2实数与代数式
数学综合算式专项练习题实数与代数式的运算
数学综合算式专项练习题实数与代数式的运算数学综合算式专项练习题:实数与代数式的运算在数学中,实数与代数式的运算是我们学习的基本内容之一。
它不仅在高中数学中占据重要地位,而且在其他数学领域如代数、几何、概率等的学习中也有广泛应用。
本文将针对实数与代数式的运算进行专项练习题的介绍,通过解析和计算实例,帮助读者更好地掌握相关知识与技巧。
一、实数的四则运算实数的四则运算是数学中最基本的运算之一。
下面我们通过一些具体的练习题来帮助读者巩固实数的四则运算。
题目一:计算下列各式的值,并化简结果。
1. $(-9) + (-5) - (-7)$2. $(-2) \times 4 - (-3) \times (-2)$3. $\frac{7}{3} - \frac{1}{4} + \frac{2}{5}$4. $(-1)^2 \times \left(\frac{8}{3} - \frac{5}{2}\right)$解析:1. $(-9) + (-5) - (-7) = -9 - 5 + 7 = -7$2. $(-2) \times 4 - (-3) \times (-2) = -8 - 6 = -14$3. $\frac{7}{3} - \frac{1}{4} + \frac{2}{5} = \frac{35}{12} -\frac{3}{12} + \frac{2}{5} = \frac{57}{20}$4. $(-1)^2 \times \left(\frac{8}{3} - \frac{5}{2}\right) = 1 \times\left(\frac{16}{6} - \frac{15}{2}\right) = 1 \times \frac{2}{6} =\frac{1}{3}$题目二:计算下列各式,并化简结果。
1. $\frac{1}{2} + \left(\frac{3}{4} - \frac{2}{5}\right)$2. $\frac{5}{6} \times \left(\frac{2}{3} - \frac{1}{4}\right)$3. $(\frac{3}{4})^2 - (\frac{2}{3})^2$4. $\frac{8 - 6 \times 5}{10}$解析:1. $\frac{1}{2} + \left(\frac{3}{4} - \frac{2}{5}\right) = \frac{1}{2} + \frac{15}{20} - \frac{8}{20} = \frac{7}{10}$2. $\frac{5}{6} \times \left(\frac{2}{3} - \frac{1}{4}\right) = \frac{5}{6} \times \frac{8}{12} - \frac{5}{6} \times \frac{3}{12} = \frac{20}{36} -\frac{15}{36} = \frac{5}{36}$3. $(\frac{3}{4})^2 - (\frac{2}{3})^2 = \frac{9}{16} - \frac{4}{9} =\frac{81}{144} - \frac{64}{144} = \frac{17}{144}$4. $\frac{8 - 6 \times 5}{10} = \frac{8 - 30}{10} = \frac{-22}{10} = -2.2$通过对以上题目的计算,读者可以看出实数运算的基本规律,并掌握化简结果的方法。
实数与代数式
实数与代数式【知识梳理】1.实数(1)分类:实数分数(2)⎪⎩⎪⎨⎧〈-=〉=)0()0(0)0(a a a a a a (3)科学记数法:正数),101(10是整数n a a N n 〈≤⨯=。
2.代数式(1)分类:代数式 分式(2)幂的运算公式: )0(1)()(0≠====÷=⋅-+a a b a ab a a a a a a a a n n n m n n m n m n m n m n m ;;;;。
(3)多项式的乘法:bd bc ad ac d c b a +++=++))((;ab x b a x b x a x +++=++)())((2;22))((b a b a b a -=-+;222)(b ab a b a +±=±;3322))((b a b ab a b a ±=+± 。
【双基训练】一、填空题(时间:10分钟)1.在22,101001.0,,14.3,1,0 π-各数中,整数是_______,分数是__________,无理数是__________; 正整数 零 负整数 正分数 负分数有理数 无理数整数 单项式 多项式有理式 无理式整式2.比较大小:(1)-1 _______ 0 ;(2)43-_______32- ;(3)π _______ 3.14; 3.因式分解:(1)a a 43-=__________;(2)22414a b a -+-=_____________________;(3)652--x x =________________;(4)652+-x x =_________________;4.请写出一个比0.1小的有理数_____________;5.当1,3=-=b a a 时,代数式ab a -2的值是_______________;6.若b a x 122+与b a x 53+-是同类项,则x =_____________;7.用科学记数法表示:0.00000101=______________;8.计算:aa a 214122-+-=_________________; 9.已知: ;;;;; 24552455154415448338333223222222+=+⨯=+⨯=+⨯=+ =+⨯=+b a ab 10a b 102则符合前面式子的规律,若____________; 10. 给出下列等式32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;92-72=32=8×4.观察上面一系列等式,用代数式表示这个规律是:______________。
实数与代数式知识整理
实数与代数式知识整理教学内容:1. 【知识要点】实数的有关概念;实数的运算与大小比较;整式及其因式分解;分式与根式.【巩固与拓展】实数与代数式【知识要点】1.实数的有关概念:1) 2)相反数:2的相反数是 ;倒数:-2的倒数是 ;绝对值:2x =的解为 .3)数的开方:(1) 非负数有平方根;任何一个实数a 都有立方根.(2)=2a ⎩⎨⎧<≥=)0( )0( a a a .2.实数的运算与大小比较:1)数的乘方:=n a ;=0a (0≠a );=-p a (0≠a ).2)实数运算规则:先算乘除后算加减,带括号的先算括号.3)数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.两个负数比较大小,绝对值大的反而小.例题:计算:1301()20.1252009|1|2--⨯++-= ;比较大小:73_____1010--.3.整式及其因式分解方法:1. 提公因式法:=++mc mb ma .2.公式法: (1) 平方差公式:=-22b a ;(2)完全平方和公式: =+2)(b a ;(3)完全平方差公式:=-2)(b a ; 实数有理数 无理数: 整数正整数 负整数 0 如2,π=3.14159…, 718.2=e ,无限不循环小数.分数:正分数、负分数. 自然数(4)立方和公式:=+33b a ;(5)立方差公式:=-33b a .3.十字相乘法:()=+++pq x q p x 2 .4.因式分解的一般步骤:一“提”(取公因式),二“用”(公式).例题:1)(08乌鲁木齐)若0a >且2x a =,3y a =,则x y a -的值为【 】A .1-B .1C .23D .32 2)(08江西)先化简后求值:若x =-21,则x (x +2)-(x +1)(x -1)= .3)(2010广州)因式分解:3ab 2+a 2b = .4)(08茂名)分解因式:3x 2-27= .5)(08凉山)分解因式2232ab a b a -+= .6)十字相乘法分解因式:(1) 562++a a = ; (2) 21372-+x x = ;(3) 542++-x x = ; (4) 81032++-x x = .7)已知2310x x -+=,求331x x +的值.8)已知1=+b a ,3-=ab ,求()2b a -的值.4.分式与根式:1)分式有意义,要求分母不为0;二次根式要求被开方数大于或等于0.2)分式“分母中有根式”的情况:化简时,要把分母中的根式化为有理式,采取分子、分母同时乘以一个根式进行化简.即,分母有理化. 例如,323+分母有理化:3(23)(23)(23)-+-,23+与23-叫做互为有理化因式,利用平方差公式. 例题:1)当x 时,分式11x x +-有意义;二次根式1a -中,字母a 的取值范围是 .2)将下列分式化简:(1)a 1,)0(>a ;(2)222 (0)2x y x y x y x x y --÷>>;(3)11223231+-+-.【巩固与拓展】1.(08芜湖)若23(2)0m n -++=,则2m n +的值为【 】A .4-B .1-C .0D .42.已知|12|+x 的值为5,则x 的值为 【 】A .2B .3-C .32或-D .32-或3.(08宁夏)下列各式运算正确的是 【 】A .2-1=-21 B .23=6 C .22·23=26 D .(23)2=26 4.(2010广州)若a <1,化简2(1)1a --=【 】A .a -2B .2-aC .aD .-a 5.(06南昌)计算:1233-= .6.(06南通)式子2x x -有意义的x 取值范围是 . 7.已知 31=-x x ,则221x x + = .8.(08芜湖)已知113xy -=,则代数式21422x xy yx xy y ----的值为 . 9.(1) 已知32=+b a ,2=ab ,求32232ab b a b a ++的值;(2) 已知,23,4-=-=-y x y x 求2234y xy x +-的值.10.化简计算: (1) 113(184)2323-+÷- (2) 22122(25)352⋅--++11.已知21=-x x ,求331x x -的值。
第二章 实 数 思维图解+综合与实践 利用估算解决代数式求值问题 知识考点梳理课件北师大版数学八上
第二章 实 数
本章内容要点
9 个关键概念:无理数,算术平方根,平方根,开平方
,立方根,开立方,实数,二次根式,最简二次根式
3 个重要定理:平方根的性质,立方根的性质,二次根
式的性质
3 个常见运算:无理数的估算,实数的运算,二次根式
的运算
1 个重要关系:实数与数轴的关系
4 个核心素养:抽象能力,几何直观,运算能力,模型
12=23.
综上所述,c(a-b-6)+12 的值为 1 或 23.
综合与实践
[点拨] 解题的关键在于根据题目的条件结合无理数的
估算得到各字母的值.
减,有括号先算括号内的
加法交换律、结合律,乘法
运算律 交换律、结合律和分配律
综合与实践
利用估算解决代数式求值问题
初中阶段综合与实践领域,可采用项目式学习的方式,
让学生从一个新的角度(估算)解决代数式求值问题,完
善学生思考问题的方向,同时有助于提升学生的应用意识.
综合与实践
例
观察:因为 < < ,即 2< <3,所以
也不含能开得尽方的因数或
最简二 因式,这样的二次根式,叫
次根式 做最简二次根式
第二章 实 数
单
元
思
维
图
解
乘法
· = (a≥0,b≥0)
除法
实
数
二
次
根
式
=
(a≥0,b>0)
方法:先化简为最简二次根式,
再合并被开方数相同的项
运算
加减法
混合
运算
实质:合并被开方数相同的二
次根式
顺序:先乘方,再乘除,后加
初中数学数与式的复习概括
数与式一.实数和代数式的有关概念1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式与多项式统称为整式。
单项式:只含有数与字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
中考数学专题:实数与代数式
专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
实数与代数式初中数学教案
实数与代数式初中数学教案一、教学目标:1.了解实数的概念和性质。
2.学习代数式的基本知识和运算方法。
3.掌握实数和代数式的应用。
二、教学内容:1.实数的概念和性质:(1)实数的含义:实数指的是可以用于度量和数量关系的数。
这些数包括自然数、整数、有理数、无理数等。
(2)实数的性质:①可加性:实数之间可以进行加法运算。
②可乘性:实数之间可以进行乘法运算。
③可对比性:实数之间可以进行大小比较。
④稠密性:在任意两个不同实数之间,都可以找到一个实数。
2.代数式的基本知识和运算方法:(1)代数式的含义:代数式指的是数和字母的组合,例如2x+3y。
(2)代数式的基本构成:数、字母、符号(+、-、×、÷)。
(3)代数式的运算法则:加、减、乘、除、分配律、结合律、交换律、分数的加减、乘除等。
(4)字母的运算:提取公因数、移项、合并同类项、配方法等。
3.实数和代数式的应用:(1)实数的应用:计算、大小比较、平均数、方差、分布等。
(2)代数式的应用:解方程、解不等式、求根、构造模型等。
三、教学方法:1.讲解法:讲解实数的概念和性质,介绍实数的应用场景。
2.演示法:演示代数式的构成、运算法则和应用。
3.实践法:进行计算、推导、解题和建模等实践操作。
四、教学步骤:1.实数的概念和性质。
2.代数式的构成和运算法则。
3.实数和代数式的应用。
4.实践操作和应用实例。
五、教学评估:1.课堂讨论:讨论实数和代数式的概念、性质和运算方法。
2.小组合作:小组合作完成代数式的构造和运算实践任务。
3.个人测试:个人测试实数和代数式的应用和解题操作。
六、教学资源:1.教材:《初中数学》等。
2.多媒体教具:电脑、投影仪、智能白板等。
3.实践工具:纸笔计算器、模型材料等。
七、教学反思:本次教学实践主要围绕实数和代数式的概念、性质、构成、应用和实践进行,主要采用讲解法、演示法和实践法。
通过教学实践,学生了解了实数的含义和性质,掌握了代数式的构成和基本运算方法,同时还进行了实际计算、推导和建模等学习实践操作。
代数式——知识篇
成 一项 叫做合 并同类 项 . 合并 的法 则
是 把 系 数 相 加 . 得 的 结 果 作 为 合 并 所
铀 + Ⅱ6 n - 6 6 6 6
因 此 中 间 省 略 号 部 分 的 式 子
为 一 ab 6 1 4 3+ n6 a 3 b.
第 一条 : 当k O时, 函数 图象 “ > 的 两个 分 支分 别在 第 一 、三象 限 内. 在每 个 象 限 内, 自变 量 z 逐渐增 大时. y的值 则 随 着逐
学好高中数学也
补 充省 略 号 部 分 的 内容 .
单项式 、 多项式统称 为整式 , 在整 式 的运算 中要 注意同类 项和合并 同类
项 的处 理 .把 多项 式 中 的 同 类 项 合 并
阅读 ,在 语 文 中要抓 住精
炼 的或 生 动 形 象 的词 与 句 , 而 在数 学 中 。则应抓 住关键 的词
—
—
1
读 时 抓 住 关键 词 语 的 重 要 性。
()、 1 ( /a) (≥0 ; n )
,
是 代 数 式 运 算 中 的 重 点 知 识 . 类 整 这
式 的 化 简整理 在 高 中二项 式 定 理 中
一
有 着重要 的应 用 ; 对于 整式的 运算要 掌握 整式 的幂运 算 法则 , 合并 同类 项 法 则 . 能根据 乘 法公 式的结 构特 点 并
化 简 整 式.
式 的化简常用 以下两种 方法 :1利 用 () 除法法 则 :2 利 用分式 的 基本性 质. ()
全平方公式 .乘法公式的学习是数学恒等变换的重要工具和手段 , 作为恒等变换的五个方
面, 在理解和熟练掌握初 中的二个公式 的基础上再拓展 三个乘法公式显得十分必要 , 只有
实数与代数式
实数与代数式实数的相关组成:1、 有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。
如2.337×107的有效数字为4位,分别为2、3、3、7,而0.238×108的有效数字为3位。
例:近似数.25万精确到 位;有效数字分别是2、科学计数法:数学术语,na ⨯10的形式。
将一个数字表示成 (na ⨯10的形式),其中a ≤<110,n 表示整数。
注意:难点在于将一个数表示成要求有小数字固定的方式:如23366600表示为有效数字4位:则为2.337×107。
如果是精确到小数点后4位,则为2.3367×107例:2014年,我国火电企业的平均煤耗继续为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为 毫克/千瓦时3、数轴:规定了原点、正方向、单位长度的直线称为数轴,数轴上的每一个点都表示一个实数。
例:如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A 、-4B 、-2C 、0D 、44、相反数与倒数:(1)若,a b 互为相反数,则a b +=0(2)若,a b 互为倒数,则a b ⨯=1,0没有倒数(分母不为0) 例:-3的相反数是 ,-13的倒数是 5、三种重要的非负数:实数的绝对值:a ;实数的偶次幂:,a a 24;算术根等:a ≥0()y z +++=2350,则x y z ++=26、平方根:任何正数的平方根有两个,他们互为相反数,0的平方根是0,负数没有平方根。
即a a a a 算术平方根为的平方根为),0(≥±。
= ,16的平方根为 ,16的算术平方根为的算术平方根为重点:二次根式1)⎪⎩⎪⎨⎧≤-=≥==)0()0(0)0(2a a a a a a a2)a 存在,必有0≥a ,a ≥0 7、立方根任何实数都有立方根,且值是唯一的。
初中数学实数与代数式概念及运算(第二讲)
6.若a 4 3,b 4 3,求 a b 的值. a ab a b
点评
此题的关键点是能够将a转化为 a
2
,进而可将式子类
似分解因式进行变化、约分,达到简化计算的目的.
实数的运算
7.计算
1.
1
2
1
0
3 1
2 1 2
2.
12005
1
0.5
31
22
cos
600
4
0
3
分式的化简求值
(4)二次根式:式子
叫做二次根式
(5)最简二次根式:如果一个二次根式同时满足:①被开 方数的因数是整数,因式是整式;②被开方数中不含开 得尽方的因数或因式,这样的二次根式叫做最简二次 根式.
(6)同类二次根式:几个二次根式化为最简二次根式后, 如果它们的被开方数相同,则称这几个二次根式是同 类二次根式.
方根;0的平方根是0.
(2)算术平方根:正数a的正平方根,叫做a的算术平
方方根根记,0的作算: a术a平方0根是0;一个非负数a的算术平
(3)立方根:如果一个数的立方等于a那么这个数
是a的立方根.记作3:a .正数有一个正的立方根,
负数有一个负的立方根,0的立方根是0.
根式
1.根式t;4/3.
点评 求字母的取值范围是中考中常考内容之一,方 法是综合考虑各种因素条件,取所有解集的公共部分.
2.下列各式中属于最简二次根式的是 ( ) A
A. x2 1 B. x2 y5 C. 12 D. 0.5
点评 此题主要考查最简二次根式的概念,判断一个二次根 式是不是最简二次根式必须按其定义中的两个条件,进行判 定,本题A选项中虽然有二次项,但就整体而言,没有能开得 尽方的因式,所以是最简二次根式.
代数式ppt
THANKS
感谢观看
代数式可以用来表示数据之间的关 系,如线性回归分析、相关分析等 。
02
代数式的分类和表示
代数式的分类
按照项数
单项式、多项式
按照次数
一次式、二次式、三次式、...
按照系数
整数系数代数式、有理数系数代数 式、实数系数代数式、复数系数代 数式
代数式的表示方法
文字表达式
用文字描述代数式的形式和运 算关系
代数式的形式
代数式的形式可以是一个多项式、分式或其他类型的函数。
解代数式的方法
代入法
方程法
将已知值代入代数式中,求出未知数的值。
将代数式转化为方程,通过解方程求出未知 数的值。
因式分解法
特殊值法
将多项式进行因式分解,转化为几个简单多 项式的乘积,然后求解。
对于一些比较复杂或无法直接求解的代数式 ,可以尝试通过特殊值法来求解。
组间交叉
将代数式中的各项分组, 每组之间有相同的因式, 通过交叉相乘等方法,将 多项式进行因式分解。
代数式的合并同类项
同类项的概念
如果代数式中的两项具有相同的幂次数和相同的字母系数,则称 为同类项。
合并同类项的方法
将代数式中的同类项进行合并,计算它们的系数和指数,得到一 个新的多项式。
合并同类项的步骤
要点二
代数式在函数中的应 用
利用代数式表示函数解析式,进而研 究函数的性质,如单调性、奇偶性等 。
要点三
代数式在数列中的应 用
利用代数式表示数列的项,进而研究 数列的通项公式、求和公式等。
06
代数式和方程的关系
方程的定义
方程是用来表示两个量相等的数学式子,其中含有未知数。
实数(单元复习)标准教案
实数(单元复习)标准教案第一章:实数的概念与分类1.1 实数的定义与性质理解实数的定义:实数是包括有理数和无理数的所有数。
掌握实数的性质:实数具有加法、减法、乘法、除法等运算性质,以及相反数、绝对值等概念。
1.2 实数的分类掌握有理数:整数和分数的统称,包括正整数、负整数、正分数、负分数。
理解无理数:不能表示为两个整数比的数,如π和√2等。
第二章:实数的运算2.1 实数的加减法掌握加减法的运算规则:同号相加减去绝对值,异号相加减去绝对值较大的数。
能够熟练进行实数的加减法运算。
2.2 实数的乘除法掌握乘除法的运算规则:同号相乘除为正,异号相乘除为负。
能够熟练进行实数的乘除法运算。
第三章:实数的倒数与绝对值3.1 实数的倒数理解倒数的概念:一个数的倒数是1除以该数。
能够求出一个实数的倒数。
3.2 实数的绝对值理解绝对值的概念:一个数的绝对值是该数到原点的距离。
能够求出一个实数的绝对值。
第四章:实数的大小比较4.1 实数的大小比较法则掌握实数的大小比较法则:正实数大于负实数,负实数大于正实数,两个正实数比较大小按数值大小比较。
能够判断两个实数的大小关系。
4.2 实数的排序理解实数排序的方法:按数值大小进行排序。
能够对给定的实数进行排序。
第五章:实数的应用5.1 实数在几何中的应用理解实数在几何中的应用:坐标系中点的坐标表示。
能够利用实数表示几何图形中的点、线、面等。
5.2 实数在生活中的应用理解实数在生活中中的应用:长度、面积、体积等量的表示。
能够运用实数解决实际问题。
第六章:实数的乘方与开方6.1 实数的乘方理解乘方的概念:一个数的乘方是该数自乘的结果。
能够计算实数的乘方。
6.2 实数的开方理解开方的概念:一个数的开方是该数的平方根。
能够计算实数的开方。
第七章:实数与代数式的运算7.1 实数与代数式的加减法掌握实数与代数式加减法的运算规则:同类项相加减,不同类项不能直接相加减。
能够熟练进行实数与代数式的加减法运算。
代数式知识点
代数式是数学中的重要概念,在解决实际问题和推导数学公式时起到了关键作用。
通过代数式,我们可以将数学问题抽象化,用字母和符号来表示数值和关系,从而更好地理解和解决问题。
本文将一步一步介绍代数式的基本概念和常见知识点。
1.代数式的定义代数式是由数字、字母和运算符号组成的表达式,用来表示数值和数值之间的关系。
代数式中的字母通常代表未知数,可以是任意实数。
代数式的结构由运算符和括号决定,可以包含加法、减法、乘法、除法等基本运算。
2.代数式的分类代数式可以根据字母和数字的个数进行分类。
一元代数式只包含一个字母和数字,例如2x+3;二元代数式包含两个字母和数字,例如2x+y;多元代数式包含多个字母和数字,例如2x+y+z。
3.代数式的运算代数式可以进行各种运算,包括合并同类项、因式分解、展开等。
合并同类项是将具有相同字母的项相加或相减,例如2x+3x可以合并为5x。
因式分解是将代数式分解为乘积的形式,例如x2+2x可以因式分解为x(x+2)。
展开是将代数式的乘积展开为和的形式,例如(x+2)(x+3)可以展开为x2+5x+6。
4.代数式的求解代数式可以用来解决实际问题,例如通过建立方程来求解未知数的值。
通过观察问题的条件和关系,可以将问题转化为代数式,并通过求解代数式来得到答案。
例如,一个长方形的面积为30平方米,已知宽度是x米,可以建立代数式x*(30/x)=30来求解长度。
5.代数式的应用代数式在数学和科学中有广泛的应用。
代数式可以用来描述物理规律、经济关系、几何定理等。
例如,用代数式可以描述物体的运动规律,建立经济模型来分析市场供需关系,推导几何定理来证明几何问题等。
6.代数式的扩展除了基本的代数式,还有一些扩展的代数知识点。
例如,多项式是由多个项相加或相减构成的代数式,例如2x^2+3x+1。
方程是等式中含有未知数的代数式,例如2x+3=7。
不等式是含有不等号的代数式,例如2x+3>5。
这些扩展的代数概念在高中和大学数学中有重要的地位。
中考知识点实数与代数式的转化
中考知识点实数与代数式的转化实数是数学中的一个重要概念,代数式则是运用实数进行数学推理和计算的工具。
实数与代数式之间存在着密切的联系和转化关系。
了解实数与代数式之间的转化方法,能够更好地解决与实数和代数式有关的问题。
一、实数与代数式的基本概念实数是数学中最基本的概念之一,包括有理数和无理数。
有理数是可以表示为两个整数之比的数,包括整数、分数和整数部分为零的小数。
无理数则是不能表示为两个整数之比的数,如π 和√2 等。
代数式是用数和字母按照一定规则组成的式子,可以表示数的关系和运算过程。
二、实数转化为代数式的方法1. 分数的转化当要把一个分数转化为代数式时,可以用字母代替分子和分母,形成含有字母的代数式。
例如,把3/4 转化为代数式,则可以表示为a/b。
2. 平方根的转化当要把一个平方根转化为代数式时,可以用字母代替根号下的数,并平方,得到含有字母的代数式。
例如,把√2 转化为代数式,则可以表示为 a^2。
3. 近似数的转化当要把一个近似数转化为代数式时,可以用字母代替近似数,并保留必要的位数。
例如,把 3.14 转化为代数式,则可以表示为 a。
三、代数式转化为实数的方法1. 代数式的计算对于已知的代数式,可以通过代入数值的方式进行计算,得到实数结果。
例如,对于代数式 2x+3,当 x=2 时,通过计算可得实数结果为7。
2. 几何图形的面积和周长对于求几何图形的面积和周长的问题,往往需要通过代数式转化为实数计算。
例如,求矩形的面积,可以用代数式 l×w 表示,其中 l 代表矩形的长度,w 代表矩形的宽度。
将长度和宽度代入代数式,即可得到矩形的面积。
综上所述,实数与代数式之间存在着紧密的联系和转化关系。
通过实数转化为代数式和代数式转化为实数的方法,可以更好地解决与实数和代数式有关的问题。
在中考中,掌握实数与代数式的转化方法,能够帮助我们更好地理解和应用数学知识,提高解题能力。
九年级中考总复习之1实数与代数式
九年级中考总复习(1)实数& 代数式内容概要1.1 实数1.2 代数式1.3 因式分解1.4 分式1.5 二次根式正分数复习笔记1、实数的分类(1)实数的常见两种分类如下:①实数 ②实数(2)无理数:无限不循环小数即为无理数.2、相关概念(1)相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数.0的相反数为0. (a ,b 互为相反数,则a b =-或0a b +=)(2)倒数:如果两个数乘积为1,那么称其中一个数为另一个数的倒数.(a ,b 互为倒数,则1a b=或1a b ⋅=)(3)平方根:如果一个数的平方等于a ,那么这个数叫做a 的平方根.正数的平方根有两个,0的平方根为0.(4)算术平方根:正数的正平方根和0的平方根,统称算术平方根. (5)立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.3、数轴与绝对值(1)数轴:规定了原点、单位长度和正方向的直线叫做数轴.实数与数轴上的点一、一对应. 数轴三要素:原点、正方向和单位长度.整数负无理数负分数自然数正实数 0 负实数(2)绝对值:绝对值的几何意义:x 表示数轴上x 到原点的距离.绝对值的代数意义:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值为0.即:0||000x x x x xx ⎧>⎪⎪==⎨⎪⎪-<⎩. (3)数轴上A 、B 两点之间的距离公式:||||AB a b =-.4、准确数与近似数(1)与实际完全符合的数称为准确数.例如,班里有50名同学,50是一个准确数.与实际接近的数称为近似数.例如,化学老师体重为100公斤,100是一个近似数. (2)科学计数法:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.(3)有效数字:从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字.(4)精确到**位: 例如,6045.012这个近似数各个数位如下,最后一位是千分位,即精确到到千分位.(注意“带单位”题型)5、实数运算六则运算运算顺序:先乘方、开方,再乘除,最后加减.同级运算从左向右.有括号的先算括号里面的,绝对值运算优先级等同于括号.课堂例题1、现有以下五个结论:①有理数包括所有正数、负数和0;②若两个数互为相反数,则它们相除的商等于-1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数则乘积为负数.其中正确的有__________个.2、如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列式子中成立的是( ) A .m −1 < n −1 B .−m < −n C .|m |−|n | > 0 D .m +n < 03、实数a 满足||0a a +=,且1a ≠-,那么11a a -+的值等于__________.4、已知a ,b ,c 为有理数,且0a b c +-=,0abc <,则b c a c a ba b c--+++的值为__________.5、PM 2.5是指大气中直径小于或等于32.510-⨯毫米的颗粒物,也称为可入肺颗粒物,把32.510-⨯用小数形式表示正确的是( )A .0.000025B .0.00025C .0.0025D .0.0256、关于近似数32.410⨯,下列说法正确的是( )A .精确到十分位,有2个有效数字B .精确到百位,有4个有效数字C .精确到百位,有2个有效数字D .精确到十分位,有4个有效数字7、如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数,例如,6的不包括自身的所有因数为1,2,3,且6=1+2+3,所以6是完全数;大约2200多年前,欧几里德提出:若2n -1是质数,则2n -1(2n -1)是一个完全数(n 为正整数),请根据这个结论写出6之后的下一个完全数是__________.8、一般的,如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:由于23=8,所以3是以2为底8的对数,记作log 28=3;由于a 1=a ,所以1是以a 为底a 的对数,记作log a a =1. 对数作为一种运算,有如下的运算性质:如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M •N )=log a M +log a N ; (2)log aMN=log a M -log a N ; (3)log a M n =nlog a M .根据上面的运算性质,计算log 2(47×25)+log 26-log 23的结果是__________.9、下列说法中:①1的算术平方根是±1;②只有正数才有平方根;③任何数都有立方根;④正数a 的算术平方根一定小于a ;⑤a 的立方根与a 的乘积一定是非负数.其中正确的是__________.(填写正确结论的序号)10=__________.11、已知实数a ,b ,c 满足b -c 的平方根等于它本身,则a __________.12232,小数部分为2). (1a ,那么a =__________;(2)如果10b c -=+,其中b 是整数,且01c <<,那么b =__________,c =__________.13、我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果(30a b -+=,其中a 、b 为有理数,那么a =__________,b =__________;(2)如果(2(15a b -=,其中a 、b 为有理数,求a+2b 的值.14、定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3-5i )=(2+3)+(1-5)i =5-4i ; (1+i )×(2-i )=1×2-i +2×i -i 2=2+(-1+2)i +1=3+i ; 根据以上信息,下列各式:①i 3=-1; ②i 4=1; ③(1+i )×(3-4i )=-1-i ; ④i +i 2+i 3+i 4+……+i 2019=-1. 其中正确的是__________(填上所有正确答案的序号).课堂练习1、数轴上A 、B 、C 三点所代表的数分别是a ,1,c 且|1||1|||c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为( ) A .B .C .D .2、受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是( ) A .28×105B .2.8×106C .2.8×105D .0.28×1053、我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .13264、十进制数278,记作278(10),其实278(10)=2×102+7×101+8×100,二进制数101(2)=1×22+0×21+1×20.有一个k (0<k ≤10为整数)进制数165(k ),把它的三个数字顺序颠倒得到的k 进制数561(k )是原数的3倍,则k =__________.5、取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有__________.6、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若AM 2=BM •AB ,BN 2=AN •AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b −a =2时,a ,b 的大黄金数与小黄金数之差m −n =__________.7、根据下列材料,解答问题. 等比数列求和:概念:对于一列数a 1,a 2,a 3,…a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即1k k aa -=q (常数),那么这一列数a 1,a 2,a 3,…a n ,…成等比数列,这一常数q 叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和, 解:令S =1+3+32+33+…+3100 则3S =3+32+33+…+3100+3101因此,3S -S =3101-1,所以S =101312-即1+3+32+33…+3100=101312- 仿照例题,等比数列1,5,52,53,…,52018的和为__________.8、把下列各数分别填入相应的集合里:3.1415926,3.131331333133331…(每两个1之间依次多一个3),2270.1010010001……0.3,2π-,0. 有理数集合:{ }; 无理数集合:{ }; 正实数集合:{ }; 整数集合: { }.9、以下四个命题:①若aaa 是整数,a__________.(填写正确结论的序号)10、已知a -1=20172+20182=__________.11、在平面直角坐标系中,任意两点A (a ,b ),B (c ,d ),定义一种运算:A *B =[(3-c ,若A (9,-1),且A *B =(12,-2),则点B 的坐标是__________.12、b 2的整数部分,若关于x 的方程3(x +4)=2a +5的解大于x 的方程(41)(34)43a x a x +-=的解,求a +b 的取值范围是__________.13、若a 、b 均为整数,当x 1时,代数式x 2+ax +b 的值为0,则a b 的算术平方根为__________.14、小数可分为有限小数和无限小数.无限小数中有循环小数和不循环小数,其中无限不循环小数即为无理数,那么无限循环小数又是什么呢?其实所有的循环小数都是可以化为分数的. 下面提供一种方法:比如0.40.44444....∙=,令0.4x ∙=,那么10 4.4 4.44444....x ∙==,104x x -=,那么94x =,49x =. 请你用类似的方法解决,把下列循环小数化为分数. (1)0.13∙∙(2)1.24∙复习笔记1、代数式(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把__________或表示__________连接而成的式子叫做代数式.(2)代数式的值:用__________代替代数式里的字母,按照代数式里的运算关系,计算后所得的叫做代数式的值.2、整式(1)单项式:由数与字母的__________组成的代数式叫做单项式(单独一个数或__________也是单项式).单项式中的__________叫做这个单项式的系数;单项式中的所有字母的__________叫做这个单项式的次数.(2)多项式:几个单项式的__________叫做多项式.在多项式中,每个单项式叫做多项式的__________,其中次数最高的项的__________叫做这个多项式的次数.不含字母的项叫做__________. (3)整式:__________与__________统称整式.(4)同类项:在一个多项式中,所含__________相同并且相同字母的__________也分别相等的项叫做同类项.合并同类项的法则是____________________.3、整式的乘法&除法(1)单项式乘以单项式:把单项式的系数和字母分别相乘.(2)单项式乘以多项式/多项式乘以多项式:根据乘法分配律,分别进行单项式乘以单项式的运算,最后把所得的积相加.(3)单项式除以单项式:把__________、__________分别相除后,作为商的因式;对于只在被除数里含有的字母,则连同它的指数一起作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加. (5)乘法公式:平方差: ()()a b a b +-=____________________. 完全平方: 2()a b +=____________________;2()a b -=____________________.4、幂的运算幂:求几个相同因数的积的运算叫做乘方;n个a相乘表示为n a,乘方的结果叫做幂.在n a中,a叫做底数,n叫做指数.课堂例题1、如果21(2)213axy a y xy ---+是三次三项式,则a =__________,最高次项是__________,常数项是__________,二次项系数是__________.2、若322255(21)()3x ax x x ax x b --+=+--+,其中a ,b 为整数,则a b +之值为__________.3、若关于x 的多项式22251x ax bx x -++--的值与x 无关,则a b +的值__________.4、当1x =时,代数式31342ax bx -+的值是7,则当1x =-时,这个代数式的值是__________.5、若x ,y 满足224250x y x y +--+=,则23x y x -的值是__________.6、(1)若25n a =,216n b =,则()n ab =__________;(2)已知9n +1−32n =72,则n =__________; (3)(3+x )2-x =1,则x =__________;(4)已知6x =192,32y =192,则(-2017)(x -1)(y -1)-2=__________.7、灵活运用完全平方公式222()2a b a ab b +=++和222()2a b a ab b -=-+等,可以实现ab ,a b +,a b -,22a b +的转换(知二得四):比如,已知m 为正实数,且13m m -=,则221m m+=__________.8、(1)若x +y =10,xy =1,则x 3y +xy 3的值是__________;(2)已知(2019)(2018)2017a a --=,则22(2019)(2018)a a -+-=__________.9、如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =10,ab =20.则图中阴影部分的面积为__________.10、已知x =,y =,求代数式226x xy y ++的值.11、当多项式x 2-4xy +5y 2-6y +13取最小值时,代数式(-x -y )2-(-y +x )(x +y )-2xy 的值为__________.12、一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:m =n =0时,我们称使得2323m n m n++=+成立的一对数m ,n 为“相伴数对”,记为(m ,n ). (1)若(m ,1)是“相伴数对”,则m =__________; (2)若(m ,n )是“相伴数对”,则代数式154m -[n +12(6-12n -15m )]的值为__________.13、设52345012345(1)x a a x a x a x a x a x -=+++++.求下列式子的值: (1)0a ;(2)12345a a a a a ++++; (3)135a a a ++.14、把四张形状、大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为m,宽为n的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含n的式子表示出图②中两块阴影部分的周长和?__________(填“能”或“不能”);(2)若能,请你用只含n的式子表示出图②中两块阴影部分的周长和,若不能,请说明理由.15、观察下列算式,尝试问题解决:杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5..)的计算结果中的各项系数:(1)请根据上题中的杨辉三角系数集,仔细观察下列各式中系数的规律,并填空:(a+b)1=a+b各项系数之和1+1=2=21(a+b)2=a2+2ab+b2各项系数之和1+2+1=4=22(a+b)3=a3+3a2b+3ab2+b3各项系数之和1+3+3+1=8=23.①请补全下面展开式的系数:(a-b)6=a6+_____a5b+15a4b2+_____a3b3+15a2b4-6ab5+b6;②请写出(a+b)10各项系数之和:__________;(2)设(x+1)17=a17x17+a16x16+…+a1x+a0,求a1+a2+a3+…+a16+a17的值;(3)你能在(2)的基础上求出a2+a4+a6+…+a14+a16的值吗?若能,请写出过程.课堂练习1、在下列各式的变形中,正确的是( )A .22()()x y y x x y ---+=--B .2223(1)4x x x --=--C .111x x-=- D .1()x y y x --=-2、已知当32x =时,代数式53ax bx cx x +++的值为1,那么当32x =-时,该代数式的值是__________.3、若237a b -=,2ab =,则代数式23a b +的值是__________.4、若实数x 满足x 2−−1=0,则221x x +=__________.5、若13x x +=,则221x x+=__________,2421x x x ++=__________.6、已知x =,y =,则22x xy y ++的值为__________.7、若关于x 的多项式26x px --含有因式3x -,则实数p 的值为__________.8、在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):____________________________________________________________,证明上述速算方法的正确性.上课笔记1、因式分解的定义:就是把一个多项式化为几个整式的__________的形式.分解因式要进行到每一个因式都不能再分解为止.2、因式分解的方法: 示例提公因式法: ()ma mb mc m a b c ++=++公 式 法: 22()()a b a b a b -=+- 2222()a ab b a b ±+=±分组分解法: 1()(1)(1)(1)(1)(1)ab a b ab a b a b b a b +++=+++=+++=++十字相乘法: 2()()()11x p q x pq x p x q q p+++=++3、因式分解的步骤:一般来说,因式分解的步骤为一提(公因式),二用(公式),三分组(分组分解). 对于形如二次三项式的可以考虑十字相乘法进行因式分解.课堂例题1、对下列各式进行因式分解:21222x x ++=__________; 44x -=__________(实数范围内); 4244x x -+=__________; 2222x y x y -++=__________;2221x y x -++=__________; 232793a a a +--=__________.2、已知29x mx -+是完全平方式,则m =__________.3、若a =2019x +2017,b =2019x +2018,c =2019x +2019,则a 2+b 2+c 2-ab -bc -ca 的值为__________.4、设219918a =⨯,2288830b =-,221053747c =-,则数a ,b ,c 按从小到大的顺序排列,结果是__________.5、若多项式x 2-mx +n (m 、n 是常数)分解因式后,有一个因式是x -3,则3m -n 的值为__________.6、若a 3+3a 2+a =0,则363261a a a ++=__________.7、已知a ,b ,c 分别是∆ABC 的三边长,且满足2a 4+2b 4+c 4=2a 2c 2+2b 2c 2,则∆ABC 是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .等腰三角形或直角三角形8、给出三个多项式:①2x2+4x−4 ;②2x2+12x+4 ;③2x2−4x,请把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.9、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2−(a−b)2,则下列结论:①若a@b=0,则a=0或b=0;②a@(b+c)=a@b+a@c;③不存在实数a,b,满足a@b=a2+5b2;④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③课堂练习1、若2916x ax ++是完全平方式,则a =__________.2、若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是__________.(写出一个即可)3、已知x 2+x =3,则2018+2x +x 2-2x 3-x 4=__________.4、已知∆ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足等式3(a 2+b 2+c 2)=(a +b +c )2,则该三角形是__________三角形.5、已知x 、y 均为实数,且满足xy +x +y =17,x 2y +xy 2=66,则x 4+x 3y +x 2y 2+xy 3+y 4=__________.6、设y =kx ,是否存在实数k ,使得代数式2222222(43)4()x y x y x x y +--)(-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.7、设681×2019−681×2018=a ,2015×2016−2013×2018=b c ,则a ,b ,c 的大小关系是( )A .b <c <aB .a <c <bC .b <a <cD .c <b <a8、发现与探索.(1)根据小明的解答将下列各式因式分解小明的解答:a2-6a+5=a2-6a+9-9+5=(a-3)2-4=(a-5)(a-1)①a2-12a+20=__________________________________________________________________________;②(a-1)2-8(a-1)+7=______________________________________________________________;③a2-6ab+5b2=__________________________________________________________________________.(2)根据小丽的思考解决下列问题:小丽的思考:代数式(a-3)2+4无论a取何值(a-3)2都大于等于0,再加上4,则代数式(a-3)2+4大于等于4,则(a-3)2+4有最小值为4.①说明:代数式a2-12a+20的最小值为-16.②请仿照小丽的思考解释代数式-(a+1)2+8的最大值为8,并求代数式-a2+12a-8的最大值.复习笔记1、分式的定义:(1)分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含__________,那么称AB 为分式. (2)分式有无意义:若__________,则A B 有意义;若__________,则AB无意义;若__________,则AB =0.2、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的___________. 用式子表示为______________________________.约分:把一个分式的分子和分母的__________约去,这种变形称为分式的约分.公分母:通分时一般取各分母的系数的最小公倍数与各分母所有字母的最高次幂的积为公分母. 通分:根据分式的基本性质,把异分母的分式化为__________的分式,这一过程称为分式的通分.3、分式的基本运算:分式的运算类似于分数的运算.分式的加减:①同分母分式加减:分母不变,分子相加减;②异分母分式加减:找公分母,化为同分母,再进行①同分母的运算. 分式的乘除:①分式相乘,分子、分母分别相乘;②分式相除,化为乘法——乘以除数的倒数,再进行①的运算.4、比例:成比例:若::a b c d =,则称a 、b 、c 、d 成比例.其中,a 、d 叫比例外项,b 、c 叫做比例內项,d 叫做第四比例项.基本性质:两内项之积等与两外项之积.合比性质:若a c b d =,则有a kb c kd b d ++=,特别地,有a b c d b d ++=和a b c d b d --=. 等比性质:若==a c e k b d f ==,则有+e a c a ck b d f b d++===++(其中0b d f +++≠),特别地, 若a c b d =,则有a c ab d b+=+(其中0b d +≠).课堂例题1、已知关于x 的分式235x x x a--+,当x =2时,分式无意义,则a =__________,当6a <时,使分式无意义的x 的值共有__________个.2、当11112,3,4......,2018,,,,......,2342018x =时,可分别算出代数式221x x +的值,则所得的结果的和是__________.3、已知a ,b ,c 满足a +b +c =0,abc =8,那么1a +1b +1c的值是( )A .正数B .零C .负数D .正、负不能确定4、a ,b ,c 均不为0,若x y a -=y z b -=z xc-=abc <0,则P (ab ,bc )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5、先化简分式22222936931a a a a a a a a a ---÷-+++-,然后在0、1、2、3中选一个你喜欢的a 值,代入求值.6、已知a b c a b d a c d b c dm d c b a++++++++====,则m 值为__________.7、在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如1112323=-⨯,5112323=+⨯.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如111(1)1x x x x =-++,仿照上述方法,若分式232xx x --可以拆分成12A B x x ++-的形式,那么(B +1)-(A +1)=__________.8、阅读下面材料,并解答问题.材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b =-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b )∵对应任意x ,上述等式均成立,∴113a a b -=⎧⎨+=⎩,∴a =2,b =1.∴42231x x x --+-+=222(1)(2)11x x x -+++-+=2222(1)(2)111x x x x -+++-+-+=x 2+2+211x -+. 这样,分式42231x x x --+-+被拆分成了一个整式(x 2+2)与一个分式211x -+的和.解答:(1)将分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试求422681x x x --+-+( | x |<1 )的最小值;(3)如果211x x -+的值为整数,求x 的整数值.课堂练习1、化简:221()4a ab b a b -÷=__________.2、化简求值:22421441a a a a a -+÷--++,并选择一个自己喜欢的数代入求值.3、已知123x y -=,分式4322x xy yx xy y+-+-的值为__________.4、若实数a ,b ,c 满足条件1a +1b +1c =1a b c++,则a ,b ,c 中( )A .必有两个数相等B .必有两个数互为相反的数C .必有两个数互为倒数D .每两个数都不等5、已知22(1)20(1)(2)x xy x y -+-=++,则1xy +1(1)(1)x y +++……+1(2018)(2018)x y ++的值是__________. 6、已知x b c a +-=y c a b +-=za b c+-,则(b -c )x +(c -a )y +(a -b )z 的值为__________.7、已知a ,b ,c 为非零实数,且a +b +c ≠0,当a b c a b c a b c c b a +--+-++==时,求()()()a b b c c a abc+++的值.8、(1)已知A =11a ++11b +,B =1a a ++1b b +,若A =B ,求a 、b 之间的关系式; (2)已知a 、b 、c 都是正数,P =11a ++11b ++11c +,Q =1bc bc ++1ac ac ++1abab +,若P =Q ,那么a 、b 、c之间有什么关系?试证明你的结论.复习笔记1、二次根式的定义:0)a ≥,a 可以是数也可以是式子.2、二次根式的性质:(1)2a =;(2(0)(0)aa a aa ≥⎧==⎨-<⎩.3、最简二次根式:、不含开的尽方的因数或因式的二同类二次根式:化为最简二次根式后,根号内的部分相同,则为同类二次根式.0)a ≥等.4、二次根式的计算:(1)乘除计算:=0a ≥,0b >); ②步骤:定符号→内乘内,外乘外→化简(目标最简二次根式). (2)加减计算:步骤:化为最简二次根式→合并同类二次根式.5、2(),||,三个“非负”的式子.显然,若2()||0+,那么每一项必定为0.课堂例题1a 的值是__________.2、无论x m 的取值范围为__________.3、(1)当-1<a <0时,则=__________;(2)若a b =0且ab ≠0,则ab的值为__________.42=__________.5、已知m ,n 是两个连续自然数(m <n ),且q =mn .设p p ( ) A .总是奇数 B .总是偶数C .有时是奇数,有时是偶数D .有时是有理数,有时是无理数6、若实数a ,b ,c |2|a b +-=abc =__________.7、已知a 、b 3a =+1a b =-+,则ab 的值为__________.8、若|2017-m m ,则m -20172=__________.9=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是__________.10、如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =2,DE =1,BD =8,设CD =x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小;(3)根据(211m 、n ,是m 2+n 2=x 且mnx ±变成m 2+n 2±2mn =(m ±n )2解:∵3+2+)2+2×1=(2请你仿照上面的方法,化简下列各式:(1;(2.12、公元3ra +得到近似值.他的算法是:先131212≈+=⨯,由近似值公式得到131********-≈+=⨯; (577)408时,近似公式中的a 是__________,r 是__________.课堂练习1、已知∆ABC 的三边a ,b ,c 满足2|2|1025a a =+,则∆ABC 为( ) A .等腰三角形 B .正三角形 C .直角三角形 D .等腰直角三角形2、(121440b b -+=,则221a b ++=__________; (2)已知x ,y 都是有理数,并且满足2217x y +=-__________.3__________.4、已知:2x __________.5、已知非零实数a ,b 满足24242a b a -++=,求a b +的值为__________.6、设正整数a ,m ,n a ,m ,n 的取值( ) A .有一组 B .有二组 C .多于二组 D .不存在7、若x >0,y >0=的值是__________.8、古希腊的几何学家海伦(约公元50年)在研究中发现:如果一个三角形的三边长分别为a ,b ,c ,那么三角形的面积S 与a ,b ,c 之间的关系式是S P =+2a b c+.若三角形的三边长分别为4,6,8,则该三角形的面积为__________.20181)≥⨯的n 可以取得的最小整数是__________.。
实数与代数式知识点
2.单项式:数字与字母的积的代数式叫做单项式。单独一个数字或字母也是单项式。数字因数叫单项式的系数;所有字母指数的和叫做单项式的次数。
3.多项式:几个单项式的和叫做多项式。每一个单项式就是其中一项;单项式的次数为几就称为几次项,不含字母的项叫做常数项。次数最高的项的次数为多项式次数。
二、二次根式的性质
1.一个非负数的算数平方根的平方等于这个非负数本身
2.一个数的平方的算术平方根等于这个数的绝对值
3.一个非负数的算术平方根等于这个数本身
4.二次根式的双重非负性:对于二次根式,其被开方数 ,它的值
2、二次根式的运算性质
1.积的算术平方根等于算术平方根的积其中每个因式都是非负的
2.商的算数平方根等于被除式的算术平方根除以除式的算术平方根,其中被除式是非负数,除式是正数
2.加法交换律、结合律,乘法交换律、结合律、分配率在实数运算中仍然适用。
3.实数的混合运算顺序:先乘方和开方,再乘除,后加减;有括号先算括号里面的。
4、实数的大小比较
1.一般比较法:正数大于0,0大于负数,正数大于负数;两个正数绝对值大的数就大,两个负数中绝对值大的反而小。
2.数轴比较法:数轴的正方向指向右方,则数轴上右边的点表示的数要大于左边的点表示的数。
2.小数的科学计数法:对于一个大于0小于1的数,用科学计数法表示成a 的形式,其中 ,n为负整数,n的绝对值为原数左起第一个非0数前所有0的个数(包括小数点前的0)。
3.近似数:一个与近似数很接近但又有差别的数。一般的,一个近似数四舍五入到哪一位,就说这个数精确到哪一位。
3、实数的运算(高频考点)
1.在实数范围内进行加、减、乘、除、乘方五种运算,可对非负数进行开平方运算,对实数进行开立方运算。
初中数学知识归纳数与代数式的关系与计算
初中数学知识归纳数与代数式的关系与计算数与代数式是初中数学中非常基础但也非常重要的概念。
理解数和代数式之间的关系以及如何计算它们,对于学习进一步的数学知识起着关键的作用。
本文将对初中数学中数与代数式的关系进行归纳,并介绍一些计算方法和技巧。
1. 数与代数式的概念数是数学中最基本的概念之一,它用于计量和表示事物的数量。
在数的概念中,我们学习了自然数、整数、有理数和实数等不同类型的数,并且了解了它们之间的运算规则和性质。
代数式是由数及运算符号构成的表达式,它可以用来表示数的关系和运算。
代数式中的数称为系数,而运算符号可以是加、减、乘、除等。
代数式是解决问题和推理的重要工具,它可以帮助我们进行数学运算和推导出未知数的值。
2. 数与代数式的关系数和代数式之间有一定的联系和互通性。
具体而言,代数式可以用数进行计算和求解,而数也可以用代数式进行表示和推导。
例如,设有一个代数式3x表示一个数与3的乘积。
如果我们将x 赋予一个具体的数值,比如x=2,那么代数式3x就可以计算出一个具体的数值6。
反过来,如果我们知道代数式3x等于6,我们可以通过代数运算推导出未知数x的值为2。
这说明数和代数式是密切相关的,代数式可以表示数的关系和运算规律,而数可以通过代数式进行计算和求解。
3. 数与代数式的计算在数与代数式的计算中,我们需要掌握一些基本的技巧和方法。
下面将介绍一些常见的计算规则和技巧。
3.1 简化和展开代数式当给定一个复杂的代数式时,我们常常需要对其进行简化或展开。
简化代数式是指将其化简为更简单的形式,而展开代数式是将其分解成更复杂的形式。
例如,对于代数式3(x+2)-2x,我们可以先展开括号,得到3x+6-2x。
然后合并同类项,得到x+6。
这就是代数式的简化形式。
3.2 代数式的运算在代数式的运算中,我们需要掌握加减乘除等基本运算规则,并且注意运算的顺序。
例如,对于代数式2x+3y-4z,如果给定x=2,y=3,z=1,那么我们可以根据代数式进行计算,得到2(2)+3(3)-4(1) = 4+9-4 = 9。
数与代数式的关系
数与代数式的关系一、引言数学作为一门科学,研究的是数量、结构、空间以及变化等概念和现象,在其中数与代数式是非常重要的概念之一。
本文将探讨数与代数式之间的关系,引导读者深入理解这两个概念以及它们之间的联系。
二、数的概念数作为一种抽象的概念,用来表示事物的数量。
数可以分为自然数、整数、有理数、无理数和实数等多种类型。
自然数是最基本的数,表示没有负数和小数的整数;整数包括自然数以及它们的相反数;有理数是可以表示为两个整数的比值的数;无理数是不能被有理数表示为比值的数;实数是有理数和无理数的集合。
三、代数式的概念代数式是由数、字母和运算符号组成的表达式,用来表示数与未知数之间的关系。
代数式可以包括加法、减法、乘法和除法等运算符号,通常用字母表示未知数。
代数式可以用来解决实际问题,并且可以进行各种运算,如代数式的化简、合并同类项等。
四、数和代数式的关系数和代数式之间有着密切的关系,它们相互依存、相互影响。
具体表现在以下几个方面:1. 数可以用来表示代数式中的常数,如代数式2x表示一个数2与未知数x的乘积。
2. 代数式可以包括数,比如2 + x就是一个代数式,其中的2就是一个数。
3. 数可以用来求解代数式的值,如给定x = 3,代入代数式2x中可以得到2 * 3 = 6。
4. 代数式可以进行运算,得到新的代数式。
这些运算包括代数式的化简、合并同类项、因式分解等。
这些运算可以帮助我们更好地理解数和代数式之间的关系,从而解决实际问题。
五、数与代数式的应用举例数与代数式的关系在实际问题中有着广泛的应用。
以下是几个例子:1. 找出连续三个整数的和:设第一个整数为x,则其余两个整数分别为x+1和x+2。
根据问题中的要求,可以得到代数式为x + (x + 1) + (x + 2),化简后得到3x + 3。
根据问题中所给条件,可以求得这三个连续整数的和。
2. 求解一元二次方程的根:一元二次方程可以表示为ax^2 + bx + c= 0的形式,其中a、b、c为已知常数,x为未知数。
实数全章知识点总结
实数全章知识点总结1. 实数的定义和性质实数是指所有的正数、负数、零以及所有有理数和无理数的总称,即实数包括有理数和无理数。
有理数是可以用分数表示的数,无理数是不能用分数表示的数,它们的和、差、积和商都是实数。
实数可以用有理数和无理数的集合表示为R={x | x是有理数或无理数}。
实数具有以下性质:(1)实数集合是有序的,即任意两个实数都可以比较大小;(2)实数集合是稠密的,即任意两个不相等的实数之间必定存在有理数和无理数;(3)实数集合是完备的,即实数集合中的任何一个有界非空集合都有上确界和下确界。
2. 实数的运算规则(1)加法与减法:实数的加法和减法满足交换律、结合律和分配律,即对任意的实数a、b和c,有a+b=b+a,a+(b+c)=(a+b)+c,a(b+c)=ab+ac;(2)乘法与除法:实数的乘法和除法满足交换律、结合律和分配律,即对任意的实数a、b和c,有ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac;(3)幂运算:实数的幂运算满足幂运算法则,即对任意的实数a、b和c,有a^0=1,a^1=a,a^m·a^n=a^(m+n),(a^m)^n=a^(mn),(ab)^n=a^n·b^n。
3. 实数的代数式代数式是由实数和各种运算符号组合而成的式子,包括有理数和无理数等。
实数的代数式可以进行加减乘除和幂运算,可以用代数式表示各种数学问题,如方程、不等式和函数等,是数学中非常重要的基本概念之一。
4. 实数的绝对值实数的绝对值是指实数到原点的距离,记作|a|,如果a≥0,则|a|=a,如果a<0,则|a|=-a。
实数的绝对值有以下性质:(1)非负性:对任意的实数a,有|a|≥0;(2)非负性:对任意的实数a,有|a|=0当且仅当a=0;(3)三角不等式:对任意的实数a和b,有|a+b|≤|a|+|b|。
5. 实数的大小关系实数的大小关系是研究实数大小顺序的一门数学理论。
初中数学实数代数式整式知识点归纳
第一章 数与式第⼀节 实数考点⼀:实数的分类与实数的有关概念<实数的分类>实数:是有理数和⽆理数的总称。
定义为与数轴上的点相对应的数。
有理数:整数和分数统称为有理数整数:正整数、零和负整数统称为整数正数:⼤于零的数,正数前⾯可以放上正号“+”来表⽰(常省略不写)负数:⼩于零的数,⽤⼤于零的数前⾯放上负号“-”来表⽰0既不是正数也不是负数分数:正分数、负分数统称为分数⽆理数:⽆限不循环⼩数叫⽆理数。
即⾮有理数之实数,不能写作两整数之⽐。
若将它写成⼩数形式,⼩数点之后的数字有⽆限多个,并且不会循环。
常见的⽆理数有⼤部分的平⽅根、π等。
<数轴、相反数、绝对值、倒数>数轴:规定了原点、单位长度和正⽅向的直线叫做数轴。
任何⼀个有理数都可以在数轴上表⽰。
相反数:如果两个数只有符号不同,那么我们称其中⼀个数为另⼀个数的相反数,也称这两个数互为相反数。
零的相反数是零。
数轴上,表⽰互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
绝对值:把⼀个数载数轴上对应的点到原点的距离叫做这个数的绝对值。
⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;零的绝对值是零。
互为相反数的两个数的绝对值相等。
在数轴上表⽰的两个数,右边的数总⽐左边的数⼤。
倒数:如果两个数互为倒数,则它们的乘积为1。
注意:1.零没有倒数2.求分数的倒数,就是把分数的分⼦分母颠倒位置。
⼀个带分数要先化成假分数。
3.正数的倒数是正数,负数的倒数是负数。
⾃然数⽆理数实数<平⽅根、算术平⽅根、⽴⽅根>平⽅根:⼀般地如果⼀个数的平⽅等于a,那么这个数叫做a的平⽅根,也叫a的⼆次⽅根.⼀个正数有正负两个平⽅根,它们互为相反数;0的平⽅根是0;负数没有平⽅根。
开平⽅:求⼀个数的平⽅根的运算叫做开平⽅。
开平⽅是平⽅运算的逆运算,因此,可以运⽤平⽅运算求⼀个数的平⽅根。
算数平⽅根:正数的正平⽅根称为算数平⽅根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较 (3分)1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数, ,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a ba b a b a b a b a<⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
第二章 代数式考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m aa a n m n m +=∙ ),(都是正整数)(n m aa m n n m = )()(都是正整数nb a ab n nn =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a aa a a p p ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
考点三、因式分解 (11分)1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。
考点四、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 考点五、二次根式 (初中数学基础,分值很大)1、二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥∙=b a b a ab(4))0,0(≥≥=b a ba b a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。