;(2)求经过点(0,2)且与直线l:2x-3y-3=0垂直的直线方程.解(1)设直线方程为5x+3y+m=0(m≠-10).因为直线与x轴的交点到原点的距离为2,且直线与x轴的交点为,所以=2,解得m=±10.又因为m≠-10,所以m=10,所以直线方程为5x+3y+10=0.(2)因为所求直线与直线l:2x-3y-3=0垂直,所以可设所求直线的方程为3x+2y+m=0.又因为所求直线过点(0,2),所以4+m=0,解得m=-4,故所求直线的方程为3x+2y-4=0.10.导学号91134044已知A(1,-1),B(2,2),C(3,0)三点.(1)求点D,使直线CD⊥AB,且BC∥AD;(2)判断此时四边形ACBD的形状.解(1)如图,设D(x,y),则由CD⊥AB,BC∥AD,可知得解得即点D坐标为(0,1).(2)∵k AC=,k BD=,∴k AC=k BD.∴AC∥BD,∴四边形ACBD为平行四边形.而k BC==-2,∴k BC·k AC=-1.∴AC⊥BC,∴四边形ACBD是矩形.∵DC⊥AB,∴四边形ACBD是正方形.B组能力提升1.若过点A(-2,2),B(5,0)的直线与过点P(2m,1),Q(-1,m)的直线平行,则m的值为()A.-1B.3C.2D.解析由已知k AB=k PQ,得,解得m=3,故选B.答案B2.已知直线l1:mx+4y-2=0与l2:2x-5y+n=0互相垂直且垂足为(1,p),则m-n+p的值为()A.24B.20C.0D.-8解析因为l1⊥l2,所以2m+4×(-5)=0,解得m=10,又点(1,p)在l1上,所以10+4p-2=0,即p=-2,因为点(1,p)在l2上,所以2×1-5p+n=0,得n=-12.所以m-n+p=10-(-12)+(-2)=20.答案B3.已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有()A.b=a3B.b=a3+C.(b-a3)=0D.|b-a3|+=0解析若△OAB为直角三角形,则∠A=90°或∠B=90°.当∠A=90°时,有b=a3;当∠B=90°时,有=-1,得b=a3+.故(b-a3)=0,选C.答案C4.已知直线l的倾斜角为135°,直线l1经过点A(3,2),B(a,-1),且直线l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b=.解析依题意知,直线l的斜率为k=tan135°=-1,则直线l1的斜率为1,于是有=1,所以a=0.又直线l2与l1平行,所以1=-.即b=-2,所以a+b=-2.答案-25.与直线2x+3y+5=0平行,且在两坐标轴上截距之和为的直线的方程为.解析所求直线与直线2x+3y+5=0平行,则其斜率为-,可设直线方程为y=-x+b,令y=0,得x=b,由题意可得b+b=,解得b=,所以所求直线的方程为y=-x+,即2x+3y-4=0.答案2x+3y-4=06.若三条直线2x-y+4=0,x-y+5=0和2mx-3y+12=0围成直角三角形,则m=. 解析设l1:2x-y+4=0,l2:x-y+5=0,l3:2mx-3y+12=0,l1不垂直于l2,要使围成的三角形为直角三角形,则l3⊥l1或l3⊥l2.由l3⊥l1得2×m=-1,∴m=-;由l3⊥l2得1×m=-1,∴m=-.答案-或-7.已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的点P的坐标.(1)∠MOP=∠OPN(O为坐标原点);(2)∠MPN是直角.解设P(x,0),(1)∵∠MOP=∠OPN,∴MO∥PN,∴k OM=k NP,又k OM==1,k NP=.∴=1,解得x=7,即点P为(7,0).(2)∵∠MPN=90°,∴MP⊥NP,∴k MP·k NP=-1.∵k MP=,k NP=,∴=-1,解得x=1或x=6.∴P为(1,0)或(6,0).8.导学号91134045如图,一个矩形花园里需要铺设两条笔直的小路,已知矩形花园长|AD|=5 m,宽|AB|=3 m,其中一条小路定为AC,另一条小路过点D,如何在BC上找到一点M,使得两条小路AC与DM互相垂直?解如图,以点B为原点,分别以BC,BA所在直线为x轴、y轴建立平面直角坐标系,单位:m.由|AD|=5m,|AB|=3m得C(5,0),D(5,3),A(0,3).设点M的坐标为(x,0),∵AC⊥DM,∴k AC·k DM=-1,即=-1,解得x=.故当|BM|=3.2m时,两条小路AC与DM互相垂直.。
高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案
|a| = |b|
⋯⋯②
由 ①② 解得 a = b = 5 或 a = −1 ,b = 1 ,所以直线方程为 x + y − 5 = 0 或 x − y + 1 = 0. (ii)当 a = b = 0 时,直线过原点和 P (2, 3) ,所以直线方程为 3x − 2y = 0 . 综上可知,所求直线方程为 x + y − 5 = 0 或 x − y + 1 = 0 或 3x − 2y = 0 . 已知三角形的顶点是 A(−5, 0) ,B(3, −3) ,C (0, 2) ,求 AC 边所在直线的方程,以及该边上的 中线所在直线的方程. 解:过点 A(−5, 0) ,C (0, 2) 的两点式方程为
直线的基本量与方程 直线与直线的位置关系 直线的相关计算
三、知识讲解
1.直线的基本量与方程 描述: 直线的倾斜角 当直线l 与x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直 线l 的倾斜角(angle of inclination).直线倾斜角α 的取值范围为0 ∘ ≤ α < 180 ∘ .
2 y − (−3) x−3 由两点式得直线 BD 的方程为 ,整理可得 8x + 11y + 9 = 0 ,这就是 = 1 − (−3) −5 − 3 2 AC 边上的中线所在直线的方程.
⎪ ⎩
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 =#43; B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ; 当 l 1 与 l 2 相交时,则 A 1 B 2 ≠ A 2 B 1 ,特别地,若两直线垂直,则 A 1 A 2 + B 1 B 2 = 0 . 例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交. )
高中数学第二章解析几何初步2.1.4两条直线的交点课件北师大版必修2
① ②
可知,方程②能化为方程①,所以此方程组有无数多个解,
所以这两条直线重合.
(4)l2 的方程即 x-3y+6=0,
2x-6y+1=0 解方程组x-3y+6=0 ,可知方程组无解,
所以这两条直线平行.
1 1.k 为何值时,直线 y=x+3k-2 与直线 y=-4x+1 的交点在第一象限.
[强化拓展] 方程组Байду номын сангаас解的组数与两直线的位置关系如下表:
A1x+B1y+C1=0, 方程组A2x+B2y+C2=0
的解
一组
无数组
无解
直线 l1 和 l2 的公共点个数
一个 无数个 零个
直线 l1 和 l2 的位置关系
相交 重合 平行
[自主练习]
1.直线 3x+5y-1=0 与 4x+3y-5=0 的交点是( )
2 ,解得-3<k<1.
求过两直线交点的直线方程
求经过两直线 l1:3x+4y-2=0 和 l2:2x+y+2=0 的交点且过坐 标原点的直线 l 的方程.
[思路探究] 思路一: 解方程组 ―→ 得交点 ―→ 求斜率 ―→ 写方程 ―→ 化成一般式
思路二: 设过交点直线方程 ―→ 代入原点坐标 ―→ 求得λ的值 ―→ 把λ的值代入所设方程化简
(1)若点 P(x0,y0)是 l1 与 l2 的交点,则__A__2x_0_+__B_2_y_0+__C__2=__0_____.
A1x+B1y+C1=0
x=x0
(2)若两直线方程组成的方程组A2x+B2y+C2=0 有唯一解y=y0 ,则两条直
线 __相__交___ , 交 点 坐 标 为 _(_x_0_,__y0_)__ . 因 此 , 求 两 条 直 线 的 交 点 , 就 是 求 ____两__个__直__线__方__程__的__公__共__解_______.
2019版高中数学 第二章 平面解析几何初步 2.2 直线的方程 2.2.3 第1课时 两条直线相交
第一课时两条直线相交、平行与重合的条件1.下列说法正确的是( C )(A)若两条直线平行,则它们斜率相等(B)若两直线斜率相等,则它们互相平行(C)若两条直线一条直线斜率不存在,另一条斜率存在,则它们一定不平行(D)若两条直线的斜率都不存在,则它们互相平行解析:由两直线位置关系:平行,重合,相交可知,B,D都不正确.而A中可能斜率不存在,故A不正确,故选C.2.直线l1,l2在x轴上的截距都是m,在y轴上的截距都是n,则l1,l2的位置关系是( D )(A)平行(B)重合(C)平行或重合(D)相交或重合解析:当mn≠0时,l1与l2重合;当m=n=0时,l1与l2可能相交,也可能重合,故选D.3.l1经过点A(m,1)、B(-3,4),l2经过点C(1,m),D(-1,m+1),当直线l1与l2平行时,则m的值为( A )(A)3 (B)-1 (C)-3 (D)1解析:显然m≠-3,k AB==,k CD==-.又因为l1∥l2,所以=-,即m=3.故选A.4.与直线2x+3y-6=0关于点(1,-1)对称的直线是( D )(A)3x-2y+2=0 (B)2x+3y+7=0(C)3x-2y-12=0 (D)2x+3y+8=0解析:由中心对称知识可知:所求直线与已知直线2x+3y-6=0平行,则可设所求直线为2x+3y+c=0.在2x+3y-6=0上任取一点(3,0),则(3,0)关于点(1,-1)的对称点(-1,-2)必在所求直线上,所以2×(-1)+3× (-2)+c=0,即c=8,故选D.5.满足下列条件的直线l1与l2,其中l1∥l2的是( D )①l1的斜率为2,l2过点A(1,2),B(4,8);②l1经过点P(3,3), Q(-5,3), l2平行于x轴,但不经过P点;③l1经过点M(-1,0),N(-5,-2),l2经过点R(-4,3),S(0,5).(A)①②(B)②③(C)①③(D)①②③解析:①由l1斜率k1=2,l2斜率k2==2,则l1∥l2;②由k1==0,k2=0,则l1∥l2;③k1==,k2==,则l1∥l2.故选D.6.已知两点A(-2,1),B(4,3),两直线l1:2x-3y-1=0,l2:x-y-1=0.求:(1)过点A且与直线l1平行的直线方程;(2)过线段AB的中点以及直线l1与l2的交点的直线方程.解:(1)设与l1:2x-3y-1=0平行的直线方程为2x-3y+c=0,将A(-2,1)代入,得-4-3+c=0,解得c=7,故所求直线方程是2x-3y+7=0.(2)因为A(-2,1),B(4,3),所以线段AB的中点是M(1,2),设两直线的交点为N,联立解得交点N(2,1),则k MN==-1,故所求直线的方程为y-2=-(x-1),即x+y-3=0.7.已知集合A={(x,y)|x+a2y+6=0},集合B={(x,y)|(a-2)x+3ay+2a=0},若A∩B=∅,则a的值是( D )(A)3 (B)0 (C)-1 (D)0或-1解析:A∩B=∅,即直线l1:x+a2y+6=0与l2:(a-2)x+3ay+2a=0平行,令1×3a=a2(a-2),解得a=0或a=-1或a=3.a=0时,l1:x+6=0,l2:x=0,l1∥l2.a=-1时,l1:x+y+6=0,l2:-3x-3y-2=0.l1∥l2.a=3时,l1:x+9y+6=0,l2:x+9y+6=0,l1与l2重合,不合题意.所以a=0或a=-1.8.如果直线ax+y-4=0与直线x-y-2=0相交于第一象限,则实数a的取值范围是( A )(A)-1<a<2 (B)a>-1(C)a<2 (D)a<-1或a>2解析:法一将直线ax+y-4=0与直线x-y-2=0的方程联立解得(a+1)x=6,要使交点在第一象限,则应使a+1>0,所以a>-1,再由(a+1)y+2a-4=0,y=>0,解得-1<a<2,所以-1<a<2.法二如图由y-4=-ax可知:直线ax+y-4=0表示经过定点(0,4),且斜率k=-a的直线,当直线ax+y-4=0与x-y-2=0在第一象限相交时,即过点(0,4)的直线,从直线l1的位置(过点(2,0)),沿逆时针旋转到直线l2的位置.(平行于x-y-2=0)此时直线的斜率k的取值范围是-2<k<1,又k=-a,所以-2<-a<1,即-1<a<2,故选A.9.P1(x1,y1)是直线l:f(x,y)=0上一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0所表示的直线与l的关系是( B )(A)重合(B)平行(C)垂直(D)位置关系不定解析:因为P1点在直线l上,所以f(x1,y1)=0,又因为P2点不在直线l上,所以f(x2,y2)≠0,所以f(x,y)+f(x1,y1)+f(x2,y2)=0,即f(x,y)+f(x2,y2)=0,所以直线l与方程表示的直线平行.10.已知两直线a1x+b1y+3=0和a2x+b2y+3=0的交点是(2,3),则过两点P(a1,b1),Q(a2,b2)的直线方程是.解析:因为直线a1x+b1y+3=0和a2x+b2y+3=0的交点是(2,3),所以故过P(a1,b1),Q(a2,b2)的直线方程为2x+3y+3=0.答案:2x+3y+3=011.若三条直线l1:4x+y+4=0,l2:mx+y+1=0,l3:x-y+1=0不能构成三角形,求m的值.解:显然l1与l3不平行,当l1∥l2或l2∥l3时不能构成三角形,此时对应m的值分别为m=4,m=-1;当直线l1,l2,l3经过同一点时,也不能构成三角形.由得代入l2的方程得-m+1=0,即m=1.综上可知,m=4或m=-1或m=1.12.已知直线l1:(m-2)x+2y+m-2=0,l2:2x+(m-2)y+3=0,当m为何值时,满足下列条件(1)l1与l2相交;(2)l1∥l2;(3)l1与l2重合.解:(1)A1B2-A2B1=(m-2)(m-2)-2×2=(m-2)2-4≠0,得m≠4且m≠0,所以当m≠4且m≠0时l1与l2相交.(2)由A1B2-A2B1=0得m=0或m=4,当m=0时,两直线方程分别为-2x+2y-2=0,2x-2y+3=0,此时l1∥l2;当m=4时,两直线方程为2x+2y+2=0,2x+2y+3=0,此时l1∥l2,故m=0或m=4,两直线l1∥l2.(3)由(2)知:直线l1与l2不可能重合.。