第2章 原子的结构和性质
2原子的结构与性质
1 m 0, 0 2
本章目录 总目录 阅读帮助
第二章 原子的结构和性质
根据态叠加原理,两个独立特解的线性组合仍然是 方程的解。可由此得实函数解。
1 im 1 m e cos m i sin m 2 2
m
1 im 1 e cos m i sin m 2 2
(2.1.8)
本章目录 总目录 阅读帮助
第二章 原子的结构和性质
按照偏微分关系运算可得几个典型算符在极坐标内 的情况:
ih ˆ M z 2π ih ˆ Mx sin cos cos 2π
ih ˆ My cos cos sin 2π
z r cos
: [0,2]
2 2
r x y z
2 2
(2.1.4)
cos
x
z
2
y z
2
2
1
2
(2.1.5) (2.1.6)
tan y
本章目录
x
阅读帮助
总目录
第二章 原子的结构和性质
按偏微分关系分别对式(2.1.4)、(2.1.5)、(2.1.6) 求导并 代入式(2.1.3) ,利用偏微分关系式:
单电子原子:H、 He+、 Li2+、Be3+都是只有1个 核外电子的简单体系,称为单电子原子或类氢离子。
核电荷数为 Z 的单电子原子,电子距核 r 处绕核 运动,电子和原子核吸引的位能由库仑定律可求得:
Ze 2 V 4π 0 r
体系的全能量算符(Hamilton):
2 2 2 h h Ze 2 2 ˆ H N 2 e 2 8 M N 8 me 4 0 r
第二章 原子的结构和性质
二、角量子数l
决定电子的轨道角动量绝对值∣M∣的大小,其取值为:0,1 ,2,…,n-1,因而称为角量子数。
M l (l 1)
另外,从经典电磁学的观点来看,带电运动的质点做圆周 运动时,除角动量外,还会产生磁矩,两者关系:
e M 2me
e l (l 1) 2me l (l 1) e e e 9.274 1024 J T 1 2me
在“轨道冻结”的情况下,原子轨道能近似等于这个轨道 上两个电子的平均电离能的负值。 由σ近似计算原子轨道能 应用公式:Ei = -13.6Z*2/n2 =-13.6(Z-σ)2/n2
屏蔽系数σ的计算,Slater规则
将电子由内而外分组:s 2s, 2p 3s, 3p 3d 4s, 4p 4d 4f 5s, 5p 等。 外面的电子σ= 0
轨道角动量和轨道磁矩在Z方向的分量有定值:
M m Z m e
m 0,1,2 l
在磁场中Z方向就是磁场方向,因此m称为磁量 子数。物理意义: (1)决定电子的轨道角动量在磁场方向上的分 量Mz; (2)决定轨道磁矩在磁场方向上的分量MZ
对于n和l相同的状态,轨道角动量和轨道磁矩在 磁场方向上的分量有(2l+1)种,这就是轨道角动 量和轨道磁矩空间取向的量子化。
原子轨道等值线图
是根据空间各点Ψ值的正负和大小画出等值线或等值面的图 形。这种图形反映了原子轨道的全貌,并可用以派生出电子 云分布图、界面图和原子轨道轮廓图等图形。 见课本P35
原子轨道轮廓图
是在直角坐标系中选择一个合适的等值面,使它反映Ψ在空 间的分布图形。由于它具有正、负和大、小,适用于了解原子 轨道重叠形成化学键的情况,是一种简明而又实用的图形。 把Ψ的大小轮廓和正负在直角坐标系中表达出来,以反映Ψ在 空间分布的图形叫原子轨道轮廓图或简称原子轨道图。
第二章 原子的结构和性质习题课
主峰位于离核较 远 的范围。
8、径向分布函数D(r)= D=r2R2 ;
它表示 电子在半径为r的球面单位壳层内出现的几率
。
9、n=3,l=2,m=0表示的原子轨道是 Ψ3.2.0 。
10、 n=4的原子轨道数目为 16 ;最多可容纳的电子数为 32 。
11、 n=5时其最大的轨道角动量M为
H) = -
2s
0.1
0.3
0.2
0.1 2
0 -0.1
0 012345
r/a0
02468
r/a0
径向分布函数D:
0.6
0.3
D=r2R2
0
反映电子云的分布随半径r的变
0.24 0.16
化情况。
0.08 0
Ddr代表在半径r到r+dr两个球
0.24 0.16
壳夹层内找到电子的几率。
0.08 0
0.16
0.08
(4 - r )= 0
r 24a50
a0
a0
r = 4a0
4、解:
ψ ¥ 2π π
P=
00
0
2 1s
r
2
sinθdθdφdr
5、 解:
4
= a03
2a0 r 2e-r 2a0 dr = 0.7618
0
Na:1s22s2p63s1
Z*(3s)= 11-1.00×2 - 0.85×8 = 2.2
12、写出C原子的哈密顿算符
h2 2m
20h
6
Σ
i= 1
i2
-
。
6
Σ
6e 2
i=1 4πε0 ri
+
1 2
结构化学课后答案第2章习题原子的结构与性质
1.简要说明原子轨道量子数及它们的取值范围解:原子轨道有主量子数 n ,角量子数|,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来2说,原子轨道能级只与主量子数n 相关E Z R 。
对多电子原子,能级除了与n 相关,还要考虑电子n间相互作用。
角量子数|决定轨道角动量大小,磁量子数 m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。
1n 取值为 1、2、3••…;| = 0、1、2、••…、n - 1; m = 0、±1 ±2 ……±l 取值只有一。
22.在直角坐标系下,Li 2+的Schr?dinger 方程为 ______________________ 。
解:由于Li 2+属于单电子原子,在采取 “-O'近似假定后,体系的动能只包括电子的动能,则体系的动量z 分量的平均值为多少(2)由于 |M I "J l(l1), l 1=1, l 2=1, l 3=1,又,210 ,211和 31 1 都是归一化的,2 h 2 h C 2 ■ l2 l 2 1 ——C3 ■ l3 l 3 1 o 2 2 2 ------------ h 2 ------------ hc 2 11 1 ——c 3 11 1 ——2 2 2h 222故C i 2 M iC 2 M1c ; M 2 C 3 M 3 能算符:T?h 2 8 2m2;体系的势能算符:\?Ze 2 3e 2 故Li 2+的 Schr?dinger 方程为:h 22式中:22 ____x 2y 23.对氢原子,C 1210的。
那么波函数所描述状态的(4 0r3e 22r = ( x 2+ y 2+ z 2F 2z 2C 2211C 331 能量平均值为多少( 1,其中4 0r211和 31 1都是归一化2)角动量出现在 ..2h 2的概率是多少,角动解:由波函数C 1210C 2211C 3 31 1 得:n 1=2, h=1,m 1=0; n 2=2, b=1,m 2=1;出=3,l 3=1,m 3=-1;(1)由于2210, 211 和 31 1都是归一化的,且单电子原子E 13.6―(eV )故E■i C 1 E12 2 C 2 E2C 3 E32 C 11 2 113.6 =eV 22 cf 13.6 peV22113.6 ?eV13.6 2 4 C1c ; eV 13.99c j eV 2 ---------------- hC 1 ■. l1 l 1 12c : J1 1 1 — 2则角动量为、、2h2出现的概率为: 1h,m1=0,m2=1,m3=-1;又210, 211和311都是归一化的,故M z' CMih2c|m22 c 2 * 2G 0 C2 1 C32 h°3 m3h1 -22 2C2 C34.已知类氢离子He+的某一状态波函数为:321 222re-2r2a。
第二章 原子的结构和性质习题课
第二章习题课主要概念:1、核固定近似(B-O近似)2、中心力场模型3、量子数的物理意义4、屏蔽效应,钻透效应5、原子轨道及电子云的径向分布和角度分布6、自旋量子数和原子的完全态函数7、原子核外电子排布5、态函数的角度分布和电子云的角度分布态函数的角度分布节面数为l电子云的角度分布形状与原子轨道角度分布相似,但没有正负之分原子轨道轮廓图(各类轨道标度不同)7、屏蔽效应8、电子自旋与保里原理自旋量子数:电子运动除了由n 、l 、m 三个量子数确定的轨道运动外,还有另外的且与轨道运动无关的自旋运动,由自旋量子数m s 决定。
m s 只能取±1/2两个数值原子的完全态态函数应是轨道态函数和自旋态函数的乘积:ii jσ=Σσs sn.l.m.m n.l.m m Ψ=Ψη9、原子核外电子排布(1)能量最低原理(2)保里原理(3)洪特规则二、填空题1、在氢原子及类氢原子体系中E 电子决定于。
2、氢原子的E 2简并态为、、、。
3、写出类氢原子的哈密顿算符。
4、4dxy 原子轨道角动量为,径向分布函数节面数为,角度分布节面数为,总节面数为。
5、在n=3、l=1原子轨道中,m 的取值有种,分别为。
6、对于类氢原子,与轨道角动量不同,能量相同的轨道还有;能量与角动量都相同的轨道有;7、的径向分布函数图为;有个峰,个节面;主峰位于离核较的范围。
8、径向分布函数D(r)= ;它表示。
9、n=3,l=2,m=0表示的原子轨道是。
10、n=4 的原子轨道数目为;最多可容纳的电子数为。
11、n=5 时其最大的轨道角动量M 为。
12、写出C 原子的哈密顿算符。
2.1.0Ψ3s Ψ。
第二章原子的结构和性质(2-1类氢原子
第二章 原子的结构和性质§2-1. 类氢原子 1. 体系的哈密顿算符在玻恩-奥本海默(Born-Oppenheimer)近似, 类氢体系可以近似为一个质量为m 的电子绕一个z 个正电荷的质心运动,其间距为r.*动能算符: T ˆ=- 22m 2∇ 其中 2∇≡ 222222zy x ∂∂+∂∂+∂∂, 称为拉普拉斯算符.*势能算符: rZe V 024ˆπε-= *哈密顿算符: r Ze V T H 02224m 2ˆˆˆπε-∇=+= , 化成球极坐标形式: H ˆ= -∂∂+∂∂+∂∂+∂∂+∂∂-)]sin 1ctg (r 1r r 2r [m 2222222222φθθθ r Ze 024πε考虑到前面所讨论的2Mˆ 算符则哈密顿算符化为: H ˆ= r r 2r [m 2222∂∂+∂∂- ]M ˆr 1222 -r Ze 024πε-2. 体系的薛定谔方程及其求解*体系的薛定谔方程: Hˆψ(r,θ,φ)= E ψ(r,θ,φ) 容易证明Hˆ、2M ˆ、zM ˆ三个算符之间是可以交换的,因此他们具有共同的本征函数集合. 因此可令ψ(r,θ,φ)=R(r)m l Y (θ,φ), 并将其代入上面的薛定谔方程, 化为仅含有r 变量的常微分方程:0R ]r1)l(l r Zme 2mE 2[dr dR r 2dr R d 222222=+-+++ 同样地由于对波函数有限性的要求,得到量子化的本征值和本征函数:22222048nZ R n Z h me E n ⋅-=⋅=ε n=1,2,3,* (R= 13.6 eV )3. 粒子的角动量(1) 角动量算符一质量为m 的粒子围绕点O 运动,其角动量p r M ⨯=k z j y i x r++=k p j p i p p z y x++=k Mz j My i Mx M++=按照矢量差乘的定义有: M x =yp z -zp y M y =zp x -xp z M z =xp y -yp xM 2=M x 2+M y 2+M z 2他们对应的量子力学算符(直角坐标形式):)yz y (M ˆx∂∂-∂∂=z i , ... 2Mˆ =-])xy y x ()z x x z ()y z z y [(2222∂∂-∂∂+∂∂-∂∂+∂∂-∂∂ 可将上述直角坐标形式变换为球极坐标形式:φ∂∂=i z Mˆ 2M ˆ=)sin 1ctg (222222φθθθθ∂∂+∂∂+∂∂-* 球极坐标与直角坐标的变换关系:x=rsin θcos φ ; y=r sin θsin φ ; z=rcos θ; r= z y x 222++* 2M ˆ与zM ˆ算符是可以交换的,根据量子力学定理:一对可交换的量子力学算符具有共同的本征函数集.而2M ˆ与x M ˆ、y M ˆ是不可交换的, x M ˆ、y M ˆ与zM ˆ也是不可交换的. 因此只讨论2M ˆ与z M ˆ算符的共同的本征函数集. (2) 2M ˆ与z M ˆ算符的本征方程及其求解 2M ˆY(θ,φ) = b Y(θ,φ); zM ˆY(θ,φ) = c Y(θ,φ) ① 先讨论后一个方程,化为: φ∂∂i Y(θ,φ) = c Y(θ,φ)令Y(θ,φ)=S(θ)T(φ), 则方程变为: θd d i T = cT(φ),解该方程得到: T(φ)=Aφic e,根据对波函数单值性的要求: T(0)=T(2π), 得到:m c=( m=0,±1,±2,±3,*), c=m , T(φ)=A φim e即得到了量子化的本征值和本征函数.通过归一化,A=π21. ②再讨论前一个方程求解.根据上述结果Y(θ,φ)=S(θ)π21φim e 代入前一个方程,化为:0S b S s i n m d dS ctg d S d 22222=+-+θθθθ 这是一个复杂的微分方程,经过处理可以得到微分方程的通解,根据对于波函数有限(平方可积)的要求,得到量子化的本征值和本征函数: b=l(l+1) 2 , S l,m (θ) = C m l P (cos θ) (l = 0,1,2,3,*)∑-===ml j j jjm l b S 3,12,0,c o s s i n)(θθθ其中: m l P (x)称为联属勒让德多项式,其定义为:mlP (x)= l l d d l )1x (x)x 1(!212ml ml 2/m 2-⋅-++ 因此, Y(θ,φ) 也是量子化的, 由l,m 两个量子数确定,写做: m l Y (θ,φ) ,称为球谐函数.(3) 讨论① 2MˆY(θ,φ) = l(l+1) 2Y(θ,φ) zM ˆ Y(θ,φ) = m Y(θ,φ) l 称为角量子数, m 称为磁量子数② m l Y 描述粒子处在角动量的大小为 1)l(l +,角动量在z 方向的分量为m 这样的运动状态. 可以用光谱学符号s,p,d,f,g,*,与l=0,1,2,3,4,*对应.③ m l Y 构成正交归一函数集合即:0 (l ≠l`或m ≠m ) 1 (l=l`同时m=m`)④ m l Y 的函数图形.00Y 为一球面, 01Y 为两个相切的球面并同与xy 平面相切.例题1. 求电子处于p 态时,它的角动量的大小和在z 方向的分量大小 解答: l=1 M 2=l(l+1) 2 =2 2 M=2 M z=-1,0,1例题2. 下列哪些是2Mˆ算符的本征函数, 哪些是z M ˆ算符的本征函数, 如果是并求它的本征值. (a) -11Y (b) -11Y +11Y(c) 12Y +11Y (d) 3-11Y +211Y解答: (a) 2M ˆ-11Y =2 2 -11Y , z M ˆ-11Y =-1 -11Y (b) 2M ˆ(-11Y +11Y )= 2M ˆ-11Y +2M ˆ11Y = 2 2 -11Y +2 2 11Y =2 2 (-11Y +11Y ) z M ˆ(-11Y +11Y )= z M ˆ-11Y +zM ˆ11Y = -1 -11Y +1 11Y = -1 (-11Y -11Y ) (c) 2M ˆ(12Y +11Y )= 2M ˆ12Y +2M ˆ11Y = 6 212Y +2 211Y = 2 2 (312Y +11Y ) z M ˆ(12Y +11Y )= z M ˆ12Y +zM ˆ11Y = 1 12Y +1 11Y = 1 (12Y +11Y ) (d) 2M ˆ(3-11Y +211Y )= 2 2 (3-11Y +211Y ) z M ˆ(3-11Y +211Y )≠ k (3-11Y +211Y )例题3. 求函数3-11Y +211Y 化为归一化的. 解答: 设f=N(3-11Y +211Y )为归一化的 ττd )Y 2Y 3()Y 2Y 3(N f d f 111-1111-112++==**⎰⎰ = 2N )d Y Y 2d Y Y 6d Y Y 6d Y Y 3(11*112-11*1111*-1111*-112ττττ⎰⎰⎰⎰+++= N 2(9+0+0+4)=N 2⋅13∴ N 2=131 , N=131 ∴ f=131(3-11Y +211Y ) 是归一化的4. 波函数的讨论类氢原子的波函数ψnlm (r,θ,φ),其中 n, l, m 三个量子数确定一个类氢体系的状态. n 决定了体系的能量,称为主量子数.l 和 m 在前面已经讨论过,分别称为角量子数和磁量子数. n ≥l+1 , l ≥⎪m ⎪ψnlm 构成正交归一函数集合,即:)',','(0')',','(1'''''m m l l n n d m m l l n n d ml n n l m m l n n l m ≠≠≠=====⎰⎰τψψτψψn l mn l mn l m n l m n l m n l mm z Ml l M R n Z H ψψψψψψ =+=⋅-=ˆ)1(ˆˆ22225. 基态和激发态基态(n=1) −非简并态 E 1=-Z 2*R =-Z 2* 13.6eV ψ100=R 1,0(r)Y 0,0 (θ,φ)=Ae -cr 第一激发态−四重简并态 E 2=-(Z 2/4)*R=-(Z 2/4)* 13.6eVψ200= R 2,0(r)Y 0,0(θ,φ)=A(1-cr) e -crψ210= R 2,1(r)Y 1,0 (θ,φ)=Are -cr cos θ ψ211= R 2,1(r)Y 1,1 (θ,φ)=Are -cr sin θe i φ ψ21-1= R 2,1(r)Y 1,-1 (θ,φ)=Are -cr sin θe-i φ*复波函数和实波函数上述的ψ100、ψ200、ψ210 为实函数亦可以记做ψ1s 、ψ2s 、ψ2pz , ψ211、ψ21-1为复函数. 将ψ211、ψ21-1重新线性组合得到: ψ2px =N(ψ211+ψ21-1)=Be -cr rsin θcos φ ψ2py =N(ψ211 -ψ21-1)=Be -cr rsin θsin φ 第二激发态−九重简并态ψ300 ⇔ ψ3s ψ310 ⇔ ψ3pz ψ311±ψ31-1 ⇔ ψ3px ±ψ3pyψ320 ⇔ ψ3dz2 ψ321±ψ32-1 ⇔ ψ3dxz ±ψ3dyz ψ322±ψ32-2 ⇔ ψ3dx2-y2±ψ3dxy6. 三个量子数的物理意义: (1)主量子数n1) n 决定体系氢原子和类氢离子的能量eV nZ n Z R E n 6.13*2222-=⋅-= n=1,2,3,* 仅限于氢原子和类氢离子。
第二章 原子的结构和性质2.3-2.4
作图方法主要包括:
函数-变量对画图 等值面(线)图 界面图 网格图 黑点图
有些图形只能用某一种方式来画, 有些图形则可 能用几种不同方式来画。作图对象与作图方法结合 起来, 产生了错综复杂的许多种图形。
采用列表的形式, 可使这种关系变得一目了然。
2.3 原子轨道和电子云的图形表示
波函数 ( ,原子轨道) 电子云 ( ||2 ,概率密度)
当n相同,l不同时, l越 大,主峰离核越近; l越小 峰越多,而且第一个峰离 核越近,俗称钻得越深。 钻穿效应
2.3.2 原子轨道 和电子云 ||2 的角度分布
角度分布是以角度波函数 Y ,m ( , ) 在球坐标系中对 θ、角作图,其做法是在坐标系中,选原子核作为 坐标原点,在每一个(θ, )方向上引一条直线,取长 度为|Y|的线段,将这些线段的端点连接起来,在空 间形成一个曲面,根据 Y值的大小标明正负号。若 取直线的长度为|Y|2,所以直线端点构成的曲面称 为电子云 的角2 度分布。
毋庸置疑, Rydberg原子一定是个大胖子. 事实上, 它的半径 大约相当于基态原子的十万倍! 这样一个胖原子, 即使受到微弱 的电场或磁场作用, 也会显著变形.
由于 Yl,m (q ,f )只与角量子数 l 和磁量子数m有关,而 与主量子数n无关,因此 l,m 相同的状态,其原子轨 道的角度分布图都相同。如2pz, 3pz, 4pz角度部分图 形都完全相同。
原子轨道ψ的角度分布
s 00
1
4
对s-型轨道而言,只
与r有关,没有角度依赖
+
性,所以从原点到曲线
数的形式。
5. 磁量子数及角动量在磁场方向的分量
角动量在Z方向(磁场方向)的分量Lz的算符 作用于单电子原子波函数ψ,得:
结构化学讲义教案2原子结构和性质
第二章 原子结构和性质教学目的:通过H 原子薛定谔方程的求解,了解原子结构中量子数的来源,类氢离子波函数的图形及其物理意义。
掌握多电子原子的原子轨道能级等,推导原子基态光谱项。
教学重点:1.类氢离子波函数量子数的物理意义。
2.掌握多电子原子的原子轨道能级、电离能的求解。
3.推导等价、非等价电子的原子光谱项,掌握基态原子谱项的快速推算法。
第一节 单电子原子的薛定谔方程及其解引言:前面介绍了量子力学的概念,建立了量子力学的基础,下面我们要讨论原子结构的核心问题,即原子中电子的运动状态,其中最简单的体系就是原子核外只有一个电子的体系,也叫单电子原子结构,如氢原子和类氢离子(H ,Li 2+,He +,Be 3+……)。
一.建立单电子原子的Schrodinger 方程r Ze mh M h H e N 022********ˆπεππ-∇-∇-= 假设在研究电子运动时核固定不动,r Ze mh H 0222248ˆπεπ-∇-= 为了解题方便通常将x,y ,z 变量变换成极坐标变量r ,θ,φ由图可得如下关系:⎪⎭⎪⎬⎫⋅=⋅⋅=⋅⋅=θφθφθcos sin sin cos sin r z r y r x得极坐标形式的Schrodinger 方程:048sin 1sin sin 110222222222=⎪⎪⎭⎫⎝⎛++∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂ψπεπφψθθψθθθψr Ze E h m r r r r r r二、单电子Schrodinger 方程的一般解。
1. 变数分离法把含三个变量的微分方程化为三个各含一个变量的常微分方程来求解。
令()()r R r =φθψ,,Θ(θ)Φ(φ)()()φθ,,Y r R =代入薛定鄂方程,经过数学变换得三个方程:R(r)方程 ()()k E r hm r h mZe r r R r r r R =++⎪⎭⎫ ⎝⎛∂∂∂∂⋅2222022821πεπ Θ方程22sin )(sin )(sin m k =+⎪⎭⎫ ⎝⎛∂Θ∂⋅∂∂⋅Θθθθθθθθ Φ方程222)()(1m =∂Φ∂⋅Φ-φφφ 2. Φ方程的解Φ方程整理得:0222=Φ+Φm a a φ这是一个常系数2阶齐次线性方程,它的特征方程为022=+m p i m p ±=微分方程的两个特解为φim Ae m =Φ m m ±= A 由归一化求得: π21=A ∴φπim e m 21=Φ 这是解的复数形式,由于Φ是循环坐标所以()()πφφ2+Φ=Φm m 于是πφπφφ2)2(im im im im e e e e ⋅==+ 即12=πim e由欧拉公式12sin 2cos 2=+=m i m e im πππ故m 的取值必须为: 2,1,0±±=m 即取值是量子化的称为磁量子数。
print 第2章.原子的结构和性质
三个量子数n, l和m具有如下的关系
• 主量子数
n = 1, 2, 3, …, n;
• 角量子数
l = 0, 1, 2, …, n-1;
• 磁量子数
m= 0, ±1, ±2,…, ±l
每套量子数n, l和m决定一个波函数ψnlm的形式,即 决定了单电子原子体系的一种状态,因此简称为原子轨
道(AO, Atomic Orbital)。
• 两个径向节面,
3s
即n-l-1=2,所以n=3
§2.4 多电子原子的结构
2.4.1 多电子原子的Schrödinger方程
• 原子单位 atomic unit, a.u.
定核近似
r
2.4.1 多电子原子的Schrödinger方程
两个电子的 电子与原子核相互 两电子之间相互作 动能算符 作用的势能算符 用的势能算符
能级交错
2.4.1 多电子原子的Schrödinger方程
• 单电子波函数求 解结果与类氢粒 子波函数一样
n例:He原子基态
零级近似的计算结果:
实验值:
结论:零级近似的计算结果与实验值相差很大, 说明电子间的相互作用不可忽略。
2.4.2 单电子原子轨道能
和单电子波函数 Ψi 相应的能量 Ei
2. 由屏蔽常数近似计算原子轨道能
l 单电子原子的能级公式:
单电子原子的 能量E只与主量 子数n有关
1. 主量子数
• 能量量子化 • 能量为负,电子离
核无穷远时作为位 能的零点 • 简并度:在相同n 下,而l, m不同的 AO有n2个 例如,n=2时,空间波函数有
2. 角量子数 l:决定电子的原子轨道角动量的大小。
• 原子只要有角动量 也就有磁距
第二章 原子的结构和性质
1 2π
4. 单电子原子的波函数
●解Θ方程和R方程比较复杂,只将解得的一些波函数列于表2.2. ●ψ由n,l,m所规定,可用ψnlm表示: ψnlm=Rnl(r)Θlm(θ)Φm(φ)=Rnl(r)Ylm(θ,φ) 主量子数n=1,2,3,…,n; 角
2π
数l=0,1,2,…,n-1; 磁量子数m=0,±1,±2,…,±l
x
(5)对x求偏导,将(3)(1)(4)代入,
() 8 x r
1 φ r sin θ sin φ sin φ = yx 2 = 2 2 = cos 2 φ x r sin θ cos 2 φ r sin θ cos 2 φ φ sin φ ∴ = (9) x r sin θ cosθ cosφ sin φ 将(7)(8)(9)代入(4),得: = sin θ cosφ + (10) x r θ r sin θ φ r
z 2
r = cosθ z
θ sin θ 1 2 1 cos 2 θ sin 2 θ 2 3 = = r cos θ r = = z r r r r 1 φ φ sin θ =0 2 = cosθ (16) =0 cos φ z z r r θ z = ih x y Mz y 2π x
cosθ sin φ cosφ = sin θ sin φ + + r y r θ r sin θ φ (15)
r θ φ 类似地: = + y r y θ + y φ y
(11)
r θ φ r 2r = 2 z = 2r cos θ + = + z z z r z θ z φ θ 1 sin θ = ( x 2 + y 2 + z 2 ) 1/ 2 + z ( x 2 + y 2 + z 2 ) 3 / 2 (2 z )
第二章原子构与性质§21氢原子和类氢原子的薛定谔方程及其
第二章 原子结构与性质§2.1.氢原子和类氢原子的薛定谔方程及其解 2.1.1.单电子原子的薛定谔方程H 原子和He +、Li 2+ 等类氢离子是单原子,它们的核电荷数为Z ,若把原子的质量中心放在坐标原点上,绕核运动的电子离核的距离为r ,电子的电荷为-e ,其静电作用势能为:r Ze V 024πε-=将势能代入薛定谔方程:得 0)(22282=ψ++ψ∇rZe h mE π或ψ=ψ-∇-E rZe mh ][22228π为了解题方便,将x 、y 、z 变量换成极坐标变量r 、θ、φ。
其关系:φθcos sin r x = φθsin sin r y =φcos r z =2222z y x r++=21)/(cos 222z y x Z ++=θx y tg /=φ})(sin )({2222sin 1sin 1212φθθθθθ∂∂∂∂∂∂∂∂∂∂++=∇r rr r 代入薛定谔方程:)()(sin )(2222222228sin 11sin 1121=ψ++++∂∂∂ψ∂∂∂∂∂∂∂rZe h mr r r rr E r πφθθθθθ2.1.2.分离变量§法:上述的方程是含三个度量的偏微分方程,要解这个方程可用度数分离法将其化为三个分别只含一个度量的常微分方程求解。
含:)()()(),,(φθθΦΘ=Φψr R r 代入方程:并乘以ΘΦR r θ22sin 移项可得:)(sin )(sin )(228sin 2sin 122222V E r r hu d d d ddr dR drdR d d ----=ΘΘΦΦθθπθθθθφ左边不含r 、θ,右边不含φ,欲左右两边相等必等于同一个常数(-m 2 )Φ-=Φ222m d d φ, 而右边可为:(除以sin θ))(sin )()(sin1sin 8212222θθθθπθd d d d m hur dr dR drdR V E r ΘΘ-=-+ 则有:K d d d d m =-ΘΘ)(sin sin1sin 22θθθθθK E r rZe hur dr dR drdR =++)()(2222821π2.1.3.方程解的结果 2.1.3.1.Φ(φ)方程的解0222=Φ+Φm d d φ这是一个常系数二阶齐次线性方程,有两个复函数的独立解。
结构化学基础-2原子的结构和性质
由于波函数归一化的要求,在解R(r) 的过程中,自然引入了量子数n。
与一维势箱的情形相同,n使得体系的能量量子化。
e Z En 2 2 2 8 0 h n
4
主量子数 n 决定了电子的能量
2
氢原子的基态能量和能级
e4 E1 2 2 13.595eV 8 0 h
l=0,1,2,3……,n-1
nlm函数不是M算符的本征函数,但是角动量的绝
对值(大小)有确定值
M l (l 1)
角量子数 l 决定了电子的轨道角动量的大小
电子的轨道角动量对应了电子在原子核周围的运动,这 种运动会产生原子的磁矩。磁矩与角动量的关系为:
e M 2me
将电子的轨道角动量代入
对于吸收光谱,n1>n2, 由实验总结得到的里德堡公式为
1 1 v R 2 2 n1 n2
对比两个公式,可以看到Bohr理论很好地解释了氢原子 吸收光谱,由此可以精确求得Rydberg常数
m me , R 109737cm
1
m H , RH 109678cm Re 109677cm1
1885年,巴耳末提出公式
m2 B( 2 2 ) m 2
里德堡公式
m 3, 4,5,...
B 364.56
1 1 v R 2 2 n1 n2
n 1, 2,3,... 且n2 n1
R 109677cm1
原子结构的Bohr(玻尔)理论 1913 年
2.1.2 变量分离法
为方便解Schrö dinger方程,使用球坐标系
z
r : [0,∞] : [0,] : [0,2]
第二章 原子的结构和性质
1 2 sin 2 2 R sin 8 2 m 2 2 r sin 2 r sin ( E V ) 2 R r r h
d 2 2 m 0 2 d
m Aeim
m m
1 2
m的取值必须为m=0, 1, 2, …
1 im e 2
A可由归一化条件得出:
A
m
复数形式的函数是角动量z轴分量算符的本征函数,但复数不便于作图,不 能用图形了解原子轨道或电子云的分布,需通过线性组合变为实函数解:
cos m
2C C ( m m ) cos m 2
sin m
复函数解和实函数解是线性组合关系,彼此之间没有一一对应关系。 m 0 1 -1 2 复函数解
0
1
实函数解
0
cos 1 cos 1 sin 1 sin 1 cos 1 cos 2 2 sin 1 sin 2 2
设两边等于l(l+1),则得:
1 d d m 2 l(l 1) sin 2 sin d d sin
1 d 2 dR 8 2 m R r ( E V ) R l( l 1 ) r 2 dr dr h2 r2
1 im 1 i m e cosm sin m 2 2 2
m
1 im 1 i e cosm sin m 2 2 2
原子结构与性质
原子结构与性质原子是构成一切物质的基本单位,了解原子结构对于理解物质的性质至关重要。
本文将介绍原子的组成以及不同原子结构对物质性质的影响。
第一部分:原子组成在古代,人们将物质一分为二,即认为物质可以无限地被切割下去。
然而,在19世纪末,科学家发现了原子这一不可再分的基本单元。
原子的组成主要包括三个基本粒子:质子、中子和电子。
1. 质子:质子位于原子核中,带有正电荷。
质子的数量决定了原子的核电荷,同时也决定了原子的元素特征。
比如,氢原子只有一个质子,而氧原子则有八个质子。
2. 中子:中子也位于原子核中,没有电荷。
中子的数量可以影响原子的质量,但不会改变原子的元素特征。
3. 电子:电子以轨道的形式环绕在原子核周围,带有负电荷。
电子的数量和排布决定了原子的化学性质,同时也决定了原子的大小。
第二部分:原子结构与性质原子的结构对物质的性质有重要影响。
以下是不同原子结构对物质性质的几个方面影响的介绍。
1. 原子尺寸:原子的尺寸由电子云决定。
电子云是由电子构成的,并且电子云的半径决定了原子的大小。
一般来说,原子的半径越大,原子外层电子与外界的相互作用越强,原子的化学性质也相对较活跃。
反之,原子的半径越小,原子的化学性质相对惰性。
2. 原子核电荷:原子核电荷决定了原子的质子数。
原子核电荷越大,原子内外电子之间的相互作用力越强,原子的化学性质也相对较活跃。
反之,原子核电荷越小,原子的化学性质相对惰性。
3. 原子核的中子数:原子核的中子数可以影响原子的质量。
中子的存在可以稳定原子核,使得核内质子之间的排斥力得到平衡。
在同一元素的不同同位素中,中子的数量不同,导致了同位素具有不同的物理性质,如放射性衰变速率的差异。
4. 原子的电子排布:原子的电子排布决定了原子的化学性质。
原子的外层电子称为价电子,它们参与化学反应和化学键的形成。
原子的价电子数目决定了原子形成的化学键的类型和强度。
比如,碳原子具有4个价电子,可以形成共价键,使得碳可以构成多种化合物。
第二章 原子结构与性质
③ 电子填入顺序 基态原子: ns →(n–2)f→ (n–1)d→ np 价电子电离: np →ns→(n1)d → (n–2)f 徐光宪: 原子 (n+0.7l), 离子(n+0.4l) 越大能级越高
28
ⅠA-ⅡA ⅠB-ⅡB
ⅢA-ⅧA ⅢB-Ⅷ
La系 Ac系
例:氩(Z=18)的电子组态 1s2 2s22p6 3s23p6 Fe (Z=26) Cu (Z=29)
轨道角动量与z轴的夹角
e m mμB 2. 磁矩在磁场方向的分量量子化: μz 2me
3. m决定磁场中轨道的空间方向,磁矩与外磁场的作用能
18
2.4 电子的自旋运动与泡利原理
一. 电子的自旋运动
19
●自旋角动量量子化
Ls s(s 1)
电子的自旋量子数 s ≡1/2
26
四. 原子核外电子的排布规则 1. Pauli不相容原理 2. 能量最低原理 3. Hund规则:简并轨道上全充满、半充满或全空较稳定 4. 原子的构造: ① 电子组态:确定每个电子的n,l ② 电子层:ns2到ns2np6构成一个能级组 4(N) 3(M) 2(L) 1 2 0 1 2 3 0 1 0 2s 2p 3s 3p 3d 4s 4p 4d 4f 0 0 0 0 0 0 0 0 0 ±1 ±1 ±1 ±1 ±1 ±1 ±2 ±2 ±2 ±3 亚层轨道数 1 1 3 5 7 3 5 1 3 1 42 12 22 32 电子层轨道数 27 第n能层有n2个“轨道”,可以容纳2n2个电子 电子层 1(K) 角量子数l 0 电子亚层符号 1s 0 磁量子数m 可能取值
7
氢原子或类氢离子的轨道波函数举例 轨道 n
1s 2s
第二章-原子的结构和性质
第二章 原子的结构和性质一、概念及问答题1、频率规则:当电子由一个定态跃迁到另一个定态时,就会吸收或发射频率为h E /∆υ=的光子,或中E ∆为两个定态之间的能量差2、玻恩-奥本海默近似:由于原子核的质量比电子大几千倍,而电子绕核运动的速度又很大,随着核的运动,电子会迅速建立起相对于核运动的定态,因此假定在研究电子运动状态时,核固定不动,电子的运动可以绕核随时进行调整,而随时保持定态,这个近似称为玻恩-奥本海默近似。
3、中心力场近似:将多电子原子中的其它所有电子对某一个电子的排斥作用看成是球对称的,是只与径向有关的力场,这就是中心力场近似。
4、单电子近似:在不忽略电子相互作用的情况下,用单电子波函数来描述多电子原子中单个电子的运动状态,这种近似称为单电子近似。
5、原子轨道能:原子轨道能是指和单电子波函数相应的能量。
6、第一电离能:气态原子失去一个电子成为一价气态正离子所需的最低能量称为原子的第一电离能7、原子处在基态时核外电子排布原则(1)Pauli 不相容原理:在一个原子中,没有两个电子有完全相同的4个量子数,即一个原子轨道最多只能容纳两个电子,而且这两个电子必须自旋相反。
(2)能量最低原理:在不违背Pauli 原理的条件下,电子优先占据能级较低的原子轨道,使整个原子体系能量处于最低,这样的状态是原子的基态。
(3)Hund 规则:在能级高低相等的轨道上,电子尽可能分占不同的轨道,且自旋平行;能级高低相等的轨道上全充满和半充满的状态比较稳定。
8、基态:原子中的电子都处于一定的运动状态,每一状态都具有一定的能量。
在无外来作用时,原子中各个电子都尽可能处于最低的能级,从而使整个原子的能量最低。
原子的这状态称为基态。
9、原子吸收光谱:将一束白光通过某一物质,若该物质中的原子吸收其中某些波长的光而发生跃迁,则白光通过物质后将出现一系列暗线,如此产生的光谱称为原子吸收光谱。
或者说原子吸收光谱是由已分散成蒸气状态的基态原子吸收光源所发出的特征辐射后在光源光谱中产生的暗线形成的。
第二章 原子结构与性质
第二章原子结构与性质1. 填空题(1) He+离子的薛定谔方程为。
(2) 用分离变量法解类氢原子薛定谔方程采用的主要近似是。
(3) 已知Cu 的原子序数为29,写出核外电子排布。
(4) He+的2s电子能量比He(1s12s1)中2s电子能量。
(填高或低)(5) 钠的电子组态为1s22s22p63s1,其光谱项为,光谱支项为。
(6) 写出d2可能的总轨道角量子数。
(7) 离核越近径向函数R1s(r)其值,离核越近径向分布函数D=r2R1s2(r) 。
(8) 氢原子态函数Ψ(r,θ,φ) 可以写作R(r),Θ(θ), (φ) 三个函数的乘积,它们由量子数; ; 来规定。
(9) 如一原子的轨道磁量子数m=0, 主量子数n≤2,则可能的轨道为。
(10) 在一定电子组态下,描写多电子原子状态的量子数是。
(11) 两个氢原子,第一个的电子处于主量子数n=1的轨道,第二个处于n=4的轨道,原子势能较低的是,原子电离能较低的是。
(12) 多电子原子中的一个光谱项支项3D2,据此给出原子的总轨道角动量量子数,原子的总自旋角动量量子数,原子总角动量量子数,在磁场中分裂出个塞曼能级。
(13) 氢原子的态函数Ψ3,2,1,其轨道能量为,轨道角动量,轨道角动量在磁场方向的分量为。
(14) 氢原子3d电子轨道角动量沿磁场方向分量的可能值为。
(15) 对于氢原子及类氢离子的1s电子来说,出现在半径为r,厚度为d r的球壳内,各个方向的概率密度(填相等或不相等),对于2p x电子(填相等或不相等)。
(16) 同电子组态光谱项稳定性比较:3P1D; 3P21P02. 选择题(1) 关于四个量子数n, l, m, m s,下列叙述正确的是: ·············································· ( )A、由实验测定;B、解类氢原子薛定谔方程得到的;C、解类氢原子薛定谔方程得到的n, l, m, 由电子自旋假设引入m sD、由自旋假设引入的(2) 决定多电子原子轨道的能量是: ···································································( )A、nB、n, l, ZC、n+0.4lD、n, m(3) 用来表示核外某电子运动状态的下列各组量子数(n,l,m,m s)合理的是: ··················· ( )A、2, 1, 0, 0B、0, 0, 0, 12C、3, 1, 2,12D、2, 1, -1, -12(4) 氢原子3d状态轨道角动量沿磁场方向的分量最大值是:····································( )A、5B、4C、3D、2(5) 如下表达式为径向分布函数的是: ·······························································( )A、R2B、R2drC、r2R2D、r2R2d r(6) R n,l(r)-r图中,节点数为·············································································· ( )A、n-1个B、n-l-1个C、n-l+1个D、n-l-2个(7) 原子的电子云角度分布图应该用如下哪一个函数对参数作图······························ ( )A、|Y l,m(θ,φ)|2B、R n,l(r)C、Y l,m(θ,φ)D、|R n,l(r)Y l,m(θ,φ)|2(8) 对于单电子原子,在无外场时,能量相同的轨道数是: ······································· ( )A、n2B、2(l+1)C、n-1D、n-l-1(9) 已知Ca的第一激发态的电子组态为[Ar]3d14s1, 其光谱支项有如下四种,指出能量最低的光谱项:A、1D2B、3D3C、3D2D、3D1(10) 求解氢原子薛定谔方程,我们常采用下列哪些近似?······································( )①核固定②变数分离③以电子质量代替折合质量④球极坐标A、①③B、①②C、①④D、①②③④(11) 基态铬原子(原子序数是24)的核外电子排布为: ············································( )A、[Ar]3d44s2B、[Ar]3d54s1C、[Ar]3d64s0D、4s24p4(12) 某多电子原子中电子具有下列量子数(n,l,m,m s),其中轨道角动量最大的是: ·······( )A、2,1,-1,12B、2,0,0,-12C、3,1,1,-12D、3,2,-1,12(13)描述原子轨道3d z2的一组量子数是: ····························································· ( )A、2,1,0B、3,2,0C、3,1,0D、3,2,1(14)3d z2轨道的角动量大小为: ·········································································( )A、B、 C、0 D(15) He+中一个电子处于径向分布图中总节面为3的d态,则该电子的能量应为:·······( )A、1E1B、19E1C、14E1D、116E1(16) 氢原子中处于Ψ2pz状态,其角动量在下列哪一个轴上的投影有确定值?···············( )A、x轴B、y轴C、z轴D、x轴和y轴(17) 对于类氢原子的基态, 下列结论不正确的是: ·················································( )A、E相同B、M z相同C、简并度相同D、l相同(18) Be3+ 的一个电子所处的轨道,能量等于氢原子1s轨道能,该轨道可能是: ······( )A、1sB、2sC、4dD、3p(19) 4d 的径向分布函数图的极大值数与节面数分别是: ··········································( )A、2,1B、2, 3C、4,2D、1,3(20) 下列是关于s轨道波函数ψ的认识,正确的是:················································( )A、ψ的值随着r的增大而减小B、ψ的节面数为nC、当r趋于无穷大时,ψ趋于0D、ψ2s-r曲线在r=2a0处达到最低点(21) 对氢原子和类氢离子的量子数l,下列叙述不正确的是:·····································( )A、l的取值规定了m的取值范围B、它的取值与体系能量大小有关C、它的最大可能取值由解R方程决定D、它的取值决定了M=(22) 对于氢原子和类氢离子的径向分布D(r)-r图,下列叙述错误的是:························( )A、径向峰数与节面数都与n,l有关B、l相同,n愈大,则最高峰离核愈远C、核周围电子出现的概率为0D、最高峰所对应的r处,电子出现的概率密度最大(23) 电子在核附近有非零概率密度的原子轨道是:··············································( )A、ψ3pB、ψ4dC、ψ2pD、ψ2s(24) 电子云图是下列哪一种函数的图形?··························································( )A、D(r)B、ψ2(r,θ,φ)C、R2(r)D、ψ(r,θ,φ)(25) 已知类氢波函数ψ2px的各种图形,推测ψ3px图形,下列说法错误的是:····················( )A、角度部分的图形相同B、电子云图相同C、径向分布函数图不同D、界面图不同(26) He+离子的3d和4s的能级次序为:······························································( )A、3d >4sB、3d < 4sC、3d = 4sD、存在交叉(27) 电子组态d9s1的光谱项是: ········································································ ( )A、3F,1DB、1D,3DC、2P,3PD、1S,2P(28) Fe的电子组态为[Ar]3d64s2,其能量最低的光谱支项是:····································( )A、5D4B、3P2C、5D0D、1S0(29) Cu的基谱项为,与其基谱项不同的原子是:····································( )A、AgB、AuC、ZnD、K(30) 已知Rh的基谱项为4F9/2,则它的价电子组态是:··········································( )A、s1d8B、s0d9C、s2d8D、s0d103. 简答题(1) 请用光谱项语言叙述洪特规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z n
2 2
13 . 6 eV
3
( n 1, 2 , 3 , , n l )
1/2
2 此时可得: R nl ( r ) na 0
束缚态
( n l 1 )! 2 n ( n l )!
2
e
Ln l ( )
2
2 2
( 2 . 1 . 14 )
1 r
2
2 1 1 r 2 sin 2 2 2 r r r sin r sin
2 2 8 Ze E 0 2 h 4 0 r
方 程 的 解
§2.1 单电子原子的Shrö dinger方程及其解
单 电 子 原 子 的 波 函 数
1
方
程
2
d d m 方程: l ( l 1 ) sin 2 sin d d sin
波函数有限 l = 0, 1, 2, …, 且 m l 。
d ( ) d d d 1 2 e
im
im ( )
ˆ M z ( r , , ) i R ( r ) ( ) im ( ) m ( r , , )
M
z
m
( 2 .2 .9 )
m 0 , 1, 2 , , l
类氢离子示意 图
类氢离子的Shrö dinger方程为
2 2
2
E 4 0 r Ze
2
( 2 .1 .2 )
§2.1 单电子原子的Shrö dinger方程及其解
单 电 子 原 子 的 薛 定 谔 方 程
球坐标与直角坐标的 关系:
x r sin cos y r sin sin z r cos
l ( l 1)e / 2 m e l ( l 1) e
24
e 2m e
M
( 2 .2 .6 )
1
e e / 2 m e 9 . 274 10
Bohr 磁子
J T
§2.2
量 子 数 的 物 理 意 义
磁 量 子 数
m
而
ˆ ( r , , ) i R ( r ) ( ) ( ) Mz d ( ) i R ( r ) ( ) d
2
( 2.1 . 22 )
方程:
d d m sin 2 sin d d sin l ( l 1 ) 1
2
( 2 . 1 . 23 )
R 方程:
1 d 2 dR 8 r 2 2 r dr dr h
2
2 Ze E R 4 0r
(复函数解)
m
e
i m
2
它们的线性组合仍然是该方程的解:
cos m
1 2 1 2i
( (
m
m ) m )
(实函数解)
sin m
m
cos m 1 sin m 1
( 2 . 1 . 29 )
§2.1 单电子原子的Shrö dinger方程及其解
主量子数为 n 的能级的简并度为
n1
(2 l 1) 1 3 5 ( 2 n 1) n
2
m
l0
§2.2
M
量 子 数 的 物 理 意 义
s ( s 1) , s 1/2 ( 2 . 2 . 11 )
自 旋 量 子 数
s
s —— 自旋量子数
M
s ,z
T 1 2 n V
对于氢原子, V Ze
2
4 0 r , 所以
1 2 V
T
E 1 s 13 . 6 eV T V T 1 2 V 13 . 6 eV
1 2
V
n
零点能
§2.2
轨道角动量:
第 2 章 原子的结构和性质
§2.1 单电子原子的Shrö dinger方程及其解
单 电 子 原 子 的 薛 定 谔 方 程
在定核近似下,类氢离子的 Hamilton算符为
r
(x, y, z) -
ˆ H
2
2
2
Ze
2
4 0 r
( 2 .1 .1 )
Z+
O
其中
m em N me mN
Ae
im
e
0 2
Ae
im
d
2
0 2
由此得到
1 e
im 2
A
2
1 d 2 A
0
cos( m 2 ) i sin( m 2 )
A 1 2
§2.1 单电子原子的Shrö dinger方程及其解
∴ m ( )
1 2 e
( 2 . 1 . 15 )
ˆ M
z
i
( 2 . 1 . 16 )
ˆ M
2
2 1 1 2 sin 2 2 sin sin
( 2 . 1 . 19 )
§2.1 单电子原子的Shrö dinger方程及其解
im
( 2 . 1 . 26 )
磁量子数
单值性要求
m 0 , 1, 2 ,
m ( ) m ( 2 )
由归一化条件求A值: 令
1
即
Ae Ae
im im
Ae
im 2
im ( 2 )
2
( ) ( ) d
l
2l1
式中
2Z na 0
r,
a0
Bohr 半径
0h
联属拉盖尔函数
2 2
m ee
52 . 9 pm
§2.1 单电子原子的Shrö dinger方程及其解
单 电 子 原 子 的 波 函 数
nlm
( r , , ) R nl ( r ) l m ( ) R nl ( r ) Y l m ( , )
im
( m 0 , 1, 2 , )
( 2 . 1 . 27 )
方 程 的 解
当 m ≠ 0 时, 方程 (2.1.21b) 有两个独立的解:
m
1 2 1 2
e
i m
1 2 1
[cos m i sin m ] [cos m i sin m ]
4 2 2
8 0 h
2
2n 1 n (n 1)
2 2
随 n 增大而减小
氢原子(Z = 1)基态(n = 1)能为
n
E1 = E1s = 13.6 eV
§2.2
量 子 数 的 物 理 意 义
主 量 子 数
n
维里定理:对势能服从 rn 规律的体系,其平均势能 <V> 与平均动能 <T> 的关系为
l ( l 1)
R r
2
( 2 . 1 . 24 )
§2.1 单电子原子的Shrö dinger方程及其解
方 程
cos( m 2 ) 1 , sin( m 2 的 解
m ( ) Ae
d
2
m 0
2
( 2 . 1 . 21 b )
变 量 分 离 法
令 (r, , ) = R (r) () () ,代入(2.1.15)式, 并乘以 r2sin2 / R,经微分运算、移项,得
1 d
2
d
2
sin d 2 dR sin d d r sin R dr dr d d 2 8 2 2 r sin ( E V ) ( 2.1 . 20 ) 2 h
2 l 1个
m
m 决定电子的轨道角动量在 磁场 方向的分量。
§2.2
量 子 数 的 物 理 意 义
磁 量 子 数
m
m
§2.2
量 子 数 的 物 理 意 义
磁矩在磁场方向上的分量为
磁 量 子 数
m
g
z
e 2m e
M
z
e 2m e
m m
e
( 2 . 2 . 10 )
m s,
e 2m e
m s 1 / 2
( 2 . 2 . 12 )
ms —— 自旋磁量子数
s ge
ge e 2m e M
s
s
和 自 旋 磁 量 子 数
s ( s 1) g e
e 2m e M
s ,z
s( s 1)
e
( 2 . 2 . 13 )
s ,z g e
角量子数
其解为
m m
lm ( ) ( 1 )
2
( 2 l 1 ) ( l m )! 2 ( l m )! Pl
m
(cos )
连属勒让德函数
§2.1 单电子原子的Shrö dinger方程及其解 单 电 子 原 子 的 波 函 数