行船流水问题
流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
小升初数学专题流水行船问题
小升初数学专题流水行船问题1.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B 地所用时间的1.5倍,求水流速度.解:设水流速度是每小时x千米(20+x)×6=(20-x)×6×1.5120+6x=180-9x15x=60x=4答:水流速度是每小时4千米。
2.水流速度是每小时15千米.现在有船顺水而行,8小时行480千米.若逆水行360千米需几小时?解:顺水船速:480÷8=60(千米)静水中的速度:60-15=45(千米)逆水船速:45-15=30(千米)逆水时间:360÷30=12(小时)答:逆水行360千米需12小时3.有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。
解:逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)答:船速是每小时行16千米,水速是每小时行4千米。
4.一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?解:(15+3×2)×18=21×18=378(千米)答:甲乙两港相距378千米。
5.一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?解:逆水速度:16×3÷4=12(千米/时)则船速:(12+16)÷2=14(千米/时)水速:(16-12)÷2=2(千米/时)答:船速为14千米/时;水速为2千米/时。
(9)流水行船问题
(9)流水行船问题流水行船问题航行问题中常用的概念有:船速、水速、下游速度和上游速度。
船在静水中航行的速度称为船速;河流水流的速度称为水流速度;船舶从上游向下游移动的速度称为下游速度;船舶从下游向上游移动的速度称为上游速度。
除了旅行问题中距离、速度和时间之间的基本定量关系外,还有几个基本公式可用于航海问题。
顺水速度=静水速度+水速逆水速度=静水速度-水速在已知下游速度和上游速度的情况下,可以用和差问题的解法计算船速和水速。
静水速度=(下游速度+上游速度)÷2水流速度=(下游速度-上游速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?[练习]一、一只船在静水中每小时行12千米,在一段河中逆水航行4小时行了36千米。
这条河水流的速度是多少千米?2.船在静水中航行,每小时航行15公里,水流速度为每小时3公里。
这艘船顺流而下航行270公里到达目的地。
花了多少小时?返回原频道需要多少小时?例2:一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?[练习]1、甲、乙两港间的水路长180千米,一只船从甲港开往乙港,顺水6小时到达,从乙港返回到甲港,逆水10小时到达,求船在静水中的速度和水速。
2.一艘船从A地顺流而下航行到B地,时速28公里。
返回a地点花了6个小时。
已知的水流速度为每小时4公里。
a和B之间有多少公里?1例3:a港和B港相距200公里。
一艘船在A港下游10小时抵达B港。
已知该船的速度是水的9倍。
船从B港返回a港需要多少小时?【练习】1.A、B两个码头相距112公里。
一艘船从B码头逆流而上,8小时后抵达A码头。
众所周知,这艘船的速度是水的15倍。
船从a码头返回B码头需要多少小时?2、一条大河,河中内(主航道)水的流速为每小时8千米,沿岸边的速度为每小时6千米,一条船在河中间顺流而下,13小时行520千米,求这条船沿岸边返回原地,需要多少小时?例4:端口a和B之间的距离为360公里。
六年级数学流水行船问题
流水行船问题船在流水中航行的问题叫做行船问题。
行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。
除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。
顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。
船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。
因为返回时是逆水航行,用船在静水中的速度-水速=逆水速度,再用甲乙两港之间的全长除以逆水速度即可求出乙港返回甲港所需时间。
【思维链接】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回系很重要,只是速度上【举一反三】1、一只船在静水中每行了36千米。
这条河2、一艘轮船在静水中时3千米。
这艘轮船时?如果按原航道返回例2:一艘小船往返15小时,下行水速各是多少【思路导航】求船在的时间就是逆行速度与逆水速度的和除以就是水速。
【思维链接】因为顺所以顺水速度与逆水速除以2就是一个水流当于2个船速,再除以【举一反三】3、甲、乙两港间的水水6小时到达,从乙水中的速度和水速。
4、一艘轮船从A地顺地时用了6小时。
已知水速是每小时4千米,A、B两地相距多少千米?例3:甲、乙两港相距200千米。
一艘轮船从甲港顺流而下10小时到达乙港,已知船速是水速的9倍。
这艘轮船从乙港返回甲港用多少个小时?【思维链接】此题中“已知船速是水速的9倍”,可知船速与水速的和相当于水速的(1+9)倍,也就是顺水速度相当于水速的(1+9)倍,根据这个倍数关系我们就可以轻松的求出水速和船速。
流水行船问题应用题
流水行船问题应用题以下是一些涉及流水行船问题的应用题,每个问题都附有答案:1.一艘船顺流而行,每小时可以行驶20公里。
如果船顺流行驶4小时,船行了多远?答案:船顺流行驶80公里。
2.另一艘船逆流而行,每小时可以行驶15公里。
如果船逆流行驶3小时,船行了多远?答案:船逆流行驶了45公里。
3.一艘船顺流行驶8小时,总共行驶了160公里。
每小时船的速度是多少?答案:船的速度是20公里/小时。
4.一艘船逆流行驶5小时,总共行驶了75公里。
每小时船的速度是多少?答案:船的速度是15公里/小时。
5.两艘船同时出发,一艘顺流每小时行驶25公里,另一艘逆流每小时行驶20公里。
如果它们同时出发后2小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。
6.一艘船在静水中的速度是18公里/小时,如果船逆流行驶6小时,总共行驶了72公里。
逆流的速度是多少?答案:逆流的速度是12公里/小时。
7.一艘船逆流行驶9小时,总共行驶了135公里。
逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是24公里/小时。
8.一艘船逆流行驶4小时,总共行驶了60公里。
逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是20公里/小时。
9.一艘船逆流行驶7小时,总共行驶了98公里。
逆流的速度是14公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是21公里/小时。
10.两艘船同时出发,一艘逆流每小时行驶18公里,另一艘顺流每小时行驶24公里。
如果它们同时出发后3小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。
这些问题旨在帮助学生应用流水行船的概念,并计算船在不同条件下的行驶距离和速度。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
流水行船问题
流水行船问题【知识点睛】1基本公式:相遇问题:路程和=速度和×相遇时间追及问题:路程差=速度差×追及时间2行船问题:船的静水速度:船在静止水中行驶的速度,简称船速水流速度:水在河流中流淌的速度,简称水速顺水速度:船顺流而行时的总速度,即顺水速度=静水速度+水速逆水速度:船逆流而行时的总速度,即逆水速度=静水速度-水速3推导公式静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2【例题精讲】例1:四个速度游轮以每小时30千米的速度,在水速每小时5千米的水中顺流航行5小时,共行了多少千米?【练习1】1.一艘船每小时行25千米,在大河中顺水航行140千米。
已知水速是每小时3千米,这艘船行完全程需要航行几小时?2.一条河的水速为2千米/小时,一艘船顺水航行6小时走了60千米,若它逆水航行66千米需要多少小时?3.一条河的水速为4千米/小时,一艘船顺水航行11小时走了121千米,若它逆水航行39千米需要多少小时?例2:甲乙两港相距100千米,一只船从甲港往乙港顺流出发,4小时到达,从乙港返回甲港,10小时到达,求船在静水中的速度是多少?【练习2】1.甲乙两港相距180千米,一只船从甲港往乙港顺流出发,6小时到达,从乙港返回甲港,9小时到达,求水流的速度是多少?2.甲乙两港之间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度各是多少?3.一艘飞艇,顺风6小时行驶了900公里,在同样的风速下,逆风行驶600公里,也用了6小时,那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例3:一艘轮船在河流的两个码头之间航行,顺流需要6小时,逆流需要8小时,水流速度为2.5千米/小时。
求轮船在静水中的速度。
1.一艘轮船在河流的两个码头间航行,顺流需要4小时,逆流需要5小时,水流速度为1.5千米/时。
行程问题流水行船问题
---流水行船
流水行船问题基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
牛刀小试: 船在静水中的速度为每小时15千米,水流速度是 每小时3千米,船从上游乙港到下游甲港航行了12小时, 甲、乙两港间距离多少千米?
例1: 游轮从A城市到B城市顺流而下需要48小时,游轮 在静水中的速度是每小时30千米,水流速度是每小时 6千米,游轮从B城市返回A城市需要多少小时?
练习: 某轮船在相距216千米的两个港口间往返运送货物, 已知轮船在静水中每小时21千米,两个港口间的水流 速度是每小时3千米,那么,这只轮船往返一次需要多 长时间?
例2 : 甲、乙两港间的航线长360千米,一只船从甲港求船在静水中的速度和水流速度?
练习: 某架飞机顺风飞行每小时飞1320千米,逆风飞 行每小时飞1080千米,这架飞机的速度和风速分别是 多少?
例3: A、B两码头间河流长为90千米,甲、乙两船分别 从A、B码头同时起航,如果相向而行3小时相遇;如 果同向而行15小时甲船追上乙船,求两船在静水中的 速度?
练习: 两个港口相距342千米,甲、乙两支轮船同时从 两个港口相对开出,甲船顺流而下,乙船逆流而上, 9小时后正好相遇,已知甲船每小时比乙船慢4千米。 甲、乙两船的速度分别是多少?
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
例5: 静水中,甲乙两船的速度分别为每小时20千米 和每小时16千米,两船先后自同一港口顺水开出, 乙船比甲船早出发2小时,若水速是每小时4千米, 甲船开出几小时后追上乙船?
流水行船问题
流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2(7)水速=(顺水速度-逆水速度)÷2(8)例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
(完整版)流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
人教版五年级数学上册【详解】5年级第09讲_流水行船问题
第九讲 流水行船问题例题1. 答案:21千米/时;5千米/时详解:顺水速度为208826÷=千米/时,逆水速度为2081316÷=千米/时,船的静水速度为2616221+÷=()千米/时,水流速度为261625-÷=()千米/时.例题2. 答案:6小时详解:船在甲河中顺水航行的速度是133719÷=千米/时.而甲河水速是3千米/时,所以船速是19316-=千米/时.乙河水速是2千米/时,因此船在乙河中逆水航行的速度是16214-=千米/时,所以航行84千米还需要84146÷=小时.例题3. 答案:24天详解:假设从A 城到B 城的距离是24千米,那么轮船顺水航行的速度是2438÷=千米/天,而逆水航行的速度是2446÷=千米/天,由和差关系可知,水速为()8621-÷=千米/天,也就是木筏漂流的速度.因此木筏从A 城漂流到B 城需要24124÷=天.例题4. 答案:72千米;90千米详解:如图所示:(1)甲船的逆水速度是15312-=千米/时,乙船的逆水速度是1239-=千米/时.两船的路程差即为乙船先出发2小时逆水行驶的距离,也就是9218⨯=千米,所以甲船追上乙船需要()181296÷-=小时.这6小时内,甲船行驶了12672⨯=千米.因此甲船追上乙船时已经离开A 港72千米.(2)甲船追上乙船的地点与B 港相距18072108-=千米,那么它行驶到B 港还需要108129÷=小时.此时乙船又航行了9981⨯=千米,距离B 港1088127-=千米.甲船返回后,与乙船相向而行.此时甲船顺水行驶,速度是每小时15318+=千米.因此两船还需要()271891÷+=小时相遇.从图中可以看出,甲、乙相遇地点与追及地点的距离正好是乙行驶的路程,为()99190⨯+=千米.水流方向 A例题5.答案:33千米/时;27千米/时详解:甲、乙两船的速度和为300560÷=千米/时,甲、乙两船的速度差为+÷=千米/时,乙船的静水÷=千米/时,则甲船的静水速度为(606)233300506速度为603327-=千米/时.例题6.答案:50米/分详解:根据分析,游泳者发现丢水壶之前,与水壶相背而行,游泳者的速度是静水速度与水速的差,水壶的速度就是水速,所以他们的速度和是游泳者的静水速度,也就是60米/分.所以20分钟后,人⨯=米.他返回追水壶时,游泳者的速度是静水速度与水速的和,而水壶的速与水壶相距60201200÷=分钟.水壶一共度还是水速,二者的速度差仍然是15米/分,所以他追上水壶还需要12006020+=分钟,漂流的路程是2千米,而水速就是水壶的漂流速度,因此水速就是漂流了202040÷=米/分.20004050练习1.答案:8小时简答:顺风速度为9006150÷=千米/时,飞÷=千米/时,逆风速度为6006100艇在无风的速度为1501002125+÷=()千米/时,飞艇行驶1000公里要用÷=小时.10001258练习2.答案:12.5简答:甲船的顺水速度是24千米/时,逆水速度是16千米/时.那么往返一次所用的时间是120241201612.5÷+÷=小时.练习3.答案:15小时简答:假设从A地到B地的距离是60千米,那么这艘船的漂流速度为÷=千米/时,顺水速度为÷=千米/时,逆水航行的速度是6030260601+⨯=千米/时,因此这艘船从A地开到B地需要604152124÷=小时.练习4.答案:5简答:货船的顺水速度和客车的逆水速度都是12千米/小时,因此他们会在两个码头的中点相遇,相遇时离A码头90千米;货船还需要走()÷-=909315小时,客船还需要走()÷-=小时,时间差是5小时.9012310作业1.答案:8小时简答:顺流速度为每小时90615-⨯=千米.它÷=千米,所以逆流速度为每小时15525逆流航行要4058÷=小时.作业2.答案:5小时简答:由题目条件可求出从乙地到甲地的逆水速度为160820÷=千米/时,则水速为-=千米/时.返回时水速变为8千米/时,顺水速度为32千米/时,需用160325÷= 24204小时.作业3.答案:12.5秒简答:由题目条件可求出顺风速度为9米/秒,逆风速度为7米/秒,由此可知无风的速度为8米/秒.因此跑100米要用12.5秒.作业4.答案:40天简答:可设甲乙两地之间路程为60千米,可求出顺流速度为每天5千米,逆流速度为每天3千米,船速为每天4千米,水速为每天1千米.梅雨季节时,水速变为每天2千米,顺流速度为每天6千米,逆流速度为每天2千米.往返需要40天.作业5.答案:18千米/时简答:由题目条件可求出两船的静水速度和为30千米/时,静水速度差为6千米/时,由此可求出甲船的速度为18千米/时.。
流水行船问题
流水行船问题一、考点、热点回顾流水行船问题属于行程应用题,难点在于弄清船在水中运行的速度与水流的速度。
在流水行船问题中,船在静水中的速度叫做船速,水流的速度叫做水速。
船速+水速=船在顺水中的速度船速-水速=船在逆水中的速度(顺水速度+逆水速度)/2=船速(顺水速度-逆水速度)/2=水速二、典型例题例1、一艘轮船在河流的两个码头之间航行,顺流需要6小时,逆流需要8小时,水流速度为2.5千米/小时,求轮船在静水的速度。
例2、一条大河上、下游有A、B两个码头,甲、乙两条船在静水中的速度相同,甲船从A 码头顺水而下到B码头需要4小时,乙船从B码头逆水而上到A码头需要6小时,如果两条船分别从两个码头同时出发相向而行,几个小时可以相遇?例3、一艘轮船顺流航行120千米,逆流航行80千米共用16小时,顺流航行60千米,逆流航行120千米共用16小时,求水流的速度。
例4、长江沿岸有A、B两个码头,已知客船从A码头到B码头每天航行500千米,从B 码头到A码头每天航行400千米,如果客船在A、B两个码头之间往返航行5次共用18天,那么两个码头之间的距离是多少千米?三、课堂练习1、一艘轮船在河流的两个码头之间航行,顺流需要4小时,逆流需要5小时,水流速度为1.5千米/小时,求轮船在静水中的速度。
2、甲、乙两艘轮船分别从A、B两个码头同时出发,相向而行,两艘轮船在静水的速度相同,5小时后,甲船行了全程的1/4,乙船行了全程的1/6,水流的速度是每小时2千米,两艘轮船出发后多长时间可以相遇?3、一艘轮船从甲码头顺流而下到乙码头需要4小时,从乙码头逆流而上到甲码头需要5小时,只测得水流的速度为每小时2千米,甲、乙两码头相距多少千米?4、甲、乙两艘轮船在静水重点额速度相同,甲船从A码头到B码头顺水行需要6小时,乙船从B码头到A码头逆水行需要8小时,现在两艘轮船分别从A、B两个码头同时出发相向而行,几个小时可以相遇?5、有甲、乙两艘轮船,甲船从A码头到B码头用的时间是乙船从B码头到A码头同的时间的4/5,甲船从A码头到B码头需要8小时,若两艘轮船同时分别从A、B两个码头出发相向而行,几个小时可以相遇?6、一艘轮船在甲、乙链各个码头之间航行,从甲到乙顺流而下需要14小时,从乙到甲逆流而上需要20小时,如果将一块木板放在甲码头的水中,它从甲码头漂到乙码头需要多少时间?7、一艘轮船顺流航行80千米,逆流航行48千米共用9小时,顺流航行64千米,逆流航行96千米共用12小时,求轮船在静水中的速度。
流水行船问题
轮船以同一速度往返于两港 之间,它逆流而上用了12小 时,顺流而下
甲、乙两港相距360千米,一 轮船往返两港需35小时,逆 流航行比顺流航行多5小时, 逆水速度是多少? 顺水速度速度是多少?
水流速度是多少?
6、甲、乙两港相距360千米, 一轮船往返两港需35小时,逆 流航行比顺流航行多5小时,现 在有一机帆船,静水中速度是 每小时12千米,这机帆船往返 两港要多少小时?
2、一只船在静水中的速度 为每小时行21千米,它从甲 港出发顺流而下到乙港共花 去了8小时,已知水速为每 小时5千米,那么它从原路 返回,这样它一共往返一趟 一共花去多少时间?
3、水流速度是5千米,现 在有船顺水而行,8小时 行了208千米,若逆水而 行208千米需要几小时?
甲、乙两港之间的水路长234 千米,一只船人甲港到乙港需 要9小时,从乙港返回甲港需 13小时,船速和水速各为多少?
两船在水中的相遇问题(不管 静水还是有水速的),与两车 在陆地上是一样的。
练一练:
甲船在静水中行180千米要 6小时,乙船船速是甲船的 1.5倍,他们从上下游距离 225千米的两港出发,几小 时相遇?
9、甲、乙两船在静水中速度 分别为每小时24千米和每小时 32千米,两船从某河相距336
千米的两港同时出发相向而行, 已知水速为每小时6千米,几 小时相遇?
路程÷逆水时间=逆水速度 路程÷顺水时间=顺水速度
顺水速度=船速+水速 逆水速度=船速-水速 (顺水速度+逆水速度)÷2=船速 (顺水速度-逆水速度)÷2=船速
已知一只船在静水中的速度是 30千米,而水速是3千米。
逆水速度 顺水速度
这只船到 下上 游去办事,行了 3小时才到,它行了多少远?
1、甲、乙两港间的水路长 208千米,某船从甲港开往 乙港,顺水8小时到达,从 乙港返回甲港,逆水13小时 到达,求船在静水中的速度 和水流速度。
流水行船问题及答案
流水行船问题及答案9小时,河水流速为每小时5千米。
求这艘汽艇逆水行完全程需几小时?根据公式,顺水速度=船速+水速,逆水速度=船速-水速。
因此,顺水速度为360÷9=40千米/小时。
船速为顺水速度-水速,即40-5=35千米/小时。
水速为顺水速度-逆水速度的一半,即(40-逆水速度)÷2=5,解得逆水速度为30千米/小时。
逆水行完全程需用时为360÷30=12小时。
2、一艘船在静水中的速度为每小时13千米,水流的速度为每小时3千米。
这艘船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风。
求船往返甲港和乙港所需要的时间?根据公式,顺水速度=船速+水速,逆水速度=船速-水速。
因此,顺水速度为13+3=16千米/小时,逆水速度为13-3=10千米/小时。
返甲港所需时间为240÷10=24小时,返乙港所需时间为240÷16=15小时。
3、甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头。
已知船在静水中每小时行驶15千米。
问这船返回甲码头需几小时?根据公式,顺水速度=船速+水速,逆水速度=船速-水速。
因此,顺水速度为144÷8=18千米/小时,逆水速度为15-3=12千米/小时。
返回甲码头需用时为144÷12=12小时。
4、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头。
已知船在静水中每小时行驶24千米。
问这船返回甲码头需几小时?根据公式,顺水速度=船速+水速,逆水速度=船速-水速。
因此,顺水速度为560÷20=28千米/小时,逆水速度为24-4=20千米/小时。
返回甲码头需用时为560÷20=28小时。
注意:文章中的公式和计算过程需要标注清楚,同时避免出现明显的排版错误和语法错误。
文章没有明显的格式错误,但是第一段中的“逆水12个小时行完全程”应该改为“逆流12个小时行完全程”。
流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
流水行船问题12个公式
流水行船问题12个公式1.船在静水中的速度公式设船在静水中的速度为v,船相对于水的速度为v1,则有:v=v12.船在静水中行驶的时间公式设船在静水中行驶的距离为d,船在静水中的速度为v,则有:t=d/v3.船相对于水的速度公式设船在静水中的速度为v,水流的速度为v2,则有:v1=v-v24.船在流水中的速度公式设船在静水中的速度为v,水流的速度为v2,则有:v'=v1+v25.船在流水中行驶的时间公式设船在流水中的速度为v',船在流水中行驶的距离为d',则有:t'=d'/v'6.船相对于水的速度与航向角的关系设船在静水中的速度为v,船相对于水的速度为v1,船相对于航向的速度为v0,则有:v0^2 = v1^2 + v^2 - 2v1vcosθ7.船在静水中行驶的距离与航向角的关系设船在静水中行驶的距离为d,船在静水中的速度为v,航向角为θ,则有:d = vcossθ * t8.船在流水中的速度与航向角的关系设船在流水中的速度为v',船在静水中的速度为v,船相对于水的速度为v1,航向角为θ,则有:v'^2 = v0^2 + v1^2 - 2v0v1cosθ9.船在流水中行驶的距离与航向角的关系设船在流水中行驶的距离为d',船在流水中的速度为v',航向角为θ,则有:d' = v'cossθ * t'10.船相对于航向的速度与航向角的关系设船相对于航向的速度为v0,船在静水中的速度为v,船相对于水的速度为v1,航向角为θ,则有:v0 = v1cosθ11.船在流水中行驶的距离与船在静水中行驶的距离的关系设船在静水中行驶的距离为d,船在流水中行驶的距离为d',船在静水中的速度为v,船在流水中的速度为v',则有:d'=(d+v't)/212.船相对于航向的速度与船在流水中行驶的距离的关系设船相对于航向的速度为v0,船在流水中行驶的距离为d',船在流水中的速度为v',则有:v0=d'/t'以上就是流水行船问题的12个相关公式,通过这些公式可以方便地计算船在静水中和流水中的速度、行驶的时间和距离,解决相关的应用问题。
流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时水速:(38-22)÷2=3千米/小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
完整版)流水行船问题的公式和例题(含答案)
完整版)流水行船问题的公式和例题(含答案)此船在静水中的速度=(20+12)÷2=16(千米/小时)又因为水速=(顺水速度-船速)或(船速-逆水速度),所以:水速=(20-16)÷2=2(千米/小时)或水速=(16-12)÷2=2(千米/小时)答:此船在静水中的速度为16千米/小时,水流速度为2千米/小时。
此船在静水中的速度是:5000-2500=2500(米/小时)此船顺水航行的速度是:2500+2500=5000(米/小时)顺水行150千米需要的时间是:÷5000=30(小时)答案:30小时。
一只油轮逆流而行,每小时行驶12千米,7小时后到达乙港。
从乙港返航需要6小时。
求该船在静水中的速度和水流速度。
分析:船舶逆流而行每小时行驶12千米,7小时后到达乙港,因此甲乙两港的路程为12×7=84千米。
船舶返航时顺流而行,需要6小时,因此船舶的顺水速度为84÷6=14千米。
船舶的静水速度可由顺速和逆速的平均值得出。
水速等于顺速和逆速的差值除以2,从而可以得出水流速度。
因此,可以求出船的静水速度。
解:船舶的顺水速度为14千米,逆水速度为12千米。
因此,水速为(14-12)÷2=1千米。
船的静水速度为(14+12)÷2=13千米。
水流速度为1千米。
练2:一艘船在静水中的速度是每小时15千米,河水流速为每小时5千米。
该船在甲、乙两港之间往返一次,共用去6小时。
求甲、乙两港之间的航程是多少千米?分析:首先,根据船在静水中速度和水流速度,可以求得船逆水速度为15-5=10(千米),顺水速度为15+5=20(千米)。
其次,甲、乙两港之间路程一定,往返的时间比与速度成反比,即速度比为10÷20=1:2,那么所用时间比为2:1.最后,根据往返共用6小时,按比例分配可求往返各用的时间,逆水时间为6÷(2+1)×2=4(小时),再根据速度乘以时间求出路程。
行船流水问题
行船流水问题行船流水问题核心公式:V顺=V船+V水;V逆=V船-V水V顺表示顺水速度;V逆表示逆水速度;V船表示船在静水中的速度;V水表示水流的速度。
【例15】58. 一艘游轮从甲港口顺水航行至乙港口需7小时,从乙港口逆水航行至甲港口需9小时,问如果在静水条件下,游轮从甲港口航行至乙港口需多少小时?(2011浙江)A.7.75小时B.7.875小时C.8小时D.8.25小时58.B.[解析] 本题为行程问题中的行船流水问题。
因为只给了时间,按照工程问题的解法先设出来总路程。
设甲港口至乙港口的距离是63(时间的最小公倍数),顺速=63÷7=9,逆速=63÷9=7,由顺速=船速+水速,逆速=船速—水速,可以求出船速=(9+7)÷2=8,故而静水中航行需要的时间是63÷8=7.8…小时。
所以答案为B。
【例16】53.某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时。
假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中运算匀速行驶y公里需要x小时,则x满足的方程为:(2010年国考)53.A.[解析] 本题为行程问题中的行船流水问题。
因为选项中都没有出现y,所以可以判断出本题跟y的大小没有关系,故设甲乙之间距离为1,则顺水速度为1/3,逆水速度为1/4,静水速度为均为水流速度。
故选A。
【例17】69. 一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。
现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。
问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?( )(2012年国考)A. 2B. 3C. 4D. 569. B[解析]本题为行程问题里的行船流水问题。
设水速是1,则人工划船顺水速度为3,静水中人工划船速度为3-1=2。
设A、B两地距离为S,静水中开足动力浆速度为v,根据时间关系有下列方程:,解得v=6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本例题 1.一只船逆流而上,水速2千米,船 速32千米,4小时行多少千米.(船速, 水速按每小时算)
2.一只船静水中每小时行8千米, 逆流行2小时行12千米,水速是多 少?
基本例题
3.某船在静水中的速度是每小时 18千米,水速是每小时2千米,这船 从甲地到乙地逆水行驶需15小时, 则甲、乙两地相距多少千米.
边学边练
A、B两码头间河流长为90千米, 甲、乙两船分别从A、B码头同时 启航.如果相向而行3小时相遇, 如果同向而行15小时甲船追上乙 船,求两船在静水中的速度。
边学边练
静水中,甲船速度是每小时22 千米,乙船速度是每小时18千米, 乙船先从某港开出顺水航行,2 小时后甲船同方向开出,若水流 速度为每小时4千米,求甲船几 小时可以追上乙船?
能力突破
例2. A河是B河的支流,A河水的 水速为每小时3千米,B河水的水 流速度是2千米.一船沿A河顺水 航行7小时,行了133千米到达B 河,在B河还要逆水航行84千米, 这船还要行多少小时?
能力突破
例3 甲、乙两港间的水路长 208千米,一只船从甲港开往乙 港,顺水8小时到达,从乙港返 回甲港,逆水13小时到达,求 船在静水中的速度和水流速度。
能力突破
例6、 甲、乙两船在静水中速 度分别为每小时24千米和每小 时32千米,两船从某河相距336 千米的两港同时出发相向而行, 几小时相遇?如果同向而行, 甲船在前,乙船在后,几小时 后乙船追上甲船?
边学边练 甲乙两船分别从A港逆水而上, 静水中甲船每小时行15千米,乙船 每小时行12千米,水速为每小时3 千米,乙船出发2小时后,甲船才开 始出发,当甲船追上乙船时,已离 开A港多少千米?
行船流水问题
爱未来.zhang
课题介绍
船在江河里航行时,除了本 身的前进速度外,还受到流水 的推送或顶逆,在这种情况下 计算船只的航行速度、时间和 所行的路程,叫做流水行船问 题。
课题介绍 流水行船问题,是行程问题中的 一种,因此行程问题中三个量 (速度、时间、路程)的关系在 这里将要反复用到.此外,流水行 船问题还有以下两个基本公式: 顺水速度=船速+水速,(1) 逆水速度=船速-水速.(2)
基本例题
4.一艘每小时行25千米的客 轮,在大运河中顺水航行140 千米,水速是每小时3千米, 需要行几个小时?
能力突破
例1.两个码头相距192千米,一艘 汽艇顺水行完全程要8小时,已知 水流速度是每小时4千米,逆水行 完全程要用多少小时?
边学边练
1、某船在静水中的速度是每小 时15千米,它从上游甲地开往 下游乙地共花去了8小时,水速 每小时3千米,问从乙地返回甲 地需要多少时间?
边学边练
一条船顺水而行,5小时行60 米,逆水航行这段路程,10小时 才能到达。求船速与水流速度。
边学边练
甲、乙之间的水路是234千米, 一只船从甲港到乙港需9小时, 从乙港返回甲港需13小时,问 船速和水速各为每小时多少千 米?
能力突破
例4 一轮船在码头间航行, 顺水航行需要3小时,逆水航行 要4小时,水速是每小时3千米, 码头间有多少千米?
边学边练
一艘轮船在两个码头间航行, 顺水需要4小时,逆流需要5小 时,已知水流的速度是每小时 2千米,求两码头间米, 一轮船往返两港需35小时, 逆流航行比顺流航行多花了5 小时.现在有一机帆船,静水 中速度是每小时12千米,这 机帆船往返两港要多少小时?