2013-2014学年苏科版七年级上第一次月考数学试题及答案
苏科版七年级数学上册第一次月考试卷
苏科版七年级数学上册第一次月考试题一、单选题1.()32-的指数是( ) A .2B .﹣2C .3D .﹣32.在数轴上把表示2的点向右移动5个单位长度后,所得的对应点是( ) A .7 B .﹣3 C .6 D .8 3.下列各对数中互为相反数的是( )A .﹣(+5)和+(﹣5)B .﹣(﹣5)和+(﹣5)C .﹣(+5)和﹣5D .+(﹣5)和﹣54.下列各式中,结果为正数的是( ). A .﹣|﹣2|B .﹣(﹣2)C .﹣22D .(﹣2)×2 5.已知数轴上的点E 、F 、G 、H 表示的数分别是 4.2-、213、128、-0.8,那么其中离原点最近的点是( ) A .点EB .点FC .点GD .点H6.下面说法中正确的有( )A .非负数一定是正数B .有最小的正整数,有最小的正有理数C .﹣a 一定是负数D .正整数和正分数统称正有理数7.已知a ,b ,c 三个数的位置如图所示.则下列结论不正确的是( )A .a+b <0B .b ﹣a >0C .a+b >0D .a+c <08.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m 、n 、p 、q ,如图2,先让圆周上表示m 的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是( )A .mB .nC .pD .q二、填空题9.﹣3的相反数是__________.10.某地某天早晨气温是﹣2℃,到中午气温上升了9℃,这天中午气温是__________℃。
11.如果向南走48m ,记作﹢48m ,则向北走56m ,记作_____________。
12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为 . 13.比较数的大小:45-_____ 23- 14.已知|x |=3,|y |=4,且x <y ,则x +y = ______ .15.数轴上点P 表示的数是﹣2,那么到P 点的距离是3个单位长度的点表示的数是_____. 16.已知()2320x y -++=,则x y =________.. 17.定义一种新运算,其运算规则是a b c d =ad -bc ,那么220.54-=____. 18.如图所示是计算机某计算程序,若开始输入x =2,则最后输出的结果是 ______ .19.(本题共6分)已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数 表示的点重合; 操作二:(2)折叠纸面,使数5表示的点与数﹣1表示的点重合,回答下列问题: ①数6表示的点与数 表示的点重合;②若这样折叠后,数轴上有A 、B 两点也重合,且A 、B 两点之间的距离为11(A 在B 的左侧),则A 点表示的数为 ,B 点表示的数为 .三、解答题 20.计算题: (1)32215545353⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭(2)()()94811649-÷⨯÷- (3)()20181122106⎡⎤--⨯⨯-+⎣⎦ (4)()75373696418⎛⎫-+-⨯- ⎪⎝⎭(5)71993672-⨯(6)22218134333⎛⎫⨯-+⨯-⨯ ⎪⎝⎭21.请画一条数轴,把它们表示数轴上表示出来,并用“>”连接各数.153 4.5,02,224,,,---22.把下列各数填入相应的括号内.2-,5.2,0,π3,1.1212212221…,2005,0.3-. 整数集合:{ ⋯} 正数集合:{ ⋯} 分数集合:{ ⋯} 无理数集合:{ ⋯}23.去年“十•一”黄金周期间,某风景区在7天假期中每天接待游客的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(2)若9月30日游客人数为3万人,门票每人次200元, 2%的游客符合免费条件,8%的游客符合减半收费条件,求该风景区7天门票总收入是多少万元?24.已知:212112111,,,133********=-=-=-⨯⨯⨯ (1)照上面算式,你能猜出2_________;20052007=⨯ (2)利用上面的规律计算:1111114477101013301304++++⋯+⨯⨯⨯⨯⨯的值.25.观察下列各式的计算结果:2113131124422-=-==⨯ 2118241139933-=-==⨯ 2111535114161644-=-==⨯ 2112446115252555-=-==⨯··· (1)用你发现的规律填写下列各式的结果:2116-=______________×______________ 21110-=_______________×____________ (2)用你发现的规律计算:222111111234⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···22111120132014⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭参考答案1.C【解析】【分析】在a n中,a为底数,n为指数.【详解】根据乘方的概念,()32-的指数是3,即答案选C.【点睛】此题考察了有理数乘方的概念,熟悉掌握相关知识是解题关键.2.A【解析】【分析】根据点在数轴上移动,向右移动则数字是增大.【详解】向右移动5个单位,则2+5=7.即答案选A.【点睛】本题考查了数轴、两点间的距离,了解数轴上点的移动规律是解题的关键.3.B【解析】试题解析:选项A、C、D中的两个数相等.只有选项B中的两个数互为相反数. 故选B.点睛:只有符号不同的两个数互为相反数.4.B【解析】A--=-,此选项错误,试题解析:.22().22B--=,此选项正确,2C-=-,此选项错误,.24()D-⨯=-,此选项错误..224故选B.5.D【解析】根据数轴上点到原点的距离是其绝对值,可知-0.8的绝对值最小,故其离原点最近.故选D.6.D【解析】【分析】根据有理数,即可解答.【详解】A、非负数是正数和0,故本选项错误;B、有最小的正整数,没有最小的正有理数,故本选项错误;C、-a不一定是负数还有可能是0,故本选项错误;D、正整数和正分数统称正有理数,正确;所以D选项是正确的.【点睛】本题主要考查有理数的定义,熟悉掌握是关键.7.C试题解析:∵从数轴可知:a<b<0<c,|a|>|c|>|b|,∴A、a+b<0,正确,故本选项错误;B、b-a>0,正确,故本选项错误;C、a+b>0,错误,故本选项正确;D、a+c<0,正确,故本选项错误;故选C.8.B【解析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m,q,p,n的点重合.2016÷4=504,故-2016与m点重合.故选A.点睛:本题考查了数轴.找出圆运动的周期与数轴上的数字的对应关系是解答此类题目的关键.9.3【解析】【详解】解:一个数的相反数就是在这个数前面添上“﹣”号.所以﹣(﹣3)=3故答案为3考点:相反数10.7【解析】【分析】根据题意列出算式为(-2)+(+9),求出即可.【详解】解:(-2)+(+9)=7℃.故这天中午气温是7℃.故答案为:7.本题考查了有理数的加法运算,关键是能根据题意列出算式. 11.-56m 【解析】 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【详解】解:“正”和“负”相对,所以如果向南走48m ,记作+48m , 则乙向北走56m ,记为-56m . 故答案为:-56m . 【点睛】本题考查了正数与负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 12.4.28×106. 【解析】试题解析:64280000 4.2810.=⨯ 故答案为64.2810⨯.点睛:科学记数法的表示形式为:10n a ⨯,其中110.a ≤< 13.< 【解析】∵45 > 23, ∴45- < 23-(绝对值大的反而小).故答案是:<. 14.1或7 【解析】根据绝对值的意义,可知x=±3,y=±4,由于x <y ,可知x=3时,y=4或x=-3时,y=4,解得x+y=7或x+y=1.故答案为1或7.15.﹣5或1【解析】【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点2-的左侧或右侧.【详解】解:如图,根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:5-或1.故答案为:5-或1.【点睛】此题考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.16.-8【解析】由题意,得3020xy-=⎧⎨+=⎩,解得=32xy⎧⎨=-⎩.即x=3,y=−2.故答案为−8. 17.-9【解析】根据运算规则,得220.54-=(-2)×4-2×0.5=-8-1=-9.故答案为-9.18.22【解析】根据运算程序,可列式为2×4=8,8-2=6,6<10,再次输入为6×4=24,24-2=22>10,输出结果为22.故答案为22.点睛:此题是一个图表信息题,解题时根据图表找到计算关系,然后按要求计算,直到得出正确结果即可.19.(1)2;(2)①﹣2;②﹣3.5、7.5. 【解析】试题分析:(1)根据折叠的性质,判断出对称点是原点,推得此时数﹣2表示的点与数2表示的点重合即可.(2)根据数5表示的点与数﹣1表示的点重合,确定出对称点是表示2的点,①数6表示的点与对称点距离为4,在对称点左侧且与对称点距离为4的点是﹣2表示的点,据此解答即可.②根据题意,可得A 、B 两点距离对称点的距离为5.5,据此求出A 、B 两点表示的数各是多少即可.试题解析:(1)使数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数2表示的点重合.(2)根据数5表示的点与数﹣1表示的点重合,确定出对称点是表示2的点,①数6表示的点与对称点距离为4,在对称点左侧且与对称点距离为4的点是﹣2表示的点,∴数6表示的点与数﹣2表示的点重合.②根据题意,可得A 、B 两点距离对称点的距离为5.5,∵对称点是表示2的点,∴A 、B 两点表示的数分别是﹣3.5,7.5. 考点:数轴.20.(1)4 (2)1(3)-2 (4)-11 (5)-359912(6)-6 【解析】 【分析】根据有理数的混合运算法则,先化简再进行运算. 【详解】(1)原式=285-173+225-13=505-183=10-6=4(2)原式=-81·49·49·(-116)=1(3)原式=-116·(-4+10)=-1-1=-2(4)原式=-28+30-27+14=-11(5)原式=-(100-172)·36=-(3600-12)=-359912(6)原式=(13-18-4)·23=-6 【点睛】此题考查了有理数的混合运算,有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.21.见解析,-4.5<-2<54-<0<2<132【解析】【分析】将数字化成相同形式再根据有理数大小的排序法则进行合理排序.【详解】见上图数轴红点从左往右-4.5<-2<54-<0<2<132【点睛】根据有理数大小的排序法则进行合理排序,并且明白画图原则是解答本题的关键. 22.详见解析.【解析】试题分析:依据整数,正数,分数,无理数的概念判断即可.试题解析:整数集合:{}2,0,2005,-正数集合: π5.2,,1.1211121112,2005,3⎧⎫⎨⎬⎩⎭分数集合:{}5.2,0.3,- 无理数集合:π,1.1212212221.3⎧⎫⎨⎬⎩⎭点睛:整数包含正整数,零,负整数.比0大的数叫做正数.无限不循环小数叫做无理数. 23.(1)2.4万人(2)34万人;6392万元【解析】试题分析:(1)根据有理数的加减法,即可解答;(2)计算出7天的总人数,再根据有理数的乘法,即可解答.试题解析:(1)根据题意,10月3日游客最多,比9月30日多:1.6+0.8+0.4=2.8(万人),10月7日游客最少,比9月30日多,1.6+0.8+0.4-0.4-0.8+0.2-1.4=0.4(万人),最多与最少相差:2.8-0.4=2.4(万人).(2)根据题意10月1日至10月7日游客人数分别是:3+1.6=4.6(万人),4.6+0.8=5.4(万人),5.4+0.4=5.8(万人),5.8-0.4=5.4(万人),5.4-0.8=4.6(万人),4.6+0.2=4.8(万人),4.8-1.4=3.4(万人),7天游客的总数是:4.6+5.4+5.8+5.4+4.6+4.8+3.4=34(万人),7天门票的总收入是:100×34×8%+200×34×90%=6392(万元).24.(1)1120052017-;(2)101304. 【解析】【分析】(1)根据规律进行变形;(2)每个分数都提取13后,将括号内裂项相消后即可得. 【详解】(1)∵212112111,,133********=-=-=-⨯⨯⨯,∴2112005200720052007=-⨯, 故答案:1120052017-; (2)1111114477101013301304++++⋯+⨯⨯⨯⨯⨯,1111111111(1),34477101013301304=-+-+-+-+⋯+- 11101(1).3304304=-=【点睛】考查学生对探究规律题的分析能力和运用能力,是中考常考题型,难度中等. 25.56 76 910 1110【解析】【分析】(1)根据平方差公式即可求解;(2)先根据平方差公式变形,再约分计算即可求解.【详解】 (1)211?6-=56·76,21911010-=·1110(2)222111111234⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···22111120132014⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =132435223344⨯⨯⨯⨯⨯⨯ (2013)201520142014⨯⨯ =1201522014⨯ =20154028.【点睛】此题考查了有理数的混合运算,熟练掌握数字运算的规律是解本题的关键.。
2013-1014学年苏科版七年级上期中考试数学试题(含答案)
2013-2014学年度第一学期期中测试七年级数学试题一、用心选一选,将你认为正确的答案填入下表中。
(每题2分,共16分)1. 5的绝对值是( ) A. 51 B. 5- C. 5D. 5± 2.南京市某天最高气温8°C ,最低气温1-°C ,那么这天的日温差是( )A .7℃B .9℃C .9-℃D .7-℃3.下列等式不.成立..的是 ( )A.()55-=-+B.()5.05.0=--C. 33=--D. 632-=⨯-4.下列各组整式中,不属于...同类项的是 ( ) A .233m n 和232m n - B .xy 21-和2yx C .32和22 D .2x 和23 5.下列运算中,正确的是 ( )A .3a+2b=5abB .325=-y yC .222426xy xy xy =- D .-(a+b )+(c-d )=-a-b-c+d6.一天有86400秒,86400秒用科学计数法表示为 ( )A.41064.8⨯秒B.510864.0⨯秒C. 51064.8⨯秒D. 3104.86⨯ 秒7. 下面关于式子()43-的几个说法中,正确的是 ( ) A .(—3)是底数,4是幂 B .3是底数,4是幂C .3是底数,4是指数D .(—3)是底数,4是指数8.若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是 ( )(A )A>B (B )A=B (C )A<B (D )无法确定二、细心填一填:(每题2分,共20分) 9. 135-的相反数是________. 10. 某工厂5月生产机床n 台,6月比5月增产10%,则6月生产机床 台,11. 在数轴上,与表示-3的点相距6个单位长度的点所表示的数是_________12. ()()______2132009=-⨯- 13.若24b a m 与222--n b a 是同类项,则______3=-n m .14.一个两位数的个位数字为a ,十位数字比个位数字大2,这个两位数为_ _ .15. 已知5=x ,3=y 且0>xy ,则y x +=____ ____.16.观察:1234111111113355779a a a a =-=-=-=-,,,,…, 则n a = (n 为正整数).17. 如图,在宽为m 30,长为m 40的矩形地面上修建两条宽 (17题图)都是m 1的道路,余下部分种植花草.那么,种植花草的面积为 2m .18. 有一个运算程序,可以使:x y n ⊕=(n 为常数)时,(1)1x y n +⊕=+,(1)2x y n ⊕+=-.现在已知112⊕=,那么20102010______⊕=.三、耐心做一做(共84分)19.计算:(每小题3分,共12分)(1)7149)7(35⨯--÷- (2) []34)1(4511--⨯+- (3)(21—95+127)×(—36) (4) ()22121(2)73233⎡⎤---÷⨯--⎣⎦23. (本题6分) 已知一个多项式A 减去22xy x +-的3倍得到24x -,(1)求这个多项式A.(2)若21(2)0x y-++=,求A的值.24.(本题6分)谭维维、老狼等明星在今年的瓜洲国际音乐节上进行表演,市文化局策划本次活动,在与单位协商团购票时推出两种方案.方案一:若单位赞助广告费6000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:直接购买门票若不超过100张,票价为120/张;如果超过100张,则票价为100/张.设购买门票数为x(张),总费用为y(元).(1)方案一中,总费用y= ;方案二中,当0≤x≤100时,总费用y= ;当x>100时,总费用y= .(2)如果某单位购买本次音乐节门票200张,那么选择哪一种方案可使总费用最省?请说明理由.25.(本题8分)有理数a、b、c在数轴上的位置如图(1)判断正负,用“>”或“<”填空: b-c 0; b-a 0; a+c 0.(2)化简: |b-c|+|b-a|+|a+c|26.(本题8分)要建一个如下图所示的长方形养鸡场(分为两个区域),养鸡场的一边靠着一面墙,另几条边用总长为a m的竹篱笆围成,每块区域的前面各开一个宽1m的门.(1)如果a=26,AB=CD=5,那么AD= m.(2)如果AB=CD=b m,求AD的长,并用字母表示这个长方形养鸡场的面积. (要求:列式后,再化简)27.(本题10分) A 、B 两个果园分别有苹果30吨和20吨,C 、D 两城市分别需要苹果35吨和15吨;已知从A 、B 到C 、D 的运价如下表:(1)若从A 果园运到C 城的苹果为x 吨,则从A 果园运到D 城的苹果为____ 吨,从A 果园将苹果运往D 的运输费用为____ 元.(2)用含x 的式子表示出总运输费.(要求:列式后,再化简)28. (本题10分)根据下面的材料解答问题:已知点A 、B 在数轴上分别表示有理数a 、b ,则数轴上A 、B 两点之间的距离b a AB -=.(1)如果a>b,那么b a AB -== ;如果a<b,那么b a AB -== .(2)如果a=5, b=-2, 则AB= ;(3)数轴上从左到右...等距排列着点A 1、A 2、A 3、…、A 2010等共2010个整数点,它们表示的整数分别记作a 1、a 2、a 3、…、a 2010,且a 1、a 2、a 3、…、a 2010为连续整数.①求点A 2010到点的距离A 1;②已知a 13=-8,求a 1、a 2008的值;2013-2014 学年度第一学期期中质量检测七年级数学试题答案= -1+1 =0 ………………4分(3)解:原式=21×(-36)-95 ×(-36)+127×(-36)………2分 =-18+20-21=-19………………4分 (4)解:原式=4-61×3×(7-9)………3分 =4+1=5………………4分20、(1)解:原式=x-3x+7 +8x-28 ………………3分=6x-21 ………………5分(2)解:原式=2ax+6x 2 -14-6x 2+3ax-9 …………3分=5ax-23 ……………5分21、解:原式= x 2 -x 2+3xy+2y 2-2x 2+2xy-4y 2 …………2分=-2x 2+ 5xy -2y 2 …………4分当x=-1 y=2时 原式=-2+15-18=-5 …………6分22、 (1) 保洁结束时回到学校东大门.-1+0.8+3+1-0.6-1.2-2 …………2分=0 …………3分(2)4; …………5分(3) (|-1|+|0.8|+|3|+|1|+|-0.6|+|-1.2|+|-2|) ×0.5 …………7分=4.8(h) ………………8分23、解:A=x 2-4+3(2+xy- x 2)……………2分=x 2-4+6+3xy-3 x 2………………4分=2+3xy-2x 2………………6分当x=1 y=-2时 原式=2-6-2=-6 ………………8分24、(1)6000+5x ;120x;100x. …………6分(2)方案一:y=6000+50×200=16000………8分方案二:y=100×200=20000所以,方案一费用最省。
苏教版七年级上册数学第一次月考试卷及答案
苏教版七年级上册数学第一次月考试卷及答案(试卷满分100分,考试时间90分钟.)命题人:谷 审核人: 松 2014年10月卷首语:“小荷才露尖尖角,只待蜻蜓立上头。
”亲爱的同学们,希望你仔细思考,认真作答,静心尽力,展示自己. 祝福你,牵手成功,明天更好!一、选择题:(每题只有唯一答案,每小题2分,共20分)A .正有理数和负有理数统称有理数B .一个有理数不是整数就是分数C .零不是自然数,但它是有理数D .正分数、零、负分数统称分数5.下列各对数:+(﹣3)与﹣3,+(﹣)与+(﹣2),﹣(﹣)与+(﹣),8.已知a 是有理数,则下列判断:①a 是正数;②﹣a 是负数;③a 与﹣a 必然有一10.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示-2014的点与圆周()C.2 D.3二、填空题:(每空2分,共20分)11. ﹣(﹣2)的相反数是 .12. 数轴上的一点由﹣3出发,先向左移动4个单位,又向右移动了5个单位,第二次移动后,这一点所表示的数是.13.若数a的倒数是它本身,数b的相反数是它本身,则a与b的和是 . 14.如图,是一个简单的数值运算程序,当输入x的值为﹣1时,则输出的数值为.输入x ×(-4) -(-2)输出15.数轴上的点A到原点的距离是4,则点A表示的数为 .16.在1,﹣227,﹣2π,0,2.010010001……,3.1415926,0.333……,17113﹣3中,是无理数的有个.17.若|a﹣2014|+b2=0,则a+b= .18.比较大小:―|―78| ―(+67)(填上“>、< 或=”)19.如图是一个运算器的示意图,A,B是输入的两个数据,C是输出的结果.右表是输入A、B数据后,运算器输出C的对应值.请据此判断,当A=10,B=﹣1时,则C= ;当A=﹣12,C=13时,则B= .七年级数学答案一、选择题:二、填空题: 11. -2 ; 12. -2 ;13. ±1 ; 14. 6 ;15. ±4 ; 16. 2 ; 17. 2014 ; 18. < ;19. (1) 11 ; (2) ±1 ;三、解答题:20. 数轴略.数轴的三要素,漏掉一个,不得分.221230 1.5232-<--<-<<< 21. 271(1) (2)-3 (3)4 (4)- (5)24 (6)9 (7)-319 (8)-4582- 22. 2或623. (1) 15 (2)12 (3)答案不唯一(略)24. (1) 7.9 3.9 (2)亏了0.3元25. (1)3日 ; 7日;1.6万人(2)270.5 1.22 1.61 1.20.421.9⨯+++++++=(万人)21.93006570⨯=(万元)26. (1)6 (2)-5(3)则A 点表示的数是1006或-1008.201421007110071006110071008÷=-+=--=-。
2013至2014学年第一学期七年级数学第一次月考试题
2013至2014学年第一学期七年级数学第一次月考试题满分:120分 时间: 分钟一、 选择题(每小题3分,共24分)1、把一个正方体展开,不可能得到的是( )2、如图2,是由几个相同的小正方体组成的几何体,则它的俯视图是:( )3、下列各式中,计算结果为正的是( )A 、(-7)+(+4)B 、2.7+(-3.5)C 、 52)31(+- D 、)41(0-+ 4、用一个平面去截圆柱体,则截面形状不可能是( )A 、梯形B 、三角形C 、长方形D 、圆5、下列说法中,不正确的是( )A、零没有相反数。
B、最大的负整数是-1。
C、互为相反数的两个数到原点的距离相等D、没有最小的有理数。
6、、如果0+ba,那么a,b两个数一定是()=A、都等于0B、一正一负C、互为相反数D、互为倒数7、若2b,则b=a,5=a+的值应该是()A、7,B、7-,C、3,D、以上都不对。
7和8.两个有理数的积为负数,和也为负数,那么这两个数()A.都是负数,B.互为相反数C.绝对值较大的数是正数,另一个是负数D.绝对值较大的数是负数,另一个是正数二、填空题(每小题3分,共24分)9、如果a是最大的负整数,b是绝对值最小的数,那么a+b=_______.10、仪表上的指针顺时针方向旋转90记作–900,那么逆时针方向旋转1800应记作____.11、绝对值不大于4的所有整数和是_________.12、数轴上与原点的距离为3个单位长度的点所表示的数是,它们是互为的关系。
13、点A 在数轴上距原点3个长度,且位于原点左侧,若将A 向右移动4个单位长度,再向左移动1个单位长度,此时点A 所表示的数是_____14、|-5|= ,|2.1|= , |0|= 。
15、某个立体图形的三视图的形状都相同,请你写出一种这样的几何体 。
16、数轴上与-1的距离等于3个单位长度的点所表示的数为 。
三、 解答题(共72分)17、(6分)画出数轴,把下列各数:5-、213、0、25- 在数轴上表示出来,并用“<”号从小到大连接。
苏科版七年级上册数学第一学期第一次月度联考
灿若寒星制作2012~2013学年度第一学期第一次月度联考七 年 级 数 学 试 题(考试时间:120分钟,满分150分) 成绩一、选择题(每题3分,共24分)1.在–1,–2,1,2四个数中,最大的一个数是( ) A.–1 B.–2 C.1 D.22.下列说法正确的是 ( )A.一个数前面加上“-”号这个数就是负数;B.非负数就是正数;C.正数和负数统称为有理数D.0既不是正数也不是负数; 3.四位同学画数轴如下图所示,你认为正确的是 ( ) A. B.C. D.4.某天傍晚,北京的气温由中午的零上3℃下降了5℃,这天傍晚北京的气温是() A.零上8℃. B.零上2℃. C.零下8℃. D.零下2℃. 5.如果两个数的绝对值相等,那么这两个数是( )A.互为相反数B.相等C.积为0D.互为相反数或相等 6.若与互为相反数,则下列式子成立的是( ) A.; B.;C.; D.7.下列说法中①-a 一定是负数;②|-a|一定是正数;③倒数等它本身的数是±1;④绝对 值等于它本身的数是1.其中正确的个数是( )A.1个B.2个C.3个D.4个.8.如右图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且1===PR NP MN . 数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若||||3a b +=,则原点是( ).A. N 或PB. M 或RC. M 或ND. P 或R 二、填空题(每题3分,共30分)9.海中一潜艇所在高度为-30米,此时观察到海底一动物位于潜艇的正下方30米处,则海底动 物的高度为___________.10.在数轴上距2.5有3.5个单位长度的点所表示的数是 . 11.请写一个大于3而小于4的无理数 12.若a a =,那么a _____0;13.已知,m 、n 互为相反数,则n m ++3= . 14.绝对值不小于3但小于6的负整数是 .1 2 3 4 5 -2 -1 0 1 2-2 -1 0 1 2 -1 -2 0 1 2 学校 班级 姓名 考场(考试)号 座位号 密封线内不要答题 ……………………………装………………………………订………………………………………线………………………………………………15.现有若干个数,第1个数记为1a ,第二个数记为2a ,第三个数记为3a ……,第n 个数记为n a , 若211-=a ,从第二个数起,每个数都等于前面的那个数的倒数。
苏教版七年级数学上册第一次月考试卷及答案【汇编】
苏教版七年级数学上册第一次月考试卷及答案【汇编】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.若点P(x ,y)的坐标满足|x|=5,y 2=9,且xy >0,则点P 的坐标为( )A .(5,3)或(-5,3)B .(5,3)或(-5,-3)C .(-5,3)或(5,-3)D .(-5,3)或(-5,-3)5.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A.①②B.②③C.①③D.①②③10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知5a =2b =10,那么 ab a b+的值为________. 2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________. 4.27的立方根为________.5.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为________. 6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。
苏科版七年级上册数学第一学期第一次月考 (2).docx
初中数学试卷桑水出品宁海外国语学校2013~2014学年度第一学期第一次月考七年级数学试题一、选择题:(每题3分计24分,请将每题中的正确选项填在下面的表格中)题号 1 2 3 4 5 6 7 8 答案1. 2的相反数是【】A.2B.-2C.D.2.在下列实数中,无理数是【 】A .2B .3.14C .12-D .3 3.在﹣1,0.﹣2,1四个数中,最小的数是【 】A .﹣1B .0C .﹣2D .14.2-的值等于【 】A .2B .-2C .2±D .25.如果收入50元记作+50元,那么支出30元记作【 】A .+30元B .-30元C .+80元D .-80元6.计算()()127482-⨯-+÷-的结果是【 】A. -24B. -20C. 6D. 367.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有【 】A .6个B .5个C .4个D .3个8.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为【 】A . 44×105B . 0.44×105C . 4.4×106D . 4.4×1059.计算﹣32的值是10.气温由-1℃上升2℃后是11.数轴上到原点3个单位长度的点表示的数是12.小明在超市买了一瓶消毒液,发现在瓶上印有这样的一段字样:“净含量(450 ± 5)ml ”,这瓶消毒液至少有 ml.13.计算(-1)÷(-5)×(- )的结果是14.已知:点A 在数轴上的位置如图所示,点B 也在数轴上,且A 、B 两点之间的距离是2,则点B 表示的数是__________. (14题图)15瑞士中学教师巴尔末成功地从光谱数据3236,2125,1216,59,…中,发现规律得到巴尔末公式,从而打开了光谱奥妙的大门,请按这种规律写出第7个数据是____________.16.若2(2)10x y -++=,则x y +等于 .17.比较大小: 4____3-- ;)21(+- +|21-|; -212 -313。
苏科版七年级上第一次月考数学试题及答案
一、选择题(每题3分)1.下面四个数中比-2小的数是()A.1 B.0 C.-1 D.-32.下列说法正确的是()A.无限小数是无理数; B.零是整数,但不是正数,也不是负数;C.分数包括正分数、负分数和零;D.有理数不是正数就是负数.3. 一只长满羽毛的鸭子大约重 ( )A、50克B、2千克C、20千克D、5千克4.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. c>a>0>b;B. a>b>0>c ;C. b>0>a >c;D. b>0>c>a5. 一个数的相反数是非负数,这个数是()A 负数B 非负数C 正数D 非正数6. 下列各式中,正确的是()A -|-16|>0B|0.2|>|-0.2| C -47>-57 D |-6|<07. 把一根木棒锯成3段需12分钟,那么把它锯成10段需( )A、48分钟B、54分钟C、60分钟D、66分钟8.绝对值大于2,而小于5的所有正整数之和为()A 7B 8C 9D 109 下列叙述正确的是()A 若|a|=|b|,则a=bB 若|a|>|b|,则a>bC 若a<b|,则|a|<|b|D 若|a|=|b|,则a=±b10 .已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()A. 3瓶B. 4瓶C. 5瓶D. 6瓶二、填空题(每题4分)11. 用科学记数法表示250 200 000 00012.A市某天的温差为7°C,如果这天的最高气温为5°C,这天的最低气温是。
13.离原点3个单位长度的点有个,它所表示的有理数是;14.数轴上一点A表示的数为-5,将A先向右移2个单位,再向左移10个单位,则这个点表示的数是;15.在数轴上,到原点距离不大于2的所有整数有;16.(1)若=5,则x= ;(2)若=,则x= ;17. 计算三、问答题21.(4分)将下列各数填入相应的集合内;-2.5, -2.232232223…, 0, 11, 4.312, 0.101001000…,有理数集合﹛…﹜无理数集合﹛…﹜正数集合﹛…﹜负数集合﹛…﹜22.(6分)用数轴上的点表示下列各数及其相反数,并用“﹤”将他们连接起来 4, -0.5, -(-2), 0, +3.5, -(+5)23.计算(每小题5分)(1)12-(-18 )+(-7 )-15 ( 2) 4+(-2)+(-4)+1+(+2)(3) ;(4)x x3-321433⎛⎫⎛⎫-⨯--⨯⎪ ⎪⎝⎭⎝⎭32)65()43(21--+---π15 (-2.5)3=(5) (-0.125)×(-8)-[1-3×(-2)]; (6) ;( 8)(10) ()×(-12)(分配律) (9)24. (6分)出租车司机小李某天下午在东西走向的中山东路上进行运营。
2013-2014学年度苏科版第一学期七年级阶段测试数学试题及答案-推荐下载
A.-(-1)
B.-|-1|
C.+(-1)
5.下列说法不正确的是 ……………………………………………………………………( )
A.最小的非负整数是 0
C.倒数等于它本身的数是±1
组
时间:90 分钟)
B. 1 是绝对值最小的正数
D.一个有理数不是整数就是分数
6.下列各组数中,其值相等的是 …………………………………………………………( )
(2)-14 -(-2)2÷(-2)-(-3)3×( 3) .
输入
×(4) ÷2
-(-1)
输出
2 ‒
2
28.(本题满分 12 分)如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列 图形,探究并观察下列问题.
(1)第 4 个图中,共有白色瓷砖
(2)第 4 个图中,共有瓷砖
块;第 n 个图中,共有白色瓷砖
A.23 和 32
B.-32 和(-3)2
C. -23 和(-2)3
7.下列计算正确的是 ………………………………………………………………………( )
A.(-4)-(-1)= -3
C. 3 5 4 3 1 3 45
B.
5
2
77 77
( 5
D. 7 2 5 9 5 45学校 Nhomakorabea班级
姓名
考场
座位号
………………………………密……………………………………封…………………………………线………………………………………………………
2013-2014 学年度第一学期七年级阶段测试
(满分:150 分
一、选择题(本大题 10 个小题,每小题 3 分,共 30 分)
苏科版七年级上册数学第一学期第一次月考.docx
初中数学试卷 马鸣风萧萧 睢宁县宁海学校2014-2015学年度第一学期第一次月考 初一数学试卷 一、选择题(每题3分,共24分) 1. -5的倒数是( ) A.15 B.5- C.15- D.5 2.2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为( ) A .50.9110⨯ B .49.110⨯ C .39110⨯ D .39.110⨯ 3.下列各数中,最小的数是( ) A.2 B.3- C.13- D.0 4.下列各数中,无理数为( ) A.0.15 B.4- C.π- D.317 5.-│(-1)100│等于( ) A .-100 B .100 C .-1 D .1 6.平方得16的数是( ) A.4 B.4- C.4± D.16± 7.下列各组数中,数值相等的是 ( ) A .-23和(-2) 3 B .-22和(-2) 2 C .-23和-32 D .-110和(-1) 10 8.若2(1)+20a b -+=,则2014(+)a b 的值是( ) A.1- B.1 C.0 D.2014 二、填空题(每空题3分,共24分) 9.4-的相反数是_________. 10.某水文观测站的平均水位是50.3m ,那么-1.3m 表示的实际水位是_______m. 11.绝对值小于π的所有整数的积是________________. 12比较两个数的大小:12-________14-. 13.倒数等于它本身的数是_____________; 14.如图是一个数值转换器.若输入x 的值是3,则输出的值是___________. 15.定义一种新运算:a ※b =a b ab +-,如2※(2)-=2(2)2(2)+--⨯-=4,那么 输入 ( )21- 输出 班级姓名考号(1)-※2_________.=16.观察下列算式:①133=,②239=,③3327=,④4381=,⑤53243=,⑥63729=,⑦732187=,⑧836561=,…那么20143的个位数字是__________.三、解答题17(5分)在数轴上画出表示下列各数的点,并用“<”将各数连接起来.132-、0、-2、+3、0.5、-1.5.18.计算:(每题3分,共18分)(1)7(2)(3)--+-. (2)6.1-3.7+1.8-4.9(3)1(27)(3)3-÷-⨯(4)38(4)(2)4-⨯-⨯-;.(5)111(+)20245-+⨯. (6)[]2014112(2)106--⨯⨯-+.19.(8分)若7a =,3b =,求a +b 的值.20(本题6分)若a 、b 互为相反数,c d 、互为倒数,m 是最大的负整数,求a b cd m +--的值.21、(7分)某地的国际标准时间(GMT )是指该地与格林尼治(Greenwich )的时差.以下为同一时刻5个城市的国际标准时间(正数表示当地时间比格林尼治时间早的时数,负数表示当地时间比格林尼治时间迟的时数):城市伦敦 北京 东京 多伦多 纽约 国际标准时间 0 +8 +9 —4 —5(1) 伦敦时间中午12点时,东京和多伦多的当地时间分别是几点?(2) 北京时间早晨7点时,纽约的当地时间是几点?22、(8分)检修组乘汽车沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、—9、+4、+7、—2、—10、+18、—3、+7、+5.回答下列问题:(1)收工时检修组在A地哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?。
苏教版七年级数学上册第一次月考试卷及答案【全面】
苏教版七年级数学上册第一次月考试卷及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112°4.4的算术平方根是( )A .-2B .2C .2±D 25.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地其中符合图象描述的说法有()A.2个B.3个C.4个D.5个6.关于x的不等式组314(1){x xx m->-<的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥37.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 8.不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个910+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间10.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.有理数a,b,c在数轴上的对应点如图所示,化简:|b|-|c+b|+|b-a|=________.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.6.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12.若关于x、y的二元一次方程组525744x y ax y a+=⎧⎨+=⎩的解满足不等式组259x yx y+<⎧⎨->-⎩求出整数a的所有值.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、C6、D7、C8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、55°3、135°4、a-b+c5、2或2.56、36°或37°.三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、整数a的所有值为-1,0,1,2,3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略(2) ∠AEB=15°(3) 略5、(1)34;(2)1256、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
七年级上册数学第一次月考测试卷
七年级上学期第一次月考苏科版数学试题(考试范围:第一、二章,满分120分,时间100分钟)一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)如果零上3℃记作+3℃,那么零下3℃记作()A.﹣3B.﹣6C.﹣3℃D.﹣6℃2.(3分)以下是四位同学画的数轴,其中正确的是()A.B.C.D.3.(3分)在﹣2,+3.5,0,,﹣0.7,11中,负数有()A.1个B.2个C.3个D.4个4.(3分)实数a、b在数轴上的位置如图所示,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能判断5.(3分)﹣3的绝对值是()A.﹣3B.3C.D.6.(3分)某月的月历上连续三天的日期之和不可能是下面的哪一个数()A.18B.78C.65D.9 7.(3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是08.(3分)下列数是无理数的是()A.﹣2B.0C.πD.9.(3分)一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克10.(3分)观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……根据上述算式的规律,你认为22021的末位数字应该是()A.2B.2C.6D.8二、填空题:(本大题共有8小题,每空3分,共30分.)11.(3分)某中学为每个学生编号,设定末尾用“1”表示男生,用“2”表示女生,如果048432表示“2004年入学的8班43号同学,是位女生,”那么今年入学的6班23号男生同学的编号为____________.12.(3分)﹣3的相反数是____________.13.(3分)一个数的绝对值是4,则这个数是____________.14.(3分)数轴上有一点A从原点出发,先向右移动3个单位,再向左移动2个单位长度,此时A 点所表示的数为____________.15.(6分)化简:|﹣4|=____________,﹣(﹣4)=____________.16.(3分)在数轴上,﹣4与之﹣6间的距离是____________.17.(6分)用“<”或“>”填空:+1____________﹣10,﹣9____________﹣7.18.(3分)观察下列球的排列规律(其中●是实心球,〇是空心球):●〇〇●●〇〇〇〇〇●〇〇●●〇〇〇〇〇●〇〇●●〇〇〇〇〇●…从第一个球起到第2021个球止,共有实心球____________个.三、解答题:(本大题共有8小题,共60分.)19.(8分)把下列各数分别填入相应的集合里+5,﹣3.5,,4,0,0.050050005……(1)正数集合:{___________________________________________…};(2)负数集合:{___________________________________________…};(3)整数集合:{___________________________________________…};(4)无理数集合:{___________________________________________…}.20.(6分)若|a|=4,b=2,求a+b的值.21.(6分)在数轴上画出表示3、﹣4、0、﹣2.5的点;并用“<”将这些数连接起来.22.(12分)计算:(1)﹣12+6﹣7(2)﹣6+8÷(﹣4)﹣(﹣4)×(﹣3)(3)8﹣(﹣3)2(2)(4)()+()+()+(﹣1)23.(8分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?24.(8分)我们定义一种新运算:a*b=a﹣b.例如:1*3=1﹣3=﹣2(1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值.25.(6分)已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数____________表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数____________表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?26.(12分)如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是____________,点C在数轴上表示的数是____________,线段BC的长=____________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为多少?参考答案一、选择题:(本大题共10小题,每小题3分,共30分)1、C解:“正”和“负”相对,所以,如果零上3℃记作+3℃,那么零下3℃记作﹣3℃.故选:C.2、D解:A、没有原点,错误;B、单位长度不统一,错误;C、没有正方向,错误;D、正确.故选:D.3、C解:负数有﹣2,,﹣0.7,共3个,故选:C.4、C解:观察数轴,根据在数轴上右边的数总比左边的数大,可知a<b.故选:C.5、B解:|﹣3|=3.故﹣3的绝对值是3.故选:B.6、C解:设中间一天为x日,则前一天的日期为:x﹣1,后一天的日期为x+1日,根据题意得:连续三天的日期之和是:(x﹣1)+x+(x+1)=3x,所以连续三天的日期之和是3的倍数,65不是3的倍数,故选:C.7、B解:A、0既不是正数,也不是负数,正确,不符合题意;B、1是绝对值最小的正数,错误,符合题意;C、一个有理数不是整数就是分数,正确,不符合题意;D、0的绝对值是0,正确,不符合题意.故选:B.8、C解:A、﹣2是整数,属于有理数;B、0是整数,属于有理数;C、π是无理数;D、是分数,属于有理数;故选:C.9、C解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故选:C.10、A解:由算式可知,2n的个位数字是2,4,8,6四个一循环,2021÷4=505·······1,则22021的末位数字是2.故选:A.二、填空题:(本大题共有8小题,每空3分,共30分.)11、解:2011年入学的6班23号的男生编号是116231.故答案为116231.12、解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.13.(3分)一个数的绝对值是4,则这个数是4,﹣4.【解答】解:一个数的绝对值是4,根据绝对值的意义,这个数是:4或﹣4故答案为:4或﹣4.14、解:根据题意得,0+3﹣2=1,∴A点所表示的数是1.故答案为:1.15、解:|﹣4|=4,﹣(﹣4)=4,故答案为:4,4.16、解:根据数轴上两点间的距离等于这两点表示的两个数的差的绝对值,即较大的数减去较小的数,则﹣4与﹣6之间的距离是﹣4﹣(﹣6)=2;故答案为:2.17、解:+1>﹣10,∵|﹣9|=9,|﹣7|=7,9>7,∴﹣9<﹣7,故答案为:>,<.18、解:根据题意可知●〇〇●●〇〇〇〇〇每10个球一循环.∵2021÷10=202…1,202×3+1=607,共有实心球607个.故答案为:607.三、解答题:(本大题共有8小题,共60分.)19、解:(1)正数集合:{+5,,4,0.050050005………};(2)负数集合:{﹣3.5…};(3)整数集合:{+5,4,0,…};(4)无理数集合:{0.050050005………}.故答案为:(1)+5,,4,0.050050005;(2)﹣3.5;(3)+5,4,0;(4)0.050050005…….20、解:由|a|=4可得,a=±4,当a=4时,a+b=4+2=6;当a=﹣4时,a+b=﹣4+2=﹣2,综上所述,a+b的值是6或﹣2.21、解:﹣4<﹣2.5<0<3.22.解:(1)原式=﹣19+6=﹣13;(2)原式=﹣6+(﹣2)﹣12=﹣20;(3)原式=8﹣9()=8(﹣4)=8+2=10.(4)原式=(1)+()=﹣2+1=﹣1.23、解:(1)根据题意:规定向东为正,向西为负:则(+15)+(﹣4)+(+13)+(﹣10)+(﹣12)+(+3)+(﹣13)+(﹣17)=﹣25千米,故小王在出车地点的西方,距离是25千米;(2)这天下午汽车走的路程为|+15|+|﹣4|+|+13|+|﹣10|+|﹣12|+|+3|+|﹣13|+|﹣17|=87,若汽车耗油量为0.4升/千米,则87×0.4=34.8升,故这天下午汽车共耗油34.8升.24、解:(1)2*(﹣3)=2﹣(﹣3)=2+3=5;(2)(﹣2)*[2*(﹣3)]=(﹣2)*5=﹣2﹣5=﹣2+(﹣5)=﹣7.25、解:(1)根据题意,得对称中心是原点,则﹣2表示的点与数2表示的点重合;(2)∵﹣1表示的点与3表示的点重合,∴对称中心是1表示的点.∴①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),则点A表示的数是1﹣4.5=﹣3.5,点B表示的数是1+4.5=5.5.故答案为2,﹣3,A=﹣3.5,B=5.526、解:(1)∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10;∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14.∴BC=14-(-10)=24.故答案为:-10;14;24.(2)当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∵B、C重合,∴t-10=14-2t,解得:t=8.答:当B、C重合时,t的值为8,在数轴上表示的数为-2.(3)当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧.∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为232t-,点N在数轴上表示的数为532t-,∴MN=532t--232t-=32.。
苏教版七年级数学上册第一次月考考试题及参考答案
苏教版七年级数学上册第一次月考考试题及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1 B.2-或2 C.2-D.16.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A .厉B .害C .了D .我7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 互为相反数,则a 2﹣b 2=________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.已知:关于x 的方程2132x m x +--=m 的解为非正数,求m 的取值范围.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F (点F与O不重合),然后直接写出∠EOF的度数.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、A6、D7、C8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、02、55°3、2或2 -34、±10.5、0.6、10三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x=2、34 m≥.3、74、(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。
2013年苏科版七年级数学上册第一次月考试题及答案
七年级数学学业质量分析与反馈2013.10总分:100 分 答卷时间:100分钟一、选择题(本题有8小题,每小题3分,共24分) 1. -2的相反数是 (▲) A 、-2 B 、21 C 、-21D 、2 2. 冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最大的温差是: (▲)A 、88℃B 、17℃C 、11℃D 、3℃3. 关于0,下列几种说法不正确...的是 A 、0的相反数是0 B 、0的绝对值是0C 、0不能作除数D 、0除以任何数仍得0 4.下列说法中,正确的是 (▲)A、减去一个负数,等于加上这个数的相反数 B 、两个负数的差,一定是一个负数 C 、零减去一个数,仍得这个数 D 、两个正数的差,一定是一个正数 5. 下列运算正确的是(▲)(A )-22÷(-2)2=1 (B ) 31128327⎛⎫-=- ⎪⎝⎭(C )1352535-÷⨯=- (D ) 133( 3.25)6 3.2532.544⨯--⨯=-6.若有理数m 在数轴上对应的点为M ,且满足1m m <<-,则下列数轴表示正确的是 (▲)7.a, b ,c 都是有理数,且2220,0,0a b b c c a ><>,则(▲ ) A .a >0,b >0,c >0 B .a <0,b >0,c >0 C. a <0,b <0,c <0. D .a >0,b >0,c <01B0Mx1DMx1C0M xM1Amxmm m8.按下面的程序计算:若输入100,x =x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有(▲)A .1种B .2种C .3种D .4种二、填空题(本题有10小题,每小题2分,共20分) 9、平方等于本身的数是 ▲ .10、一个数的相反数的倒数是113-,这个数是_______▲ _ . 11、52-的底数是 ▲ ,指数是______▲ __ .12、计算1011)2()2(-+-的值是 ▲13、绝对值大于1而不大于3的所有非正整数的和是 ▲ .14、在下列(-1)2003,(-1)2004,-22,(-3)2这四个数中,最大的数与最小的数的和等于 ▲ .15、数轴上的A 点与表示-3的点距离4个单位长度,则A 点表示的数为 ▲16、大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成______▲ ____个.17、 计算:-1+2-3+4-5+6-7+8-9+10=_▲_ .18、规定△是一种新的运算符号,且12-+⨯-=∆a b a a b a ,例如:计算1126412322322-=-+-=-+⨯-=∆ 。
度七年级数学上学期第一次月考试题(含解析) 苏科版-苏科版初中七年级全册数学试题
某某省某某市滨海县条港中学2014-2015学年度七年级数学上学期第一次月考试题一、精心选一选,你一定很棒!(本大题共10小题,每小题3分,共30分,)1.下面的有理数中,最小的是()A.1 B.﹣2 C.D.2.下列算式中,运算结果为负数的是()A.﹣32B.|﹣3| C.﹣(﹣3)D.(﹣3)23.下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有()A.0个B.1个C.2个D.3个4.下列表示某地区早晨、中午和午夜的温差(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃5.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×326.若x是有理数,则下列各数中一定是正数的是()A.|x| B.x2C.x2+1 D.|x+1|7.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2D.1或﹣38.有理数a,b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.等于0 D.小于a9.下列几种说法中,正确的是()A.0是最小的数B.最大的负有理数是﹣1C.任何有理数的绝对值都是正数D.平方等于本身的数只有0和110.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个二、认真填一填,你一定能行!(本大题共10小题,每小题3分,共30分)11.|﹣2012|=.12.比较大小:.13.该试题已被管理员删除14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.15.蚂蚁从数轴上A出发爬了2个单位到了原点,则点A所表示的数是.16.现定义某种运算“*”,对任意两个有理数a,b,有a*b=a b,则(﹣3)*2=.17.已知|x﹣2|+(y+3)2=0,则x﹣y=.18.若a是最大的负整数,b是绝对值最小的数,则b﹣4a=.19.如图所示,把半径为1个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.20.如图是七(4)周青同学一次旅游时在沙滩上用石于摆成的房子.观察图形的变化规律,写出第9个小房子用了块石子.三、耐心解一解,你笃定出色!(本大题共90分).21.计算(1)8+(﹣10)+(﹣2)﹣(﹣5)(2)(﹣5)×(﹣7)﹣5×(﹣6)(3)(4)(﹣15)﹣18÷(﹣3)+|﹣5|(5)﹣81÷÷(﹣16);(6)(﹣36)×(﹣+﹣)22.在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,23.已知:|a|=3,|b|=2,ab<0,求a﹣b的值.24.规定“✴”是一种运算法则:a✴b=a2﹣b2.(1)求2✴6的值;(2)求3✴[(﹣2)✴3]的值.25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4 +7 ﹣9 +8 +6 ﹣5 ﹣2(1)求收工时距A地多远?(2)在第次纪录时距A地最远.(3)若每km耗油0.4升,问共耗油多少升?26.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如表:(1)当n个最小的连续偶数相加时,它们的和S与n之间的关系,用公式表示S=;(2)按此规律计算:(a)2+4+6+…+300的值;(b)182+184+186+188+…+400的值.27.观察下列等式:=1﹣,=﹣,…;=(1﹣),=(﹣)…(1)猜想并写出:=;(2)猜想并写出:=;(3)猜想并计算写出:+++=;(4)根据猜想计算:+++…++.某某省某某市滨海县条港中学2014~2015学年度七年级上学期第一次月考数学试卷参考答案与试题解析一、精心选一选,你一定很棒!(本大题共10小题,每小题3分,共30分,)1.下面的有理数中,最小的是()A.1 B.﹣2 C.D.【考点】有理数大小比较.【分析】根据有理数大小比较的规律,可得﹣2<﹣<<1,则可求得答案.【解答】解:∵﹣2<﹣<<1,∴最小的是:﹣2.故选B.【点评】本题考查了有理数大小比较的方法.注意(1)正数大于0,负数小于0,正数大于负数.(2)两个正数中绝对值大的数大.(3)两个负数中绝对值大的反而小.2.下列算式中,运算结果为负数的是()A.﹣32B.|﹣3| C.﹣(﹣3)D.(﹣3)2【考点】正数和负数.【专题】计算题.【分析】利用“绝对值为非负数”“负负得正”和“一个数的平方大于等于0”即可作答.【解答】解:﹣32=﹣9;|﹣3|=3;﹣(﹣3)=3;(﹣3)2=9【点评】主要考查数值的正负,要细心,将每个选项算出即可.3.下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有()A.0个B.1个C.2个D.3个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,0.080080008…(相邻两个8之间依次增加一个0).共2个.故选C.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.下列表示某地区早晨、中午和午夜的温差(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃【考点】有理数的减法;数轴.【专题】数形结合.【分析】温差就是最高气温与最低气温的差,分别计算每一天的温差,比较即可得出结论.【解答】解:A、午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B、中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C.【点评】本题是考查了温差的概念,以及有理数的减法,是一个基础的题目.有理数减法法则:减去一个数等于加上这个数的相反数.5.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×32【考点】有理数的乘方;有理数的混合运算;幂的乘方与积的乘方.【专题】计算题.【分析】利用有理数的混合运算法则,先算乘方,再算乘除,最后算加减,有括号应先算括号里面的,按照运算顺序计算即可判断出结果.【解答】解:A、34=81,43=64,81≠64,故本选项错误,B、﹣42=﹣16,(﹣4)2=16,﹣16≠16,故本选项错误,C、﹣23=﹣8,(﹣2)3=﹣8,﹣8=﹣8,故本选项正确,D、(﹣2×3)2=36,﹣22×32=﹣36,36≠﹣36,故本选项错误,故选C.【点评】本题主要考查了有理数的混合运算法则,乘方意义,积的乘方等知识点,按照运算顺序计算出正确结果是解此题的关键.6.若x是有理数,则下列各数中一定是正数的是()A.|x| B.x2C.x2+1 D.|x+1|【考点】有理数的乘方;绝对值.【专题】常规题型.【分析】根据有理数乘方的法则即可作出判断.【解答】解:A、根据绝对值得定义,|x|≥0;B、根据平方的定义,x2≥0;C、根据平方的定义,x2≥0,则x2+1>0;D、根据绝对值的定义,|x+1|≥0.故选C.【点评】本题考查了平方和绝对值的性质,侧重于基本概念,难度不大.7.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2D.1或﹣3【考点】数轴.【专题】常规题型.【分析】此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.【解答】解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选:D.【点评】注意此类题应有两种情况,再根据“左减右加”的规律计算.8.有理数a,b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.等于0 D.小于a【考点】有理数的加法;数轴;有理数大小比较.【分析】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【解答】解:根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【点评】此题综合考查了数轴、绝对值的有关内容及有理数的加法法则.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.9.下列几种说法中,正确的是()A.0是最小的数B.最大的负有理数是﹣1C.任何有理数的绝对值都是正数D.平方等于本身的数只有0和1【考点】有理数的乘方;有理数;相反数.【分析】根据有理数的相关知识进行选择即可.【解答】解:A、负数都小于0,因此0不是最小的数,故A错误;B、最大的负整数是﹣1,但﹣1不是最大的负有理数,故B错误;C、0的绝对值是它本身,但0既不是正数,也不是负数,故C错误;D、正确.故选D.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.10.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个【考点】有理数的乘方.【专题】应用题.【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【解答】解:26=2×2×2×2×2×2=64.故选D.【点评】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.二、认真填一填,你一定能行!(本大题共10小题,每小题3分,共30分)11.|﹣2012|= 2012 .【考点】绝对值.【专题】存在型.【分析】根据绝对值的性质进行解答即可.【解答】解:∵﹣2012<0,∴|﹣2012|=2012.故答案为:2012.【点评】本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.12.比较大小:>.【考点】有理数大小比较.【专题】计算题.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.13.该试题已被管理员删除14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为 5.4×106万元.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).15.蚂蚁从数轴上A出发爬了2个单位到了原点,则点A所表示的数是±2.【考点】数轴.【分析】设A点表示的数为x,再根据数轴上各点到原点距离的定义解答即可.【解答】解:设A点表示的数为x,则|x|=2,解得x=±2.故答案为:±2.【点评】本题考查的是数轴,熟知数轴上各点到原点距离的定义是解答此题的关键.16.现定义某种运算“*”,对任意两个有理数a,b,有a*b=a b,则(﹣3)*2= 9 .【考点】有理数的乘方.【专题】新定义.【分析】将新定义的运算按定义的规律转化为有理数的乘方运算.【解答】解:因为a*b=a b,则(﹣3)*2=(﹣3)2=9.【点评】新定义的运算,要严格按定义的规律来.17.已知|x﹣2|+(y+3)2=0,则x﹣y= 5 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+3=0,解得x=﹣2,y=﹣3,所以,x﹣y=2﹣(﹣3)=5.故答案为:5.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.18.若a是最大的负整数,b是绝对值最小的数,则b﹣4a= 4 .【考点】有理数的减法.【分析】根据有理数的性质求出a、b,然后代入代数式,根据有理数的减法运算法则进行计算即可得解.【解答】解:∵a是最大的负整数,∴a=﹣1,∵b是绝对值最小的数,∴b=0,∴b﹣4a=0﹣4×(﹣1)=4.故答案为:4.【点评】本题考查了有理数的减法,是基础题,根据有理数的性质判断出a、b是解题的关键.19.如图所示,把半径为1个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是﹣2π.【考点】实数与数轴.【分析】因为圆形纸片从原点沿数轴逆时针即向左滚动一周,可知OA′=2π,再根据数轴的特点即可解答.【解答】解:∵半径为1个单位长度的圆形纸片从原点沿数轴向左滚动一周,∴OA′之间的距离为圆的周长=2π,A′点在原点的左边,∴A′点对应的数是﹣2π.故答案是:﹣2π.【点评】本题主要考查了实数与数轴之间的对应关系,解题需注意:确定点A′的符号后,点A′所表示的数的绝对值是距离原点的距离.20.如图是七(4)周青同学一次旅游时在沙滩上用石于摆成的房子.观察图形的变化规律,写出第9个小房子用了117 块石子.【考点】规律型:图形的变化类.【分析】由图可分为两部分来看:第一个屋顶是1块石子,第二个屋顶是3块石子,第三个屋顶是5块石子,…以此类推,第n个屋顶是2n﹣1块石子;第一个下边是4块石子,第二个下边是9块石子,第三个下边是16块石子,…以此类推,第n个下边是(n+1)2个.两部分相加即可得出第n 个小房子用的石子数是(n+1)2+2n﹣1=n2+4n,将n=9代入求值即可【解答】解:∵第一个屋顶是1块石子,下边是4块石子,第二个屋顶是3块石子,下边是9块石子,第三个屋顶是5块石子,下边是16块石子,…∴第n个屋顶是2n﹣1块石子,下边是(n+1)2,块石子;∴第n个小房子用的石子数是(n+1)2+2n﹣1=n2+4n;∴第9个小房子用了81+36=117块石子.故答案为:117.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.三、耐心解一解,你笃定出色!(本大题共90分).21.计算(1)8+(﹣10)+(﹣2)﹣(﹣5)(2)(﹣5)×(﹣7)﹣5×(﹣6)(3)(4)(﹣15)﹣18÷(﹣3)+|﹣5|(5)﹣81÷÷(﹣16);(6)(﹣36)×(﹣+﹣)【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘法运算,再计算加减运算即可得到结果;(3)原式结合后,相加即可得到结果;(4)原式先计算除法及绝对值运算,再计算加减运算即可得到结果;(5)原式利用除法法则计算即可得到结果;(6)原式利用乘法分配律计算即可得到结果.【解答】解:(1)原式=8﹣10﹣2+5=13﹣12=1;(2)原式=35+30=65;(3)原式=+﹣﹣=1﹣1=0;(4)原式=﹣15+6+5=﹣4;(5)原式=81××=;(6)原式=16﹣30+21=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,【考点】有理数大小比较;数轴.【专题】数形结合.【分析】先分别把各数化简为:3,1,﹣1.5,0,﹣2,,再把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由小到大的顺序用“<”连接起来.【解答】解:按照从小到大的顺序排列:<﹣2<﹣1.5<0<1<3.【点评】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.已知:|a|=3,|b|=2,ab<0,求a﹣b的值.【考点】有理数的减法;绝对值;有理数的乘法.【分析】根据已知条件和绝对值的性质,得a=±3,b=±2,且ab<0,确定a,b的符号,求出a﹣b的值.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴ab异号.∴(1)当a=3,b=﹣2时a﹣b=3+2=5;(2)当a=﹣3,b=2时,a﹣b=﹣3﹣2=﹣5.【点评】解决本题的关键是根据绝对值性质求出a,b的值,然后分两种情况解题.24.规定“✴”是一种运算法则:a✴b=a2﹣b2.(1)求2✴6的值;(2)求3✴[(﹣2)✴3]的值.【考点】有理数的乘方.【专题】新定义.【分析】根据题意的新定义变形,计算即可得到结果.【解答】解:(1)根据题意得:2✴6=22﹣62=4﹣36=﹣32;(2)根据题意得:(﹣2)✴3=4﹣9=﹣5,则3✴[(﹣2)✴3]=3✴(﹣5)=9﹣25=﹣16.【点评】此题考查了有理数的乘方,弄清题中的新定义是解本题的关键.25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4 +7 ﹣9 +8 +6 ﹣5 ﹣2(1)求收工时距A地多远?(2)在第五次纪录时距A地最远.(3)若每km耗油0.4升,问共耗油多少升?【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)收工时距A地的距离等于所有记录数字的和的绝对值;(2)分别计算每次距A地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.4升,就是共耗油数.【解答】解:(1)﹣4+7﹣9+8+6﹣5﹣2=﹣4﹣9﹣5﹣2+7+8+6=﹣20+21=1km;(2)由题意得,第一次距A地4千米;第二次距A地﹣4+7=3千米;第三次距A地|﹣4+7﹣9|=6千米;第四次距A地|﹣4+7﹣9+8|=2千米;第五次距A地|﹣4+7﹣9+8+6|=8千米;而第六次、第七次是向相反的方向又行驶了共7千米,所以在第五次纪录时距A地最远;(3)(4+7+9+8+6+5+2)×0.4=41×0.4=16.4L.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如表:(1)当n个最小的连续偶数相加时,它们的和S与n之间的关系,用公式表示S= n(n+1);(2)按此规律计算:(a)2+4+6+…+300的值;(b)182+184+186+188+…+400的值.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)找出结果中的因数与连续偶数个数之间的关系,就可解决问题;(2)(a)直接利用(1)的结论,就可解决问题;(b)只需把182+184+186+188+…+400转化为(2+4+6+8+…+400)﹣(2+4+6+8+…+180),然后运用(1)中的公式,就可解决问题.【解答】解:(1)S=2+4+6+8+…+2n=n(n+1).故答案为n(n+1);(2)(a)2+4+6+…+300=2+4+6+…+2×150=150×(150+1)=22650;(b)182+184+186+188+…+400=(2+4+6+8+...+400)﹣(2+4+6+8+ (180)=200×201﹣90×91=32010.【点评】本题是一道规律探究题,把首项不是2的连续偶数的和转化为首项是2的连续偶数的和,是解决第(2)(b)小题的关键.27.观察下列等式:=1﹣,=﹣,…;=(1﹣),=(﹣)…(1)猜想并写出:=﹣;(2)猜想并写出:=();(3)猜想并计算写出:+++=;(4)根据猜想计算:+++…++.【考点】规律型:数字的变化类.【分析】(1)、(2)观察所给算式,找出其中的规律,然后依据规律进行变形即可;(3)、(4)先依据规律进行拆项,然后利用加法的运算规律进行计算即可.【解答】解:(1)=﹣;(2)=();(3)+++=1﹣++=1=;(4)+++…++=(1)+()+…++=(1﹣﹣…+﹣)=(1﹣)=.故答案为:(1)﹣;(2)();(3).【点评】本题主要考查的是数字的变化规律,找出所给算式蕴含的规律从是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.无限小数是无理数; B.零是整数,但不是正数,也不是负数;
C.分数包括正分数、负分数和零; D.有理数不是正数就是负数.
3. 一只长满羽毛的鸭子大约重 ( )
24. (6分)出租车司机小李某天下午在东西走向的中山东路上进行运营。如果规定向东为正,向西为负,这天下午他的行程(单位:km)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6
(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多少千米?
(2)若汽车耗油量0.4 L/km,这天下午小李的车共耗油多少升?
一、选择题(每题3分)
题号
1
2
3
4
5
6
7
8
9
10
答案
1.下面四个数中比-2小的数是 ( )
A.1 B.0 C.-1 D.-3
7. 把一根木棒锯成3段需12分钟,那么把它锯成10段需( )
A、48分钟 B、54分钟 C、60分钟 D、66分钟
8. 绝对值大于2,而小于5的所有正整数之和为 ( )
A 7 B 8 C 9 D 10
(3) ;)-[1-3×(-2)]; (6) ;
( 8)
(9) (10) ()×(-12)(分配律)
A 负数 B 非负数 C 正数 D 非正数
6. 下列各式中,正确的是 ( )
A -|-16|>0 B |0.2|>|-0.2| C -47>-57 D |-6|<0
A、50克 B、2千克 C、20千克 D、5千克
4.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )
A. c>a>0>b; B. a>b>0>c ; C. b>0>a >c; D. b>0>c>a
5. 一个数的相反数是非负数,这个数是 ( )
A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶
二、填空题(每题4分)
11. 用 科学记数法表示250 200 000 000
12.A市某天的温差为7°C,如果这天的最高气温为5°C,这天的最低气温是 。
9 下列叙述正确的是 ( )
A 若|a|=|b|,则a=b B 若|a|>|b|,则a>b
C 若a<b|,则|a|<|b| D 若|a|=|b|,则a=±b
10 .已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )
26.(6分)“*”是规定的一种运算法则:a*b=a2-b.
①求5*(-1)的值;
②若3*x=2,求x的值;
③若(-4)*x=2-x, 求x的值.
七数参考答案
21
17. 计算
三、问答题
21.(4分)将下列各数填入相应的集合内;
-2.5, -2.232232223…, 0, 11, 4.312, 0.101001000…,
有理数集合﹛ …﹜
无理数集合﹛ …﹜
正数集合﹛ …﹜
负数集合﹛ …﹜
13.离原点3个单位长度的点有 个,它所表示的有理数是 ;
14.数轴上一点A表示的数为-5,将A先向右移2个单位,再向左移10个单位,则这个点表示的数是 ;
15.在数轴上,到原点距离不大于2的所有整数有 ;
16.(1)若=5,则x= ; (2)若=,则x= ;
22.(6分)用数轴上的点表示下列各数及其相反数,并用“﹤”将他们连接起来
4, -0.5, -(-2), 0, +3.5, -(+5)
23.计算(每小题5分)
(1) 12-(-18 )+(-7 )-15 ( 2) 4+(-2)+(-4)+1+(+2)