2018_2019学年九年级数学下册第二十六章反比例函数26.1反比例函数26.1.2.2反比例函数

合集下载

人教版九年级数学下册26.1.2反比例函数的图像和性质(第2课时) 课件

人教版九年级数学下册26.1.2反比例函数的图像和性质(第2课时) 课件

【解析】因为反比例函数y=mxm²-5,它的两个
分支分别在第一、第三象限,
所以必须满足{
m²-5= m﹥0
-1
得 m =2
y
y=mxm²-5
0
x
1、反比例函数 y kx的图象经过(2,
-1),则k的值为
; -2
2、反比例函数 y kx的图象经过点(2, 5),若点(1,n)在反比例函数图象
【解析】选C.设A点的坐标为(a,b),则k=ab,△ABO的
面积为 1 OB OA 1 ab 3 ,所以ab=6,即k=6
2
2
5.(威海·中考)如图,一次函数y=kx+b的图象与反比
知识巩固
1.函数 y =
5 x
的图象在第_二__,四__象限,在每
个象限内,y 随 x 的增大而_增__大__ .
2. 双曲线 y =
1 3x
经过点(-3,___)
3.函数
y
=
m-2 x
的图象在二、四象限,则m的取
值范围是m__<_2_ .
4.对于函数 y =
1 2x
,当 x<0时,y 随x的_减__小__而
y
y
B
P(m,n)
oA
x
根据象限确定k的符号
B
P(m,n)
oA
x
2.根据图中点的坐标
y A(-2,b).
0
(1)求出y与x的函数解析式.
(2)如果点A(-2,b)在双
x 曲线上,求b的值. B (3,-1) (3)比较绿色部分和黄色部
分的面积的大小.
答案:(1) y 3 x
(2)
y3 2

26.1.2 反比例函数的图象和性质(1)

26.1.2 反比例函数的图象和性质(1)

①m<0;
②在每个分支上,y 随 x 的增大而增大;
③若点 A(-1,a)、点 B(2,b)在图象上,则 a<b;
④若点 P(x,y)在图象上,则点 P1(-x,-y)也在图象上.
其中正确的个数是( B )
A.4
B.3
C.2
D.1
上一页 主分支分别位于第二、四象限,可得 m<0, 故正确;②在每个分支上 y 随 x 的增大而增大,正确;③若点 A(-1,a)、点 B(2, b)在图象上,则 a>b,错误;④若点 P(x,y)在图象上,则点 P1(-x,-y)也在图象 上,正确.
解析:∵四边形 ABCD 是矩形,点 A 的坐标为(2,1),∴点 D 的横坐标为 2, 点 B 的纵坐标为 1.当 x=2 时,y=62=3;当 y=1 时,x=6,则 AD=3-1=2,AB =6-2=4,则矩形 ABCD 的周长=2×(2+4)=12.
上一页 主页 下一页
15.如图,三个反比例函数图象的分支,其中 k1、k2、k3 的大小关系是 __k_1_<__k_3<__k_2___.
学透初 中
第二十六章 反比例函数
26.1 反比例函数 26.1.2 反比例函数的图象和性质(1)
目录页
01.抓基础 02.练考点
03.提能力 04.培素养
1.反比例函数图象的画法(描点法): (1) _列__表___; (2) _描__点___; (3) _连__线___:用平滑的曲线顺次连接各点,可得到反比例函数的图象. 2.反比例函数 y=kx(k≠0)的图象由_两___条曲线组成,它是_双__曲__线___,它具有以 下性质:
上一页 主页 下一页
反比例函数 y=kx(k≠0)的图象 3.【高频】反比例函数 y=-2x的图象是( C )

人教版九年级下册第二十六章:26.1反比例函数的图像和性质(教案)

人教版九年级下册第二十六章:26.1反比例函数的图像和性质(教案)
五、教学反思
在这节关于反比例函数图像和性质的课堂上,我尝试了多种教学方法和策略,目的是让学生能够更好地理解反比例函数的概念,并将其应用于实际问题中。通过这节课的教学,我发现了一些值得注意的地方。
首先,我发现通过生活实例导入新课,确实能够激发学生的兴趣和好奇心。他们能够从实际问题中抽象出数学模型,这有助于他们理解反比例函数的意义。在今后的教学中,我将继续寻找更多贴近生活的例子,让学生感受到数学的实用性和趣味性。
1.理解反比例函数的概念,掌握其图像与性质,提高学生的数学抽象与逻辑推理能力;
2.通过对反比例函数图像的观察与分析,培养学生的几何直观与空间想象能力;
3.运用反比例函数解决实际问题,提升学生的数学建模与问题解决能力;
4.引导学生通过小组合作、探讨交流,发展他们的数据分析与团队合作能力;
5.培养学生严谨的学术态度和勇于探索的精神,提高他们的数学素养和综合素质。
三、教学难点与重点
1.教学重点
-反比例函数的定义及其表达式:y = k/x(k≠0),理解k的取值对函数图像的影响;
-反比例函数图像的绘制与性质分析,包括双曲线的形状、单调性、对称性等;
-反比例函数图像的变换,如平移、缩放,并理解其几何意义;
-将反比例函数应用于解决实际问题,建立数学模型。
举例:重点讲解反比例函数图像的绘制过程,通过实际案例让学生理解反比例函数在现实生活中的应用,如物体下落时速度与时间的关系。
对于实际问题的应用,难点在于如何引导学生从问题中抽象出反比例关系,教师可以通过设计不同情境的问题,如面积与边长、速度与时间等,帮助学生建立起反比例函数的数学模型。
在教学过程中,教师应特别注意对难点的反复讲解和练习,采用多样化的教学手段,如小组讨论、问题驱动、案例教学等,确保学生能够透彻理解和掌握本节课的核心知识。

人教版九年级下册第二十六章:26.1.2反比例函数的图象和性质 教学设计

人教版九年级下册第二十六章:26.1.2反比例函数的图象和性质 教学设计

26.1.2《反比例函数的图像和性质》教材分析众所周知,函数知识是中学代数的核心内容,反比例函数是初中阶段所要学习的三种函数之一,反比例函数这部分的体系和安排,基本上与一次函数部分相同,教学中要注意和一次函数,尤其是正比例函数对比,引导学生从函数的意义,自变量的取值范围,图象的形状等方面辨明相应的区别。

《反比例函数的图像和性质》在反比例函数这部分的第二小节,是在学生学习了反比例函数的意义和掌握了用描点法画函数图象的基础上进行教学的。

反比例函数图像与一次函数图像不同,研究方法更具有一般性和代表性。

《反比例函数的图像和性质》分两课时完成:第一课时,主要内容反比例函数的图像和性质;第二课时;反比例函数与一次函数的图像和性质对比,确定反比例函数的表达式,本课为第一课时主要内容为探究反比例函数的图像和性质。

学情分析此时学生已经学习了函数及其图像的初步知识,及系统的研究了一次函数和二次函数的概念,图像,性质以及简单应用。

学生研究函数的基本方法有一些初步的了解。

但是反比例函数图像分两支,与一次函数、二次函数图像有很大的差别,学生很容易走进误区。

教学目标分析知识与技能(1)进一步熟悉作函数图像的主要步骤和注意事项;(2)会用描点法画反比例函数图像;(3)理解反比例函数的图像与性质。

过程与方法(1)学生通过自己动手,列表,描点,连线,提高学生的作图能力;(2)通过观察反比例函数图像,分析、探究反比例函数的性质,培养学生探究、归纳及概括的能力。

体会数形结合思想和分类讨论思想。

情感与态度通过对本节课的学习,让学生感受双曲线对称美,有限和无限思想,激发他们对数学学习的兴趣;教学重、难点分析基于本节课的教学内容和教学目标,结合学生学情。

确定本节课的重难点如下:重点:用描点法画反比例函数图像,理解反比例函数的性质。

难点:用描点法画反比例函数图像,理解反比例函数的性质。

教法学法分析学法:学生已经研究了一次函数、二次函数,对研究函数的图像和性质的思想方法有所了解,学生可以通过类比的方法学习,实现知识的迁移。

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
2.教师点评:对学生的总结进行点评,强调重点知识。
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版初中数学课标版九年级下册第二十六章26.1.2反比例函数的图像和性质

人教版初中数学课标版九年级下册第二十六章26.1.2反比例函数的图像和性质
当k<0时,y随x的增大而减小.
当k>0时,在每一象限内,y 随x的增大而减小 当k<0时,在每一象限内,y 随x的增大而增大
19
作业
必做题:教材6页第2题,8页第3题 选做题:教材9页第9题
20
6 -6 -3 -2 -1.5-1.2 -1 …
y
6
y=
6 x
5 4
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
6
y
6
y6 x
5
y 6
4
x
3
2
1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4 -5
-6
7
(2)将反比例函数的图象绕原点旋转180度后, 能与原来的图象y 重合吗?
y
y2、 k反x 比例函数
的图象如图所示,则k_0;
在图象的每一支上,y随x的增大而__
O
x
3、
y k2 x
当x>0时,y随x的增大而增大
则k的范围是_
16
当堂检测
- 1、 y=
上5x 有两点A(m, y),1 B(n,
y)若2 m>n>0,则
y_ 1
y 2
y
y y 27x 、y=
上有两点A(3, ) B(-1, )y,则 __ y
5
… -6 -5 -4 -3 -2
y
=
6 x

-1 -1.2 -1.5 -2
-3
y=
6 x

九年级数学下册 第二十六章 反比例函数26.1 反比例函数26.1.3 二次函数y=a(x-h)2+

九年级数学下册 第二十六章 反比例函数26.1 反比例函数26.1.3 二次函数y=a(x-h)2+

y 3x2
向、对称轴和顶点坐标分 别是什么?
与y=-3x²有关
y3x12 y3x122
二次函数y=-3(x-1)2+2与
y=-3(x-1)2-2的图象可
以看作是抛物线y=-3x2
先沿着x轴向右平移1个
单位,再沿直线x=1向上
(或向下)平移2个单位后
得到的.
对称轴仍是平行于
y轴的直线(x=1).
x=1
【例 2】要修建一个圆形喷水池,在池
y
中心竖直安装一根水管,在水管的顶端
安一个喷水头,使喷出的抛物线形水柱
在与池中心的水平距离为1m处达到最高,
高度为3m,水柱落地处离池中心3m,水
管应多长?
解析:如图建立直角坐标系,点(1,3)
是顶点,设抛物线的解析式为
y=a(x-1)2 +3(0≤x≤3),
∵点(3,0)在抛物线上,
系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)
的一部分,则水喷出的最大高度是( )
A.4米
B.3米
C.2米
D.1米
【解析】选A. 抛物线的
y (米)
顶点坐标为(2,4),
所以水喷出的最大高度
是4米.
x (米)
4.(温州·中考)已知二次函数的图象如图所示,关于该 函数在所给自变量取值范围内,下列说法正确的是( ) A.有最小值0,有最大值3 B.有最小值-1,有最大值0 C.有最小值-1,有最大值3 D.有最小值-1,无最大值 【解析】选C.因为图象顶点的纵 坐标为-1,最高值为3.故选C.
26.1.3 二次函数y=a(xh)2+k的图象
第2课时
1.会画y=a(x-h)2+k的图象; 2.了解y=a(x-h)2+k的图象与y=ax2的关系,能结合图 象理解y=a(x-h)2+k的性质.

26.1.2反比例函数的图像和性质

26.1.2反比例函数的图像和性质

-2 -3
-4
-5 -6
3.你能利用你的发现来比较 :当自变量为-3,2时,函 数值的大小吗?
发现函数值y怎样随着自变量x的变化而变化?
1、在每一个象限内
比较: 1.当自变量为-3,-2, -1时,函数值的大小? 2.当自变量为1,2,3时 ,函数值的大小?
-
6 观察 y 的图象 x
2、在整个自变量的取值范围内
-2 -1.5 -1.2 -1
y
6 5
y= 6 x
y =- 6 x
4 3 2 1
1
2
3
4
5
6
x
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
-1
-2 -3 -4 -5 -6
x
做一做
你认为作反比例函数图象时应注意哪些问题? • 列表时,自变量的值可以选取一些互为相反数的值,这 样既可简化计算,又便于对称性描点; • 列表描点时,要尽量多取一些数值,多描一些点,这样 既可以方便连线,又较准确地表达函数的变化趋势; • 连线时一定要养成按自变量从小到大的顺序,依次用 平滑的曲线连接,从中体会函数的增减性; • ……
减小 y随x 的增大而_________.
问题 如图所示:比较k1,k2,k3,k4的大小.
y=k4/x
y=k1/x
k1>k2>k3>k4
y=k2/x
y=k3/x
双曲线离原点越远 k的绝对值越大 双曲线离原点越近 k的绝对值越小
例1:已知反比例函数的图象经过点A(2,6). (1)这个函数的图象分布在哪些象限?y随x的增大如何 变化? 1 4 (2)点B(3,4)、C( 2 , 4 )和D(2,5)是否在 5 这个函数的图象上? 2

人教版九年级数学下册第二十六章:26.1.2 反比例函数的图像和性质 优秀课件

人教版九年级数学下册第二十六章:26.1.2  反比例函数的图像和性质  优秀课件

-4
-6
-8
当k>0时,两支双曲线分 位于第一,三象限内; 当k<0时,两支双曲线分别 位于第二,四象限内;
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
一、复习引入
反比例函数的定义:
一般地,形如 (k是常数,k≠0)的函数, 叫做反比例函数。其中, x是自变量,y是函 数.自变量x的取值范围是不等于0的一切实 数.
反比例函数的三种表达式:
① ② ③
1、过点(2,5)的反比例函数的解析 10 式是: y x . 2、一次函数y=2x-1的图象 是 一条直线 ,y随x的增大而 增大. 3、用描点法作函数图象的步骤:
y
4 C(-3,y3)是 y B(5,y2)是反比例函数 x
数形结合

⑴代入求值
y1 y2 y3
A
2
⑵利用增减性
B
5
-3
⑶根据图象判断
x
O
C
7、若点(-2,y1)、(-1,y2)、(2,y3)在
100 反比例函数 y = 的图象上,则( x
B

A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
x
标系中的 图象可能是 D
y o x y o x
:
y o x y o x
(A)
(B)

人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件

人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件

(((((((((((453534434254))))))))))))-yyxyyx3yyxxyyyxyyy121x+1x1212=2xx11x0x21xx
(5)
y
2

x
不具备 y k 的形式,所以y不是x的反
比例函数。 x
可以改写成
y

2 3x
,所以y是x的反
比例函数,比例系数k= 2




⑨ y 1
x2

⑩ y ( 2 3)x1 ⑾

1000 y 0 x

“聚焦”自变量
对于反比例函数 y 1000
x
①当x=50时,y=__2_0__ ②当x=-100时,y=__-_1_0_
③X的值能不能取0?为什么? 函数 y k(k≠0)中,自变量x的取值范围是不为0的一 切实数。x ④某住宅小区要种植一个面积为1000m2的矩形草坪,草 坪的长y(单位:m)随宽x(单位:m)的变化而变化。
4
变式2、已知函数 y = y1 + y2,y1与x 成正比例,y2与x成
反比例,且当x=1时,y=3;当x=2时,y=3。
解((12:))(1求 当)设yx与=y41x时的,k函1xy数,的关y值2 系。式kx2;方将求法两出:组函先值数分代的别入值设所。设y1,的y2函与数x的关关系系式式中,,
x
4.反比例函数 y k 中,当x的值由4增加
x
到6时,y的值减小3,求这个反比例函数的
解析式. y 36 x
“极限”大挑战
5.(1)已知y与z成正比例,z与x成正比例。问y是x
的什么函数?
y与x成正比例

人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件

人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件

y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6

人教版九年级数学下册第二十六章反比例函数大单元教学设计

人教版九年级数学下册第二十六章反比例函数大单元教学设计
2.提出问题:当长和宽的比例变为1:2时,长和宽分别是多少?如果长和宽的比例是1:k,那么长和宽与k之间的关系是怎样的?
3.引出反比例函数:通过以上问题,引导学生发现,当两个量的乘积为定值时,这两个量之间的关系就是反比例关系。从而引出反比例函数的定义。
(二)讲授新知
1.反比例函数的定义:y = k/x(k为常数,k≠0)。
3.学会运用数形结合的思想,将反比例函数与实际问题相结合,培养创新意识和实践能力。
4.通过对反比例函数的学习,掌握研究函数的一般方法,为学习其他函数打下基础。
(三)情感态度与价值观
1.增强对数学学科的兴趣和热情,认识到数学在日常生活和科学研究中的重要性。
2.培养勇于探究、积极思考的良好学习习惯,形成主动学习的态度。
2.选做题:
(1)课本习题26.3第1、2题,鼓励学有余力的学生挑战更高难度的题目,提高学生的数学思维;
(2)结合生活实际,自编一道反比例函数的应用题,并与同学分享解题思路。
3.探究性作业:
(1)研究反比例函数图像的对称性,探索其在实际生活中的应用;
(2)以小组为单位,总结反比例函数的解题技巧,形成小组学习报告。
(2)运用情境教学法,创设生活情境,让学生在实际问题中感受反比例函数的应用,提高学生的实际问题解决能力;
(3)利用信息技术手段,如几何画板等,动态展示反比例函数图像的变化,帮助学生形象地理解反比例函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:通过一个简单的实际例子,如“一块固定面积的田地,耕种宽度与长度成反比,如何选择宽度与长度才能使耕种效率最高”,引起学生对反比例函数的兴趣;
2.反比例函数的性质:

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。

专题26.1.2 反比例函数的图像和性质(练习)(解析版)

专题26.1.2  反比例函数的图像和性质(练习)(解析版)

第二十六章反比例函数26.1.2 反比例函数的图像和性质精选练习答案基础篇一. 单选题(共10小题)1.(2019·利辛县期中)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2【答案】C【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.2.(2019·南海区期末)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【答案】B【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选B.3.(2019·山东胜利一中初三期中)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【答案】D【解析】详解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.4.(2018·宜春市期末)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【答案】D【详解】∵y=−2x的k=-2<0,图象位于二四象限,a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.5.(2019·安庆市期中)一次函数y=ax+b和反比例函数y在同一直角坐标系中的大致图象是()A.B.C.D.【答案】A【详解】图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=-,即直线y=ax+b与x轴的交点为(-,0)由图A、B的直线和x轴的交点知:->-1,即b<a,所以b-a<0,∴a-b>0,此时双曲线在第一、三象限,故选项B不成立,选项A正确;图C、D直线y=ax+b经过第二、一、四象限,∴a<0,b>0,此时a-b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选:A.6.(2019·深圳市高级中学初三期中)已知反比例函数,下列结论中不正确的是A.其图象经过点B.其图象分别位于第一、第三象限C.当时,y随x的增大而减小D.当时,【答案】D【详解】A、当时,,此函数图象过点,故本选项正确;B、,此函数图象的两个分支位于一三象限,故本选项正确;C、,当时,y随着x的增大而减小,故本选项正确;D、当时,,当时,,故本选项错误,故选D.7.(2018·冠县期末)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【答案】B【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B 符合.故选B8.(2019·长春市期中)若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数的图像上,则,,的大小关系是( )A .B .C .D .【答案】B【解析】详解:∵反比例函数y =中,k=12>0, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵y 1<y 2<0<y 3, ∴.故选:B .9.(2018·钦州市期末)已知反比函数,下列结论中不正确的是( ) A .图象必经过点B .图象位于第二、四象限C .若则D .在每一个象限内,随值的增大而减小【答案】D【详解】 选项A ,当x=-3时,y=﹣=2,∴图象经过点(﹣3,2),选项A 正确;选项B ,∵k=-6<0,∴图象在第二、四象限,选项B 正确;选项C ,k=-6<0,∴图象在第四象限内y 随x 的增大而减小,∴当x <-2时,0<y <3,选项C 正确; 选项D ,∵k=-6<0,∴在每一象限内, y 随x 的增大而增大,选项D 错误;故选D .10.(2018·庆安市期末)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y =6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【答案】B【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=6x的图象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故选B.二. 填空题(共5小题)11.(2019·新乐市期末)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是_____.【答案】k<1【详解】∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1,故答案为:k<1.12.(2018·沁水县期末)已知点P(a,b)在反比例函数y=2x的图象上,则ab=_____.【答案】2【详解】∵点P(a,b)在反比例函数y=的图象上,提升篇∴b=,∴ab=2,故答案为:2.13.(2019·阳东区期末)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.【答案】y1<y2【解析】详解:∵反比例函数y=-,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.14.(2019·大东区期末)若反比例函数的图象位于第二、四象限,则的取值范围是__.【答案】k>2【详解】∵反比例函数y=的图象在第二、四象限,∴2-k<0,∴k>2.故答案为:k>2.15.(2019·滨海新区期末)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB 的面积为2,则k的值是_____.【答案】4【详解】∵点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,∴S△AOB=|k|=2,又∵函数图象位于一、三象限,∴k=4,故答案为:4.三. 解答题(共2小题)16.(2018·福州市期末)如图,在平面直角坐标系中,一次函数与反比例函数2myx的图像交于和两点.(1)求,的值;(2)结合图像,当时,直接写出的取值范围.【答案】(1)=4,=6;(2)或【分析】(1)和是一次函数与反比例函数2myx的图像的两个交点,将其分别代入一次函数,即可求出,的值.(2)题干要求当时,直接写出的取值范围,即直线在曲线上方,观察图像交点即可求出的取值范围.【详解】解:( 1 ) ∵A ( -3,a ) ,B ( b,-2 ),∴a=∴ b = 6.( 2 ) ∵A ( -3 ,4 ) ,B ( 6 ,-2 )∴当时,观察图像可知或.17.(2019·桂林市期中)如图,反比例函数y1=的图象与一次函数y2=ax+b的图象相交于点A(1,4)和B(﹣2,n).(1)求反比例函数与一次函数的解析式;(2)请根据图象直接写出y1<y2时,x的取值范围.【答案】(1)y1=,y2=2x+2;(2)﹣2<x<0或x>1.【分析】(1)根据待定系数法,可得函数解析式;(2)根据一次函数图象在上方的部分是不等式的解,可得答案.【详解】(1)∵反比例函数y1=的图过点A(1,4),∴4=,即k=4,∴反比例函数的解析式为:y1=,∵反比例函数y1=的图象过点B(﹣2,n),∴n==﹣2,∴B(﹣2,﹣2),∵一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得:∴一次函数的解析式为:y2=2x+2;(2)由图象可知:当﹣2<x<0或x>1.。

26.1.1 反比例函数(教学设计)九年级数学下册同步备课系列(人教版)

26.1.1 反比例函数(教学设计)九年级数学下册同步备课系列(人教版)

26.1.1 反比例函数教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十六章“反比例函数”26.1.1 反比例函数,内容包括:从实例中归纳出反比例函数的概念及反比例函数的辨析.2.内容解析教材中本课时的主要内容是通过对三个实际问题列方程,得到三个不同于以前学过的函数解析式,给学生以疑问.让学生通过观察、探究与归纳,得到反比例函数的概念.本节内容体现了由特殊到一般、数学建模、从具体到抽象以及分类讨论等思想方法.这样安排的目的有两个,一是让学生体会生活中处处有数学,数学源于生活、又服务于生活的教学理念,体会数学就在我们身边的道理;二是从简单的实际问题入手,激发学生学习数学的兴趣.基于以上分析,确定本节课的教学重点是:理解反比例函数的概念.二、目标和目标解析1.目标1.理解反比例函数的概念;2.根据题目条件会求对应量的值,能用待定系数法求反比例函数的关系式.3.能利用反比例函数的意义分析简单的问题.2.目标解析达成目标1)的标志是:理解反比例函数的概念,需要注意的地方是自变量x的取值范围是不等于0的一切实数,及会判别反比例函数.达成目标2)的标志是:用待定系数法求反比例函数的关系式.达成目标3)的标志是:能利用反比例函数的意义分析简单的问题.三、教学问题诊断分析学生在思考1)v=1463t 2)y=1000x3)S=1.68×104n的共同特征时,发现函数的特征不容易统一,所以引导学生找解析式中变量和常量的位置,这三个解析式结构都是:变量= 常量变量,进而得出反比例函数的概念.基于以上分析,本节课的教学难点是:从实例中归纳出反比例函数的概念及反比例函数的辨析.四、教学过程设计(一)复习巩固【提问一】什么是正比例函数?【提问二】什么是一次函数?【提问三】什么是二次函数?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习反比例函数打好基础.(二)探究新知下列问题中两个变量间具有函数关系吗?如果有,请直接写出解析式.[情景一]京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.[情景二]某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.[情景三]已知北京市的总面积为1.68×104 km2 ,人均占有面积S(单位:km2 /人)随全市总人口n (单位:人)的变化而变化.师生活动:学生积极回答问题.【设计意图】以学生比较熟知的,贴近学生生活的例子引入课题,一方面可以提高学生的兴趣,另一方面可以降低学生理解的难度.【问题一】观察以下三个解析式,你发现了什么?1)v=1463t 2)y=1000x3)S=1.68×104n师生活动:先由学生尝试回答,之后由教师引导学生共同归纳:这三个解析式结构都是:变量= 常量变量,从而归纳得出反比例函数的概念:一般地,形如y= kx(k为常数,且k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.【提问】请说出自变量x的取值范围?师生活动:学生观察反比例函数解析式的结构,得出自变量x的取值范围是不等于0的一切实数.【提问】尝试说出反比例函数的等价变形形式?师生活动:学生观察反比例函数解析式的结构,得出:y= kx⇔ y=kx-1⇔ k=xy(x≠0)⇔y是x的反比例函数.【设计意图】让学生经历合作探究过程,通过观察、发现、归纳,理解反比例函数的概念.再通过提问环节,引导学生初步思考、回顾已有的知识,主动参与到本节课的学习中来.(三)典例分析与针对训练例1 判断下列函数是不是反比例函数,如果是请指出比例系数.【针对训练】1.下列函数中哪些是反比例函数?哪些是一次函数?①y=3x-1 ①y = 2x ①y= 32x ① y= −1x① y= x2①-xy=2 ①y=6x-12. 已知反比例函数的解析式为y=|a|−2x,则a的取值范围是() A.a≠2B.a≠−2C.a≠±2D.a=±2【设计意图】考查学生对反比例函数概念的掌握.例2 若函数①=(m+1)x|m|﹣2是反比例函数,则①=()A.±1B.±3C.﹣1D.1【针对训练】1.函数y=(m﹣1)x m2−m−1是反比例函数,求m的值.例3 已知y是x的反比例函数,当x=2时,y=6.1)写出y与x的函数关系式;2)求当x=4时,y的值.【针对训练】1. 已知y与x2 成反比例,且当x=3时,y=4.1)写出y关于x的函数解析式;2)当x=1.5时,求y的值;3)当y= 6时,求x的值.2. y是x的反比例函数,下表给出了x与y的一些值1)写出这个反比例函数的解析式.2)根据函数表达式完成上表.【问题二】简述利用待定系数法求反比例函数解析式的具体方法?【设计意图】考查学生对利用待定系数法求反比例函数解析式的掌握.例4 矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【针对训练】1. 直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为_________.2. 已知菱形的面积是12cm2,菱形的两条对角线长分别为x和y,则y与x之间的函数关系是________________.3.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式_____.【设计意图】考查学生利用反比例函数描述数量关系的能力.例5 反比例函数y=k+1x的图象经过点(﹣1,2),则k=_____.【针对训练】1 已知反比例函数y= kx(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()A.(2,6)B.(-1,-12)C.(0.5,24)D.(-3,8)【设计意图】考查学生对求反比例函数系数的掌握.(四)能力提升1. 已知反比例函数的解析式为y=√2k−1x,则最小整数k=______.2. 当m为何值时,函数y=(m﹣3)x2﹣|m|是反比例函数?当m为何值时,此函数是正比例函数?【设计意图】考查学生对求反比例函数概念的掌握.(五)直击中考1.(2020·广西贺州·统考中考真题)在反比例函数y=2x中,当x=−1时,y的值为()A.2B.−2C.12D.−122.(2023·重庆·统考中考真题)反比例函数y=−4x的图象一定经过的点是()A.(1,4)B.(−1,−4)C.(−2,2)D.(2,2)3.(2022·黑龙江哈尔滨·统考中考真题)已知反比例函数y=−6的图象经过点(4,a),则a的值x为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.你知道反比例函数的三种形式吗?3.简述利用待定系数法求反比例函数解析式的具体方法?(七)布置作业P3:练习第1题、第2题.五、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(三)
[26.1.2 第2课时 反比例函数的性质的应用]
一、选择题
1.点P 在反比例函数y =-
2 3x 的图象上,过点P 分别作两坐标轴的垂线段PM ,PN ,则四边形OMPN 的面积为( )
A. 3 B .2 C .2 3 D .1
2.如图K -3-1,过反比例函数y =k
x
(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )
图K -3-1
A .2
B .3
C .4
D .5
3.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图K -3-2所示的平面直角
坐标系,双曲线y =3x
经过点D ,则正方形ABCD 的面积是( )
图K -3-2
A .10
B .11
C .12
D .13
4.如图K -3-3,边长为4的正方形ABCD 的对称中心是坐标原点O ,AB ∥x 轴,BC ∥y 轴,反比例函数y =2x 与y =-2x
的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之
和是( )
图K -3-3
A .2
B .4
C .6
D .8
5.对于反比例函数y =-6x
的图象的对称性,下列叙述错误的是( ) A .关于原点对称
B .关于直线y =x 对称
C .关于直线y =-x 对称
D .关于x 轴对称
6.位于第一象限的点E 在反比例函数y =k x 的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( )
A .4
B .2
C .1
D .-2
7.2017·衢州如图K -3-4,在直角坐标系中,点A 在函数y =4x
(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =4x
(x >0)的图象交于点D ,连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )
图K -3-4。

相关文档
最新文档