第三章 平面一般力系

合集下载

《工程力学》第三章 平面一般力系

《工程力学》第三章  平面一般力系
• 运用解析法:在力系所在平面上取坐标系 O -xy(图3-3(a)),应用合力投影定理, 则由(3-2)式得
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力

建筑力学-第三章(全)

建筑力学-第三章(全)

建筑力学
3.5 平面一般力系平衡条件和平衡方程
众所周知,当主矢 FR 0 时,为力平衡;当主矩 MO 0 时,为力偶平衡。
故平面任意力系平衡的充要条件为: 力系的主矢 FR和 主矩 都M O等于零。
上述平衡条件可表示为
FR ( Fx )2 ( Fy )2 0
Mo Mo (Fi ) 0
YA
XA
A
Q1=12kN
300 S
Q2=7kN 三力矩方程:再去掉Σ X=0方程 B
mC 0, X A60tg300 30Q1 60Q2 0
D
(二)力系的平衡
示例:斜梁。求支座反力
300
2kN/m B
2kN/m B
300
RB
A
300
A
2m
YA XA
C
X 0, X A RB sin 300 0
30cm
30cm Q1=12kN
Q2=7kN
X 0, X A S cos 300 0

X A 22.5kN
A
600
B
Y 0,YA Q1 Q2 S sin 300 0

YA 6kN
二力矩方程:去掉Σ Y=0方程
C
mB 0, 60YA 30Q1 0
FBl cos M 0
从而有:
FB

M l cos

20 kN 5 c os30

4.62kN
故:
FA FB 4.26kN
建筑力学
[例] 求图中荷载对A、B两点之矩.
解:
(a)
(b)
图(a): MA = - 8×2 = -16 kN ·m MB = 8×2 = 16 kN ·m

平面一般力系

平面一般力系
的转向而定。



平面一般力系的简化结果分析:
平面一般力系向一点简化,一般可得到一个主矢F ' 和一个 主矩MO,但这不是最终简化结果,最终简化结果通常有以下四 种情况: 1、F'=0, MO ≠0 表明原力系与一个力偶等效,原力
系简化为一个合力偶,其力偶矩为MO=∑MO( F ),此时主矩 MO与简化中心的选择无关。 2、F'≠0, MO =0 表明原力系与一个主矢量F' 等效,
d MO F'
4、F' =0, MO =0 表明原力系为平衡力系,则刚体在此 力系作用下处于平衡状态。
平面一般力系由O点向任意点O’简化:
{F1,F2 · · · Fn}简化得{F’,MO ’ } MO’= MO ± F’ · d (如图所示) 故,只要平面一般力系向某一点简化的结果为: F’=0, MO =0 则,该力系向任一点的简化结果都为: F’=0, MO =0
O为任 意点
图a
图b
图c
平面一般力系的简化过程
O为任 意点
F’
平面一般力系 (未知力系) {F1 , F2 , · · · Fn} 平面汇交力系 平面力偶系
向一点简化
平面汇交力系+平面力偶系 (可知力系) {F1’, F’2 , · · · F’n} + {M1 , M2 , · · · Mn}
合成
下面我们就来证明——
请 Shift+F5
有一力系作用 于刚体平面内
将各力向A点简化 并求出合力 F F1 F3 F2
这是求合力的方法 之一
F2
F3 C B
F3
F F2 A F1
A
A

理论力学 第三章 平面力系

理论力学 第三章 平面力系

FBl cos M 0

M 20 k N m FB 4.62 kN l cos 5 m cos 30
FA FB 4.62kN

目录
第三章 平面力系\力的平移定理
3.3 力的平移定理
作用于刚体上的力,可平行移动到刚体内任一指定点,但必须 在该力与指定点所决定的平面内同时附加一力偶,此附加力偶的矩 等于原力对指定点之矩。 平面一般力系向一点简化的理论基础是力的平移定理。
设平面汇交力系F1、F2、…、Fn中各力在x、y轴上的投影分 别为Xi、Yi,合力FR在x、y轴上的投影分别为XR、YR,利用公式
F Fx Fy Xi Yj
分别计算式FR=F1+F2+…+Fn=ΣF 等号的左边和右边,可得 FR = XR i+YR j 以及 F1+F2+…+Fn=(X1i+Y1j)+(X2i+Y2j)+…+(Xni+Ynj) =(X1+X2+…+Xn)i+(Y1+Y2+…+Yn)j 比较后得到 X R X1 X 2 X n X YR Y1 Y2 Yn Y 目录
返回
第三章 平面力系
如图(a)所示水坝,通常取单位长度坝段进行受力分析,并将坝 段所受的力简化为作用于坝段中央平面内的一个平面力系[图(b)]。
返回
第三章 平面力系
第三章 平面力系
3.1 平面汇交力系的合成与平衡 3.2 平面力偶系的合成与平衡 3.3 力的平移定理 3.4 平面一般力系向一点简化 3.5 平面一般力系的平衡方程及其应用
第三章 平面力系\平面力偶系的合成与平衡

《工程力学:第三章-力系的平衡条件和平衡方程》解析

《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。

第3章平面一般力系

第3章平面一般力系
平面一般力系包含以下几种特殊力系: (1)平面汇交力系:各力的作用线都在同一平面 内且汇交于一点的力系。 (2)平面平行力系:各力的作用线都在同一平面 内且相互平行的力系。 (3)平面力偶系:各力偶作用面共面。
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
M A / FR 2375.0 / 711.5 d a = AC = = = = 3.52 m o sin ϕ sin ϕ sin 71.6
§3.2 平面任意力系的简化
四、 合力矩定理
平面任意力系的合力对于点O之矩等于原力系对简化中心 O的主矩,即:
M O = M O ( FR ) M O = ∑ M O (F )
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
§3.3 平面任意力系的平衡条件和平衡方程
一、 平面任意力系的平衡方程
′ =0 保证物体移动平衡 由于 FR MO=0 为转动平衡
§3.2 平面任意力系的简化
二、主矢和主矩
建立坐标系oxy
′ = F1 x + F2 x + ⋅⋅⋅ + Fnx = ∑ Fx FRx ′ = F1 y + F2 y + ⋅⋅⋅ + Fny = ∑ Fy FRy
y
MO
r ′ FR
α
O
主矢大小 ′ = ( FR ′x )2 + ( FR ′y )2 = ( ∑ Fx )2 + ( ∑ Fy ) 2 FR 主矢方向 r r ′,i ) = cos( FR

第三章.平面力系的合成与平衡

第三章.平面力系的合成与平衡

各力首尾相接
§3-1 平面汇交力系的合成与平衡
例4
已知:
系统如图,不计杆、轮自重,忽略滑轮大小,P=20kN; 求:系统平衡时,杆AB、BC受力。 解:AB、BC杆为二力杆, 取滑轮B(或点B),画受力图。
用解析法,建图示坐标系。
F
x
0
FBA F1 cos 60 F2 cos 30 0
Fy F cos F Fx Fy
Fx cos F
Fx
x
O
Fx
F Fx2 Fy2
cos
Fy F
§3-1 平面汇交力系的合成与平衡 3)合力投影定理 平面汇交力系,由三个力组成的力多边形 合力投影定理建立了合力投影与各分力投影的关系
FRx Fix
当 x轴与 y 轴不是正交轴时 :
F Fx Fy
力在坐标轴上的投影不等于力在这个轴上的分量。
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 2)力沿坐标轴的分解 当
Fx Fx
x y
y
Fy Fy
B
Fy
Fx F cos
Fy
A
β α
矢量和
θ
P
FNA 11.4kN FNB 10kN
F
FNB
F
θ P FNA
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 1)力在坐标轴上的投影 F力在 x 轴上的投影:
Fx F cosθ
Fy
Fx
F力在 y 轴上的投影:
Fy F cosβ
3 FR 2 FR1 F3 Fi i 1

平面一般力系

平面一般力系

平面一般力系我们生活在一个相对独立的系统之中,宇宙万物有机地联系在一起,形成了一个整体。

然而这种整体性并非是“固定不变”的,也有破碎的时候,例如发生于地球的小行星撞击。

面对这样的事件,唯一可以采取的态度就是竭尽全力去防止或减缓其危害。

我们知道平面力系是由两个大小相等方向相反的分量构成,所以,我们需要建立一个坐标系,用它来表示这两个分量之间的关系,这样做的好处是可以避免复杂的几何图形计算,提高运算速度,并且这种关系也适合用代数式进行表达,从而使问题更加简单化。

我们把坐标系叫做原点O,并称x轴与y轴分别为x轴与y轴,这就是我们通常所说的x, y轴。

一般情况下,将物体放置在坐标系内,只要其所在的平面保持水平,那么这个物体受到的力都将沿着x轴或y轴方向作用。

如果物体处在某个坐标系内的任意位置,只要它所在的平面不与坐标系原点重合,它受到的力都将沿着x轴或y轴方向作用。

----摘自教科书正文----摘自教科书正文,的确,因为考虑问题方便,物理学家们都普遍认为建立坐标系是有必要的。

但是,我们看到,这样一来,很多物理问题的实质被掩盖住了。

事实上,这些研究工作并没有带来多少实际应用价值,因为真正的难题都隐藏在坐标系里面,而人们却往往错误地认为找出坐标系才是解决问题的根本。

真正值得注意的问题是,为什么坐标系的选择会直接影响物理问题的解决呢?从力学的角度来讲,对于理想化的物体而言,其运动状态和力都是与坐标系的选择无关的,比如一个物体静止在坐标系内,不管在其哪一个位置,对于受力的分析,仅仅需要分析其质心在哪个坐标系内就可以了。

----摘自教科书正文,显然这是不可能的。

可是,既然坐标系是如此重要,为什么还会有那么多的力学家为了追求坐标系的完美而忽视了其他更为基本的力学规律呢?是什么阻碍了科学家们对这个问题的思考呢?一言以蔽之,就是人们对物体的运动状态还没有给予足够的重视,尽管这个问题已经成为物理学的主流研究方向之一。

一旦我们开始研究物体在空间内的运动,或者当物体随着时间的推移而发生变化时,坐标系所带来的麻烦将成倍增长。

第3章-平面与空间一般力系

第3章-平面与空间一般力系
【解】 土压力 FR 可使挡土墙绕A点倾覆,
故求土压力 FR使墙倾覆的力矩,就是求 FR
对A点的力矩。由已知尺寸求力臂d不方便,但如果将
FR分解为两分力 F1 和 F2
M A (FR ) M A (F1) M A (F2 )
F1h / 3 F2b

=FR cos 30
=150kN 3
1h3.5m -F1R50siknN301h1.5m
注意:主矢与简化中心位置无关,主矩则有关。因此说
到力系的主矩时,必须指出是力系对于哪一点的主矩。
主矢的解析表达法
R RX 2 RY 2
RX X1 X 2 X n X1 X 2 X n X
同理: RY Y
R X 2 Y 2
Tan RY Y RX X
M0=∑M0=M0(F1)+M0(F2)+…M0(Fn)=∑M0(F)
又B处的支座反力垂直于支持面,要形成与已知力偶M反向的 力偶,B处的支座反力 FB 方向只能斜向上,A处的支座反力
FA 的方向斜向下,作用线与 FB 平行,且有 FA FB
n
由平衡条件 Mi 0 ,得: i 1
FB d M 0
30°
FB (4m sin 30 ) 20MkN m 0
n
Mi 0
i 1
【例题3-3】 如图3-10(a)所示的简支梁AB,受一力偶的作用。
已知力偶 M 20kN m ,梁长l 4m ,梁的自重不计。 求梁A、B支座处的反力。
30°
M
A B
4m
60°
d
M
A FA
B FB 4m
【解】 取梁AB为研究对象,梁AB上作用一集中力偶M且保持 平衡,由于力偶只能用力偶来平衡,则A、B处的支座反力必形 成一对与已知力偶M反向的力偶

《工程力学》第三章平面一般力系试卷

《工程力学》第三章平面一般力系试卷

1.当驱动外力的合力作用线与摩擦面法线所成的夹角不大于摩擦角时,物体总是处于状态。

(2 分)A.平衡B.运动C. 自由D. 自锁2.一力作平行移动后,新作用点的附加力偶矩一定。

(2 分)A.存在且与平移距离无关B.存在且与平移距离有关C.不存在3.平面一般力系的平衡条件是。

(2 分)A.合力为零B.合力矩为零C.各分力对某坐标轴投影的代数和为零D.合力和合力矩均为零4.若某刚体在平面一般力系作用下平衡,则此力系各分力对刚体的矩的代数和必为零。

(2 分)A.特定点B.重心C.任意点D.坐标原点5.这便于解题,力矩平衡方程的矩心应取在上。

(2 分)A.坐标原点B.未知力作用点C.任意点D.未知力作用线交点6.力矩平衡方程中的每一个单项必须是。

(2 分)A.力B.力矩C.力偶D.力对坐标轴上的投影7.一力向新作用点平移后,新点上有。

(2 分)A.一个力B.一个力偶C.一个力与一个力偶8.若平面一般力系向某点简化后合力矩为零,则其合力。

(2 分)A.一定为零B.不一定为零C.一定不为零9.为便于解题,力的投影平衡方程的坐标轴方向一般应按方向取定。

(2 分)A.水平或铅垂B.任意C.与多数未知力平行或垂直10.摩擦角是物体作用线与接触面法线间的夹角。

(2 分)A.全反力B.最大静摩擦力C.最大全反力D.驱动力11.( )平面一般力系的合力和合力偶的方向均与简化中心位置有关;合力和合力偶的大小均与简化中心位置无关。

(2 分)12.( )滚动摩擦力小于滑动摩擦力。

(2 分)13.( )作用于刚体上的力,其作用线可在刚体上任意平行移动,其作用效果不变。

(2 分)14.( )只要正确列出平衡方程,则无论坐标轴方向及矩心位置如何取定,未知量的最终计算结果总应一致。

(2 分)15.()对于受平面一般力系作用的物体系统,最多只能列出三个独立方程,求解三个未知量。

( )(2 分)16.( )对受平面一般力系作用的刚体列平衡方程时,三种形式的方程的使用条件均相同,每种形式均可求解三个未知量。

工程力学 静力学第三章 平面一般力系

工程力学 静力学第三章 平面一般力系

∑Y = 0
∑mO ( Fi ) = 0
①一矩式
∑ mB ( Fi ) = 0
②二矩式 条件: 条件:x 轴不⊥ AB 连线
上式有三个独立方程,只能求出三个未知数。 上式有三个独立方程,只能求出三个未知数。
注意:不论采用哪种形式的平衡方程, 注意:不论采用哪种形式的平衡方程,其独立的平衡方程的 三个未知量 个数只有三个,对一个物体来讲, 只能解三个未知量,不得多 个数只有三个,对一个物体来讲 只能解三个未知量 不得多 列! 14
8
平面一般力系简化结果的应用 简图:
固定端约束的反力
R
固定端约束反力有三个分量: 两个正交分力, 两个正交分力,一个反力偶
9
第二节
平面一般力系的简化结果分析
R=ΣFi 与简化中心无关 MO =ΣMo(Fi) 与简化中心有关
R ——主矢 主矢 MO——主矩
① R =0, MO =0,力系平衡,与简化中心位置无关,下节专 , 门讨论。 =0,M ② R =0, O≠0 即简化结果为一合力偶, MO=M 此时刚 体等效于只有一个力偶的作用,因为力偶可以在刚体平 面内任意移动,故主矩与简化中心位置无关。 ≠0,M =0,即简化为一个作用于简化中心的合力。这时, ③ R≠0, O =0 简化结果就是合力(这个力系的合力), R = R 。 ( (此时与简化中心有关,换个简化中心,主矩不为零) 此时与简化中心有关, 此时与简化中心有关 换个简化中心,主矩不为零)
R = (∑ X ) 2 + (∑ Y ) 2 = 0
M O = ∑mO ( Fi ) = 0
13

X =0
∑X =0
∑ m A ( Fi ) = 0
∑ m A ( Fi ) = 0 ∑ mB ( Fi ) = 0 ∑ mC ( Fi ) = 0

平面一般力

平面一般力

平面一般力平面一般力系:平面一般力系:指的是力系中各力的作用线在同一平面内任意分布的力系称为平面一般力系。

又称为平面任意力系。

平面一般力系通常可以简化为一个力和一个力偶共同作用的情况。

平面一般力系的平衡条件是;平面一般力系中,所有各力在力系作用的平面内,两个互相垂直的坐标轴上投影的代数和分别等于零。

即平面一般力系平衡的充分必要条件:主矢量和主矩都为零。

其平衡方程为:ΣFx=0ΣFy=0ΣMo(F)=0即力系中所有各力在两个坐标轴中每一轴上的投影的代数和都等于零;力系中所有各力对于任一点的力矩的代数和等于零2.平衡方程的应用平衡方程虽然有三种形式,但不论采用哪种形式,都只能写出三个独立的平衡方程。

因此,应用平面一般力系的平衡方程,只能求解三个未知量。

应用平面一般力系平衡方程解题的步骤如下:①确定研究对象。

根据题意,取能反映出未知量和已知量关系的物体为研究对象。

②画受力图。

在研究对象上画出它受到的所有主动力和约束反力。

约束反力根据约束类型来画。

约束反力的方向未定时,一般可用两个相互垂直的分反力表示;当约束反力的指向未定时,必须先假设其指向。

如计算结果为正,则表示假设的指向正确;如果计算结果为负,则表示真实的指向与假设的相反。

③建立坐标系,列平衡方程。

选取适当的平衡方程形式、投影轴和矩心。

选取哪种形式的平衡方程,完全取决于计算的方便与否。

通常力求在一个平衡方程中只包含一个未知量,以免求解联立方程。

在应用投影方程时,投影轴应尽可能选取与较多的未知力的作用线垂直;应用力矩方程时,矩心应选取在两个未知力的交点。

计算力矩时,要善于运用合力矩定理,以便使计算简单。

④解平衡方程,求得未知量。

⑤校核。

列出非独立的平衡方程,以检查解题的正确与否。

平面一般力系

平面一般力系

.
4
F BC
FB
B FC
B
M
C
C
F
' A
FA
P
P
为什么钳工攻丝时, 两手要均匀用力?
A
A
牛腿柱的压、弯组合变形
.
5
为 什 么 有 时 滑 轮 不 给 尺 寸
.
6
二、平面一般力系向一点的简化
1、向简化中心平移—得到平面汇交力系和平 面力偶系
Fn
An o
A1
A2 F2
F1
F
' n
Mn o
F
' 2
F B2M P5 32.5P5 420 A F A x
P
FB
B
代入数据解得: FAx=3 kN FAy=5 kN FB=-1 kN
.
20
例3-5 自重为P=100 kN的T字型刚架 ABD,置于铅 垂面内,尺寸及载荷如图。其中 M=20 kN·m , F=400 kN , q= 20 kN/m ,l=1 m 。试 求固定端A的 约束反力。
(1)保证起重机在满载和空载时都不致翻倒,求平衡荷重 P3 应为多少?
(2)当平衡荷重 P3=180 kN 时,求满载时轨道 A、 B给起重 机轮子的反力
P3
6m
12 m
P2
P1
AB
.
33
P3
6m
12 m
P1
AB
FA 4 FB
分析:要使起重机不翻倒,应
按临界状态的平衡条件求解。
当满载时,为使起重机不绕 B
F1' M 1 M 2
{F1,F2,,Fn} {F 1',F 2', ,F n', M1,M2,,Mn}

《平面一般力系》课件

《平面一般力系》课件

04
平面一般力系中的重心和 重心矩
重心和重心矩的定义
重心
一个物体的各部分所受重力的合作用 点,也是物体相对于地球的质心。
重心矩
以重心为矩点的力矩,即力系对重心 的力矩。
重心和重心矩的计算方法
重心计算方法
通过物体各部分的质量分布和对应的 坐标,利用数学公式计算出物体的重 心位置。
重心矩计算方法
根据物体上各点的力或力矩和对应的 坐标,利用数学公式计算出以重心为 矩点的力矩。
02
平面一般力系的平衡方程
平面一般力系的平衡方程的建立
1 2
确定研究对象
选择需要平衡的物体作为研究对象,可以是单个 物体或多个物体组成的系统。
列出所有作用在物体上的力
包括主动力和约束反力,确保不遗漏任何力。
3
建立平衡方程
根据平面力系的平衡条件,列出平衡方程,平衡 方程的形式为∑X=0和∑Y=0。
动摩擦力的大小可以根据动摩 擦因数源自正压力来求解。方向判断动摩擦力的方向与相对运动的 方向相反。
摩擦力的计算方法
平衡法
当物体处于平衡状态时,可以根据平衡条件来计算摩 擦力的大小和方向。
牛顿第二定律法
当物体有加速度时,可以根据牛顿第二定律来计算摩 擦力的大小和方向。
动摩擦因数法
当物体在另一个物体表面上已经开始运动时,可以根 据动摩擦因数和正压力来计算动摩擦力的大小。
应用场景
在分析力学问题时,常常 需要将力的作用点平移到 其他位置,以便于分析力 的作用效果。
注意事项
平移定理只适用于力,不 适用于力矩。
平面一般力系的简化
平面一般力系的简化
将多个力合成为一个合力或一组力矩,以便于分析问题。

第三章平面力系

第三章平面力系

(3)若FR‘≠0,MO‘≠0,这时根据力的平移定理的 逆过程,可以进一步简化成一个作用于另一点 的合力。
(4) FR‘=0,MO‘=0,则力系是平衡力系 。 综上所述,平面一般力系简化的最后结果 (即合成结果)可能是一个力偶,或者是一个合 力,或者是平衡。 3-1-3合力矩定理 当FR‘=0,MO‘≠0 时,还可进一步简化为一 M o ( FR ) FR d 合力,合力对点的矩是 / / 而 Mo mo ( F ) FR d M o 所以 Mo (FR ) mO (F )
3-1-2简化结果的分析 平面一般力系向一点简化,一般可得到一 个力和一个力偶,但这并不是最后简化结果。 根据主矢与主矩是否存在,可能出现下列几种 情况: (1)若FR‘=0,MO‘≠0,说明原力系与一个力偶等 效,而这个力偶的力偶矩就是主矩。 (2)若FR‘≠0,MO‘=0 ,则作用于简化中心的主 矢FR'就是原力系FR的合力,作用线通过简化中 心。
228 .9kN m
计算结果为正值表示是逆时针转向。
因为主矢
≠0,主矩 FR
/ Mo ,如图 0 (b)所示,
所以还可进一步合成为一个合力FR。 FR的大小、 方向与FR‘相同,它的作用线与点的距离为
M O 228.9 d 0.375m FR 612.9
因为MO正,故m0(FR)也应为正,即合力FR 应在点O左侧,
X
F F
0
二力矩形式的平衡方程 (简称二矩式)
在力系作用面内任取两点A、B及X轴,平 面一般力系的平衡方程可改写成两个力矩方程 和一个投影方程的形式,即
F m m
X
0 0 0
A
B
式中轴不与A、B两点的连线垂直。

工程力学习题册第三章 答案

工程力学习题册第三章  答案

第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。

2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。

3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。

4、平面一般力系向已知中心点简化后得到一力和一力偶距。

5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。

6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。

三个独立的方程,可以求解三个未知量。

7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。

8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。

9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。

10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。

它是平面一般力系的特殊情况。

11.平面平行力系有两个独立方程,可以解出两个未知量。

12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。

(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。

(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。

(√)(2)该力在坐标轴上的投影一定为负值。

平面一般力系—平面一般力系向作用面内任一点简化(建筑力学)

平面一般力系—平面一般力系向作用面内任一点简化(建筑力学)
综上所述可知:平面一般力系向平面内任一点简化的结果
是一个力和一个力偶,这个力作用在简化中心,它的矢量称
为原力系的主矢,并等于力系中各力的矢量和;这个力偶的
力偶矩称为原力系对简化中心的主矩,并等于原力系中各力
对简化中心的矩的代数和。
因此,单独的主矢FR′或主矩Mo′并不与原力系等效,即主
矢FR′不是原力系的合力, 主矩Mo′也不是原力系的合力偶矩。
MO’ =ΣMO (F)
原力系中各力对简化中心之矩的代数和称为原力系对
简化中心的主矩。 与简化中心位置有关。
FR ' FRx ' FRy '
2
tan
FRy '
FRx '
2

F
F
F F
2
x
y
x
式中α为合力FR与x轴所夹的锐角。
2
y





平面一般力系
A2
o
An
Fn
(F、F、F3、…、Fn)
M O' FR'
Mn
x
o
x

n
(F ' 、F ' 、F3 ' 、…、Fn ')
(M、M、M3、…、Mn)
(FR',Mo')
汇交于O点的平面汇交力系
F1′、 F2′、…、Fn′
且F1′=F1 、 F2′=F2 、…、
Fn ′=Fn
作用于点O的 FR'
附加力偶系M1、M2、…、Mn
只有FR′与Mo′两者相结合才与原力系等效。
且M1=Mo(F1)、 M2=Mo(F2) 、
…、Mn =Mo( Fn)
力偶MO’

工程力学第3节 平面一般力系

工程力学第3节 平面一般力系

• 2)力偶 M 对平面上任意一点的矩为常量。
• 3)应尽量选择各未知力作用线的交点为力矩方 程的矩心,使力矩方程中未知量的个数尽量少。
例2-10 如图所示一可 沿轨道移动的塔式起重 机,机身重G=200kN, 作用线通过塔架中心。 最大起重量FP=80kN。 为防止起重机在满载时 向右倾倒,在离中心线 x 处附加一平衡重FQ, 但又必须防止起重机在 空载时向左边倾倒。试 确定平衡重FQ以及离左 边轨道的距离 x 的值。
i 1 i 1 n i 1 n
n
• 二力矩式:A、B 两点的联线 AB 不能与 x 轴垂直。 • 三力矩式:A、B﹑C 三点不能共线。 • 选用基本式﹑二力矩式还是三力矩式,完全决定于 计算是否方便。不论何种形式,独立的平衡方程只 有三个。

平面平行力系的平衡方程
平面平行力系平衡的充分 必要条件是:力系中各力的代 数和等于零,以及各力对任一 点的矩的代数和等于零。 平衡方程 的解析式 (基本式) 注意
Fiy 0 M O ( Fi ) 0
i 1 M A ( Fi ) 0 M B ( Fi ) 0
i 1 i 1 n
n
二力矩式中A、B 两点的联线不能与 x 轴垂直。
例2-7 如图所示,数控车床一齿轮转动轴自重 G = 900N,水平安装在向心轴承A和向心推力轴承B 之间。齿轮受一水平推力F 的作用。已知 a = 0.4m, b = 0.6m,c = 0.25m,F = 160N。当不计轴承的宽度 和摩擦时,试求轴上A、B处所受的约束反力。
Fiy 0 M O ( Fi ) 0
i 1 i 1 n
i 1 n
二 力 矩 式 注意
Fix 0 M A ( Fi ) 0 M B ( Fi ) 0

理论力学第三章平面一般力系

理论力学第三章平面一般力系

再研究轮
mO(F)0
SAco R sM 0
X0
XOSAs in0
Y0 SAco sYO0
MPRXOPtg YO P
[负号表示力的方向与图中所设方向相反]
23
由物系的多样化,引出仅由杆件组成的系统——桁架
§3-7 平面简单桁架的内力分析
24
工程中的桁架结构
25
工程中的桁架结构
26
工程中的桁架结构
18
[例]
静定(未知数三个)
静不定(未知数四个)
静不定问题在强度力学(材力,结力,弹力)中用位移 谐调条件来求解。
19
二、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
20
物系平衡的特点: ①物系静止 ②物系中每个单体也是平衡的。每个单体可列3个 平衡方程,整个系统可列3n个方程(设物系中 有n个物体)
平面力偶系的平衡方程
X 0
Y 0
mi 0
四、静定与静不定
独立方程数 ≧未知力数目—为静定
独立方程数 < 未知力数目—为静不定 五、物系平衡
物系平衡时,物系中每个构件都平衡, 解物系问题的方法常是:由整体 局部
单体
39
六、解题步骤与技巧
解题步骤
解题技巧
①选研究对象
① 选坐标轴最好是未知力 投影轴;
解: 研究整体 画受力图 选坐标列方程
m B 0 , Y A 2 .5 P 1 .2 0
Y0 YAR Bq a P 0
R B q 2 m a a 2 P 2 2 0 0 .8 0 1 .8 2 6 2 1 0 ( k 2 )N Y A P q R B a 2 2 0 0 . 0 8 1 2 2 ( k 4 )N 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章平面一般力系
教学目的及要求
1.掌握平面任意力系向一点简化的方法,会应用解析法求主矢和主矩,熟知平面任意力系简化的结果。

2.深入理解平面力系的平衡条件及平衡方程的三种形式。

3.能熟练地计算在平面任意力系作用下物体和物体系统的平衡问题。

4.正确理解静定与静不定的概念,会判断物体系统是否静定。

5.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。

§3-1 平面一般力系向作用面内一点简化
教学重点:1.平面一般力系如何向作用面内一点简化
2. 主矢与主矩的概念
教学难点:对力的平移定理的理解和应用
教学内容:
首先对什么是平面一般力系进行分析。

对于平面一般力系如何向其作用面内一点简化,从而引出力的平移定理。

1.力的平移定理
作用在刚体上的力可以向任意点平移,但必须附加一力偶,附加力偶的力偶矩等于原来的力对平移点(新作用点)的矩,它是一般力系向上点简化的依据。

2.基本概念
1) 合力矢:汇交力系一般地合成为一合力,合力的作用线通过汇交点,合力矢等于力系的主矢。

2)主矢:平面力系各力的矢量和,即
3.应用力的的平移定理将平面一般力系向作用面内一点简化
用图形来进行讲解力系向一点简化的方法和结果。

最终平面一般力系向一点简化可以得到两个简单的力系:平面汇交力系和平面力偶系。

应用前两章学过的内容,这两个简单的力系还可以进一步简化成一个主矢和对简化中心的主矩。

结论:平面一般力系向作用面内任选一点O简化,可得到一个力和一个力偶,这个力等于该力系的主矢,作用线通过简化中心O,这个力偶的矩等于该力
系对于点O的主矩。

注意:主矢与简化中心无关;而主矩与简化中心有关,必须指明对于哪一点的主矩。

4.固定端约束
它是平面一般力系向作用面内一点简化的一个典型应用。

可以将固定端支座的约束反力向作用平面内点A简化得到一个力和一力偶,这个力用两个未知分力来代替。

它限制了物体在平面内的转动,所以比铰支座多了一个给反力偶。

§3-2 平面一般力系简化结果与分析
教学重点:平面一般力系向作用面内一点简化的结果
教学难点:将一个力系向指定点简化的具体应用。

教学内容:
1.平面力系的简化步骤如下:
1)选取简化中心O:题目指定点或自选点(一般选在多个力交点上)
2) 建立直角坐标系Oxy
3) 求主矢
4) 求主矩:逆正顺负,画在图中
5) 简化结果讨论
2.平面力系的简化结果
一个力系的主矢与简化中心的选取无关;一般情况下,主矩与简化中心的选取有关。

平面一般力系向作用面内一点简化结果,有四种情况:
1) 简化为一个力偶的情形:
力系的主矢等于零,而力系对于简化中心的主矩不等于零。

即:
F R′=0,M o≠0
2) 简化为一合力的情形
力系向点O简化的结果为主矩等于零,主矢不等于零。

即:
F R′≠0,M o=0
3)若F R′≠0,M o≠0
平面力系与一力偶等效,此力偶为平面力系的合力偶,其力偶矩用主矩M o 度量,这时主矩与简化中心的选择无关。

原力系合成为作用点为O′的力F R,合力作用线在点O的哪一侧,由主矢和
主矩方向确定。

4) 若F R′=0,M o=0
即平面一般力系处于平衡状态。

§3-3 平面一般力系平衡条件和平衡方程
教学重点:1.平面一般力系平衡的充分和必要条件及平衡方程
2. 物体及物体系平衡问题的解法。

教学难点:
1.利用特殊力系的特点画出某些约束反力,选择恰当的平衡方程求解未知量。

2. 物体系平衡问题中正确选取研究对象及平衡方程。

应用平衡条件和平衡方程求解单个物体和简单物体系统的平衡问题。

教学内容:
1.平衡充要条件
主矢为零(F R′=0)——作用于简化中心O点的平面汇交力系为平衡力系
主矩为零(M o=0)——附加力偶系为平衡力系
2.平衡条件的解析式表示(平面一般力系的平衡方程):
;;
3.平衡方程的其它形式
1)三个平衡方程中有一个投影方程和两个力矩方程
;;
其中x轴不能与A,B两点连线垂直。

证明上述形式的平衡方程也能满足力系平衡的充分和必要条件。

2)三个均为力矩方程
;;
其中A、B、C三点不共线。

为什么必须有这个附加条件,请同学们课后自己证明。

4.平面力系平衡方程的应用
应用平衡方程式求解平衡问题的方法称为解析法。

它是求解平衡问题的主要方法。

这种解题方法包含以下步骤:
1) 根据求解的问题,恰当的选取研究对象:所谓研究对象,是指为了解决问题而选择的分析主体。

选取研究对象的原则是,要使所取物体上既包含已知条件,又包含待求的未知量。

2) 对选取的研究对象进行受力分析,正确地画出受力图:在正确画出研究对象受力图的基础上,应注意适当地运用简单力系的平衡条件如二力平衡、三力平衡汇交定理、力偶等效定理等确定未知反力的方位,以简化求解过程。

3) 建立平衡方程式,求解未知量:为免去解的方程组相互联立,要求在列平衡方程式时要运用一些技巧,尽可能做到每个方程只含有一个(或较少)的未知量,以便求解。

下面应用平衡条件和平衡方程求解物体的平衡问题举例。

例1.已知:P , a,各杆重不计;
求:B 铰处约束反力。

§3-4 平面简单桁架的内力计算
教学重点:理解节点法,截面法求解平面静定桁架的内力
教学难点:掌握节点法,截面法求解平面静定桁架的内力
教学内容:
1.桁架
是由若干直杆在端点用铰连接而成的几何形状不变的结构。

若所有杆件都在同一平面内称其为平面桁架。

在工程中的桁架满足四点假设。

称其为理想桁架,这样桁架的各杆都可以称为两端受力作用的二力杆件。

2.求平面静定桁架各杆内力的两种方法。

1)节点法:逐个考虑桁架中所有节点的平衡,应用平面汇交力系的平衡方程求出各杆的内力。

2)截面法:截断待求内力的杆件,将桁架截断为两部分,取其中的一部分
为研究对象,应用平面任意力系的平衡方程求出被截断各杆件的内力。

例2:(利用节点法)已知:荷载与尺寸如图;求:每根杆所受力。

例3:(利用截面法)已知:P1,P2,P3尺寸如图。

求:1,2,3杆所受力。

教学建议
1. 对平面力系的简化方法及简化结果应阐述透彻。

特别指出:主矢和主矩是在对一个力系进行简化时,为了准确描述力系的特征而引入的重要概念。

主矢不是合力,合力有大小,方向与作用点三个要素,而主矢只具有大小和方向两个特征,力系的主矢与简化中心无关。

一般而言,主矩的大小、转向与简化中心的选取有关,但是在主矢为零的情况下,主矩与简化中心无关。

注意对不同的简化中心的简化结果表面上看互不相同,但它们互为等效力系。

2.对物体系统平衡问题中如何选取恰当的研究对象和平衡方程,应通过典型例题着重讲解,并引导学生进行归纳总结。

特别指出如下要点:
其一,求解物系的平衡问题的关键在于选取研究对象,它需要一定的分析判断能力,也需要经验的积累。

在选取研究对象时,有两种极端情况:(a)只选取整体为研究对象,在此要注意受力图中只画外力,不画内力,本质问题是由外力构成的力系平衡问题,因此,无法求解系统内力,且当未知数多于三个时,也无法求解全部未知量;(b)将系统中所有刚体相互隔离,取每个刚体单独作为研究对象,由于是静定问题,则全部内外反力借助全部的平衡方程均可解出,虽思路
简单,但由于求出多个不需求的未知力,使求解工作量增加,且过程繁琐。

因此,一般而言,应根据题目的具体要求,灵活选取研究对象,尽量以最少的研究对象求解系统的平衡问题。

其二:在开始求解平衡方程时,如果独立平衡方程式的个数少于未知量的个数,可能出现两种情况:(a)该问题是静不定问题;(b)该问题为刚体系统的平衡问题,需再次选择研究对象。

应注意的是,此种情形下,虽然不能依据这些平衡方程式求出全部未知量,但有可能求出其中的一个或两个未知量。

3.适当介绍有关结构分析软件,初步培养学生力学建模和解决复杂物系平衡问题的能力。

作业布置
教材:3-13-33-73-83-173-19。

相关文档
最新文档