稀土永磁材料

合集下载

(整理)稀土永磁材料概述

(整理)稀土永磁材料概述

稀土永磁材料概述从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类材料成为磁性材料。

它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。

硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。

由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。

古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。

近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。

永磁材料性能要求永磁材料的主要性能是由以下几个参数决定的1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。

这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。

1.2.2饱和磁化强度:是永磁材料极为重要的参数。

永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。

1.2.3矫顽力:铁磁体磁化到饱和后,使它的磁化强度或磁感应强度降低到零所需要的反向外磁场称为矫顽力。

它表征材料抵抗退磁作用的本领。

1.2.4剩磁:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的剩余磁化强度或剩余磁感应强度称为剩磁。

1.2.5居里温度:强铁磁体由铁磁性和亚铁磁性转变为顺磁性的临界温度称为居里温度或居里点。

居里温度高标志着永磁材料的使用温度也高。

稀土永磁材料的主要类型至今,稀土永磁材料已有两大类、三代产品第一大类是稀土-钻合金系(即RE-Co永磁),它又包括两代产品。

稀土永磁的原理

稀土永磁的原理

稀土永磁的原理稀土永磁材料,也称为稀土永磁体,是一种具有特殊磁性的材料。

它们之所以被称为稀土永磁材料,是因为它们的主要成分是稀土金属和一些过渡金属。

稀土元素是指周期表中镧系元素和钇系元素,包括镧(La)、铈(Ce)、钕(Nd)、钐(Sm)、铽(Eu)、镝(Gd)、钆(Tb)、铽(Dy)、镝(Ho)、铒(Er)、铥(Tm)、镱(Yb)和钇(Y)等。

这些元素具有独特的电子结构和磁性特性,使得稀土永磁材料具有较高的剩余磁化强度和矫顽力,可以产生强大的磁场。

稀土永磁材料的磁性原理主要有两个方面:劈裂自旋模型和交换耦合模型。

劈裂自旋模型是指当稀土金属离子处于晶体场中时,由于晶体场的作用,电子轨道分裂成多个能级。

这些能级与稀土离子的自旋角动量相耦合,形成了不同的劈裂自旋状态(也称为多重态)。

而这些不同的自旋状态又可以通过外界磁场的作用进行转变。

当外界磁场施加到稀土永磁材料上时,它会导致自旋状态的跃迁,从而产生磁化强度和矫顽力。

交换耦合模型是指稀土永磁材料中,稀土金属离子之间存在着交换相互作用。

这种交换相互作用可以使得稀土金属离子的自旋有序排列,形成类似于铁磁体的磁性结构。

而这种自旋有序排列又可以通过外界磁场的作用进行调控。

当外界磁场施加到稀土永磁材料上时,它会改变稀土金属离子之间的相互作用,从而调控磁性结构,产生强大的磁场。

总的来说,稀土永磁材料的磁性原理是由稀土金属离子的电子结构和磁性相互作用决定的。

既有劈裂自旋模型的能级跃迁,又有交换耦合模型的自旋有序排列。

这些效应的综合作用使得稀土永磁材料具有特殊的磁性特性,成为目前磁性材料中的重要一类。

稀土永磁材料在实际应用中广泛用于电机、发电、电子设备、计算机等领域。

因为稀土永磁材料具有较高的磁化强度和矫顽力,可以产生强大的磁场。

此外,稀土永磁材料还具有良好的抗腐蚀性能、高温稳定性和低温稳定性,适用于各种特殊环境。

然而,稀土永磁材料也存在一些问题,比如资源紧缺、价格高昂、环境污染等。

稀土永磁材料分类

稀土永磁材料分类

稀土永磁材料分类
稀土永磁材料是被外磁场磁化后,去掉外磁场仍能保持高剩磁的材料,由稀土元素与过渡金属组成的合金构成。

根据成分的不同,可分为以下几种:
- 钕铁硼磁体:于1980年代初投入商业应用,作为稀土永磁材料,具有高磁能积,矫顽力和高能量密度,机械性能好,是世界上最强的永磁材料,因此在现代已广泛应用。

但是由于其易氧化、易腐蚀,因此要对其表面进行电镀处理。

- 钐钴磁铁:根据其成分分为SmCo5和Sm2Co17。

钐钴磁铁磁铁主要特性是高磁积、高矫顽力和优秀的温度特性,也是第一代与第二代稀土永磁。

但是因为含有稀土元素钐和钴,因此价格比较高,应用范围被价格限制,一般适合应用在高温领域。

- 铁氧体磁铁:主要原料包括BaFe12O19和SrFe12O19。

与其他磁性材料相比,铁氧体磁铁质地坚硬但是比较脆,磁性能低,体积较大。

但是其生产工艺简单、价格很低,耐热性好,所以也被得到广泛的应用。

- 铝镍钴磁铁:由铝,镍,钴,铁和其他微量金属元素构成的一种合金。

具有良好的可加工性,通过铸造工艺可以制成各种尺寸和形状。

具有最低的可逆温度系数,其工作温度可高达600摄氏度。

广泛用于各种仪器和其他应用中。

此外,稀土永磁材料还包括钐铁氮(SmFeN)等种类。

这些材料具有不同的性能和特点,适用于不同的应用领域。

稀土永磁的材料

稀土永磁的材料
稀土永磁材料是指稀土金属和过渡族金属 形成的合金经一定的工艺制成的永磁材料。
第一代稀土永磁材料
ReCo5(SmCo5)
第二代稀土永磁材料
Re2TM17
第三代稀土永磁材料
Nd-Fe-B
R-Fe-B系的置换
若以R2(Fe1-xMx)14B为基
R可为Y、Nd、Pr、Gd、 Dy
Pr2Fe14C
M可为Al、Si、Cr、Mn、
矫顽力Hc相当大,磁能积(BH)max相当高 难于磁化,难于退磁 特点:宽磁滞回线、高矫顽力、高剩磁
实际应用中,永磁材 料工作于深度磁饱和 及充磁后磁滞回线的 第二象限退磁部分。
常用的永磁材料:
铝镍钴系 铁铬钴系 永磁合金 永磁合金
永磁铁氧 复合永磁

材料
稀土目前 已经探明的稀土资源量约为6588万吨。
稀土在军事、冶金工业、石油化工、玻 璃陶瓷和新材料方面有广泛的用途,被 称为“工业维生素”或“工业黄金”。
4.5.2永磁材料 (permanent magnetic material)
永磁材料,指材料被外磁场磁化以后,去 掉磁场仍保持着较强的剩磁的磁性材料。
4.5稀土永磁材料
4.5.1稀土(Re或R)
镧系【镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷 (Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、 镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、 镥(Lu)】
钪(Sc)、钇(Y)
稀土元素一般分为轻稀土和重稀土。
(铸造磁体的基材)Co、Ni、Cu、Ga、Ge
B可完全置换为C
4.5.4稀土永磁材料的应用
电-机械转换(电机、发电机、计算机VCM) 电-声转换(音响器件、电话) 磁-机械力或转矩(磁分离、磁悬浮列车) 微波器件、电子束、离子束聚焦 传感器、电信号传输、转变 医疗及生物(磁共振成像仪) 其它应用(磁性销钉、真空技术)

稀土永磁发展历程

稀土永磁发展历程

稀土永磁发展历程稀土永磁是指利用稀土元素制造的永磁材料,具有高磁能积和高矫顽力的特点。

稀土永磁材料的发展历程可以追溯到20世纪70年代,在过去的几十年里取得了长足的发展。

20世纪70年代至80年代初,最先被发现的稀土永磁材料是钕铁硼磁体。

在当时,这种磁体具有较高的磁能积和矫顽力,被广泛应用于电动机、电声器件和计算机磁盘驱动器等领域。

然而,钕铁硼材料中稀土元素的贵价和供应困难限制了其大规模应用。

从80年代中期开始,发展出一种新的稀土永磁材料——钕铁硼—铽稀土磁体。

铽是一种较为丰富且低价的稀土元素,可以减少制造成本和稀土的依赖性。

钕铁硼—铽稀土磁体具有更高的磁能积和矫顽力,逐渐取代了传统的钕铁硼磁体,并在汽车、风力发电和家电等领域得到广泛应用。

随着科技的进步和需求的增加,人们对永磁材料的性能提出了更高要求。

于是,人们开始研发更高性能的稀土永磁材料。

1991年,日本学者开发出了镝铁硼材料,被称为世界上最高的磁能积材料。

镝铁硼材料具有极高的磁矫顽力和磁能积,广泛应用于高端电机、高性能机械和航天航空等领域。

随着稀土永磁材料的不断发展,人们开始关注永磁材料的稳定性和环境适应性。

2008年,欧盟制定了限制稀土元素的进出口政策,导致稀土永磁材料的价格大幅上涨。

为了解决这个问题,研究者开始寻找替代稀土元素的方法。

在2010年左右,研发出了磁针石型和磁铁矿型永磁材料,不再依赖稀土元素。

这些材料具有较低的成本和较好的环境适应性,满足了新能源汽车、节能家电和智能制造等领域的需求。

当前,稀土永磁材料已成为各行各业不可或缺的关键材料。

随着科技的进步,人们对永磁材料的性能需求不断提高。

未来,稀土永磁材料还将继续改良和发展,以满足社会对高性能永磁材料的需求。

总之,稀土永磁材料的发展历程可以追溯到20世纪70年代,经历了钕铁硼磁体、钕铁硼—铽稀土磁体、镝铁硼材料和替代稀土元素永磁材料等阶段。

随着需求和技术的不断变化,稀土永磁材料也在不断发展,为各行各业带来了巨大的贡献。

稀土永磁材料

稀土永磁材料
稀土永磁分为:钐钴(SmCo)永磁体和钕铁硼(NdFeB)永磁体。其中SmCo磁体的磁能积在15--30MGOe之间, NdFeB系磁体的磁能积在27--50MGOe之间,被称为“永磁王”,是磁性最高的永磁材料。钐钴永磁体,尽管其磁 性能优异,但含有储量稀少的稀土金属钐和钴稀缺、昂贵的战略金属钴,因此,它的发展受到了很大的限制。我 国稀土永磁行业的发展始于60年代末,当时的主导产品是钐-钴永磁,钐-钴永磁体世界销售量为630吨,我国为 90.5吨(包括SmCo磁粉),主要用于军工技术。
稀土永磁材料
永磁材料中含有作为合金元素的稀土金属
01 定义
03 特性 05 技术参数
Байду номын сангаас
目录
02 分类 04 应用
稀土永磁材料,即永磁材料中含有作为合金元素的稀土金属。永磁材料是指把磁化后撤去外磁场而能长期保 持较强磁性。
定义
稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结, 经磁场充磁后制得的一种磁性材料。
随着科技的进步,稀土永磁材料不仅应用计算机、汽车、仪器、仪表、家用电器、石油化工、医疗保健、航 空航天等行业中的各种微特电机,以及核磁共振设备、电器件、磁分离设备、磁力机械、磁疗器械等需产生强间 隙磁场的元器件中,而且风力发电、新能源汽车、变频家电、节能电梯、节能石油抽油机等新兴领域对高端稀土 永磁材料的需求日益增长,应用市场空间巨大。
技术参数
钕铁硼永磁材料的物理性能 密度 G/cm³ 7.4-7.6 热传导系数 Kcal/m.h.℃ 7.7 居里温度 ℃ ≥312 维氏硬度 530 抗压强度 Kg/㎜2 80 抗弯强度 Kb/㎜2 24 杨氏模量 Kg/㎜2 1.7×104 电阻率.m 14×105 回复磁导率 1.05 热膨胀系数 C11 3.4×10-6 /c1-4.8×10-6

稀土永磁材料的性能与结构

稀土永磁材料的性能与结构

稀土永磁材料的性能与结构稀土永磁材料是一类特殊的磁性材料,其以稀土元素为主要成分,具有较高的磁能积和矫顽力,被广泛应用于电动机、发电机、磁制冷、声学设备等领域。

它们的性能与结构密切相关,在下面我将详细介绍稀土永磁材料的性能及其与结构之间的关系。

首先,稀土永磁材料的性能受到其晶体结构的影响。

稀土永磁材料多为金属间化合物,其晶体结构可以分为三类:纳结构、逆磁结构和超晶格结构。

纳结构材料是最常见的一类稀土永磁材料,其具有多晶结构,晶粒间有较小的间隙,能够允许磁矩的旋转,使其具有较高的剩磁和矫顽力。

逆磁结构材料中,稀土元素的磁矩方向与其他元素的磁矩方向相反,这种结构能够减小晶格中的磁偶极作用,从而提高材料的磁软化和磁稳定性。

超晶格结构材料则是利用稀土元素和非稀土元素形成晶格交错的结构,能够通过调整不同元素的比例来改变材料的磁性能。

其次,稀土永磁材料的性能与晶体结构中的微观缺陷和磁畴的形成和排列密切相关。

稀土永磁材料中晶格中常常存在晶格扭曲、格点位移等微观缺陷,这些缺陷会影响到晶体的磁性能。

另外,磁畴是稀土永磁材料中磁矩排列有序的区域,其中磁矩之间具有较强的相互作用。

稀土永磁材料在加工过程中通常会出现磁畴的尺寸减小、磁畴的磁相互关联以及磁畴壁的移动等现象,这些变化会影响到材料的磁饱和磁化强度和矫顽力。

此外,氧化物包裹和稀土合金形成等结构工程也会对稀土永磁材料的性能产生显著影响。

稀土永磁材料常常由于氧化等原因引起的微观缺陷,导致对磁矩的影响更大。

通过掺杂适量的氧化物衍生出的包裹薄膜可以有效地减小这些缺陷对磁性能的影响。

此外,稀土合金形成也可以通过引入其他元素来改变晶体结构和磁性能,例如,通过在稀土永磁材料中引入铁、锰等不同元素形成稀土合金,可以改变材料的磁性能。

总之,稀土永磁材料的性能与结构紧密相关。

晶体结构、微观缺陷和磁畴的形成及排列方式等因素对材料的磁饱和磁化强度、矫顽力和磁稳定性等性能产生显著影响。

这些影响因素的进一步研究有助于开发出更具优异性能的稀土永磁材料,并拓展其在新能源、高效电机和磁记录等领域的应用。

稀土永磁材料课件

稀土永磁材料课件

磨、粘结等加工成各种形状和尺寸的磁体。
03
稀土永磁材料的种类和应用
钕铁硼永磁材料
总结词
具有高剩磁、高矫顽力和高磁能积等特 点,是目前应用最广泛的稀土永磁材料 。
VS
详细描述
钕铁硼永磁材料是以金属钕、铁、硼为主 要成分的永磁体,其剩磁、矫顽力和磁能 积等性能指标均优于其他稀土永磁材料。 由于其优异的磁性能和较低的生产成本, 钕铁硼永磁材料广泛应用于汽车、电子、 能源、环保等领域,如电动机、发电机、 风力发电机、传感器等。
技术创新需求
随着科技的不断进步,对稀土永磁材料性能的要求也越来越高, 需要不断进行技术创新和研发。
对未来研究和应用的建议
1 2
加强资源开发与环境保护
加大稀土资源的勘探和开发力度,同时加强环境 保护措施,降低对环境的负面影响。
降低制造成本
通过技术创新和规模化生产等方式,降低稀土永 磁材料的制造成本,促进其在更多领域的应用。
铝镍钴永磁材料
总结词
具有较高的磁性能和稳定的温度特性,但制造成本较高。
详细描述
铝镍钴永磁材料是以铝、镍、钴为主要成分的永磁体,其剩 磁和矫顽力较高,且温度稳定性较好。由于其较高的制造成 本,铝镍钴永磁材料主要用于高精度和高性能的领域,如航 空航天、医疗设备等。
铁氧体永磁材料
总结词
具有成本低廉、环保等优点,但磁性能相对较低。
能保持较高的磁化强度。
高磁能积
磁能积是衡量磁体储存磁场能量 的能力,稀土永磁材料具有高磁 能积,可以提供更大的磁场能量。
物理特性
居里点高
居里点是磁性材料失去磁性的温度点,稀土永磁材料的居里点较 高,使其在高温环境下仍能保持磁性。
热稳定性好

稀土功能材料简介

稀土功能材料简介

稀土功能材料简介稀土元素具有独特的原子结构和化学性质,可以制备出多种具有特殊性能的功能材料。

本文将介绍一些主要的稀土功能材料。

1.稀土永磁材料稀土永磁材料是指利用稀土元素制成的永久磁性材料,具有高磁能积、高矫顽力和高最大磁能积等特点。

常见的稀土永磁材料包括钐钴永磁体和钕铁硼永磁体等。

2.稀土发光材料稀土发光材料是指利用稀土元素具有的独特电子结构,在激发条件下能够发出不同颜色和波长的光。

常见的稀土发光材料包括荧光粉、激光晶体和电致发光材料等。

3.稀土催化材料稀土催化材料是指利用稀土元素的化学活性,在催化剂或助剂中发挥作用,提高反应效率和产率。

常见的稀土催化材料包括汽车尾气处理催化剂、石油裂化催化剂等。

4.稀土超导材料稀土超导材料是指利用稀土元素的超导性能,在低温下具有零电阻和完全抗磁性。

常见的稀土超导材料包括镧钡铜氧化物等。

5.稀土储氢材料稀土储氢材料是指利用稀土元素的储氢性能,在吸氢状态下能够将氢气储存起来,并且可以在需要时释放出来。

常见的稀土储氢材料包括镧镍合金等。

6.稀土磁致伸缩材料稀土磁致伸缩材料是指利用稀土元素的磁致伸缩性能,在磁场作用下能够产生伸缩变化。

常见的稀土磁致伸缩材料包括铽铁氮合金等。

7.稀土抛光材料稀土抛光材料是指利用稀土元素的化学稳定性和微粒大小,在抛光液中发挥作用,使表面更加光滑亮丽。

常见的稀土抛光材料包括氧化铈颗粒等。

8.稀土玻璃添加剂稀土玻璃添加剂是指利用稀土元素的玻璃形成能力,在玻璃制造过程中改善玻璃的性能和光学性质。

常见的稀土玻璃添加剂包括镧玻璃、铈玻璃等。

稀土永磁材料

稀土永磁材料

稀土永磁材料稀土永磁材料是一类具有高磁能积和良好磁学性能的永磁材料,是目前应用最为广泛的永磁材料之一。

稀土永磁材料由稀土金属和过渡金属组成,具有较高的矫顽力和剩磁,因此在现代工业和生活中得到了广泛的应用。

稀土永磁材料的发展历史可以追溯到上世纪60年代,当时美国和日本首先开发出了永磁铁氧体材料。

随着科技的不断进步,稀土永磁材料的种类和性能不断得到提升,如钕铁硼磁体、钬铁硼磁体等,这些材料在电机、传感器、声学器件等领域发挥着重要作用。

稀土永磁材料的主要特点包括高磁能积、良好的磁学性能、较高的矫顽力和剩磁。

其中,高磁能积是指在单位体积内储存的磁能的多少,是衡量永磁材料性能优劣的重要指标之一。

良好的磁学性能则表现为磁化强度高、磁化曲线近似矩形等特点,这些性能决定了稀土永磁材料在电机等设备中的使用效果。

此外,较高的矫顽力和剩磁也使得稀土永磁材料在磁性传感器、磁记录和声学器件等领域有着广泛的应用。

稀土永磁材料的应用范围非常广泛。

在电机领域,它可以用于制造各种类型的电机,如交流电机、直流电机、步进电机等,使得电机具有更小的体积和更高的效率。

在传感器领域,稀土永磁材料可以用于制造磁性传感器,如霍尔传感器、磁致伸缩传感器等,用于测量磁场强度、位置和速度等参数。

在声学器件领域,稀土永磁材料可以用于制造扬声器、麦克风等,提高声学设备的性能。

然而,稀土永磁材料也存在一些问题。

首先,稀土永磁材料的生产过程对环境造成了一定的污染,稀土元素的开采和提炼过程会产生大量的废水和废渣。

其次,稀土永磁材料的价格较高,这使得一些应用领域难以承受。

因此,研发更环保、更经济的永磁材料成为了当前的研究热点之一。

总的来说,稀土永磁材料作为一种重要的永磁材料,在现代工业和生活中扮演着重要的角色。

随着科技的不断进步,相信稀土永磁材料的性能和应用领域会得到进一步的拓展,为人类社会的发展做出更大的贡献。

稀土永磁材料课件

稀土永磁材料课件

稀土永磁材料课件一、引言二、稀土永磁材料的基本原理稀土永磁材料是指由稀土金属中的镧系元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu)和过渡金属(Fe、Co和Ni)组成的合金材料。

稀土元素具有较高的磁矩和较长的磁矩相互作用距离,从而在合金中形成了强磁性。

过渡金属元素则起到稳定稀土元素磁矩方向的作用。

三、稀土永磁材料的性能特点1.高矫顽力和高剩磁:稀土永磁材料具有较高的矫顽力,能够产生大的剩磁,使其在应用中具有强大的磁场吸附力。

2.高耐热性:稀土永磁材料具有良好的耐热性,能在较高温度下保持较高的矫顽力和剩磁。

3.高抗蚀性:稀土永磁材料具有抗腐蚀性能,能够在恶劣的环境中长期稳定运行。

4.尺寸稳定性好:稀土永磁材料具有较低的热膨胀系数和热稳定性,尺寸变化小,使其在精密仪器和设备中得到广泛应用。

四、稀土永磁材料的应用领域1.电机和发电机:稀土永磁材料广泛应用于电机和发电机,能够提高其转矩和效率,使其更小、更轻、更省电。

2.汽车工业:稀土永磁材料在车辆驱动电机、刹车系统和悬挂系统等方面应用广泛,能够提高汽车性能和燃油效率。

3.磁性材料领域:稀土永磁材料能够制造出具有特殊磁性的材料,应用于磁记录介质、磁性传感器、磁力吸附器等方面。

4.医疗设备:稀土永磁材料在医疗设备中应用于核磁共振成像、磁导航和磁控释药技术等方面,提高了医疗设备的精度和效果。

5.环保领域:稀土永磁材料在风力发电机、太阳能光伏系统等可再生能源方面的应用能够提高能量转化效率和环保性能。

五、总结稀土永磁材料是一种具有高矫顽力和高剩磁的永磁材料,其性能特点包括高矫顽力、高剩磁、高耐热性、高抗蚀性和尺寸稳定性好。

稀土永磁材料在电机、汽车工业、磁性材料、医疗设备和环保领域等方面得到广泛应用,并对现代科技和工业发展具有重要意义。

以上是稀土永磁材料课件的内容,希望对您的学习有所帮助。

谢谢!。

稀土永磁材料

稀土永磁材料

பைடு நூலகம்
Al、Cu和Si原子是没有磁矩的,这些元素对分子磁矩的影响,可用简单的稀释模型来描述,即有
实验结果表明,当T=Si或Al时,其磁化强度的降低比简单稀释模型降低得更快些。
原因:这种现象与这些元素取代后,改变了某些晶位Fe原子的局域环境有关,减弱了某些晶位Fe原子与相邻原子的交换作用强度,使铁3d能带展宽程度减弱,因而使铁的正3d能带的电子数减少。
1
2
不同成分的Nd-Fe-B系合金对应不同的最佳回火温度。
小 结
实验结果表明,NdFeB系永磁合金的热处理工艺对其非结构敏感参数影响非常大,尤其是对矫顽力。同样组分的合金回火处理比烧结态的合金有更好的磁性能,且二级回火处理比一级回火处理更好。而回火处理过程中t1和t2与τ2对其磁性能的影响也很显著,且它们之间有一定的关联,可以通过调节得到最佳的回火处理条件。当然,合金组分对回火条件的要求也是不一样的。
轻 稀 土
重 稀 土
随着温度的升高,M分子一直降低。
在某一温度范围内,随温度的升高, 的提高比 的提高慢,因此在该温度范围内,就出现了M分子随温度升高而升高的现象。
各向异性粉末和各向异性粘结磁体
Nd-Fe-B永磁的防锈处理技术
耐热Nd-Fe-B永磁材料
高(BH)m Nd-Fe-B永磁材料
01
材料具有高的Js是材料获得高的Br和高(BH)m的基础。
02
材料的Js是由原子磁矩µJ和分子磁矩M分子来决定的。
03
2
1
根据稀土金属间化合物的自发磁化理论,当RE2Fe14B化合物中原子磁矩µJ存在共线关系时,则它们的原子磁矩与分子磁矩有如下关系:
对于重稀土化合物
对于轻稀土化合物

钐铁氮,粘结钕铁硼,烧结钕铁硼

钐铁氮,粘结钕铁硼,烧结钕铁硼

《钐铁氮、粘结钕铁硼和烧结钕铁硼的深度探讨》在当今科技发展日新月异的时代,稀土永磁材料在电力、电子、军工、汽车等领域的应用越发广泛,其中钐铁氮、粘结钕铁硼和烧结钕铁硼等材料更是备受瞩目。

本文将就这三类稀土永磁材料进行一次全面深入的探讨,旨在帮助读者更全面地了解它们的特性、应用和发展前景。

1. 钐铁氮钐铁氮是一种典型的稀土永磁材料,其具有优异的磁性能和热稳定性,被广泛应用于电机、发电机、传感器等领域。

它的主要特点在于高磁能积和良好的磁温稳定性,是目前永磁材料中的佼佼者。

另外,钐铁氮在高温下依然能保持较高的磁性能,这为其在汽车发动机、风力发电等高温环境下的应用提供了可能。

2. 粘结钕铁硼粘结钕铁硼是钕铁硼永磁材料的一种,其具有较高的磁能积和矫顽力,是目前商业化应用最为广泛的永磁材料之一。

与传统的铸态钕铁硼相比,粘结钕铁硼不仅具有更高的磁性能,而且其成型加工更加方便灵活,可以制成各种形状和尺寸的磁铁。

粘结钕铁硼在电机、仪器仪表、声学器件等领域具有广泛的应用前景。

3. 烧结钕铁硼烧结钕铁硼是目前永磁材料中性能最为优越的一种,其具有极高的磁能积、较高的矫顽力和良好的抗腐蚀性能。

这使得烧结钕铁硼在各种高端领域中得到广泛应用,尤其是在汽车领域的电动汽车、混合动力车、轮辐电机等方面。

与此烧结钕铁硼也在医疗设备、航空航天等领域展现出巨大潜力。

总结回顾通过对钐铁氮、粘结钕铁硼和烧结钕铁硼的深入探讨,我们可以看到这些永磁材料在不同领域的应用前景和潜力。

它们都具有优异的磁性能和稳定性,为现代工业的发展提供了强有力的支持。

在未来的发展中,随着科技的进步和工艺的改进,相信这些永磁材料将会发挥出更大的作用,为人类社会的发展做出更大的贡献。

个人观点作为永磁材料的重要代表,钐铁氮、粘结钕铁硼和烧结钕铁硼在现代工业中具有不可替代的地位。

它们的不断改进和优化,为人类社会的发展和进步提供了有力的支持,也对能源的可持续利用起到了至关重要的作用。

稀土永磁研究报告

稀土永磁研究报告

稀土永磁研究报告稀土永磁材料是一种特殊的磁性材料,具有高磁能积、高矫顽力和高磁导率等特点,因此在电机、声音器件、磁化存储和传感器等领域有着广泛的应用。

本报告将对稀土永磁研究进行总结和分析。

首先,稀土永磁研究材料主要包括钕铁硼、钬铁硼和镝铁硼等。

钕铁硼是目前应用最广泛的一种,其磁能积高达400kJ/m3,具有良好的磁导率和矫顽力。

钬铁硼和镝铁硼则具有更高的磁能积,但相对较低的矫顽力。

研究工作主要集中在提高这些材料的磁导率和热稳定性。

其次,稀土永磁材料的制备方法主要包括烧结法、快速凝固法和氘化法等。

烧结法是最常用的制备方法,通过烧结粉末来获得致密的材料。

快速凝固法可以制备出具有高磁导率的非晶态材料,但其矫顽力较低。

氘化法则可以提高材料的磁导率和热稳定性,但其制备过程相对复杂。

再次,稀土永磁材料的性能主要取决于晶体结构和微观结构。

晶体结构包括晶格常数、格子对称性和晶体取向等,而微观结构则包括晶界、晶粒大小和化学成分分布等。

研究人员通过调整材料的晶体结构和微观结构来提高其性能。

最后,稀土永磁材料的应用主要包括电机、声音器件、磁化存储和传感器等。

其中,电机应用是该材料最大的市场,包括各种电动机、风力发电机和轨道交通设备等。

声音器件包括喇叭、扬声器和耳机等。

磁化存储则是利用这种材料来实现高密度的磁存储。

传感器应用主要包括磁传感器和温度传感器等。

综上所述,稀土永磁材料具有广泛的应用前景,但其制备和性能调控仍然面临一些挑战。

研究人员需要进一步深入研究稀土永磁材料的晶体结构和微观结构,以提高其性能。

此外,还需要加强与工业界的合作,推动该材料在实际应用中的推广和应用。

稀土永磁材料的性能与结构

稀土永磁材料的性能与结构

稀土永磁材料的性能与结构稀土永磁材料的性能主要包括磁性能、热稳定性、抗腐蚀性和机械性能等。

首先是磁性能。

稀土永磁材料具有较高的矫顽力和剩磁,其磁能积是传统强磁材料的几倍甚至几十倍,因此具有较高的磁能积和磁矩。

这使得稀土永磁材料在电机和传感器中能够产生更大的力矩和灵敏度。

其次是热稳定性。

稀土永磁材料具有较高的居里温度,可以在较高的温度下保持较高的磁性能。

这使得稀土永磁材料可以在高温环境中工作,不容易出现磁性能衰减的问题。

然而,由于稀土永磁材料的热稳定性较低,容易受到热磁异常效应的影响,即在过高的温度下,磁场强度会骤减。

再次是抗腐蚀性。

稀土永磁材料在一定程度上具有较好的抗腐蚀性能,可以在一定的湿度和酸碱环境中使用。

这使得稀土永磁材料在一些特殊环境下的应用具有优势。

最后是机械性能。

稀土永磁材料具有较高的硬度和脆性,容易产生裂纹和断裂。

因此,制备稀土永磁材料时需要采用一系列的加工过程和工艺来改善其机械性能,如烧结、热压、退火等。

稀土永磁材料的结构也是影响其性能的关键因素之一、稀土永磁材料一般由纳米晶颗粒组成,这些纳米晶颗粒通过有序排列形成磁畴。

磁畴内的磁矩方向几乎完全一致,而磁畴之间的相互作用则是相反的。

这种特殊的结构使得稀土永磁材料具有较高的磁性能。

另外,稀土永磁材料还可以采用交换耦合磁性结构来提高其磁性能。

交换耦合是指通过控制晶格中的相互作用,使得磁畴之间的磁耦合增强,从而提高材料的磁性能。

利用交换耦合,可以显著增加稀土永磁材料的矫顽力和剩磁,提高其磁能积。

综上所述,稀土永磁材料具有较高的磁性能、热稳定性、抗腐蚀性和机械性能等优势。

其性能与结构密切相关,通过改变材料的结构和添加适量的过渡金属元素等方法,可以进一步提高稀土永磁材料的性能,拓展其应用领域。

稀土永磁材料概述

稀土永磁材料概述

稀土永磁材料概述稀土永磁材料是指由稀土元素和一些过渡元素组成的稀土磁体材料。

它们在磁性、热稳定性和磁学性能方面具有显著的优势,因此在现代电子技术、通信技术、医学器械和航空航天等领域得到了广泛应用。

稀土永磁材料的出现可以追溯到20世纪60年代初。

起初,人们利用钕铁硼永磁合金等材料,但由于它们存在一些局限性,尤其是热稳定性差和制备工艺复杂等问题,无法满足工业发展的需求。

随后,钕铁硼永磁材料得到了广泛研究和应用,它具有高剩磁、高矫顽力和较好的抗氧化性能。

但是,由于稀土元素的稀缺性和获取困难性,稀土永磁材料的价格昂贵,限制了其在一些领域的应用。

稀土永磁材料主要包括钕铁硼、钴钕铁、钕铁锕、钕铁碲等。

其中,钕铁硼永磁材料是目前应用最广泛的一种。

钕铁硼永磁材料的磁性能优良,是目前已知磁体材料中的磁能积最高的材料,可达到高达400kJ/m³。

钕铁硼的你磁性是铝镍钴的10倍以上,是钍铁锕的5倍以上。

它具有高磁能积、高剩磁和高矫顽力等特点,适用于电机、发电机、传感器和磁存储领域。

钴钕铁是一种具有较高剩磁和高矫顽力的稀土永磁材料。

钴钕铁的磁能积介于钕铁硼和钍铁锕之间,通常用于电机、传感器和计算机等电子产品中。

钕铁锕是一种在高温下具有稳定性的稀土永磁材料,适用于高温工况下的应用,如航空、航天和核磁共振。

钕铁碲是一种具有良好石墨化能力的稀土永磁材料。

它具有高剩磁和高矫顽力的特点,在电机、计算机和磁记录等领域得到了广泛应用。

稀土永磁材料具有磁性能优良、热稳定性好和加工性能高等优点。

然而,稀土元素的稀缺性和环境污染问题也制约了它们的产业化发展。

为了解决这些问题,人们开始研究和开发其他替代性的磁体材料,如磁性合金、软磁材料和石墨材料等。

综上所述,稀土永磁材料因其优良的磁性能和热稳定性,在现代科技领域具有广泛的应用前景。

随着材料科学技术的发展,人们将进一步研究和开发更加高性能和环保的稀土永磁材料,以满足人们对新材料的需求。

稀土永磁材料

稀土永磁材料

稀土永磁材料稀土永磁材料是一种具有极高磁性的材料,能够将磁场变换为电能,被广泛应用于电动机、发电机、手机、电脑等电子产品中。

稀土永磁材料由于其独特的性能,成为了现代工业中不可或缺的材料。

稀土永磁材料的主要成分是稀土元素和过渡金属元素。

稀土元素是指原子序数为57到71之间的元素,包括镧系元素、铈系元素、铕系元素等。

过渡金属元素则是指原子序数为21到30之间的元素,如铁、钴、镍等。

这些元素在稀土永磁材料中以一定的比例组成晶格结构,使其拥有极高的磁性。

稀土永磁材料具有以下几个特点:首先,稀土永磁材料具有极高的磁感应强度和矫顽力。

其磁性能远远超过了传统的铁、钴等材料,因此能够在相对较小的体积中产生强大的磁场,大大提高了电机、发电机的效能。

其次,稀土永磁材料具有优异的抗腐蚀性和稳定性。

它能够在较高的温度下保持较高的磁性能,不易受到外界环境的影响和损害,因此在各种恶劣的工作环境中都能保持良好的工作状态。

再次,稀土永磁材料具有较小的体积和重量。

相较于传统的电机、发电机,采用稀土永磁材料制成的电机、发电机体积更小、重量更轻,因此能够大幅度降低设备的占地面积和运输成本,提高了产品的使用效率。

最后,稀土永磁材料具有可回收性和可再利用性。

稀土元素在自然界中分布较少,开采稀土矿石对环境造成了一定的影响。

因此,科学家们正在努力开发高效回收稀土元素的方法,以减少对稀有资源的依赖,并将废弃稀土永磁材料进行再利用,降低了对环境的负担。

总之,稀土永磁材料是一种具有极高磁性的材料,被广泛应用于电机、发电机、手机、电脑等电子产品中。

其优异的磁性能、抗腐蚀性、小体积轻重量以及可回收性等特点,使其成为现代工业中不可或缺的材料。

然而,由于稀土元素在自然界中分布较少,我们应该积极推动稀土永磁材料的可回收利用,以减少对稀有资源的依赖,并为环境保护做出贡献。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sm2Fe17的Tc从386K提高到Sm2Fe17Nx的750K。 Ms也有显著提高。

பைடு நூலகம்
758K
749K
477K
Sm2Fe17Nx合金磁性

REFeN中,N不占据晶格中的特定晶位,而占 据某些间隙位置而称为间隙原子。 随着温度的升高,各 晶位上的原子热振动加剧, 迫使间隙原子溢出。
Sm2 Fe17 N x SmN Fe

RE2Fe17的居里温度低的原因:晶格中Fe-Fe原子间距较 近而产生的反铁磁相互作用而造成的。加入其他类型的 铁磁或非铁磁性原子,可有效提高距离温度。B、N等

RE2Fe17系化合物吸收N2后,形成新型三元系化 合物RE2Fe17Nx,其结构仍为RE2Fe17结构,N原 子只占据晶格间隙位置。
Nd-Fe-B磁体的研发趋势

1. 高(BH)m Nd-Fe-B永磁材料


2. 耐热Nd-Fe-B永磁材料
3. Nd-Fe-B永磁的防锈处理技术 4. 各向异性粉末和各向异性粘结磁体
五、 稀土铁氮永磁材料

在早期研究稀土-过渡族金属间化合物时发现了RE2Fe17, 而它具有较低的Tc和Hc,而无法成为永磁材料。

添加Cr,Si等元素能提高化合物的分解温度,提 高稳定性。
相关文档
最新文档