广东省番禺区2020届高三摸底测试理科数学试题 Word版含解析
2020年广东高三一模数学试卷(理科)
后得到的.如果被截正方体的棱长为
,则石凳子的体积为( ).
A.
B.
C.
D.
7. 在某市 年 月份的高三质量检测考试中,理科学生的数学成绩服从正态分布
.已知参
加本次考试的全市理科学生约有 人,如果某学生在这次考试中的数学成绩是 分,那么他的数学
成绩大约排在全市第( ).
附:若
,则
,
.
A.
名
B.
名
C.
名
的前项 项和为 ,且
,
.
,若数列 满足
平行,则 ,则
15. 已知
,
,
为
.
,若点 满足
,则
的最大值
16. 已知抛物线
的焦点为 ,直线 过点 且倾斜角为 .若直线 与抛物线 在第二象限
的交点为 ,过点 作 垂直于抛物线 的准线,垂足为 ,则
外接圆上的点到直线
的距离的最小值为
.
三、解答题(本大题共5小题,每小题12分,共60分)
.
21.( 1 )证明见解析. ( 2 )按照完成任务概率从大到小的 , , 的小组顺序派出勘探小组,可使在特殊勘探时所需派 出的小组个数的均值达到最小.
解析: ( 1 )由已知, 的所有可能取值为 , , , ,
,
,
,
,
∵
,
∴
,
,
.
∴概率
的值最大.
( 2 )方法一:
由 可知,由
有
的值最大,
且
,
∴
,
坐标方程为
.若 为曲线 上的动点, 是射线 上的一动点,且满足
,记动点 的轨迹为 .
( 1 ) 求 的直角坐标方程.
2020年广东省广州市高考数学一模试卷(理科)(附答案详解)
2020年广东省广州市高考数学一模试卷(理科)一、单选题(本大题共12小题,共60.0分)1.设集合M={x|0<x<1,x∈R},N={x||x|<2,x∈R},则()A. M∩N=MB. M∩N=NC. M∪N=MD. M∪N=R2.若复数z满足方程z2+2=0,则z3=()A. ±2√2B. −2√2C. −2√2iD. ±2√2i3.若直线kx−y+1=0与圆x2+y2+2x−4y+1=0有公共点,则实数k的取值范围是()A. [−3,+∞)B. (−∞,−3]C. (0,+∞)D. (−∞,+∞)4.已知p:|x+1|>2,q:2<x<3,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.设函数f(x)=2cos(12x−π3),若对于任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1−x2|的最小值为()A. π2B. πC. 2πD. 4π6.已知直三棱柱ABC−A1B1C1的体积为V,若P,Q分别在AA1,CC1上,且AP=13AA1,CQ=13CC1,则四棱锥B−APQC的体积是()A. 16V B. 29V C. 13V D. 79V7.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为()A. 514B. 914C. 37D. 478.已知直线l:y=x−2与x轴的交点为抛物线C:y2=2px的焦点,直线l与抛物线C交于A,B两点,则AB中点到抛物线准线的距离为()A. 8B. 6C. 5D. 49. 等差数列{a n }的前n 项和为S n ,已知a 1=13,a 2+a 5=4,若S n ≥4a n +8(n ∈N ∗),则n 的最小值为( )A. 8B. 9C. 10D. 1110. 已知点P(x 0,y 0)是曲线C :y =x 3−x 2+1上的点,曲线C 在点P 处的切线与y =8x −11平行,则( )A. x 0=2B. x 0=−43C. x 0=2或x 0=−43D. x 0=−2或x 0=4311. 已知O 为坐标原点,设双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 是双曲线C 上位于第一象限内的点.过点F 2作∠F 1PF 2的平分线的垂线,垂足为A ,若b =|F 1F 2|−2|OA|,则双曲线C 的离心率为( )A. 54B. 43C. 53D. 212. 已知函数f(x)={−x 2−x +1,x <0x 2−x +1,x ≥0,若F(x)=f(x)−sin(2020πx)−1在区间[−1,1]上有m 个零点x 1,x 2,x 3,…,x m ,则f(x 1)+f(x 2)+f(x 3)+⋯+f(x m )=( )A. 4042B. 4041C. 4040D. 4039二、单空题(本大题共3小题,共15.0分)13. 在(ax +1x )(x 2−1)5的展开式中,x 3的系数为15,则实数a =______.14. 已知单位向量e 1⃗⃗⃗ 与e 2⃗⃗⃗ 的夹角为π3,若向量e 1⃗⃗⃗ +2e 2⃗⃗⃗ 与2e 1⃗⃗⃗ +k e 2⃗⃗⃗ 的夹角为5π6,则实数k 的值为______.15. 记数列{a n }的前n 项和为S n ,已知a n +a n+1n=cosnπ2−sinnπ2(n ∈N ∗),且m +S 2019=−1009,a 1m >0,则1a 1+9m 的最小值为______.三、多空题(本大题共1小题,共5.0分)16. 如图,如果一个空间几何体的正视图与侧视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,则这个几何体的体积为 (1) ,表面积为 (2) .四、解答题(本大题共7小题,共82.0分)= 17.△ABC的内角A,B,C的对边分别为a,b,c,已知c=√3,且满足absinCasinA+bsinB−csinC √3.(1)求角C的大小;(2)求b+2a的最大值.18.随着马拉松运动在全国各地逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对参加马拉松运动的情况进行了统计调査,其中一项是调査人员从参与马拉松运动的人中随机抽取100人,对其每月参与马拉松运动训练的夭数进行统计,得到以下统计表;(1)以这100人平均每月进行训练的天数位于各区间的频率代替该市参与马拉松训练的人平均每月进行训练的天数位于该区间的概率.从该市所有参与马拉松训练的人中随机抽取4个人,求恰好有2个人是“平均每月进行训练的天数不少于20天”的概率;(2)依据统计表,用分层抽样的方法从这100个人中抽取12个,再从抽取的12个人中随机抽取3个,Y表示抽取的是“平均每月进行训练的天数不少于20天”的人数,求Y的分布列及数学期望E(Y).19.如图1,在边长为2的等边△ABC中,D,E分别为边AC,AB的中点,将△AED沿ED折起,使得AB⊥AD,AC⊥AE,得到如图2的四棱锥A−BCDE,连结BD,CE,且BD与CE交于点H.(1)求证:AH⊥平面BCDE;(2)求二面角B−AE−D的余弦值.20.已知⊙M过点A(√3,0),且与⊙N:(x+√3)2+y2=16内切,设⊙M的圆心M的估轨迹为C,(1)求轨迹C的方程;(2)设直线l不经过点B(2,0)且与曲线C交于点P,Q两点,若直线PB与直线QB的斜,判断直线l是否过定点,若过定点,求出此定点的坐标,若不过定点,率之积为−12请说明理由.21. 已知函数f(x)=(x −4)e x−3+x 2−6x ,g(x)=(a −13)x −1−lnx .(1)求函数f(x)在(0,+∞)上的单调区间;(2)用max{m,n}表示m ,n 中的最大值,f′(x)为f(x)的导函数,设函数ℎ(x)=max{f′(x),g(x)},若ℎ(x)≥0在(0,+∞)上恒成立,求实数a 的取值范围; (3)证明:1n +1n+1+1n+2+⋯+13n−1+13n >ln3(n ∈N ∗).22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =3+ty =1+2t(t 为参数),曲线C 2的参数方程为{x =√3cosθy =√3tanθ(θ为参数,且θ∈(π2,3π2)).(1)求C 1与C 2的普通方程,(2)若A ,B 分别为C 1与C 2上的动点,求|AB|的最小值.23. 已知函数f(x)=|3x −6|+|x +a|.(1)当a =1时,解不等式f(x)<3;(2)若不等式f(x)<11−4x 对任意x ∈[−4,−32]成立,求实数a 的取值范围.答案和解析1.【答案】A【解析】解:∵集合M={x|0<x<1,x∈R},N={x||x|<2,x∈R}={x|−2<x<2,x∈R},∴M∩N={x|0<x<1,x∈R}=M,M∪N={x|−2<x<2,x∈R}=N.故选:A.求出集合M,N,进而求出M∩N,M∪N,由此能求出结果.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:由z2+2=0⇒z=±√2i⇒z3=±2√2i,故选D.先求复数z,再求z3即可复数代数形式的运算,是基础题.3.【答案】D【解析】解:圆方程可整理为(x+1)2+(y−2)2=4,则圆心(−1,2),半径r=2,≤2,整理得3k2−2k+3≥0,则圆心到直线的距离d=√1+k2因为△=4−36<0,故不等式恒成立,所以k∈(−∞,+∞),故选:D.整理圆的方程得到其圆心与半径,直线与圆有交点等价于圆心到直线的距离d=≤2,解不等式即可√1+k2本题考查直线与圆的位置关系、根的判别式,不等式解集等,属于基础题.4.【答案】B【解析】解:p:|x+1|>2,解得:x>1,或x<−3.q:2<x<3,则q⇒p,但是p无法推出q.∴p是q的必要不充分条件.故选:B.解出不等式p,即可判断出关系.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.5.【答案】C【解析】解:函数f(x)=2cos(12x−π3),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),∴f(x1)是函数的最小值,f(x2)是函数的最大值,|x1−x2|的最小值就是函数的半周期,T 2=12×2π12=2π;故选:C.由题意可知f(x1)≤f(x)≤f(x2),f(x1)是函数的最小值,f(x2)是函数的最大值,|x1−x2|的最小值就是半个周期.本题是基础题,考查三角函数的周期的求法,题意的正确理解,考查分析问题解决问题的能力.6.【答案】B【解析】【分析】本题考查多面体体积的求法,训练了利用等体积法求多面体的体积,是中档题.由题意画出图形,过P作PG//AB交BB1于G,连接GQ,由等体积法可得V B−APQC=2 3V ABC−PQG,再由已知得到V ABC−PQG=13V ABC−A1B1C1,即可得出.【解答】解:如图,过P作PG//AB交BB1于G,连接GQ,在三棱柱ABC −PQG 中,由等积法可得V B−APQC =23V ABC−PQG , ∵AP =13AA 1,CQ =13CC 1,∴V ABC−PQG =13V ABC−A 1B 1C 1,∴V B−APQG =23V ABC−PQG =23×13V ABC−A 1B 1C 1=29V .故选:B .7.【答案】C【解析】解:某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾. 某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学. 现从这10位同学中选派5人到某小区进行宣传活动,基本事件总数n =C 105=252,每个宣传小组至少选派1人包含的基本事件个数:m =C 22C 21C 31C 31+C 21C 22C 31C 31+C 21C 21C 32C 31+C 21C 21C 31C 32=108,则每个宣传小组至少选派1人的概率为P =m n=108252=37.故选:C .基本事件总数n =C 105=252,每个宣传小组至少选派1人包含的基本事件个数m =C 22C 21C 31C 31+C 21C 22C 31C 31+C 21C 21C 32C 31+C 21C 21C 31C 32,由此能求出每个宣传小组至少选派1人的概率.本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.8.【答案】A【解析】解:抛物线C :y 2=2px ,可得准线方程为:x =−p2,直线l :y =x −2,经过抛物线的焦点坐标,可得P =4,抛物线方程为:y 2=8x 由题意可得:{y 2=8x y =x −2,可得x 2−12x +4=0,直线l 与抛物线C 相交于A 、B 两点,则线段AB 的中点的横坐标为:6, 则线段AB 的中点到抛物线C 的准线的距离为:6+2=8.故选:A.求出抛物线的准线方程,然后求解准线方程,求出线段AB的中点的横坐标,然后求解即可.本题考查抛物线的简单性质,直线与抛物线的位置关系的应用,考查计算能力.9.【答案】C【解析】解:等差数列{a n}的前n项和为S n,已知a1=13,a2+a5=4,可得:13+d+13+4d=4,解得d=23,所以S n=n3+n(n−1)×13=n23,a n=13+(n−1)×23=2n−13,S n≥4a n+8(n∈N∗),可得:n23≥8n−43+8,可得:n2−8n−20≥0,解得n≥10或n≤−2(舍去),所以n的最小值为10.故选:C.利用等差数列通项公式求出数列的首项与公差,然后求解通项公式以及数列的和,结合不等式求解即可.本题考查等差数列的通项公式以及前n项和,数列与不等式相结合,考查转化首项以及计算能力,是中档题.10.【答案】B【解析】解:由y=x3−x2+1,得y′=3x2−2x,则曲线C在点P(x0,y0)处的切线的斜率为k=y′|x=x=3x02−2x0,∵曲线C在点P处的切线与y=8x−11平行,∴3x02−2x0=8,∴x0=2或x=−43,∵当x0=2时,切线和y=8x−11重合,∴x=−43.故选:B.先求出y=x3−x2+1的导数,得到曲线C在点P(x0,y0)处的切线斜率k,然后根据曲线C在点P处的切线与y=8x−11平行得到关于x0的方程,解方程得到x0的值,再检验得到符合条件的x0.本题考查了利用导数研究曲线上某点切线方程,考查了方程思想,属基础题.11.【答案】C【解析】【分析】本题考查双曲线的性质及角平分线的性质,属于中档题.由角平分线的性质可得延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,可得OA为△BF1F2的中位线,b=|F1F2|−2|OA|=2c−2a再由a,b,c的关系求出离心率.【解答】解:延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,连接OA,则OA为△BF1F2的中位线,所以|BF1|=2|OA|,而|BF1|=|PF1|−|PB|=|PF1|−|PF2|=2a,因为b=|F1F2|−2|OA|=2c−2a,而b2=c2−a2所以c2−a2=4(c−a)2整理可得3c2−8ac+5a2=0,即3e2−8e+5=0,解得e=53或1,再由双曲线的离心率大于1,可得e=5,3故选:C.12.【答案】B【解析】【分析】本题考查正弦函数的图象和性质,分段函数的图象,以及中心对称的函数的性质,属于中档题.本题利用正弦函数的性质求出周期,再利用图象中心对称的性质求出函数值的和. 【解答】解:∵F(x)=f(x)−sin(2020πx)−1在区间[−1,1]上有m 个零点, ∴f(x)−1=sin(2020πx)在区间[−1,1]上有m 个根,即g(x)=f(x)−1={− x 2−x,x <0x 2−x,x ≥0与ℎ(x)=sin(2020πx)在区间[−1,1]上有m 个交点, ∵T =2πω=2π2020π=11010且ℎ(x)关于原点对称,在区间[−1,1]上ℎ(x)max =1,ℎ(x)min =−1 又∵g(x)=f(x)−1={− x 2−x,x <0x 2−x,x ≥0∴在区间[−1,1]上g(x)max =g(−12)=14,g(x)min =g(12)=−14, 且g(x)关于原点对称.∵根据g(x)和ℎ(x)函数图象特点易知在ℎ(x)一个周期内, g(x)和ℎ(x)图象有两个交点.∵T =11010∴在(0,1]内共有1010个周期, ∴g(x)和ℎ(x)图象共有2020个交点, ∵g(x)和ℎ(x)图象都关于原点对称,∴g(x)和ℎ(x)图象在[−1,0)U(0,1]共有4040个交点, 再加上(0,0)这个交点.∵g(x)关于原点对称,设x 1,x 2为关于原点对称的两个交点横坐标, ∴g(x 1)+g(x 2)=0,即f(x 1)−1+f(x 2)−1=0, 即f(x 1)+f(x 2)=2,∴f(x 1)+f(x 2)+f(x 3)+⋯+f(x m )=40402×2+f(0)=4040+1=4041.故选:B .13.【答案】5【解析】解:∵(x 2−1)5的展开式的通项公式为T r+1=C 5r (x 2)5−r⋅(−1)r =(−1)r ⋅C 5r x 10−2r ,r =0,1, (5)∴(ax +1x )(x 2−1)5的展开式中含x 3的系数为a ×(−1)4×C 54+C 53⋅(−1)3=5a −10.又∵5a −10=15,∴a =5. 故答案为:5.先求得(x 2−1)5的展开式的通项公式,再列出含x 3的系数的关于a 的方程,最后求出a . 本题主要考查二项式定理中的通项公式,属于基础题.14.【答案】−10【解析】解:单位向量e 1⃗⃗⃗ 与e 2⃗⃗⃗ 的夹角为π3, 即|e 1⃗⃗⃗ |=|e 2⃗⃗⃗ |=1,e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ =1×1×cos π3=12; 又向量e 1⃗⃗⃗ +2e 2⃗⃗⃗ 与2e 1⃗⃗⃗ +k e 2⃗⃗⃗ 的夹角为5π6,所以(e 1⃗⃗⃗ +2e 2⃗⃗⃗ )⋅(2e 1⃗⃗⃗ +k e 2⃗⃗⃗ )=|e 1⃗⃗⃗ +2e 2⃗⃗⃗ |×|2e 1⃗⃗⃗ +k e 2⃗⃗⃗ |cos 5π6,即2×12+(4+k)×12+2k ×12=√12+4×12+4×12×√4×12+4k ×12+k 2×12×(−√32); 8+5k =−√21⋅√k 2+2k +4; {8+5k ≤0(8+5k)2=21(k 2+2k +4), 解得k =−10, 所以实数k 的值为−10.根据单位向量的定义与平面向量数量积的运算法则,求解即可. 本题考查了单位向量的定义与平面向量数量积的运算问题,是中档题.15.【答案】16【解析】解:由已知,a 2+a 3=−2; a 4+a 5=4; a 6+a 7=−6;⋮a 2018+a 2019=−2018;将上述等式左右分别相加,得S 2019−a 1=−2018+1008=−1010;将S 2019=a 1−1010代入等式m +S 2019=−1009, 得m +a 1=1;∵a 1m >0,故都为正数;∴1a 1+9m =(1a 1+9m )(m +a 1)=10+ma 1+9a 1m≥10+2√ma 1⋅9a 1m=16;当且仅当m =3a 1 即m =34,a 1=14时等号成立; 故答案为:16.通过递推式,可求得S 2019与a 1的关系,结合已知等式m +S 2019=−1009,即可求出结论.本题考查了利用递推式求数列前n 项的和,并探究数列的某些性质,属中档题.16.【答案】√3π33π【解析】解:由三视图还原原几何体,可知该几何体为圆锥,该几何体的体积V =13×π×12×√3=√3π3;表面积S =π×12+12×2π×1×2=3π. 故答案为:√3π3;3π.由三视图还原原几何体,可知该几何体为圆锥,圆锥的底面半径为1,高为√3.再由圆锥的体积公式及表面积公式求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.17.【答案】解:(1)由题意及正弦定理可得:abca 2+b 2−c 2=√3,由余弦定理得:a 2+b 2−c 2=2ab ⋅cosC , 所以cosC =a 2+b 2−c 22ab=12,又C 为△ABC 内角, ∴C =π3;(2)由正弦定理可得:asinA =bsinB =csinC =2, 所以a =2sinA ,b =2sinB , 又因为A +B +C =π, 所以b =2sinB =2sin(A +π3),所以b +2a =2sin(A +π3)+4sinA =sinA +√3cosA +4sinA =5sinA +√3cosA =2√7sin(A +ϕ),且tanϕ=√35, 又因为A ∈(0,2π3),所以sin(A +ϕ)max =1,所以b +2a ≤2√7,即b +2a 的最大值为2√7.【解析】(1)根据已知条件,结合正余弦定理可得cosC =12,由此即可求得C ; (2)易知b =2sinB =2sin(A +π3),再由三角恒等变换可得b +2a =2√7sin(A +Φ),结合A ∈(0,2π3),可知sin(A +ϕ)max =1,由此求得b +2a 的最大值.本题涉及了正余弦定理,三角恒等变换,三角函数的图象及性质等基础知识点,考查计算能力,属于中档题.18.【答案】解:记“平均每月进行训练的天数不少于20天”为事件A .由表可知P(x ≥20)=25100,所以P(A)=C 42(14)2(1−14)2=27128. (2)由题意得:x <20的人:12×34=9;x ≥20的人有12×14=3从抽取的12个人中随机抽取3个,Y 表示抽取的是“平均每月进行训练的天数不少于20天”的人数,Y 的可能取值为0,1,2,3,且Y ~H(3,3,12)P(Y =0)=C 93C 123=84220,P(Y =1)=C 92C 31C 123=108220,P(Y =2)=C 91C 32C 123=27220,P(Y =3)=C 33C 123=1220,所以Y 的分布列为:Y 0 1 2 3 P84220108220272201220Y 的分布列及数学期望E(Y)=0×84220+1×108220+2×27220+3×1220=34.【解析】(1)记“平均每月进行训练的天数不少于20天”为事件A.求出P(x ≥20)=25100=14,利用独立重复实验的概率求解即可. (2)由题意得:x <20的人:12×34=9;x ≥20的人有12×14=3从抽取的12个人中随机抽取3个,Y 表示抽取的是“平均每月进行训练的天数不少于20天”的人数,Y 的可能取值为0,1,2,3,且Y ~H(3,3,12),求出概率,得到分布列,然后求解期望即可. 本题考查离散型随机变量的分布列以及期望的求法,独立重复实验的概率的求法,考查分析问题解决问题的能力,是中档题.19.【答案】(1)证明:由题意,AD =CD =1,BD =CE =√3, 又因为AB ⊥AD ,所以AB =√BD 2−AD 2=√3−1=√2=AC ,所以AC 2=AD 2+CD 2,即AD ⊥CD 又因为CD ⊥BD ,且BD ∩AD =D ,所以CD ⊥平面ABD.所以CD ⊥AH ,同理AH ⊥BE ,CD 与BE 是相交直线, 所以AH ⊥平面BCDE . (2)解:如图,过D 作Dz ⊥平面BCDE ,DB 为x 轴,DC 为y 轴,Dz 为z 轴,建立空间直角坐标系 所以D(0,0,0),B(√3,0,0),E(√32,−12,0),设点A(a,0,b)由AD =1,AB =√2得{a 2+b 2=1(a −√3)2+b 2=2,解得:a =√33,b =√63, 所以A(√33,0,√63),所以AE ⃗⃗⃗⃗⃗ =(√36,−12,−√63),AB ⃗⃗⃗⃗⃗ =(2√33,0,−√63),DA ⃗⃗⃗⃗⃗ =(√33,0,√63),设平面AED 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1), 所以{AE ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0DA ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0⟹{x 1=√3y 1+2√2z 1x 1+√2z 1=0,取z 1=−1,得n 1⃗⃗⃗⃗ =(√2,√6,−1), 同理可得平面AEB 的法向量n 2⃗⃗⃗⃗ =(1,−√3,√2),所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ ≥n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗|n 1⃗⃗⃗⃗⃗ ||n 2⃗⃗⃗⃗⃗ |=−√33, 由图可知,所求二面角为钝角,所以二面角B −AE −D 的余弦值为−√33.【解析】(1)证明AD ⊥CD ,CD ⊥BD ,即可证明CD ⊥平面ABD.推出CD ⊥AH ,同理AH ⊥BE ,即可证明AH ⊥平面BCDE .(2)过D 作Dz ⊥平面BCDE ,DB 为x 轴,DC 为y 轴,Dz 为z 轴,建立空间直角坐标系,求出平面AED 的法向量,平面AEB 的法向量,利用空间向量的数量积求解二面角B −AE −D 的余弦值即可.本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.20.【答案】解:(1)由题意⊙M 过点A(√3,0),且与⊙N :(x +√3)2+y 2=16内切,设两圆切点为D 所以|MD|+|MN|=|ND|=4,在⊙M 中,|MD|=|MA|所以|MA|+|MN|=4,所以M 的轨迹为椭圆,由定义可知{2a =4c =√3,所以求轨迹C 的方程为x 24+y 2=1.(2)当l 的斜率不存在的时,设P(x 0,y 0),所以Q(x 0,−y 0), 所以{k PB ⋅k QB =y0x 0−2⋅−y0x 0−2=−12x 024+y 02=1,解得{x 0=23y 0=2√23或{x 0=2y 0=0(舍), 所以l 与x 轴的交点为(23,0), 当l 的斜率存在时,设l 的方程为y =kx +b 联立{y =kx +bx 24+y 2=1消元可得(1+4k 2)x 2+8kbx +4b 2−4=0,△=(8kb)2−4(1+4k 2)(4b 2−4)=64k 2−16b 2+16>0, 所以4k 2>b 2−1,由韦达定理x 1+x 2=−8kb1+4k 2;x 1x 2=4b 2−41+4k 2, k PB ⋅k QB =y 1x 1−2⋅y 2x 2−2=(kx 1+b)(x 1−2)(kx 2+b)(x 2−2)=k 2x 1x 2+kb(x 1+x 2)+b 2x 1x 2−2(x 1+x 2)+4=k 24b2−41+4k 2−8k 2b 21+4k 2+b 24b 2−41+4k 2−2−8kb 1+4k 2+4=b 2−4k 2(4k+2b)2=(b−2k)(b+2k)4(2k+b)2,又因为2k +b ≠0,所以b−2k4(b+2k)=−12,即b =−23k , 所以b 2−1=(−23k)2−1<4k 2,所以b =−23k 成立, 所以y =kx −23k =k(x −23),当x =23时,y =0,所以l 过(23,0)综上所述l 过定点,且点坐标为(23,0).【解析】(1)由题意⊙M 过点A(√3,0),且与⊙N :(x +√3)2+y 2=16内切,推出M 的轨迹为椭圆,结合椭圆定义求轨迹C 的方程.(2)当l 的斜率不存在的时,设P(x 0,y 0),所以Q(x 0,−y 0),利用斜率乘积以及点在椭圆上,转化求解l 与x 轴的交点为(23,0),当l 的斜率存在时,设l 的方程为y =kx +b 联立{y =kx +bx 24+y 2=1,通过判别式推出4k 2>b 2−1,结合韦达定理,利用斜率的乘积推出b =−23k ,然后得到直线系方程说明结果距离.本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,直线系方程的应用,考查分析问题解决问题的能力是难题.21.【答案】解:(1)因为f(x)=(x −4)e x−3+x 2−6x ,所以f′(x)=(x −3)e x−3+2x −6=(x −3)(e x−3+2), 令f′(x)=0得x =3当x >3时,f′(x)>0,f(x)单调递增 当0<x <3时,f′(x)<0,f(x)单调递减所以f(x)单调递增区间为(3,+∞);f(x)单调递减区间为(0,3).(2)由(1)知f′(x)=(x −3)(e x−3+2),当x ≥3时f’(x)≥0恒成立,故ℎ(x)≥0恒成立 当x <3时,f’(x)<0,又因为ℎ(x)=max{f’(x),g(x)}≥0恒成立, 所以g(x)≥0在(0,3)上恒成立 所以(a −13)x −1−lnx ≥0,即a −13≥1+lnx x在(0,3)上恒成立令F(x)=1+lnx x ,则a −13≥F(x)max , F’(x)=1−(lnx+1)x 2=−lnx x 2,令F’(x)=0得x=1,易得F(x)在(0,1)上单增,在[1,3)上单减,所以F(x)max=F(1)=1,所以a−13≥1,即a≥43综上可得a≥43,(3)设m(x)=e x−x−1(x>0),则m′(x)=e x−1>0,所以m(x)在(0,+∞)上单增,所以m(x)>m(0)=0,即e x>x+1所以e1n+1n+1+1n+1+⋯+13n=e 1n⋅e1n+1⋅e1n+2…e13n>n+1n⋅n+2n+1⋅n+3n+2…3n3n−1⋅3n+13n>n+1n ⋅n+2n+1⋅n+3n+2…3n3n−1=3,所以1n +1n+1+1n+2+⋯+13n−1+13n>ln3.【解析】(1)求出导函数,通过f′(x)=0得x=3然后判断函数的单调性求解函数的单调区间即可.(2)通过ℎ(x)=max{f’(x),g(x)}≥0恒成立,令F(x)=1+lnxx ,推出a−13≥F(x)max,结合函数的导数求解函数的最大值,求解即可.(3)设m(x)=e x−x−1(x>0),利用函数的导数推出e x>x+1,然后结合不等式转化求解证明即可.本题考查了导数的综合应用及恒成立问题化为最值问题的处理方法,考查了推理能力与计算能力,属于中档题.22.【答案】解:(1)由题可得:C1的普通方程为2x−y−5=0又因为C2的参数方程为{x=√3cosθy=√3tanθ,两边平方可得{x2=3cos2θy2=3sin2θcos2θ,所以C2的普通方程为x23−y23=1,且x≤−√3.(2)由题意,设C1的平行直线2x−y+c=0联立{2x−y+c=0x23−y23=1消元可得:3x2+4cx+c2+3=0所以△=4c2−36=0,解得c=±3又因为x≤−√3,经检验可知c=3时与C2相切,所以|AB|min =√22+(−1)2=8√55.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用直线和曲线的位置关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线和曲线的位置关系的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(1)a =1时,f(x)=|3x −6|+|x +1|={−4x +5,x <−1−2x +7,−1≤x ≤24x −5,x >2;当x <−1时,由f(x)<3得−4x +5<3,解得x >12(不合题意,舍去); 当−1≤x ≤2时,由f(x)<3得−2x +7<3,解得x >2(不合题意,舍去); 当x >2时,由f(x)<3得4x −5<3,解得x <2(不合题意,舍去); 所以不等式f(x)<3的解集⌀;(2)由f(x)=|3x −6|+|x +a|<11−4x 对任意x ∈[−4,−32]成立, 得−(3x −6)+|x +a|<11−4x ,即|x +a|<5−x , 所以{|x +a|<5−x 5−x >0,所以{x −5<x +ax +a <5−x,得a >−5且a <5−2x 对任意x ∈[−4,−32]成立;即−5<a <8,所以a 的取值范围是(−5,8).【解析】(1)a =1时,f(x)=|3x −6|+|x +1|,讨论x 的取值范围,去掉绝对值求不等式f(x)<3的解集即可;(2)f(x)=|3x −6|+|x +a|<11−4x 对任意x ∈[−4,−32]成立,等价于|x +a|<5−x 恒成立,去绝对值,从而求出a 的取值范围.本题考查了不等式恒成立的应用问题,也考查了含有绝对值的不等式解法问题,是中档题.。
2020届广州市高三理科数学一模模拟卷答案 含答案
绝密★启用前2020届广州市高三理科数学一模模拟卷考试时间:120分钟;命题人:高三备课组注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2−2x−3<0},集合B={x|2x+1>1},则∁B A=()A. [3,+∞)B. (3,+∞)C. D.【答案】A【解析】【分析】本题考查二次不等式的求解及指数不等式的求解,同时考查集合的补集,属于基础题.根据集合A是二次不等式的解集,集合B是指数不等式的解集,因此可求出集合A,B,根据补集的求法求得∁B A.【解答】解:因为A={x|x2−2x−3<0}={x|−1<x<3},B={x|2x+1>1}={x|x+1>0}={x|x>−1},则∁B A=[3,+∞).故选A.2.若z=1+2i,则4iz⋅z−−1=()A. 1B. −1C. iD. −i【答案】C【解析】【分析】本题考查复数的代数形式混合运算,共轭复数的概念,属于基础题.利用复数的四则运算法则,化简求解即可.【解答】解:z=1+2i,则4iz·z−−1=4i(1+2i)(1−2i)−1=4i5−1=i,故选C.3.若tanα=34,则cos2α+2sin2α=()A. 6425B. 4825C. 1D. 1625【答案】A【解析】【分析】本题主要考查三角函数的化简求值,同角三角函数的关系式,二倍角公式的应用,“弦”化“切”是关键,属于基础题.将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=34,∴cos2α+2sin2α=cos2α+4sinαcosαsin2α+cos2α=1+4tanαtan2α+1=1+4×34 916+1=6425.故选A.4.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,离心率为√33,过F2的直线l交C于A、B两点,若△AF1B的周长为4√3,则C的方程为()A. x23+y22=1 B. x23+y2=1 C. x212+y28=1 D. x212+y24=1【答案】A【解析】【分析】本题考查椭圆的定义与标准方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.利用△AF1B的周长为4√3,求出a=√3,根据离心率为√33,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4√3,且△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4√3,∴a=√3,∵离心率为√33,∴ca =√33,解得c=1,∴b=√a2−c2=√2,∴椭圆C的方程为x23+y22=1.故选A.5.正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为()A. √26B. √23C. √24D. √25【答案】B【解析】【分析】本题考查异面直线所成角的余弦值的求法,考查正四面体,线线、线面、面面间的位置第2页,共16页关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想,属于中档题.取BC中点E,DC中点F,连接DE、BF,则由题意得DE∩BF=O,取OD中点N,连接MN,则MN//AO,从而∠BMN是异面直线BM与AO所成角(或所成角的补角),由此能求出异面直线BM与AO所成角的余弦值.【解答】解:取BC中点E,DC中点F,连接DE、BF,则由题意得DE∩BF=O,取OD中点N,连接MN,则MN//AO,∴∠BMN是异面直线BM与AO所成角(或所成角的补角),设正四面体ABCD的棱长为2,BM=DE=√4−1=√3,OD=23DE=2√33,∴AO=√4−43=√23,∴MN=12AO=√2√3,∵O是点A在底面BCD内的射影,MN//AO,∴MN⊥平面BCD,BN⊂平面BCD,∴MN⊥BN,∴cos∠BMN=MNBM =√2√3√3=√23,∴异面直线BM与AO所成角的余弦值为√23.故选B.6.已知数列{a n}满足:a1=−13,a6+a8=−2,且a n−1=2a n−a n+1(n≥2),则数列{1a n a n+1}的前13项和为()A. 113B. −113C. 111D. −111【答案】B【解析】【分析】本题考查等差数列的递推式和通项公式的运用,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.由条件可得a n+1−a n=a n−a n−1,可得数列{a n}为等差数列,设公差为d,运用等差数列的通项公式解方程可得d,求得通项公式,则1a n a n+1=1(2n−15)(2n−13)=12×(12n−15−12n−13),运用数列的求和方法:裂项相消求和,即可得到所求和.第4页,共16页【解答】解:a n−1=2a n −a n+1(n ≥2), 可得a n+1−a n =a n −a n−1,可得数列{a n }为等差数列,设公差为d ,由a 1=−13,a 6+a 8=−2,即为2a 1+12d =−2, 解得d =2,则a n =a 1+(n −1)d =2n −15.1a n a n+1=1(2n −15)(2n −13) =12×(12n−15−12n−13), 即有数列{1an a n+1}的前13项和为12(1−13−1−11+1−11−1−9+⋯+111−113) =12×(−113−113)=−113.故选B .7. 安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则不同的安排方式共有( ) A. 360种 B. 300种 C. 150种 D. 125种 【答案】C【解析】解:分2步分析:先将5名学生分成3组,由两种分组方法,若分成3、1、1的三组,有C 53=10种分组方法, 若分成1、2、2的三组,有C 51C 42C 22A 22=15种分组方法,则一共有10+15=25种分组方法;再将分好的三组全排列,对应三个社区,有A 33=6种情况, 则有25×6=150种不同的安排方式; 故选:C . 分2步分析:先将5名大学生分成3组,分2种情况分类讨论,再将分好的三组全排列,对应三个城市,由分步计数原理计算可得答案;本题考查排列、组合的应用,注意本题计算安排方式时用到分组涉及平均分组与不平均分组,要用对公式.8. 函数f(x)=(1−2x1+2x )cosx 的图象大致为( )A. B.C. D.【答案】C【解析】【分析】本题考查函数的图象的判断与应用,考查函数的零点以及特殊值的计算,利用函数的零点排除选项,然后通过特殊点的位置判断即可,属于中档题. 【解答】 解:函数f(x)=(1−2x 1+2)cosx ,当x =π2时,是函数的一个零点,所以排除A ,B ;当x ∈(0,1)时,cosx >0,1−2x 1+2x <0,函数f(x)=(1−2x 1+2x)cosx <0,函数的图象在x 轴下方;排除D ; 故选C .9. 某兴趣小组有男生20人,女生10人,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则①该抽样可能是系统抽样; ②该抽样可能是随机抽样: ③该抽样一定不是分层抽样;④本次抽样中每个人被抽到的概率都是15. 其中说法正确的为( )A. ①②③B. ②③C. ②③④D. ③④【答案】A【解析】【分析】本题考查了随机抽样及概率,正确理解它们是解决问题的关键.①该抽样可以是系统抽样;②因为总体个数不多,容易对每个个体进行编号,因此该抽样可能是简单的随机抽样;③若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,且分层抽样的比例相同,该抽样不可能是分层抽样;④分别求出男生和女生的概率,故可判断出真假. 【解答】解:①总体容量为30,样本容量为5,第一步对30个个体进行编号,如男生1~20,女生21~30; 第二步确定分段间隔k =305=6;第三步在第一段用简单随机抽样确定第一个个体编号l(l ≤10);第四步将编号为l +6k(0≤k ≤4)依次抽取,即可获得整个样本.故该抽样可以是系统抽样.因此①正确.②因为总体个数不多,可以对每个个体进行编号,因此该抽样可能是简单的随机抽样,故②正确;③若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,且分层抽样的比例相同,但兴趣小组有男生20人,女生10人,抽取2男三女,抽的比例不同,故③正确;④该抽样男生被抽到的概率220=110;女生被抽到的概率=310,故前者小于后者.因此④不正确.故选A .10.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=√2,则球O的表面积等于()A. 4πB. 3πC. 2πD. π【答案】A【解析】【分析】本题主要考查了线面垂直的判定和性质,以及外接球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于中档题.先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的表面积公式求解即可.【解答】解:如图所示:取SC的中点O,连接AO,BO,因为SA⊥平面ABC,,,∴SA⊥AC,SA⊥BC,∴在Rt△ASC中,OA=OS=OC,又AB⊥BC,SA∩AB=A,,又,∴BC⊥SB,∴在Rt△SBC中,有OB=OS=OC,又SA=AB=1,BC=√2,AB⊥BC,∴SC=2,∴OA=OB=OC=OS=1,即球O的半径为1,∴球O的表面积为4πR2=4π.故选A.11.已知函数f(x)=e x(x−b)(b∈R).若存在x∈[12,2],使得f(x)+xf′(x)>0,则实数b的取值范围是()第6页,共16页A. (−∞,83)B. (−∞,56)C. (−32,56)D. (83,+∞)【答案】A【解析】【分析】本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题. 求出f′(x),问题转化为b <x 2+2x x+1在[12,2]恒成立,令g(x)=x 2+2x x+1,x ∈[12,2],求出b 的范围即可. 【解答】解:∵f(x)=e x (x −b),∴f ′(x)=e x (x −b +1), 若存在x ∈[12,2],使得f(x)+xf ′(x)>0,则若存在x ∈[12,2],使得e x (x −b)+xe x (x −b +1)>0, 即存在x ∈[12,2],使得b <x 2+2x x+1成立,令g(x)=x 2+2x x+1,x ∈[12,2], 则g′(x)=x 2+2x+2(x+1)2>0,g(x)在[12,2]递增, ∴g(x)max =g(2)=83, 故b <83, 故选A .12. 数列{a n }满足a 1=14,a n+1=14−4a n ,若不等式a 2a 1+a 3a 2+⋯+a n+2a n+1<n +λ对任何正整数n 恒成立,则实数λ的最小值为( )A. 38B. 34C. 78D. 74【答案】D【解析】【分析】本题是一道关于数列与不等式的综合题,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题. 先求出a n =n2(n+1),进而变形可知a n+1a n=1+12(1n −1n+2),裂项相加、放缩即得结论.【解答】解:a n+1=14−4a n,设b n =22an −1,则b n+1=22a n+1−1 =224−4a n−1=22an −1−2=b n −2,则 b n+1−b n =−2,又a 1=14,第8页,共16页∴b 1=22a1−1=−4,∴b n =−4+(n −1)×(−2)=−2n −2, ∴22a n −1=−2n −2,∴a n =12−12n+2=n2(n+1),由此可知:a n =n2(n+1),∵a n+1a n=n +12(n +2)n 2(n +1)=(n +1)2n(n +2)=1+1n(n+2)=1+12(1n −1n+2),∴a 21+a 32+⋯+a n+2n+1=n +1+12(1−13+12−14+⋯+1n−1n +2+1n +1−1n +3) =n +1+12(1+12−1n +2−1n +3)=n +74−12(1n+2+1n+3),又∵不等式a 2a 1+a 3a 2+⋯+an+2a n+1<n +λ对任何正整数n 恒成立,∴实数λ的最小值为74, 故选:D .二、填空题(本大题共4小题,共20.0分)13. 已知向量a ⃗ =(−1,2),b ⃗ =(m,1),若向量a ⃗ +b ⃗ 与a ⃗ 垂直,则m =______. 【答案】7【解析】【分析】本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则和向量垂直的性质的合理运用.利用平面向量坐标运算法则先求出a ⃗ +b ⃗ ,再由向量a ⃗ +b ⃗ 与a⃗ 垂直,利用向量垂直的条件能求出m 的值. 【解答】解:∵向量a⃗ =(−1,2),b ⃗ =(m,1), ∴a ⃗ +b ⃗ =(−1+m,3), ∵向量a ⃗ +b ⃗ 与a ⃗ 垂直, ∴(a ⃗ +b ⃗ )⋅a ⃗ =(−1+m)×(−1)+3×2=0, 解得m =7. 故答案为7.14.已知实数x,y满足{y≤23x−y−3≤02x+y−2≥0,目标函数z=3x+y+a的最大值为4,则a=.【答案】−3【解析】【分析】本题考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想,属于中档题.由题意,不等式组{y≤23x−y−3≤02x+y−2≥0,表示一个三角形区域(包含边界),求出三角形的三个顶点的坐标,目标函数z=3x+y+a的几何意义是直线的纵截距,由此可求得结论.【解答】解:由题意,不等式组{y≤23x−y−3≤02x+y−2≥0,表示一个三角形区域(包含边界)三角形的三个顶点的坐标分别为(0,2),(1,0),(53,2),目标函数z=3x+y的几何意义是直线y=−3x+z的纵截距,作直线y=−3x的平行线,由图可知在点A(53,2)处取得最大值4.3×53+2+a=4,解得a=−3故答案为−3.15.已知函数f(x)是定义在R上的奇函数,当x∈(−∞,0)时,f(x)=2x3+x2,则f(2)=______.【答案】12【解析】【分析】本题考查的知识点是函数奇偶性的性质,函数求值,难度不大,属于基础题.由已知当x∈(−∞,0)时,f(x)=2x3+x2,先求出f(−2),进而根据奇函数的性质,可得答案.【解答】解:∵当x∈(−∞,0)时,f(x)=2x3+x2,∴f(−2)=−12,又∵函数f(x)是定义在R上的奇函数,∴f(2)=−f(−2)=12,故答案为12.16.已知F1,F2分别是双曲线x2a2−y2b2=1的左、右焦点,P为双曲线左支上任意一点,若PF22PF1的最小值为8a,则双曲线的离心率的取值范围为________.【答案】(1,3]【解析】【分析】本题考查双曲线的简单性质,依题意求得|PF1|=4a,|PF2|=2a是基础,利用|PF1|、|F1F2|、|PF2|之间的三角关系得到关于a,c的不等式组是关键,也是难点,考查分析问题、解决问题的能力,属于中档题.依题意,双曲线左支上存在一点P使得|PF2|2|PF1|=8a,|PF1|−|PF2|=−2a,可求得,|PF1|= 2a,|PF2|=4a,再利用|PF1|、|F1F2|、|PF2|之间的关系即可求得双曲线的离心率的取值范围.【解答】解:∵P为双曲线左支上一点,∴|PF1|−|PF2|=−2a,∴|PF2|=|PF1|+2a,①又|PF2|2|PF1|=8a,②∴由①②可得,|PF1|=2a,|PF2|=4a.∴|PF1|+|PF2|≥|F1F2|,即2a+4a≥2c,∴ca≤3,③又|PF1|+|F1F2|>|PF2|,∴2a+2c>4a,∴ca>1.④由③④可得1<ca≤3.故答案为(1,3].三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=sin(2x+π6)+2sin2x.(Ⅰ)求函数f(x)的最小正周期和单调递减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A2)=32,b+c=7,△ABC的面积为2√3,求边a的长.第10页,共16页【答案】解:(Ⅰ)函数f(x)=sin(2x+π6)+2sin2x,可得f(x)=sin2xcosπ6+cos2xsinπ6+1−cos2x=sin(2x−π6)+1,所以f(x)的最小正周期T=2π2=π;令2kπ+π2≤2x−π6≤2kπ+3π2,解得kπ+π3≤x≤kπ+5π6,所以f(x)的单调递减区间是[kπ+π3,kπ+ 5π6](k∈Z);(Ⅱ)∵f(x)=sin(2x−π6)+1,f(A2)=32,∴sin(A−π6)=12,又−π6<A−π6<5π6可得A−π6=π6即A=π3,∵b+c=7,△ABC的面积为2√3,即12bcsinA=√34bc=2√3,∴bc=8,a2=b2+c2−2bccosπ3=(b+c)2−3bc=25,∴a=5.【解析】本题考查三角形的余弦定理和面积公式的运用,考查三角函数的恒等变换和正弦函数的图象和性质,考查化简整理的运算能力,属于中档题.(Ⅰ)运用两角和的正弦公式和二倍角的余弦公式,化简函数f(x),再由正弦函数的周期公式和单调减区间,解不等式可得减区间;(Ⅱ)由A的范围,结合正弦函数值,可得A,再由三角形的面积公式和余弦定理可得所求值.18.如图,在四棱锥P−ABCD中,底面ABCD为菱形,PA⊥平面ABCD,AB=2,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)设H为线段PD上的动点,若线段EH长的最小值为√5,求二面角E−AF−C的余弦值.【答案】(Ⅰ)证明:∵底面ABCD为菱形,∠ABC=60°,∴三角形ABC为正三角形,∵E是BC的中点,∴AE⊥BC,又AD//BC,∴AE⊥AD,又PA⊥平面ABCD,AE⊂平面ABCD,∴PA⊥AE,而PA、AD为平面PAD内两条相交直线,∴AE⊥平面PAD,∵PD⊂平面PAD,∴AE⊥PD;(Ⅱ)解:过A作AH⊥PD于H,连接HE,由(Ⅰ)得AE⊥PD,第12页,共16页AH 、HE 为平面AHE 内两条相交直线, ∴PD ⊥平面AHE ,又EH 在平面AHE 内,∴EH ⊥PD ,此时线段EH 长最小,即EH =√5, ∵AE =√3,∴AH =√2,则PA =2.以A 为原点,AE ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系,A(0,0,0),E(√3,0,0),D(0,2,0),C(√3,1,0),P(0,0,2),F(√32,12,1),B(√3,−1,0).AE ⃗⃗⃗⃗⃗ =(√3,0,0),AF ⃗⃗⃗⃗⃗ =(√32,12,1), 设平面AEF 的法向量m⃗⃗⃗ =(x,y,z), 由{m ⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =√3x =0m ⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =√32x +12y +z =0,取z =1,可得m⃗⃗⃗ =(0,−2,1); ∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又∵BD ⊥AC ,PA 、AC 为平面AFC 内两条相交直线, ∴BD ⊥平面AFC ,故BD⃗⃗⃗⃗⃗⃗ =(−√3,3,0)为平面AFC 的一个法向量, ∴cos <m ⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ >=m⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BD⃗⃗⃗⃗⃗⃗ |=√5×√12=√155. 即二面角E −AF −C 的余弦值为√155.【解析】本题考查直线与平面垂直的判断定理以及性质定理的应用,考查空间想象能力以及计算能力,训练了利用空间向量求解二面角的平面角,是中档题.(Ⅰ)连接AC ,证明AE ⊥BC ,AE ⊥AD ,推出PA ⊥平面ABCD ,即可证明AE ⊥PD ; (Ⅱ)过A 作AH ⊥PD 于H ,连接HE ,由(Ⅰ)得AE ⊥平面PAD ,可得EH ⊥PD ,即EH =√5,,以A 为原点,AE ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系,分别求出平面AEF 与平面AFC 的一个法向量,由两法向量所成角的余弦值可得二面角E −AF −C 的余弦值.19. 已知函数f(x)=xe x −ln (x +1)−x .(1)求曲线y =f(x)在点(0,f(0))处的切线方程;(2)证明:函数f(x)在区间(0,1)内有且只有一个零点. 【答案】解:(1)当x =0时,f(0)=0, 由f(x)=xe x −ln(x +1)−x , 得f′(x)=e x (x +1)−1x+1−1, 故斜率k =f′(0)=−1,故切线方程是:y =−x ;(2)由题意可知,函数的定义域是(−1,+∞), 由(1)知,f′(x)=e x (x+1)2−x−2x+1,记g(x)=e x (x +1)2−x −2, 故g′(x)=e x (x 2+4x +3)−1, 易知x ∈(0,+∞)时,g′(x)>0, 故g(x)在区间(0,+∞)递增, 故g(x)>g(0)=−1, ∵g(1)=4e −3>0,故在区间(0,1)内必存在ξ,使得g(ξ)=0, 故当x ∈(0,ξ)时,g(x)<0,即f′(x)<0, 故f(x)递减,当x ∈(ξ,1)时,g(x)>0,即f′(x)>0, 故f(x)递增,故当x =ξ时,f(x)有最小值且为f(ξ), ∵f(0)=0,∴f(ξ)<f(0)=0,而f(1)=e −ln2−1>0,故在区间(ξ,1)内存在唯一零点,故函数f(x)在区间(0,1)内有且只有1个零点.【解析】本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,考查分类讨论思想,是一道综合题.(1)求出函数的导数,求出直线的斜率,求出切线方程即可;(2)求出函数的定义域,记g(x)=e x (x +1)2−x −2,求出函数的导数,根据函数的单调性证明即可.20. 已知椭圆C :x 2b 2+y 2a 2=1(a >b >0)的离心率为√32,椭圆C 的长轴长为4. (1)求椭圆C 的方程;(2)已知直线l :y =kx +√3与椭圆C 交于A ,B 两点,是否存在实数k 使得以线段AB 为直径的圆恰好经过坐标原点O ?若存在,求出k 的值;若不存在,请说明理由.【答案】解:(1)设椭圆的半焦距为c ,则由题设,得:{2a =4e =c a =√32, 解得{a =2c =√3, 所以b 2=a 2−c 2=4−3=1, 故所求椭圆C 的方程为y 24+x 2=1.(2)存在实数k 使得以线段AB 为直径的圆恰好经过坐标原点O . 理由如下:设点A(x 1,y 1),B(x 2,y 2), 将直线l 的方程y =kx +√3代入y 24+x 2=1,并整理,得(k 2+4)x 2+2√3kx −1=0,(∗) 易知Δ>0,第14页,共16页则x 1+x 2=−2√3kk 2+4,x 1x 2=−1k 2+4,因为以线段AB 为直径的圆恰好经过坐标原点O ,所以OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0,即x 1x 2+y 1y 2=0. 又y 1y 2=k 2x 1x 2+√3k(x 1+x 2)+3, 于是−1+k 2k 2+4−6k 2k 2+4+3=0, 解得k =±√112,所以当k =±√112时,以线段AB 为直径的圆恰好经过坐标原点O .【解析】本题考查的知识点是椭圆的标准方程,直线与圆锥曲线的关系,向量垂直的充要条件,属于中档题.(1)设椭圆的半焦距为c ,则由题设,得:{2a =4e =c a=√32,解得a ,c 的值,即可求出b 的值,从而可得椭圆C 的方程;(2)设点A(x 1,y 1),B(x 2,y 2),将直线l 的方程y =kx +√3代入y 24+x 2=1,利用韦达定理,及向量垂直的充要条件,可求出满足条件的k 值.21. 2019年7月1日至3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x(同一组中的数据用该组区间的中点值代表).(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布N(μ,σ2),经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.参考数据:若随机变量ξ服从正态分布N(μ,σ2),则P(μ−σ<ξ≤μ+σ)≈0.6827,P(μ−2σ<ξ≤μ+2σ)≈0.9545,P(μ−3σ<ξ≤μ+3σ)≈0.9973. (3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券,已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、……、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到k +1),若掷出反面,遥控车向前移动两格(从k 到k +2),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第n 格的概率为P n ,试说明{P n −P n−1}是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.【答案】解:(1)x =0.002×50×205+0.004×50×255+0.009×50×305+0.004×50×355+0.001×50×405=300(千米); (2)因为X 服从正态分布N(300,502), 所以P(250<X ⩽400)≈0.9545−0.9545−0.68272=0.8186;(3)遥控车开始在第0格为必然事件,P 0=1.第一次掷硬币出现正面,遥控车移到第1格,其概率为12,即P 1=12.遥控车移到第n(2≤n ≤49)格的情况是下列两种,而且也只有两种: ①遥控车先到第n −2格,又掷出反面,其概率为12P n−2;②遥控车先到第n −1格,又掷出正面,其概率为12P n−1.所以P n =12P n−2+12P n−1. 所以P n −P n−1=−12(P n−1−P n−2).所以当1≤n ≤49时,数列{P n −P n−1}是首项为P 1−P 0=−12,公比为−12的等比数列. 所以P 1−1=−12,P 2−P 1=(−12)2,P 3−P 2=(−12)3,…,P n −P n−1=(−12)n . 以上各式相加,得P n −1=(−12)+(−12)2+⋯+(−12)n ,所以P n =1+(−12)+(−12)2+⋯+(−12)n =23[1−(−12)n+1](n =0,1,2,⋯,49). 所以获胜的概率为P 49=23[1−(12)50],失败的概率P 50=12P 48=12×23[1−(−12)49]=13[1+(12)49]. 所以P 49−P 50=23[1−(12)50]−13[1+(12)49]=13[1−(12)48]>0.所以获胜的概率大.所以此方案能够成功吸引顾客购买该款新能源汽车.【解析】 本题考查了离散型随机变量的概率分布列,超几何分布,正态分布,等比数列证明及应用等知识,阅读量大,审清题意是关键,属于中档题.(1)将直方图中每个小长方形的中点横坐标作为该组数据的代表值,频率作为权重,加权平均即可;(2)因为X 服从正态分布N(300,502),根据概率公式求解即可;(3)遥控车开始在第0格为必然事件,分析得出P n −P n−1=−12(P n−1−P n−2),从而即可证明{P n −P n−1}是等比数列,判断P 49−P 50>0,即可得出此方案能够成功吸引顾客购买该款新能源汽车.第16页,共16页22. 已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标是ρ=2asinθ,直线l 的参数方程是{x =−35t +a y =45t(t 为参数). (1)若a =2,M 为直线l 与x 轴的交点,N 是圆C 上一动点,求|MN|的最大值; (2)若直线l 被圆C 截得的弦长为2√6,求a 的值. 【答案】解:(1)直线l 的参数方程是{x =−35t +ay =45t,a =2时, 化为普通方程:y =−43(x −2).令y =0,解得x =2,可得M(2,0).圆C 的极坐标是ρ=2asinθ,即ρ2=4ρsinθ,可得直角坐标方程:x 2+y 2−4y =0, 即x 2+(y −2)2=4. |MC|=2√2,∴|MN|的最大值为2√2+2.(2)圆C 的方程为:x 2+(y −a)2=a 2,直线l 的方程为:4x +3y −4a =0, 圆心C 到直线l 的距离d =|3a−4a|5=|a|5.∴2√a 2−a225=2√6,解得a =±52.【解析】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、弦长公式,考查了推理能力与计算能力,属于中档题.(1)直线l 的参数方程是{x =−35t +a y =45t,a =2时,化为普通方程:y =−43(x −2).可得M(2,0).圆C 的极坐标是ρ=2asinθ,即ρ2=4ρsinθ,利用互化公式可得直角坐标方程,求出|MC|=2√2,可得|MN|的最大值为2√2+2.(2)圆C 的方程为:x 2+(y −a)2=a 2,直线l 的方程为:4x +3y −4a =0,利用点到直线的距离公式与弦长公式即可得出.。
2020届番禺区高三年级摸底测试理科数学参考答案
理科数学参考答案
一、选择题:
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 A A D C B C D B D D A C
二、填空题:
1 3 :4 2 0
1 4 :(4 ,2 )
三、解答题:
15: 5
11
1
6
:
−
−2e
3 2
,
3e
17.(本小题满分 12 分)(1)由0 < A < π ,cos A = 3 ,得sin A = 7 ,
1= bc sin A 2
15 7 16
,所以 S∆ABM
=5 S 11
∆ABC
=5 × 15 11 6
7
= 75 7 176
.……12 分
第1页共6页
18.(本小题满分 12 分)
(1)连结 AC1 .∵ AA1 = AC ,四边形 AA1C1C 为菱形,∴ A1C ⊥ AC1 . …………1 分
综上所求 a 的取值范围为 a ≥ 1 ……………6 分 2
(2)证明:有(1)得 a ≥ 1 时有 f (x) ≥ ln x(x ≥ 1) 成立 2
令a = 1 2
有
1 2
x
−
1 x
≥
ln
x
,即当
x
>
1
时有
1 2
x
−
1 x
>
ln
x
……………7 分
再令
x
=
k
+ k
1
有
1 2
k
+ k
1
−
k
k +
2020年广东省高考理科数学模拟试卷及答案解析
(2)设点P(0,2),直线C1交曲线C2于M,N两点,求|PM|2+|PN|2的值.
五.解答题(共1小题)
23.(1)解不等式:|x﹣1|+|x+3|>6;
(2)若a>0,b>0,a+b=2,证明:( ﹣1)( ﹣1)≥9
2020年广东省高考理科数学模拟试卷
参考答案与试题解析
13.函数y=x+lnx在x=1处的切线方程是.
14.在等比数列{an}中,a2=1,a5=8,则数列{an}的前n项和Sn=.
15.从装有3个黑球,2个白球的不透明箱子中不放回地摸球,每次只摸出一个,则摸完两次后箱中仅剩下黑球的概率为.
16.已知双曲线 的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为A,再反向延长交另一条渐近线于点B,若 ,则双曲线C的离心率为.
2020年广东省高考理科数学模拟试卷
一.选择题(共12小题,满分60分,每小题5分)
1.设全集U=R,已知集合A={x|x≥1},B={x|(x+2)(x﹣1)<0},则( )
A.A∪B=UB.A∩B=∅C.∁UB⊆AD.∁UA⊆B
2.已知复数z满足|z﹣i|+|z+i|=3(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为( )
20.(12分)已知函数f(x)=x2+aln(x+1).
(Ⅰ)若函数y=f(x)在区间[2,+∞)上是单调递增函数,求实数a的取值范围;
(Ⅱ)若函数y=f(x)有两个极值点x1,x2且x1<x2,求证
21.(12分)设A(x1,y1),B(x2,y2)是函数f(x)= +log2 图象上任意两点,M为线段AB的中点.已知点M的横坐标为 .若Sn=f( )+f( )+…+f( ),n∈N*,且n≥2.
2020年广东省第三次高考模拟考试理科数学试题与答案
2020年广东省第三次高考模拟考试理科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}{}22|22,|log A x Z x B x y x =∈-<<==,则AB =( )A .{}1,1-B .{}1,0,1-C .{}1D .{}0,12. 复数z 满足(1)|1|z +=+,则z 等于( )A .1B .1C .12D 12i -3. 已知实数,满足约束条件,则的最大值为( )A.B.C. D. 24. 在由直线,和轴围成的三角形内任取一点,记事件为,为,则( )A.B. C. D.5. 《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A. 15B. 16C. 18D. 216. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有( )A. 4种B. 10种C. 18种D. 20种7. 若1x 是方程4xxe =的解,2x 是方程ln 4x x =的解,则12x x +等于( ) A .4B .2C .eD .18. 已知函数()2()12sin 06f x x πωω⎛⎫=-+> ⎪⎝⎭在区间,62ππ⎡⎤⎢⎥⎣⎦为单调递减函数,则ω的最大值是( ) A .12 B .35 C .23 D .349. 已知三棱锥的底面是以为斜边的等腰直角三角形,且,则该三棱锥的外接球的表面积为 A.B.C.D.10. 函数的图象大致是( )A. B. C. D.11.已知函数a x ax e ex f +--+=)(,若c b a ==3log 3,则( )A.)(a f <)(b f <)(c fB.)(b f <)(c f <)(a fC.)(a f <)(c f <)(b fD.)(c f <)(b f <)(a f12.已知函数1,)21(1,2542{)(≤>-+-=x x x x x x f ,若函数()()g x f x mx m =--的图象与x 轴的交点个数不少于2个,则实数m 的取值范围为( )A.1,64⎡⎢⎣ B.1,64⎡⎢⎣C .][1,2ln2,64⎛-∞-⋃ ⎝ D .][1,2ln2,64e ⎛-∞-⋃ ⎝ 二、填空题:本题共4小题,每小题5分,共20分。
2020年广东广州高三一模数学试卷(理科)
2020年广东广州高三一模数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.已知复数满足,则( ).A. B. C. D.2.已知集合,,,则的子集共有( ).A.个B.个C.个D.个3.( ).A. B. C. D.4.已知命题:,;命题:,,则下列命题中为真命题的是( ).A. B. C. D.5.已知函数满足,当时,,则( ).A.或B.或C.或D.或6.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图象大致为( ).A.B.C.D.7.陀螺是中国民间最早的娱乐工具,也称陀罗,如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( ).A.B.D.8.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( ).A.B.C.D.9.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为( ).A.B.C.D.10.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为( ).A.B.C.D.11.已知函数的导函数为,记,,,.若,则( ).A.B.C.12.已知正方体的棱长为,,,分别是棱,﹐的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.设向量,,且,则.14.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为 .15.的展开式中,的系数是 .(用数字填写答案)16.已知的三个内角为,,,且,,成等差数列,则的最小值为 ,最大值为 .三、解答题(本大题共5小题,每小题12分,共60分)(1)(2)17.记为数列的前项和,.求.令,证明数列是等比数列,并求其前项和.(1)(2)18.如图,三棱锥中,,,,,.求证:.求直线与平面所成角的正弦值.零件尺寸频率组距(1)(2)(3)19.某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:),得到如下的频率分布直方图:根据频率分布直方图,求这个零件尺寸的中位数(结果精确到).若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望.已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用.现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.(1)20.已知数,曲线在点处的切线方程为.求,的值.【答案】解析:∵复数满足,∴,.故选.(2)证明函数存在唯一的极大值点,且.(1)(2)21.已知点是抛物线的顶点,,是上的两个动点,且.判断点是否在直线上?说明理由.设点是的外接圆的圆心,点到轴的距离为,点,求的最大值.:四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).求与的普通方程.若与相交于,两点,且,求的值.(1)(2)23.已知,,且.求的最小值.证明:.A1.解析:∵集合,,∵.∴的子集共有个.即,,,.故正确.解析:.故选.解析:命题:∵,∴对,为假命题,命题:当时,,,∴,∴,为真命题,∴为假命题,为真命题,为假命题,为假命题.故选.解析:∵,B 2.D 3.B 4.C 5.∴关于对称,当时,,此时单调递增,令,则,∴,∴,又关于对称,∴,且当时,单调递减,∴当时,即或,∴或.故选:.解析:题目的意思是:角即,设与的交点即的中点为,由图可以看到当时,即为的直经,∴,∴排除,∵,,∴,∴,∵是长度,一定大于,∴,∵在的图象为,A 6.,∴的图象为,∴的图象应该如选项所画,故选.解析:由三视图可知该几何体为上部为圆锥下部为圆柱的组合体,陀螺表面积即为组合体表面积,如图,通过小方格纸的边长标出该组合体的参数,观察可知:陀螺表面积(圆锥表面积与圆柱上底面重合表面积)(圆柱表面积上底面面积),.故选.C 7.锥小圆柱小圆锥柱小圆解析:如图所示,设图中为地心(且为焦点),设椭圆方程为,则近地点为点,远地点为点,近地点与地表距离,远地点与地表距离为,,,,.则远地点与地表距离为:.解析:方法一:被选出来的概率:,被选出来的概率:,被分到一组的概率为:设共有个人,分别是,,,,则分组方法为,,两种情况(男男不能一组)A 8.B 9.∴,故和分到一组的概率为:.方法二:男女中各选两名,人随机分成两队也就是两两排列,一共有种(种),组成一队的概率,已确定有,,则从剩下男女中各选一名,,组合,另两个自动组合无需排列,概率.故选.解析:由题可知,,又,∴,∴,设的内切圆的半径为,∴,.B 10.∴.故选.解析:∵,∴,,,,,,由此可归纳:,,,∴,故答案为D.解析:①正方体中平面是正方形,对角线互相垂直,∴,取中点,D 11.C 12.∴,即,又∵,面,即,∴,∴,∴.故①正确.②连接,则,中我们可以得为与所成角且边长均为面对角线,,∴,所成角,故②正确.③分别取,,中点,,,则平面、、、、、为截面是六边形但不经过点,故③错误.④如图所示,建立空间直角坐标系,平面平面平面,,,,,,设平面的法向量为,,∴,又,设到面的高为,则,在中,,,∴,∴.故④正确.综上①②④正确.故选:.13.解析:∵向量,,=,,由题意:,即,解得,∴.解析:∵产品的质量指标服从正态分布,且,∴这件产片中质量指标值位于区间之内的产品数为.∴这件产品中质量指标值位于区间之外的产品件数为.解析:方法一:表示个因式的乘积,则含的项可以是从个因式中选一因式提供,剩余个因式提供,也可以是从个因式中选个因式提供,剩余个因式提供,故含的项为:,故答案为.方法二:的通项为,令,则,或,,当,时,的系数为,当,时,的系数为,∴的系数为,故答案为.解析:∵,,成等差数列,∴,14.15. ;16.(1)设三个内角,,所对的边为,,,则由正弦定理可得,∴,∴,,当且仅当时,取等,又,∴,令,∴,,∵,∴当时,即时,,∴在上单调递减,当时,即时,,∴在上单调递增,∴当时,取得最大值,∴,又,,∴,∴,∴的最小值为,最大值为,故答案为:,.解析:因为①,(1).(2)证明见解析,.17.(2)所以②,②①得,即,所以.方法一:由,得,因为,所以数列是以为首项, 公比为的等比数列,所以数列的前项和为.方法二:由,得,所以数列是公比为的等比数列,由,得,则,所以,故,得,因为,所以数列是以为首项, 公比为的等比数列,所以数列的前项和为.解析:(1)证明见解析.(2).18.(1)(2)取的中点,连接,,因为,所以.因为,所以.因为,平面,平面,所以平面.因为平面,所以.解法1:不妨设,因为 ,则 ,因为,,则,因为,,则.在中,,因为 ,所以,因为,,平面,平面,所以平面.如图,以为坐标原点,为轴,为轴,为轴,建立空间直角坐标系,则,,,, ,,.设平面的法向量,由,, 得,令 ,故平面的一个法向量为,则,记直线与平面所成角为,则.所以直线与平面所成角的正弦值为 .解法2:作于,连接,根据题意,得≌,则,因为,平面,平面,所以平面.因为平面,所以平面平面.则是直线在平面上的射影.所以为直线与平面所成角.不妨设,因为,则,因为,,则,,因为,,则.在中,,故,则的面积为 ,,,(1)(2)(3)即 ,得,在中,,,则,则.所以直线与平面所成角的正弦值为.解析:由于内的频率为,内的频率为,得,令这个零件尺寸的中位数为,则,即有,解得.故这个零件尺寸的中位数为.从频率分布直方图中可得尺寸在之外的零件共有个,其中尺寸位于上的共有个,位于上的共有个,则的所有可能取值为,,,,,.,,则的分布列为:所以.根据频率分布直方图,每个零件是二等品的概率为,.设余下的个零件中的二等品的个数为,依题意知,(1)这个零件尺寸的中位数为.(2).(3)①因为,所以应该对余下的零件作检验.②由于与相差不大,又因为对余下零件检验要投入大量人力和物力,所以对余下的零件不作检验.19.(1)(2)所以.若不对余下的零件作检验,设检验费用与赔偿费用之和为,则.若对余下的零件作检验,则这一箱零件所需要的检验费用为元.若不对余下的零件作检验,则检验费用与赔偿费用之和的期望值为,.(本问题从下面两方面回答都合理,都给满分)①因为,所以应该对余下的零件作检验.②由于与相差不大,又因为对余下零件检验要投入大量人力和物力,所以对余下的零件不作检验.解析:函数的定义域为,由,得,则,.故曲线在点处的切线方程为,即.因为曲线在点处的切线方程为,所以,.方法一:由知,则.令().得.则在上单调递减.由于;.则存在,使得.当时,;当时,.故在上单调递增,在上单调递减.由于,,.故存在,使得,(1),.(2)证明见解析.20.当时,,则;当时,,则.故函数在上单调递增,在上单调递减.故函数存在唯一的极大值点.由于,即,得,,则 ,令,,则.故函数在上单调递增.由于,则,即,所以.方法二:由知,().当时,;当时,令,得,则在上单调递减,又,,故存在,使得,当时,,则;当时,,则.故函数在上单调递增,在上单调递减.故函数存在唯一的极大值点.由于,即,得,.则,令,,则.(1)故函数为在上单调递增.由于,则,即.所以.解析:方法一:因为点是抛物线的顶点,所以点的坐标为.依题意知直线的斜率存在,设直线,,,则,.因为,所以.因为,是上的两个动点,所以,.则.整理得,解得.由,得,则,.故,解得.所以直线.所以直线过定点.所以点不在直线上.方法二:因为点是抛物线的顶点,所以点的坐标为.设,,则,.因为,所以.因为,是上的两个动点,所以,.(1)点不在直线上,理由见解析.(2).21.::::(2)则.整理得,解得.直线的斜率为,则直线的方程为,即.所以直线过定点.所以点不在直线上.方法三:因为点是抛物线的顶点,所以点的坐标为.设,,则,.因为,所以.因为,是上的两个动点,所以,.则.整理得,解得.直线的斜为,直线的斜率为,则.依题意知,得,则,得.故,,三点不共线.所以点不在直线上.方法一:线段的中点坐标为,,:则线段的中垂线方程为.①同理得线段的中垂线方程为.②由①②解得,.所以点的坐标为.设点,则.消去,得.所以点的轨迹方程为.抛物线的焦点为,准线为,设点到直线的距离为,根据抛物线的定义得,因为点到轴的距离为,点,则.当,,三点共线,且点在的延长线时,等号成立.所以取得最大值为.方法二:线段的中点坐标为,,则线段的中垂线方程为.①同理得线段的中垂线方程为.②由①②解得,.设点,则.消去,得.所以点的轨迹方程为.滑物线焦点为,准线为,设点到直线的距离为,根据抛物线的定义得,因为点到轴的距离为,点,::(1)(2)则.当,,三点共线,且点在的延长线时,等号成立.所以取得最大值为.解析:由(为参数),得,所以曲线的普通方程为.由,(为参数),得,所以曲线的普通方程为.方法一:,代入,得,由于,则,.则.由于,则.解得.经检验,符合题意,所以.方法二:由()可知是直线,且过点,是椭圆在轴上方(包括与轴的两个交点).(1)曲线的普通方程为,的普通方程为.(2).22.(1)如图可知,若与有两个交点,则的斜率设∶,,,由,得.由于,则..由于,得,解得.则,得.解析:方法一:因为,,且,所以,当且仅当,即时,等号成立,由,解得,所以的最小值为.方法二:因为,,且,(1).(2)证明见解析.23.(2)所以,当且仅当,即时,等号成立,由,解得,所以的最小值为.方法一:因为,,所以,当且仅当时,等号成立,解得,,此时,所以.方法二:由于,,,得,要证明,只要证明,即证,只要证,由于,则只要证明,即,因为,所以成立,所以.方法三:由于,,,得,所以,令,得,由于,则,则,当且仅当,即时,等号成立,由于,所以.。
广州市2020届高三一模模拟卷 理科数学
2020届广州市高三一模模拟卷考试时间:120分钟第I 卷(选择题)一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={A |A 2−2A −3<0},集合A ={A |2A +1>1},则∁A A =( )A. [3,+∞)B. (3,+∞)C.D.2. 若A =1+2A ,则4AA ⋅A −−1=( )A. 1B. −1C. iD. −A3. 若AAAA =34,则cos 2A +2AAA2A =( )A. 6425B. 4825C. 1D. 16254. 已知椭圆C :A 2A 2+A 2A 2=1(A >A >0)的左、右焦点分别为A 1、A 2,离心率为√33,过A 2的直线l交C 于A 、B 两点,若△AA 1A 的周长为4√3,则C 的方程为( )A.A 23+A 22=1 B.A 23+A 2=1C. A 212+A 28=1D. A 212+A 24=15. 正四面体ABCD 中,M 是棱AD 的中点,O 是点A 在底面BCD 内的射影,则异面直线BM 与AO 所成角的余弦值为( )A. √26B. √23C. √24D. √256. 已知数列{A A }满足:A 1=−13,A 6+A 8=−2,且A A −1=2A A −A A +1(A ≥2),则数列{1AA A A +1}的前13项和为( )A. 113B. −113C. 111D. −1117. 安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则不同的安排方式共有( )A. 360种B. 300种C. 150种D. 125种8. 函数A (A )=(1−2A1+2A )AAAA 的图象大致为( )A. B.C. D.9. 某兴趣小组有男生20人,女生10人,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则①该抽样可能是系统抽样; ②该抽样可能是随机抽样: ③该抽样一定不是分层抽样;④. 其中说法正确的为( )A. ①②③B. ②③C. ②③④D. ③④10. 已知S ,A ,B ,C 是球O 表面上的点,AA ⊥平面ABC ,AA ⊥AA ,AA =AA =1,AA =√2,则球O 的表面积等于( )A. 4AB. 3AC. 2AD. A11. 已知函数A (A )=A A (A −A )(A ∈A ).若存在A ∈[12,2],使得A (A )+AA ′(A )>0,则实数b 的取值范围是( )A. (−∞,83)B. (−∞,56)C. (−32,56)D. (83,+∞)12. 数列{A A }满足A 1=14,A A +1=14−4A A,若不等式A2A 1+A3A 2+⋯+AA +2A A +1<A +A 对任何正整数n 恒成立,则实数A 的最小值为( )A. 38B. 34C. 78D. 74第II 卷(非选择题)二、填空题(本大题共4小题,共20.0分)13. 已知向量A⃗⃗⃗ =(−1,2),A ⃗⃗⃗ =(A ,1),若向量A ⃗⃗⃗ +A ⃗⃗⃗ 与A ⃗⃗⃗ 垂直,则A =______. 14. 已知实数x ,y 满足{A ≤23A −A −3≤02A +A −2≥0,目标函数A =3A +A +A 的最大值为4,则A = .15. 已知函数A (A )是定义在R 上的奇函数,当A ∈(−∞,0)时,A (A )=2A 3+A 2,则A (2)=______.16. 已知A 1,A 2分别是双曲线A 2A2−A 2A2=1的左、右焦点,P 为双曲线左支上任意一点,若AA 22AA 1的最小值为8a ,则双曲线的离心率的取值范围为________. 三、解答题(本大题共6小题,共70.0分) 17. 已知函数A (A )=sin (2A +A6)+2AAA 2A .(Ⅰ)求函数A (A )的最小正周期和单调递减区间;(Ⅱ)在△AAA 中,a ,b ,c 分别是角A ,B ,C 的对边,若A (A2)=32,A +A =7,△AAA 的面积为2√3,求边a 的长.18. 如图,在四棱锥A −AAAA 中,底面ABCD 为菱形,AA ⊥平面ABCD ,AA =2,∠AAA =60°,E ,F 分别是BC ,PC 的中点. (Ⅰ)证明:AA ⊥AA ;(Ⅱ)设H 为线段PD 上的动点,若线段EH 长的最小值为√5,求二面角A −AA −A 的余弦值.19. 已知函数A (A )=AA A −ln (A +1)−A .(1)求曲线A =A (A )在点(0,A (0))处的切线方程; (2)证明:函数A (A )在区间(0,1)内有且只有一个零点.20.已知椭圆C:A2A2+A2A2=1(A>A>0)的离心率为√32,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线l:A=AA+√3与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.21.2019年7月1日至3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值A(同一组中的数据用该组区间的中点值代表).(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X近似地服从正态分布A(A,A2),经计算第(1)问中样本标准差s的近似值为50.用样本平均数A作为A的近似值,用样本标准差s作为A的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.参考数据:若随机变量A服从正态分布A(A,A2),则A(A−A<A≤A+A)≈0.6827,A(A−2A<A≤A+2A)≈0.9545,A(A−3A<A≤A+3A)≈0.9973.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券,已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、……、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到A +1),若掷出反面,遥控车向前移动两格(从k 到A +2),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第n 格的概率为A A ,试说明{A A −A A −1}是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.22. 已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标是A =2AAAAA ,直线l 的参数方程是{A =−35A +A A =45A(A 为参数). (1)若A =2,M 为直线l 与x 轴的交点,N 是圆C 上一动点,求|AA |的最大值; (2)若直线l 被圆C 截得的弦长为2√6,求a 的值.绝密★启用前2020届广州市高三理科数学一模模拟卷考试时间:120分钟注意:本试卷包含Ⅰ、Ⅰ两卷。
2020年广东省高考数学一模试卷(理科) (含答案解析)
2020年广东省高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设全集U={0,1,2,3,4},集合A={1,2,3},B={2,3,4},则A∩(C U B)=()A. {0}B. {0,1,2,3,4}C. {0,1}D. {1}2.复数1+2i2−i的虚部是()A. iB. −iC. −1D. 13.若变量x,y满足约束条件{x+2y≥0x−y≤0x−2y+2≥0,则z=2x−y的最小值等于()A. −52B. −2 C. −32D. 24.若a>1,b<0,则函数y=a x+b的图象有可能是()A.B.C.D.5.函数f(x)=18x−cosx的零点个数为()A. 3B. 4C. 5D. 66.如果一个正四面体的体积为163√2dm3,则其表面积S的值为()A. 16dm2B. 18 dm2C. 18√3dm2D. 16√3dm27.某次数学考试中,某校学生的数学成绩服从正态分布N(100,25).估计数学成绩大于115分的学生所占的百分比为()(参考数据:P(μ−σ<X≤μ+σ)=0.6826,P(μ−2σ<X≤μ+2σ)=0.9544,P(μ−3σ<X≤μ+3σ)=0.9974)A. 0.13%B. 1.3%C. 3%D. 3.3%8.设(2−x)6=a0+a1x+a2x2+⋯+a6x6则|a1|+|a2|+⋯+|a6|的值是()A. 665B. 729C. 728D. 639.已知双曲线x2a2−y2b2=1(a>0,b>0)的左右两个焦点分别为F1,F2,A,B为其左、右两个顶点,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,且∠AMB=30°,则该双曲线的离心率为()A. √212B. √13 C. 2√3 D. √19210. 已知数列{a n }的前n 项和S n =12n(n +1),n ∈N ∗,b n =3a n +(−1)n−1a n ,则数列{b n }的前2n +1项和为( ) A. 32n+2−12+n B. 12⋅32n+2+n +12 C. 32n+2−12−n D. 12⋅32n+2−n +32 11. 已知三棱锥P −ABC 中,PA =√23,AB =3,AC =4,AB ⊥AC ,PA ⊥面ABC ,则此三棱锥的外接球的内接正方体的体积为( )A. 16B. 28C. 64D. 9612. 已知函数f(x)=x −sinx ,则不等式f(x +1)+f(2−2x)>0的解集是( ).A. (−∞,13)B. (−13,+∞)C. (−∞,3)D. (3,+∞)二、填空题(本大题共4小题,共20.0分)13. 设函数f(x)=(x +a)lnx ,若曲线y =f(x)在点(1,f(1))处的切线与直线2x −y =0平行,则实数a 的值为______.14. 已知在数列{a n }中,a 1=2,2n (a n +a n+1)=1,设T n =a 1+2a 2+⋯+2n−1a n ,b n =3T n −n−1a n ,数列{b n }的前n 项和S n =______.15. 在平面直角坐标系中,O 为坐标原点,A(0,sinα),B(cosα,0),动点C 满足|OC ⃗⃗⃗⃗⃗ |=1,则|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |的最大值是________. 16. 过抛物线C :x 2=4y 的准线上任意一点P 作抛物线的切线PA ,PB ,切点分别为A ,B ,则A点到准线的距离与B 点到准线的距离之和的最小值是____________.三、解答题(本大题共7小题,共82.0分)17. 如图,在△ABC 中,已知4sin 2A−B 2+4sinAsinB =3.(I)求角C 的大小;(Ⅱ)若AC =8,点D 在BC 边上,且BD =2,cos∠ADB =17,求边AB的长.18.如图所示,四棱锥P—ABCD中,AB⊥AD,AB//DC,PA=AB=AD=2DC=2,PB=2√2,∠PAD=120°,E为PB的中点.(1)证明:EC//平面PAD;(2)求二面角C−AE−B的余弦值.19.如图,已知椭圆x2a2+y2b2=1 (a>b>0)的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=√32,F为椭圆的左焦点,且AF⃗⃗⃗⃗⃗ ⋅FB⃗⃗⃗⃗⃗ =1.(Ⅰ)求此椭圆的方程;(Ⅱ)设P是此椭圆上异于A,B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=FQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.20.求函数f(x)=x2e−x的极值.21.在合作学习小组的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担A,B,C,D四项不同的任务,每个同学只能承担一项任务.(1)若每项任务至少安排一位同学承担,求甲、乙两人不同时承担同一项任务的概率;(2)设这五位同学中承担任务A的人数为随机变量ξ,求ξ的分布列及数学期望Eξ.22.在平面直角坐标系xOy中,曲线C的参数方程为{x=−1+2cosφy=2sinφ(其中φ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l1的极坐标方程为ρ=√2sin(θ+π4),设l1与C相交于A,B两点,AB的中点为M,过点M作l1的垂线l2交C于P,Q两点.(1)写出曲线C的普通方程与直线l1的直角坐标方程;(2)求|PQ||MP|⋅|MQ|的值.23.已知函数f(x)=|x−2|.(1)求不等式f(x)−|x|<1的解集;(2)设g(x)=|x+1|,若∀x∈R,f(x)+g(x)≥a2−2a恒成立,求a的取值范围.-------- 答案与解析 --------1.答案:D解析:本题主要考查了交、并、补集的混合运算,考查学生的计算能力,属于基础题.根据题意可得C U B ,从而即可得A ∩(C U B).解:∵全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,3,4},∴C U B ={0,1},∴A ∩(C U B)={1},故选D .2.答案:D解析:本题考查了复数运算,属于基础题.根据复数运算法则即可求解.解:令z =1+2i 2−i =(1+2i )(2+i)(2−i)(2+i)=5i5=i ,故复数z 的虚部为1,故选D .3.答案:A解析:解:由变量x ,y 满足约束条件{x +2y ≥0x −y ≤0x −2y +2≥0作出可行域如图,由图可知,最优解为A ,联立{x +2y =0x −2y +2=0,解得A(−1,12). ∴z =2x −y 的最小值为2×(−1)−12=−52.故选:A .由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.答案:A解析:本题主要考查函数图象的识别和判断,利用函数单调性以及与y轴的交点的范围是解决本题的关键.根据指数函数的单调性以及函数与y轴交点纵坐标的取值范围进行判断即可.解:当a>1时,函数为增函数,排除B,D,当x=0时,y=a0+b=1+b<1,排除C,故选:A.5.答案:C解析:解:函数f(x)=18x−cosx的零点,即函数y=18x与y=cosx图象交点的横坐标,在同一坐标系中画出函数y=18x与y=cosx的图象,如下图所示:由图可知:函数y=18x与y=cosx的图象有5个交点,故函数f(x)=18x−cosx有5个零点,故选:C将函数的零点问题转化为两个函数的交点问题,结合图象,问题容易解得.本题考察了函数的零点问题,渗透了数形结合思想,是一道基础题.6.答案:D解析:解:如果一个正四面体的棱长为a.则体积V=√212a3=163√2dm3,故a=4dm,则其表面积S=√3a2=16√3dm2,故选:Da3,求出棱长,再由棱长为a的正四面体的表面积S=√3a2,根据棱长为a的正四面体的体积V=√212可得答案.a3,表面积本题考查的知识点是正四面体的几何特征,熟练掌握棱长为a的正四面体的体积V=√212S=√3a2,是解答的关键.7.答案:A解析:本题主要考查正态分布的性质,属于基础题.解:某校学生的数学成绩服从正态分布N(100,25).P(85<μ<115)=0.9974.估计数学成绩大于×(1−0.9974)×100%=0.0013×100%=0.13%.115分的学生所占的百分比为12故选A.8.答案:A解析:本题考查了二项式定理和赋值法的应用问题,由二项式定理知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,|a0|+|a1|+|a2|+⋯+|a6|=a0−a1+a2−a3+a4−a5+a6,利用赋值法把x=−1,x=0分别代入已知式子计算即可,属基础题目.解:∵(2−x)6=a0+a1x+a2x+⋯+a6x,由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,令x=−1可得:∴|a0|+|a1|+|a2|+⋯+|a6|=a0−a1+a2−a3+a4−a5+a6=(2+1)6=729,x=0时,a0=26=64;∴|a1|+|a2|+⋯+|a6|=729−64=665.故选A.9.答案:B解析:本题考查双曲线的方程和性质,考查直线和圆的位置关系,考查离心率的求法,属于基础题.求出双曲线的渐近线方程和圆的方程,求出交点M,再由两点的斜率公式,得到a,b的关系,再由离心率公式即可得到所求值.解:双曲线x2a −y2b=1(a>0,b>0)的渐近线方程为y=±bax,以F1F2为直径的圆的方程为x2+y2=c2,将直线y=bax代入圆的方程,可得,x=√a2+b2=a(负的舍去),y=b,即有M(a,b),又A(−a,0),B(a,0),由于∠AMB=30°,BM⊥x轴,则tan30°=2ab =√33,即有b=2√3a,则离心率e=ca =√1+b2a2=√13.故选:B.10.答案:A解析:解:当n=1时,a1=S1=12×1×2=1;当n≥2时,a n=S n−S n−1=12n(n+1)−12(n−1)n=n.故a n=n.∴b n=3a n+(−1)n−1a n=3n+(−1)n−1n,则数列{b n}的前2n+1项和S2n+1=(31+32+⋯+32n+1)+[1−2+3−4+⋯+(2n−1)−2n+ (2n+1)]=3(1−32n+1)1−3+(n+1)=32n+2−12+n.故选:A.由数列的前n项和求出数列{a n}的通项公式,代入b n=3a n+(−1)n−1a n,整理后分组,然后利用等比数列的前n项和得答案.本题考查了数列递推式,考查了数列的分组求和,考查了等比数列的前n项和,是中档题.11.答案:C解析:解:∵三棱锥P−ABC中,PA=√23,AB=3,AC=4,AB⊥AC,PA⊥面ABC,∴以AB,AC,AP为棱构造长方体,则长方体的外接球就是三棱锥P−ABC的外接球,∴三棱锥P−ABC的外接球的半径R=√23+9+16=2√3,2设此三棱锥的外接球的内接正方体的半径为a,=2√3,解得a=4,则R=√3a2∴此三棱锥的外接球的内接正方体的体积V=a3=43=64.故选:C.以AB,AC,AP为棱构造长方体,则长方体的外接球就是三棱锥P−ABC的外接球,三棱锥P−ABC=2√3,解得的外接球的半径R=2√3,设此三棱锥的外接球的内接正方体的半径为a,则R=√3a2a=4,由此能求出此三棱锥的外接球的内接正方体的体积.本题考查三棱锥的外接球的内接正方体的体积的求法,考查三棱锥及外接球、球的内接正方体等基础知识,考查运算求解能力,是中档题.12.答案:C解析:本题考查函数的奇偶性及利用导数研究函数的单调性,属于基础题.由f(x)=x−sinx,则f′(x)=1−cosx≥0,所以f(x)是增函数,再由f(x)是奇函数,f(x+1)+f(2−2x)>0,即f(x+1)>f(2x−2),得x+1>2x−2,解得.解:由f(x)=x−sinx,则f′(x)=1−cosx≥0,所以f(x)是增函数,再由f(x)=x−sinx,f(−x)=−f(x),∴f(x)是奇函数,∴f(x+1)+f(2−2x)>0,即f(x+1)>f(2x−2),得x+1>2x−2,解得x<3.故选C.13.答案:1解析:解:函数f(x)=(x+a)lnx的导数为f′(x)=lnx+x+a,x可得曲线y =f(x)在点(1,f(1))处的切线斜率为k =1+a , 由切线与直线2x −y =0平行, 可得1+a =2, 解得a =1, 故答案为:1.求得函数f(x)的导数,可得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a 的值. 本题考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,正确求导是解题的关键,属于基础题.14.答案:2n+1−2解析:解:由题意可知因为T n =a 1+2a 2+⋯+2n−1a n ,所以2T n =2a 1+22a 2+⋯+2n a n , 两式相加3T n =a 1+2(a 1+a 2)+22(a 1+a 2)+⋯+2n−1(a n−1+a n )+2n a n=2+2×12+22×122+⋯+2n−1×12n−1+2n a n=2+(n −1)×1+2n a n =n +1+2n a n所以b n =2n , 从而S n =2(1−2n )1−2=2n+1−2.故答案为:22n+1−2.先根据条件求出数列{b n }的通项公式,再根据通项公式的特点确定求和的方法.本题考查由递推式式求数列的通项公式以及等比数列的前n 项和公式,解题的关键对条件的分组转化,难度较大.15.答案:2解析:本题主要考查向量的计算和模长的计算,属于基础题. 解:依题意,设C(cosβ,sinβ),则|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |2=(cosα+cosβ)2+(sinα+sinβ)2=2+2cos(α−β), 所以当cos(α−β)=1时,|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |2取得最大值4, 故|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |2的最大值是2.故答案为2.16.答案:4解析:本题主要考查的是抛物线的性质的有关知识,根据到准线的距离转化为到焦点的距离,三点共线时距离最小,进而求出最小值.解:设A(x1,x124),B(x2,x224),由x2=4y可得y=x24,∴y′=x2,所以直线PA,PB的方程分别为:y−x124=x12(x−x1)①,y−x224=x22(x−x2)②,①②方程联立可得P(x1+x22,x1x24),∵点P在准线上,∴x1x24=−1,∴x1x2=−4,设直线AB的方程为:y=kx+m,代入抛物线的方程可得:x2−4kx−4m=0,可得x1x2=−4m,所以可得m=1,即直线恒过(0,1)点,即直线恒过焦点(0,1),即直AB的方程为:y=kx+1,代入抛物线的方程:x2−4kx−4=0,x1+x2=4k,所以y1+y2=k(x1+x2)+2=4k2+2,A点到准线的距离与B点到准线的距离之和=AF+BF=y1+y2+2=4k2+4≥4,当k=0时,距离之和最小且为4,这时直线AB平行于x轴.故答案为:4.17.答案:解:(I)由4sin2A−B2+4sinAsinB=3,变形得:2[1−cos(A−B)]+4sinAsinB=3,即2−2(cosAcosB+sinAsinB)+4sinAsinB=3,整理得:2−2cos(A+B)=3,即2+2cosC=3,∴cosC=12,则C =π3;(Ⅱ)∵cos∠ADB =17,∠ADB +∠ADC =π, ∴cos∠ADC =−17,sin∠ADC =4√37,在△ADC 中,由正弦定理AD sinC =AC sin∠ADC 得:AD =ACsinCsin∠ADC =8×√324√37=7,由余弦定理得:AB 2=DA 2+DB 2−2DA ·DB ·cos∠ADB =49+4−4=49, 则AB =7.解析:(I)已知等式利用二倍角的余弦函数公式化简,再利用两角和与差的余弦函数公式化简,求出cos C 的值,即可确定出角C 的大小;(Ⅱ)由cos∠ADB 的值求出cos∠ADC 的值,进而求出sin∠ADC 的值,再由sin C 与AC 的长,利用正弦定理求出AD 的长,再利用余弦定理求出AB 的长即可.此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.18.答案:解:(1)取PA 中点F ,连接EF ,DF ,因为E 为PB 中点, 所以EF//AB ,EF =12AB . 又因为AB//DC ,AB =2DC , 所以EF//DC ,EF =DC . 所以四边形DCEF 为平行四边形, 所以EC//DF . 又DF ⊂平面PAD ,平面PAD ,所以EC//平面PAD .(2)因为由题可知AP =AB =2,PB =2√2, 所以AP 2+AB 2=PB 2, 所以AB ⊥AP ,又因为AB ⊥AD ,AP ∩AD =A ,AP ,AD ⊂平面PAD . 所以AB ⊥平面PAD .所以以A 为坐标原点,AP ,AB 所在直线为x ,y 轴,在面PAD 内过点A 与AP 垂直的直线为z 轴, 建立空间直角坐标系,A(0,0,0),E(1,1,0),C(−1,1,√3), 设平面AEC 的法向量为n ⃗ =(x,y ,x), 所以{n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =0,n⃗ ⋅AC ⃗⃗⃗⃗⃗ =0即{x =−y2y =−√3z, 令y =√3,得x =−√3,z =−2. 所以n ⃗ =(−√3√3,−2),易知平面AEB 的一个法向量为m ⃗⃗⃗ =(0,0,1), 所以|cos(n ⃗ ,m ⃗⃗⃗ )|=|n ⃗⃗ ⋅m ⃗⃗⃗|n ⃗⃗ |⋅|m ⃗⃗⃗⃗⃗ || =|√3,√3,−2)⋅(0,0,1)√10|=√105, 因为二面角C −AE −B 为锐角, 所以二面角C −AE −B 的余弦值为√105.解析:本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题.(1)取PA 中点F ,在接EF ,DF ,推导出四边形DCEF 为平行四边形,证得EC//DF ,由此能证明EC //平面PAD ;(2)A 为坐标原点,AP ,AB 所在直线为x ,y 轴,在面PAD 内过点A 与AP 垂直的直线为z 轴,建立空间直角坐标系,求出平面AEC 与平面AEB 的法向量,进而求得结果.19.答案:解:(Ⅰ)由题得{e =ca =√32(a −c)(a +c)=1,解得{a 2=4c 2=3 则b 2=a 2−c 2=1 则椭圆方程为x 24+y 2=1.(Ⅱ)QN 与以AB 为直径的圆O 相切,证明如下:设P(x P ,y P )(|x P |<2,0<|y P |≤1),则Q(x P ,2y P )又因为点A 坐标为(−2,0) 所以直线AQ 的斜率k AQ =2y Px P +2则直线AQ 的方程为y =2y Px P+2(x +2),当x =2时,y =8y PxP +2则M 点坐标为(2,8y PxP+2),又因为B(2,0),则N(2,4y PxP +2)则直线QN 的斜率为k QN =−2x P y P(2+xP )(2−x P )则直线QN 的方程为:2x P yP 4−x P2x +y −8yP4−x P2=0则点O(0,0)到直线QN 的距离为d =8y P4−x P2×√(4−x P2)24x P 2y P 2+(4−x P2)又因为y P 2=1−x P24则d =8y P4−x P2×√(4−x P2)24x P 2y P2+(4−x P2)=84−x P2×√4−x P22×√(4−x P2)24x P 2(1−x P 24)+(4−x P 2)2=2则QN 与以AB 为直径的圆O 相切.解析:(Ⅰ)由题得{e =c a=√32(a −c)(a +c)=1,及其b 2=a 2−c 2=1,即可得出.(Ⅱ)QN 与以AB 为直径的圆O 相切,分析如下:设P(x P ,y P )(|x P |<2,0<|y P |≤1),则Q(x P ,2y P ).又因为点A 坐标为(−2,0),可得直线AQ 的方程为y =2y Px P+2(x +2),可得M 点坐标为(2,8y PxP +2),又因为B(2,0),则N(2,4y PxP +2).直线QN 的方程为:2x P yP 4−x P 2x +y −8yP 4−x P 2=0.又y P 2=1−x P 24,可得点O(0,0)到直线QN 的距离为d =2,即可证明QN 与以AB 为直径的圆O 相切.本题考查了椭圆与圆的标准方程及其性质、直线与圆相切的性质、直线方程,考查了推理能力与计算能力,属于难题.20.答案:解:f′(x)=2xe x −x 2e x(e x )2=−x(x−2)e x,令f′(x)=0,得x =0或2, 得出f(x)与f′(x)的表格,所以当x =0时,函数有极小值,且f(0)=0. 当x =2时,函数有极大值,且f(2)=4e 2.解析:本题考查了利用导数研究函数的极值,先求导,列表即可得出极值.21.答案:解:(1)设甲、乙两人同时承担同一项任务为事件M ,则P(M)=A 44C 52A 44=110,所以甲、乙两人不同时承担同一项任务的概率是P(M)=1−P(M)=910, 答:甲、乙两人不同时承担同一项任务的概率是910; (2)ξ的可能取值为ξ=0,1,2,3,4,5, P(ξ=0)=3545=(34)5,P(ξ=1)=C 51⋅3445=5⋅3445, P(ξ=2)=C 52⋅3345=10⋅3345, P(ξ=3)=C 53⋅3245=10⋅3245,P(ξ=4)=C 54⋅3145=1545, P(ξ=5)=C 55⋅3045=145,ξ的分布列为:所以E (ξ)=∑i ⋅P i 5i=0=54.解析:本题考查离散型随机变量的期望的求解及古典概型.(1)利用古典概型求出甲、乙两人同时承担同一项任务的概型,然后利用对立事件的概率公式求解即可;(2)分析ξ的取值,求出各自的概率,得出分布列,再求期望.22.答案:解:(1)由曲线C 的参数方程{x =−1+2cosφy =2sinφ,消去参数φ,得曲线C 的普通方程为(x +1)2+y 2=4.由曲线l 1的极坐标方程ρsin (θ−π4)=√22,得ρsin θ+ρcos θ=1,将x =ρcos θ,y =ρsin θ代入,得l 1的直角坐标方程为x +y −1=0; (2)由l 1⊥l 2,得直线l 2的斜率k l 2=−1k l 1=1,所以l 2的倾斜角为π4,又l 2过圆心(−1,0),所以l 2的方程为y =x +1,与x +y −1=0联立,得AB 的中点M(0,1),故l 2的参数方程为{x =tcos π4y =1+tsin π4,(t 为参数),即{x =√22t y =1+√22t ,(t 为参数),代入(x +1)2+y 2=4中,化简、整理得t 2+2√2t −2=0, 设P ,Q 对应的参数分别为t 1,t 2,则由韦达定理得t 1·t 2=−2, 又线段PQ 为圆的直径,所以|PQ|=4, 所以|PQ||MP|⋅|MQ|=4|−2|=2.解析:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型. (1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用一元二次方程根和系数关系式的应用求出结果.23.答案:解:(1)不等式f(x)−|x|<1,即为|x −2|−|x|<1,当x >2时,x −2−x <1,即x >2; 当x <0时,2−x +x <1,即x ∈⌀;当0≤x ≤2时,2−x −x <1,解得x >12,即有12<x ≤2, 综上可得不等式的解集为(12,+∞); (2)∀x ∈R ,f(x)+g(x)≥a 2−2a 恒成立,即为|x−2|+|x+1|≥a2−2a恒成立,由|x−2|+|x+1|≥|x−2−x−1|=3,当且仅当−1≤x≤2时,取得最小值3,可得a2−2a≤3,解得−1≤a≤3.解析:(1)由题意可得|x−2|−|x|<1,讨论x的范围,去绝对值,解不等式,求并集即可得到所求解集;(2)由题意可得|x−2|+|x+1|≥a2−2a恒成立,运用绝对值不等式的性质可得不等式左边的最小值,解a的不等式,即可得到所求范围.本题考查绝对值不等式的解法和绝对值不等式的性质:求最值,考查不等式恒成立问题解法,注意运用转化思想,考查运算能力,属于中档题.。
2020届番禺区高三年级摸底测试理科数学试题
A.[1,3)
B. (1,3]
C.(1,3)
D.(-2,1]
2.设(2 + i)(3 − xi) =3 + ( y + 5)i(i 为虚数单位),其中 x ,y 是实数,则 x + yi 等于( )
A.5
B. 13
3.函数 f (x) = cos x 的部分图象大致为( ) x
C. 2 2
D.2
4.要得到函数 y = − 2 sin 3x 的图象,只需将函= 数 y sin 3x + cos 3x 的图象( )
以 C 为原点, CA,CB,CM 为正方向建立空间直角坐标系 ………………6 分
如图.设 CB = 1 , = AC 2= CB 2 , AA1 = AC , ∠A1 AC = 60 ,
∴ C (0,0,0), A1 (1,0, 3 ), A (2,0,0), B (0,1,0), B1 (-1,1, 3 ).
13. (1+ 2x − y )8 的展开式中 x2 y2 项的系数是 2
x ≥ y,
14.已知实数 x,y 满足 x ≤ 2 y, 则=z 2x + y 取得最大值的最优解为
.
x + y − 6 ≤ 0,
15.设数列{an} 的前 n
项和为
Sn
,且
a1
= 1 ,an
= Sn n
+
2(n
−1)(n ∈ N* )
8.设函数 f (x) 的导函数为 f '(x) ,且= f (x) 3xf '(2) − 2 ln x ,则曲线 y = f (x) 在点(4,f(4))
处切线的倾斜角为( )
π
广东省广州市番禺区2020届高三理科数学3月线上检测试题 (带答案解析)
广东省广州市番禺区2020届高三3月线上检测理科数学试题一、选择题:本大题共 12小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R ,{}(){}260,ln 1A x x x B x y x =--<==-,则()U A C B =I ( )A.[1,3)B. (1,3]C.(1,3)D.(-2,1]2.设()()()2335i xi y i +-=++( i 为虚数单位),其中 x , y 是实数,则x yi +等于( )A .5B . 13C . 2 2D .2 3.函数()cos xf x x=的部分图象大致为( )4.要得到函数23y x =的图象,只需将函数y= sin3x+ cos3 x 的图象( )A.向右平移34π个单位长度 B.向右平移2π个单位长度 C.向左平移4π个单位长度 D.向左平移2π个单位长度 5.等比数列{}n a 的前 n 项和为n S ,公比为 q ,若6359,62S S S ==,则1a = ( ) A 2 B . 2 C 5 D . 36.射线测厚技术原理公式为0ptI I e ρ-=,其中0,I I 分别为射线穿过被测物前后的强度, e 是自然对数的底数, t 为被测物厚度,ρ为被测物的密度, µ 是被测物对射线的吸收系数.工业上通常用镅 241( 241Am )低能 γ 射线测量钢板的厚度.若这种射线对钢板的半价层厚度为 0.8,钢的密度为7.6,则这种射线的吸收系数为( ).( 注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度, ln2 ≈0.6931 ,结果 精确到 0.001)A . 0.110 B. 0.112 C. 0.114 D . 0.1167.设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( ) A .存在一条直线 a , a ∥ α , a ∥ β . B .存在一条直线 a , a ⊂ α , a ∥ β .C .存在两条平行直线 a , b , a ⊂ α , b ⊂ β , a ∥ β , b ∥ α .D .存在两条异面直线 a , b , a ⊂ α , b ⊂ β , a ∥ β , b ∥ α .8.设函数()f x 的导函数为()'f x ,且()()3'22ln f x xf x =-,则曲线()f x 在点(4,f(4))处切线的倾斜角为( ) A.6π B.4π C.34π D.56π9.已知函数()sin2f x a x x =的图象关于直线12x π=-对称,若()()124f x f x =-,则12x x -的最小值为( )A.3π B.23π C.4π D.2π10.中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A .15 B .14 C .13 D .1211.已知F 是抛物线2:2C y x =的焦点,N 是x 轴上一点,线段FN 与抛物线C 相交于点M ,若2FM MN =u u u u r u u u u r,则FN =u u u r ( )A .58 B .12 C .38D .1 12. 已知正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,则:①平面α分正方体所得两部分的体积相等; ②四边形1BFD E 一定是平行四边形; ③平面α与平面1DBB 不可能垂直;④四边形1BFD E的面积有最大值.其中所有正确结论的序号为( ).A .①④ B.②③ C. ①②④ D . ①②③④二.填空题:本题共4小题,每小题5分,共20分.13.8 122yx⎛⎫+-⎪⎝⎭的展开式中22x y项的系数是14.已知实数 x, y ,满足260x yx yx y≥⎧⎪≤⎨⎪+-≤⎩则z=2x+y取得最大值的最优解为 .15.设数列{}n a的前n项和为n S,且()()*11,21nnSa a n n Nn==+-∈,则数列13nS n⎧⎫⎨⎬+⎩⎭的前10项的和是16.已知函数()()212ln,1f x x x eg x mxe⎛⎫=≤≤=+⎪⎝⎭,若f(x)与g(x)的图像上存在关于直线y=1对称的点,则实数m的取值范围是________.三.解答题:共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 17-21 题为必考题,每个试题考生都必须作答;第 22、23 题为选考题,考生根据要求作答.(一)必考题:共 60 分.17.(本小题满分 12 分)在△ABC中,角A,B,C的对边分別为a,b,c,若3cos,2,34A B A b===.(1)求a ;(2)已知点M在边BC上,且AM平分∠ABC,求△ABM的面积.18.(本小题满分12 分)如图,已知三棱柱111ABC A B C-中,平面11AA C C⊥平面ABC ,1,.AA AC AC BC=⊥(1)证明:11A C AB⊥;(2)设AC=2CB ,∠1A AC =60°,求二面角11C AB B --的余弦值.19.(本小题满分12 分)已知长度为 4 的线段 AB 的两个端点 A , B 分别在 x 轴和 y 轴上运动,动点 P 满足3BP PA =u u u r u u u r,记动点P 的轨迹为曲线 C .(1)求曲线 C 的方程;(2)设不经过点H (0,1) 的直线y=2x+t 与曲线 C 相交于两点M , N .若直线 HM 与 HN 的斜率之和为 1 ,求实数 t 的值. 20.(本小题满分12 分)某大型医疗检查机器生产商,对于一次性购买 2 台机器的优质客户,推出两种超过质保期后两年内的延保维修优惠方案: 方案一:交纳延保金7000 元,在延保的两年内可免费维修2 次,超过2 次每次收取维修费2000 元;方案二:交纳延保金 10000 元,在延保的两年内可免费维修 4 次,超过 4 次每次收取维修费1000 元.某医院准备一次性购买 2 台这种机器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届番禺区高三年级摸底测试理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,{}(){}260,ln 1A x x x B x y x =--<==-,则()UAB =( )A. [1,3)B. (1,3]C. (1,3)D. (-2,1]【答案】A 【解析】 【分析】首先确定集合,A B 中的元素,然后由集合运算法则计算.【详解】由题意2{|60}{|23}A x x x x x =--<=-<<,{|10}{|1}B x x x x =->=<, ∴{|1}UB x x =≥,(){|13}[1,3)U A B x x =≤<=.故选:A.【点睛】本题考查集合的运算,考查一元二次不等式的解法,掌握集合的运算定义是解题关键.本题还考查了对数型复合函数的定义域.需要掌握对数函数的性质.2.设(2)(3)3(5)i xi y i +-=++(i 为虚数单位),其中x ,y 是实数,则x yi +等于( ) A. 5 B. 13 C. 22 D. 2【答案】A 【解析】 分析】把已知等式两边都化为复数的代数形式,然后由复数相等的定义求出,x y ,再根据复数模的定义求得模.【详解】由(2)(3)3(5)i xi y i +-=++得6(32)3(5)x x i y i ++-=++,∴63325x x y +=⎧⎨-=+⎩,解得34x y =-⎧⎨=⎩,∴2222(3)45x yi x y +=+=-+=.故选:A.【点睛】本题考查复数相等的概念,考查求复数的模.掌握复数相等的概念是解题关键. 3.函数()cos xf x x=的部分图象大致为( ) A .B. C. D.【答案】D 【解析】 【分析】确定函数的奇偶性,排除两个,再由0x →(0)x >时,()f x →+∞,又排除一个,从而得正确选项. 【详解】cos()cos ()()x xf x f x x x--==-=--,()f x 是奇函数,排除A.B , 0x →(0)x >时,()f x →+∞,排除C ,只有D 可选.故选:D.【点睛】本题考查由函数的解析式选择函数图象,可用排除法,先确定函数的奇偶性,再确定函数值的变化趋势,特别是0x →时,函数值的变化趋势.4.要得到函数23y x =的图象,只需将函数sin 3cos3y x x =+的图象( )A. 向右平移34π个单位长度 B. 向右平移2π个单位长度 C. 向左平移个4π单位长度 D. 向左平移个2π单位长度 【答案】C 【解析】 【分析】根据三角函数解析式之间的关系即可得到结论.【详解】因为sin3cos334y x x x π⎛⎫=+=+ ⎪⎝⎭,所以将其图象向左平移4π个单位长度,可得()3344y x x x πππ⎡⎤⎛⎫=++=+= ⎪⎢⎥⎝⎭⎣⎦,故选C.【点睛】该题考查的是有关图象的平移变换问题,涉及到的知识点有辅助角公式,诱导公式,图象的平移变换的原则,属于简单题目.5.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( )B. 2D. 3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q,又由()5151131621a q S aq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±,若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q =,则2q ,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B .【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.6.射线测厚技术原理公式为0tI I e ρμ-=,其中0I I ,分别为射线穿过被测物前后的强度,e 是自然对数的底数,t 为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am )低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln 20.6931≈,结果精确到0.001) A .0.110B. 0.112C. 0.114D. 0.116【答案】C 【解析】 【分析】根据题意知,010.8,7.6,2I t I ρ===,代入公式0t I I e ρμ-=,求出μ即可. 【详解】由题意可得,010.8,7.6,2I t I ρ===因为0t I I e ρμ-=, 所以7.60.812e μ-⨯⨯=,即ln 20.69310.1147.60.8 6.08μ==≈⨯. 所以这种射线的吸收系数为0.114. 故选:C【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题. 7.平面α∥平面β的一个充分条件是( ) A. 存在一条直线a ,a∥α,a∥β B. 存在一条直线a ,a ⊂α,a∥βC. 存在两条平行直线a ,b ,a ⊂α,b ⊂β,a∥β,b∥αD. 存在两条异面直线a ,b ,a ⊂α,b ⊂β,a∥β,b∥α 【答案】D 【解析】【详解】对于A ,一条直线与两个平面都平行,两个平面相交或平行.故A 不对; 对于B ,一个平面中的一条直线平行于另一个平面,两个平面相交或平行,故B 不对; 对于C ,两个平面中的两条直线若平行,不能保证两个平面平行,故C 不对;对于D ,两个平面中的两条互相异面的直线分别平行于另一个平面,可以保证两个平面平行,故D 正确.8.设函数()f x 的导函数为()'f x ,且()()3'22ln f x xf x =-,则曲线()f x 在点(4,f (4))处切线的倾斜角为( ) A.6πB.4π C.34π D.56π 【答案】B 【解析】 【分析】求出导函数,从而先求出(2)f '得函数解析式,得导函数,然后可求得切线斜率. 【详解】由()3(2)2ln f x xf x '=-得2()3(2)f x f x ''=-,∴(2)3(2)1f f ''=-,1(2)2f '=, ∴3()2ln 2f x x x =-,32()2f x x '=-,32(4)124k f '==-=,斜率为1,倾斜角为4π. 故选:B.【点睛】本题考查导数的几何意义 ,解题关键求出导函数,求出(2)f '.9.已知函数()sin 2f x a x x =的图象关于直线12x π=-对称,若()()124f x f x =-,则12x x -的最小值为( )A.3π B.23π C.4π D.2π 【答案】D 【解析】 【分析】利用()12f π-是函数的最值求得参数a ,然后再确定12,x x 的性质.【详解】由题意13()sin())126622f a a πππ-=---=--=1a =,∴1()sin 222(sin 22)2sin(2)23f x x x x x x π===-,22T ππ==. 1212()()4sin(2)sin(2)433f x f x x x ππ=--=-,12sin(2)sin(2)133x x ππ--=-,∵1sin(2)13x π-≤-≤,∴12sin(2)sin(2)33x x ππ--,中一个取值1一个取值1-,∴12min22T x x π-==. 故选:D.【点睛】本题考查三角函数的性质,考查三角函数的最值、周期、对称性等.正弦函数的性质:过正弦函数图象的最高点或者最低点与x 边垂直的直线是其对称轴.即对称轴对应的函数值是最值.10.中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A.15B.14C.13D.12【答案】D 【解析】 【分析】总共有10种结果,其中相生的有5种,由古典概型的计算公式计算出概率即可【详解】从五种不同属性的物质中随机抽取2种,共2510C =种,而相生的有5种,则抽到的两种物质不相生的概率511102P =-= 故选:D【点睛】本题考查的是计算古典概型的概率,较简单.11.已知F 是抛物线2:2C y x =的焦点,N 是x 轴上一点,线段FN 与抛物线C 相交于点M ,若2FM MN =,则||FN =( )A.58B.12C. 38D. 1【答案】A 【解析】 【分析】设M 的坐标00,x y ,点N 的坐标(,0)a ,根据向量关系解方程即可得解.【详解】由题意得点F 的坐标为10,8⎛⎫ ⎪⎝⎭,设点M 的坐标00,x y ,点N 的坐标(,0)a ,所以向量:001,8FM x y ⎛⎫=- ⎪⎝⎭,()00,MN a x y =--, 由向量线性关系可得:03x a =,00124y y -=-,解得:0112y =,代入抛物线方程可得:012x =±4a =±, 由两点之间的距离公式可得:5||8FN =. 故选:A .【点睛】此题考查根据直线与抛物线的交点构造向量关系求解参数,考查基本运算. 12.已知正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,则:①平面α分正方体所得两部分的体积相等; ②四边形1BFD E 一定是平行四边形; ③平面α与平面1DBB 不可能垂直; ④四边形1BFD E 的面积有最大值. 其中所有正确结论的序号为( ) A. ①④ B. ②③C. ①②④D. ①②③④【答案】C 【解析】 【分析】根据正方体的性质对每个命题进行判断.结合排除法可选正确结论.【详解】截面上方几何体分割成四棱锥四棱锥111D A EFC -,四棱锥11B A EFC -,三棱锥111B A BC -,截面下方几何体对称的也是三个棱锥,对应体积相等(特殊位置截面更容易得此结论),①正确,排除B ;由正方体相对两个面平行,根据面面平行的性质定理知四边形1BFD E 的两组对边平行,从而是平行四边形,②正确,排除A ;当E 是1AA 中点,F 是1CC 中点,这时可证EF ⊥平面11BB D D (先证//EF AC ),从而平面α与平面1DBB 垂直,③错误,排除D , 只有C 可选了.事实上,四边形1BFD E 即有最大值也有最小值.E 与A (或1A )重合时面积最大,E 是1AA 中点时,面积最小.设AE x =,正方体棱长为1,01x ≤≤,21BE x =+,2211(1)22D E x x x =+-=-+,13BD =,在1BED ∆中,2222111221cos 2122D E BE BD BED D E BE x x x +-∠==⋅+⋅-+,所以2222112222()222sin 1cos 1(1)(22)(1)(22)x x x x BED BED x x x x x x --+∠=-∠=-=+-++-+, 所以1211sin 222BED F S BE D E BED x x =⋅∠=-+2132()22x =-+,所以0x =或1时,1BED F S 取得最大值2.④正确. 故选:C .【点睛】本题考查正方体的截面的性质.解题关键是由截面表示出相应的量与相应的关系.如果空间想象能力丰富,结论易得,由正方体对称性,①正确,从运动角度考虑,当E 从A 运动到1A 时,截面面积发生变化,这是一个有限的连续过程,其中必有最大值和最小值.④正确,②③易于从面线面关系说明.二.填空题:本题共4小题,每小题5分,共20分.13.8122y x ⎛⎫+- ⎪⎝⎭的展开式中22x y 项的系数是____________ 【答案】420 【解析】 【分析】利用多项式乘法法则确定项的系数,【详解】由题意展开式中22x y 项的系数是22228612()4202C C ⨯⨯⨯-=.故答案为:420.【点睛】本题考查二项式定理的应用,求多项式展开式中某一项系数,可能利用多项式乘法法则,结合组合的知识求解.14.已知实数x y ,满足260x y x y x y ≥⎧⎪≤⎨⎪+-≤⎩,,,则2z x y =+取得最大值的最优解为_________.【答案】(4,2) 【解析】 【分析】首先作出不等式组表示的可行域,然后利用z 的几何意义,作出直线0:20l x y +=,向上平移直线0l 到最高点,此时目标函数2z x y =+取得最大值,求出此时直线'0l 与可行域的交点坐标即可【详解】作出不等式组所表示的可行域如图阴影所示:作出直线0:20l x y +=如图所示,向上平移直线0l ,当经过点A 时,目标函数2z x y =+取得最大值,所以点A 所对的坐标即为所求的最优解.联立方程6020x y x y +-=⎧⎨-=⎩,解方程组得42x y =⎧⎨=⎩,即点A 坐标为()4,2.故答案为:()4,2【点睛】本题主要考查简单的线性规划问题;利用z 的几何意义和数形结合的思想是求解本题的关键;属于中档题.15.设数列{}n a 的前n 项和为n S ,且()()*11,21nn S a a n n N n ==+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是__________ 【答案】511【解析】 【分析】利用1(2)n n n a S S n -=-≥得出数列{}n S 的递推关系,变形后求出n S ,然后用裂项相消法求和.【详解】由题意111S a ==,2n ≥时,12(1)nn n n S a S S n n-=-=+-, 1(1)2(1)n n n S nS n n ---=-,即112n n S S n n --=-, ∴数列{}n S n 是等差数列,公差为2,首项为1,∴12(1)21n S n n n =+-=-,22n S n n =-,211111()32221n S n n n n n ==-+++,∴数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和为101111115[(1)()()]2223101111T =-+-++-=. 故答案:511. 【点睛】本题考查由数列n a 与n S 的关系求通项公式,考查裂项相消法求数列的和.掌握关系式1(2)n n n a S S n -=-≥是解题关键. 16.已知函数()212ln x x f x e e ⎛⎫=≤≤⎪⎝⎭,()1g x mx =+,若()f x 与()g x 的图象上存在关于直线1y =对称的点,则实数m 的取值范围是_____________.【答案】322,3e e -⎡⎤-⎢⎥⎣⎦【解析】 【分析】求出函数()g x 关于直线1y =的对称函数()h x ,令()f x 与()h x 的图象有交点得出m 的范围即可.【详解】()1g x mx =+关于直线1y =对称的直线为()1y h x mx ==-,∴直线1y mx =-与2ln y x =在21[,]e e上有交点,作出1y mx =-与2ln y x=的函数图象,如图所示:若直线1y mx =-经过点12e-(,),则3m e =,若直线1y mx =-与2ln y x =相切,设切点为(),xy ,则1 22y mx y lnx m x⎧⎪=-⎪=⎨⎪⎪=-⎩,解得3232 32x ey m e -⎧=⎪⎪=⎨⎪⎪=-⎩. ∴322?3e m e --≤≤,故答案为322,3e e -⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了函数的对称问题解法,注意运用转化思想,以及零点与函数图象的关系,导数的几何意义,属于中档题.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答. (一)必考题:共 60 分.17.在△ABC 中,角A ,B ,C 的对边分別为a ,b ,c ,若3cos ,2,34A B A b ===.(1)求a ;(2)已知点M 在边BC 上,且AM 平分∠BAC ,求△ABM 的面积. 【答案】(1)2;(2757【解析】 【分析】(1)由平方关系求出sin A ,由二倍角公式求得sin B ,由正弦定理求得a ;(2)用诱导公式求出sin C ,由正弦定理求出c ,用三角形内角平分线定理求出BM ,由三角形面积公式计算即得. 【详解】(1)∵3cos ,2,34A B A b ===,∴7sin A=,7337 sin sin22sin cos24B A A A===⨯⨯=,由sin sina bA B=得73sin42sin37b AaB⨯===;(2)32cos42A=>,∴45A<︒,∴290B A=<︒,由(1)2371cos1()88B=-=,7133757sin sin()sin cos cos sin484816C A B A B A B=+=+=⨯+⨯=.由正弦定理得573sin516sin237b CcB⨯===.又AM平分BAC∠,∴36552CM CABM BA===,又2CM BM BC+==,∴1210,1111CM BM==,∴1151037757sin22211ABMS BA BM B∆=⋅=⨯⨯⨯=.【点睛】本题考查正弦定理,考查三角形面积公式,考查三角函数的恒等变换.掌握正弦定理是解题关键.18.如图,已知三棱柱111ABC A B C-中,平面11AA C C⊥平面ABC,1AA AC=,AC BC⊥. (1)证明:1A C⊥1AB;(2)设2AC CB =,160A AC ∠=,求二面角11C AB B --的余弦值. 【答案】(1)证明见解析 (2)3- 【解析】 【分析】(1)连结1AC .由菱形得对角线垂直,再由已知及面面垂直的性质定理得线面垂直BC ⊥平面11AAC C ,11B C ⊥平面11AAC C ,从而111B C AC ⊥,于是证得线面垂直后再得线线垂直; (2)取11A C 的中点为M ,连结CM ,证得CM 与,CA CB 都垂直后,以C 为原点,CA CB CM ,,为正方向建立空间直角坐标系,写出各点坐标,求出平面的法向量,则法向量夹角得二面角,注意要判断二面角是锐角还是钝角. 【详解】(1)连结1AC .∵1AA AC =,四边形11AAC C 为菱形,∴11A C AC ⊥. ∵平面11AA C C ⊥平面ABC ,平面11AAC C平面ABC AC =,BC ⊂平面ABC ,BC ⊥AC ,∴BC ⊥平面11AAC C . 又∵11//BC B C ,∴11B C ⊥平面11AAC C ,∴111B C AC ⊥. ∵1111AC B C C ⋂=,∴1A C ⊥平面11AB C ,而1AB ⊂平面11AB C , ∴1A C ⊥1AB(2)取11A C 的中点为M ,连结CM .∵1AA AC =,四边形11AAC C 为菱形,160A AC ∠=,∴11CM AC ⊥,CM AC ⊥. 又由(1)知CM BC ⊥,以C 为原点,CACB CM ,,为正方向建立空间直角坐标系,如图. 设1CB =,22AC CB ==,1AA AC =,160A AC ∠=,∴C (0,0,0),1A (1,0,A (2,0,0),B (0,1,0),1B (-1,1). 由(1)知,平面11C AB的一个法向量为(110CA =,. 设平面1ABB 的法向量为()n x y z =,,,则1 n AB n AB ⊥⊥,,∴100n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩.∵()2 1 0AB =-,,,(13 1 3AB =-,,,∴2030x y x y -+=⎧⎪⎨-+=⎪⎩.令1x =,得23y z ==,12n ⎛=⎝,. ∴111cos 4162CA n CA n CA n⋅<>===⋅⨯,,∴二面角11C AB B --的余弦值为4-【点睛】本题考查用线面垂直的性质定理证明线线垂直,考查用空间向量法求二面角.立体几何中证明垂直时,线线垂直,线面垂直,面面垂直常常是相互转化,判定定理与性质定理要灵活应用.在有垂直的情况下常常建立空间直角坐标系,用向量法求空间角.19.已知长度为4的线段的两个端点,A B 分别在x 轴和y 轴上运动,动点P 满足3BP PA =,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点()0,1H 的直线2y x t =+与曲线C 相交于两点,M N .若直线HM 与HN 的斜率之和为1,求实数t 的值.【答案】(1)2219x y +=(2)3【解析】 【分析】(1)设P,A,B 的坐标,由2BP PA =坐标化可得变量间的关系,再由AB =求出曲线C 的方程 .(2)设直线l 的方程及M 和N 坐标,由直线与圆锥曲线联立,利用韦达定理、 根的判别式、直线的斜率,结合已知条件能求出定点T 的坐标以及此常数 . 【详解】解:(1)设()()(),,,0,0,P x y A m B n .3BP PA =,()()(),,33,3x y n m x y m x y ∴-=--=--,即333x m xy n y=-⎧⎨-=-⎩.434m x n y⎧=⎪∴⎨⎪=⎩. 又4AB =,2216m n ∴+=.从而221616169x y +=.∴曲线C 的方程为2219x y +=. (2)设()()1122,,,M x y N x y .联立22219y x t x y =+⎧⎪⎨+=⎪⎩,消去y ,得()223736910x tx t ++-=. 由()()2236437910t t ∆=-⨯⨯->,可得t <.又直线2y x t =+不经过点()0,1H ,且直线HM 与HN 的斜率存在,1t ∴≠±.t <1t ≠±.123637t x x ∴+=-,2129937t x x -=.()()12121212124111HM HN x x t x x y y k k x x x x +-+--+=+=, ()()121212414411x x t x x tx x t +-+∴=-=+. 解得3t =.t ∴的值为3.【点睛】本题考查曲线方程的求法, 考查满足条件的x 轴上的定点是否存在的判断与求法, 考查椭圆、 直线方程、 根的判别式、 韦达定理等基础知识, 考查函数与方程思想, 考查运算求解能力, 是中档题 .20.某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算? 【答案】(Ⅰ)见解析;(Ⅱ)选择延保方案二较合算 【解析】 【分析】(Ⅰ)X 所有可能的取值为0,1,2,3,4,5,6,分别求出对应的概率,列出分布列即可;(Ⅱ)求出两种方案下所需费用的分布列,然后分别求出对应的期望值,比较二者的大小即可选出最合算的方案.【详解】解:(Ⅰ)X 所有可能的取值为0,1,2,3,4,5,6,()11101010100P X ==⨯=,()1111210525P X ==⨯⨯=,()11213225551025P X ==⨯+⨯⨯=,()13121132210105550P X ==⨯⨯+⨯⨯=,()22317425510525P X ==⨯+⨯⨯=,()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=,∴X 的分布列为(Ⅱ)选择延保一,所需费用1Y 元的分布列为:1171176970009000110001300015000100502525100EY =⨯+⨯+⨯+⨯+⨯ 10720=(元). 选择延保二,所需费用2Y 元的分布列为:267691000011000120001042010025100EY =⨯+⨯+⨯=(元). ∵12EY EY >,∴该医院选择延保方案二较合算.【点睛】本题考查了离散型随机变量的分布列,考查了概率的计算,考查了期望的求法,属于中档题.21.已知函数()()0af x ax a x=->(1)若()ln f x x ≥在[1,+∞)上恒成立,求a 的取值范围.(2)证明:()()()*11ln 11,21nk n n n n N k n =>++≥∈+∑ 【答案】(1)1[,)2+∞;(2)见解析. 【解析】 【分析】(1)构造函数()()ln g x f x x =-,要求()g x 在[1,)+∞上的最小值0≥即得; (2)由(1)12a =时有11()()ln (1)2f x x x x x =-≥≥,且当1x >时,11()ln 2x x x->, 令1k x k+=,1,2,3,,k n =,得n 个不等式,相加后即证.【详解】(1)设()()ln ln ag x f x x ax x x=-=--, 2221()a ax x ag x a x x x-+'=+-=, 2140a ∆=-≤,即12a ≥时,()0g x '≥恒成立,()g x 在[1,)+∞上是增函数, ∴()(1)0g x g ≥=,∴12a ≥满足题意,102a <<时,20ax x a -+=有两个不等实根12,x x ,121x x a+=,121=x x ,不妨设12x x <,则1201x x <<<,当21x x <<时,()0g x '<,()g x 递减,2x x >时,()0g x '>,()g x 递增, ∴在1x ≥时,min 2()()g x g x =,2222()ln a g x ax x x =--,又2220ax x a -+=,2221x a x =+, ∴2222222222222(1)12()ln ln 1ln 11a x x g x x x x x x x --=-=-=--++, 令22()1ln (1)1h x x x x =--≥+,22222241(1)()0(1)(1)x x h x x x x x --'=-=≤++, ∴()h x 在[1,)+∞上递减,∴2()(1)0g x g <=,()0g x ≥在[1,)+∞上不恒成立,综上,12a ≥.即a 的取值范围是1[,)2+∞.(2)由(1)12a =时,11()()ln (1)2f x x x x x =-≥≥,且当1x >时,11()ln 2x x x->,令1k x k +=,则有111111ln()[(1)(1)]2121k k k k k k k k ++<-=+--++, ∴111ln(1)ln ()21k k k k +-<++,1,2,3,,k n =, 这n 个不等式相加得11111ln(1)()2232(1)k n n +<++++++, 整理得11111ln(1)22(1)nk n n k n n ==+++>+++∑.证毕. 【点睛】本题考查用导数研究不等式恒成立问题,用导数证明不等式,不等式恒成立问题常常转化为研究函数的最值,为了研究导函数的正负,可能对导函数(或其中一部分构成的新函数)再求导,确定正负,确定单调性.22.在直角坐标系xOy 中,曲线C 的参数方程是()22281311k x k k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩(k 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭. (Ⅰ)曲线C 的普通方程和直线l 的直角坐标方程; (Ⅱ)求曲线C 上的点到直线l 的距离的取值范围.【答案】(Ⅰ)()2213169x y y +=≠-.:6l x y -=.d ≤≤【解析】 【分析】(Ⅰ)联想二倍角公式化弦为切的结构特征,即2222tan 1tan sin 2,cos 21tan 1tan a ααααα-==++,结合22sin 2cos 1αα+=,所以将参数方程化为222241131x k k y k k ⎧=⎪⎪+⎨-⎪=⎪+⎩,即可化为普通方程;cos 4πρθ⎛⎫+= ⎪⎝⎭cos x θ=,cos y ρθ=代入,即可化为直角坐标方程; (Ⅱ)将椭圆方程化为参数方程,利用辅助角公式,结合余弦函数的有界性,即可得出结论.【详解】解:(Ⅰ)222241:131x k k C y kk ⎧=⎪⎪+⎨-⎪=⎪+⎩,平方后得221129x y +=, 又(]2633,31y k =-+∈-+,C 的普通方程为()2213169x y y +=≠-. cos 4πρθ⎛⎫+= ⎪⎝⎭cos sin 6ρθρθ-=, 将cos x θ=,cos y ρθ=代入即可得到:6l x y -=.(Ⅱ)将曲线C 化成参数方程形式为4cos 3sin x y αα=⎧⎨=⎩(α为参数),则d ==,其中3tan4ϕ=d ≤≤. 【点睛】本题考查参数方程与普通方程互化,注意消参方法,考查极坐标方程化直角坐标方程,应用参数方程求点到直线距离的范围,属于中档题.23.设函数()212f x x x a =-+-,x ∈R .(1)当4a =时,求不等式()9f x >的解集;(2)对任意x ∈R ,恒有()5f x a ≥-,求实数a 的取值范围.【答案】(1)712x x x ⎧⎫<->⎨⎬⎩⎭或;(2)[3,)+∞ 【解析】【分析】(1)由绝对值不等式的解法,当4a =,分11,2,222x x x ≤<<≥三种情况讨论,求解不等式即可得解; (2)由绝对值不等式的三角不等式性质可得21221(2)1x x a x x a a -+-≥---=-, 再转化为15a a -≥-恒成立,再分10a -≥和10a -<讨论即可得解.【详解】解:(1)当4a =时,145,21()3,2245,2x x f x x x x ⎧-+≤⎪⎪⎪=<<⎨⎪-≥⎪⎪⎩, 则()9f x >等价于12459x x ⎧≤⎪⎨⎪-+>⎩或12239x ⎧<<⎪⎨⎪>⎩或2459x x ≥⎧⎨->⎩, 解得1x <-或72x >, 所以()9f x >的解集为712x x x ⎧⎫<->⎨⎬⎩⎭或. (2)由绝对值不等式的性质有:()21221(2)1f x x x a x x a a =-+-≥---=-,由()5f x a ≥-恒成立,有15a a -≥-恒成立,当5a ≥时不等式显然恒成立,当5a <时,由221(5)a a -≥-得35a ≤<,综上,a 的取值范围是[3,)+∞.【点睛】本题考查了绝对值不等式的解法及绝对值不等式的性质,主要考查了不等式恒成立问题,重点考查了分类讨论的数学思想方法,属中档题.。