狭义相对论习题、答案与解法(2010.11.22)
狭义相对论参考答案
一.选择题[B ] 1、在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c .参考答案:==5 =4t t t t ∆∆∆∆甲甲乙其中,[C ] 2、 K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动.一根刚性尺静止在K '系中,与O 'x '轴成 30°角.今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:(A) (2/3)c . (B) (1/3)c . (C) (2/3)1/2c . (D) (1/3)1/2c .参考答案:tan 30, tan 45 = y y y y x x x x'∆∆''==∆∆∆'∆∆,,[C ] 3、根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于(A) 0.1c (B) 0.5 c (C) 0.75 c (D) 0.85 c参考答案:22, =0.51M eV , 0.25M eV k e e k E m c m E ==其中二.填空题 1、一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为 0.5 m .则此米尺以速度v =82.6010⨯m ·s -1接近观察者.2、已知一静止质量为m 0的粒子,其固有寿命为实验室测量到的寿命的1/n ,则此粒子的动能是20(1)m c n -.参考答案:220001=, k E m c nττττ==3、地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=0.99c .三、计算题1、在O 参考系中,有一个静止的正方形,其面积为 900 cm 2.观测者O '以 0.8c 的匀速度沿正方形的一条边运动.求O '所测得的该图形的面积.解:222dd , d 0.8,d 900cm540cmS v c S ''====2、我国首个火星探测器“萤火一号”将于2009年10月6日至16日期间在位于哈萨克斯坦的拜科努尔航天发射中心升空。
狭义相对论习题和答案
作业6狭义相对论基础研究:惯性系中得物理规律;惯性系间物理规律得变换。
揭示:时间、空间与运动得关系.知识点一:爱因斯坦相对性原理与光速不变K 相对性原理:物理规律对所有惯性系都就是一样得,不存在任何一个特殊(如“绝对静止”)惯性系。
2s 光速不变原理:任何惯性系中,光在真空中得速率都相等。
(A )1(基础训练1)、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部得宇航员 向飞船尾部发出一个光讯号,经过K 飞船上得钟)时间后,被尾部得接收器收到,则由此可知飞船得固 有长度为(c 表示真空中光速)(A) c ・t (B) V/ (C) (D)【解答】飞船得固有长度为飞船上得宇航员测得得长度,即为°知识点二:洛伦兹变换由牛顿得绝对时空观=> 伽利略变换,由爱因斯坦相对论时空观=> 洛仑兹变换。
(1) 在相对论中,时、空密切联系在一起(在X 得式子中含有t,t 式中含X)。
(2) 当u « c 时,洛仑兹变换=> 伽利略变换。
(3) 若UAC , P 式等将无意义1(自测与提髙5)、地而上得观察者测得两艘宇宙飞船相对于地而以速度v = 0. 90c 逆向飞行.其中一 艘飞船测得另一艘飞船速度得大小【解答】知识点三:时间膨胀(1) 固有时间:相对事件发生地静止得参照系中所观测得时间。
(2) 运动时间:相对事件发生地运动得参照系中所观测得时间。
(B )1 (基础训练2)、在某地发生两件事,静止位于该地得甲测得时间间隔为4 s,若相对于甲作匀速直线 运动得乙测得时间间隔为5 s,则乙相对于甲得运动速度就是(c 表示真空中光速)(A) (4/5) c. (B) (3/5) c ・ (C) (2/5) c ・ (D) ("5)c.【解答】飞行•当两飞船即将相遇时飞船在自己得天窗处相隔2s 发射两颗信号弹•在飞船得观测者测得两颗信 号弹相隔得时间间隔为多少?° 【解答】以地而为K 系,飞船A 为/T 系,以正东为x 轴正向侧飞船B 相对于飞船A 得相对速度-0.6c-0.8c0.8c 1一一^(一0・6。
电动力学复习总结第六章狭义相对论答案
电动⼒学复习总结第六章狭义相对论答案第六章狭义相对论⼀、问答题1、简述经典⼒学中的相对性原理和狭义相对论中的相对性原理。
答:经典⼒学中的相对性原理:⼒学的基本运动定律对所有惯性系成⽴。
狭义相对论中的相对性原理:包括电磁现象和其他物理现象在内,所有参照系都是等价的。
不存在特殊的参照系.2、⽤光速不变原理说明迈克⽿孙—莫雷实验不可能出现⼲涉条纹的移动。
答:光速不变原理告诉我们,真空中的光速相对于任何惯性系沿任⼀⽅向恒为c ,并于光源运动⽆关。
因此在迈克尔逊——莫雷实验中,若使两臂长度调整⾄有效光程MM1=MM 2,则在⽬镜中,两束光同时到达,没有光程差,因此不产⽣⼲涉效应。
3、如何校准同⼀参考系中不同地点的两个钟? 答:设A,B 两个钟相距L ,把钟B 调到cLt B =(不动),0=A t 时送出⼀光讯号,B 钟接到讯号后开动。
4、如图6-4所⽰,当'∑和∑的原点重合时,从⼀原点发出⼀球形闪光,当∑观察者看到t 时刻波前到达P 点(),,x y z 时,也看到'∑中固定的点()'''',,x y z P 和P 点重合,情况有如在0t =时看到两原点重合⼀样,换句话说,∑观察者在t 时确定了⼀个重合点'P 的空间坐标()''',,x y z 。
问'∑观察者看本参考系的球⾯光波到达'P 的时刻't(1)是不是本参考系时钟指⽰的读数为''r t c=,'r =?(2)是不是⽤洛仑兹变换计算得的时刻为'2v t t x cγ?=-(,,,)x y z t P提⽰:同⼀光讯号事件的两个时空坐标为(),,,x y z t ,()'''',,,x y z t ,满⾜'2'2'22'2222220x y z c t x y z c t ++-=++-=,是通过指定点(),,x y z 和()''',,x y z 的球⾯,半径分别为'ct 和ct 。
狭义相对论习题、答案与解法(2010.11.22)
狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。
请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。
2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。
参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。
参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。
练习册-第3章《狭义相对论》答案
练习册-第3章《狭义相对论》答案第3章 狭义相对论 一、选择题1(B),2(C),3(C),4(B),5(B),6(D),7(C),10(D),11(D),12(C) 二、填空题 (1). c(2). 4.33×10-8s (3). ∆x /v , 2)/(1)/(c x v v -∆(4). c(5). 0.99c (6). 0.99c (7). 8.89×10-8s(8). c 321 (9). 5.8×10-13, 8.04×10-2(10). lS m , lS m925 三、计算题1.在惯性系K 中,有两个事件同时发生在 x 轴上相距1000 m 的两点,而在另一惯性系K ′(沿x 轴方向相对于K系运动)中测得这两个事件发生的地点相距2000 m .求在K '系中测得这两个事件的时间间隔.解:根据洛仑兹变换公式: 2)(1/c t x x v v --=' ,22)(1//c c x t t v v --='可得2222)(1/c t x x v v --=' ,2111)(1/c t x x v v --='在K 系,两事件同时发生,t 1 = t 2,则 21212)(1/c x x x x v --='-' ,∴21)/()()/(112122='-'-=-x x x x c v解得 2/3c =v . 在K ′系上述两事件不同时发生,设分别发生于1t '和 2t '时刻,则 22111)(1//c c x t t v v --=',22222)(1//c c x t t v v --='由此得 221221)(1/)(/c c x x t t v v --='-'=5.77×10-6s2.在K 惯性系中,相距∆x = 5×106 m 的两个地方发生两事件,时间间隔∆t = 10-2s ;而在相对于K 系沿正x 方向匀速运动的K '系中观测到这两事件却是同时发生的.试计算在K '系中发生这两事件的地点间的距离∆x '是多少?解:设两系的相对速度为v .根据洛仑兹变换, 对于两事件,有2)/(1c t x x v v -'+'=∆∆∆22)/(1(c x )/c t tv v -'+'=∆∆∆由题意:='∆t且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c t t v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 )那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m5. 一飞船和慧星相对于地面分别以0.6c 和0.8c速度相向运动,在地面上观察,5s 后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?解:两者相撞的时间间隔Δt = 5s 是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v = 0.6c 运动的系统的本征时,根据时间膨胀公式21(/)t v c ∆=-,可得时间间隔为2`1(/)t v c ∆=∆-4(s).6.设有一个静止质量为m 0的质点,以接近光速的速率v 与一质量为M 0的静止质点发生碰撞结合成一个复合质点.求复合质点的速率v f . 解:设结合后复合质点的质量为M ′,根据动量守恒和能量守恒定律可得f M c m v v v '=-220/1/ 222202/1c c m c M c M v /-+='由上面二个方程解得 )/1/(22000c M m m f v v v -+=四 研讨题1. 相对论的时间和空间概念与牛顿力学的有何不同?有何联系?参考解答:牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。
狭义相对论基础练习题及答案
狭义相对论基础练习题一、填空1、一速度为U的宇宙飞船沿X轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为________________________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为________________________。
2、一门宽为a,今有一固有长度为L0(L>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。
若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为________________________。
3、在地球上进行的一场足球赛持续的时间为90秒,在以速率为0.8cυ=飞行的飞船上观测,这场球赛的持续时间为_______________________。
4、狭义相对论的两条基本原理中,相对性原理说的是_________________________________________;光速不变原理说的是_________________________________________。
5、当粒子的动能等于它静止能量时,它的运动速度为_______________________;当粒子的动量等于非相对论动量的2倍时,它的运动速度为______________________。
6、观察者甲以4c/5的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L,截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲携带测得此棒的密度为_____________________;乙测得此棒的密度为_______________。
7、一米尺静止在'K系,且与'X轴的夹角为30,'K系相对于K系的X轴的正向的运动速度为0.8c,则K系中测得的米尺的长度为L=___________;他与X轴的夹角为θ=___________。
8、某加速器将电子加速到能量E=2×106eV时,该电子的动能Ek=_______________________eV。
第一课狭义相对论4个例题
E ct
2.7 1015 4.2103 100
6.4109 (kg)
即爆炸释放的能量能将640 万吨水从摄氏度加热到沸 腾。
为ι0的车厢,以速度v相对于地
面系S作匀速直线运动。在车厢 中,从后壁以速度u0向前推出一 个小球,求地面观察者测得小 球从后壁运动到前壁所经历的 时间。
解:解法一:设和车厢固连的
惯性坐标系为S′系,选地面为S
系,设在S系测得小球相对地面
的速度为u .根据速度合成公式
u
u0 v 1 u0v c2
t
l w
l0 1 v2 u0 (1 v2
c2 c2)
l0 u0
1 u0v 1 v2
c2 c2
1 u0v c2
由题意知
x l0
所以
t
l0 u0
v c2
l0
l0
1 u0v
c2
1 v2 c2 u0 1 v2 c2
两种解法结果相同,当v << c、u0 <<c时, 与经典 情况一致。
洛伦兹变换
例题1 有两个惯性系S和S′。在S′ 系钟的中记两录个x0′处到事有在件一。t1′和只在t静S2′′时系止刻中的x的钟0′处钟,发记用生录该 这两个事件的时间间隔为⊿t′= t2′― t1′。那么,在S系中的钟记录 这两个事件的时间间隔是多少? 若用生在该的钟两S系记个中录事x0到件处在,有则t一1和S只系t2时静中刻止的x的钟0处钟记发, 录这两个事件的时间间隔为⊿t =录t这2―两t1个。事那件么的,时在间S′系间中隔的是钟多记少?
惯性系S及与μ 子相对静止
第四章 狭义相对论习题以及答案
第4章狭义相对论习题及答案一 选择题1.下列几中说法:(1) 所有惯性系对物理基本规律都是等价的。
(2) 在真空中,光的速度与光的频率、光源的运动状态无关。
(3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同。
其中哪些说法是正确的?(A) 只有(1)、(2)是正确的。
(B) 只有(1)、(3)是正确的。
(C) 只有(2)、(3)是正确的。
(D) 三种说法都是正确的。
2.边长为a 的正方形薄板静止于惯性系K 的XOY 平面内,且两边分别与X ,Y 轴平行。
今有惯系K ′以0.8c(c 为真空中的光速)的速度相对于K 系沿X 轴作匀速直线运动,则从K ′系测得薄板的面积为(A)a ². (B)0.6a ² (C)0.8a ² (D)a ²/0.63.在某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,测乙相对于甲的运动速度是(C 表示真空中光速)(A )(4/5)C (B )(3/5)C (C )(1/5)C (D )(2/5)C4.α粒子在加速器中被加速,其质量为静止质量的3倍时,动能为静止能量的(A)2倍 (B)3倍 (C)4倍 (D)5倍5.把一个静止质量为m 0的粒子,由静止加速到v=0.6c(c 为真空中光速)需作的功等于(A)0.18m 0c2 (B)0.25m 0c 2 (C)0.36m 0c 2 (D)1.25m 0c 2二 填空题1.狭义相对论的两条基本原理中,相对性原理说的是 __;光速不变原理说的是__________________________________.2.已知惯性系S ′相对于惯性系S 系以0.5c 的匀速度沿X轴的负方向运动,若从S ′系的坐标原点O′沿X轴正方向发出一光波,则S 系中测得此光波的波速为_____ ____.3.π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6×10-8s ,如果它相对实验以0.8c (c 为真空中光速)的速度运动,那么实验坐标系中测得π+介子的寿命是____s.4.一门宽为 a.今有一固有长度为l 0(l 0>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。
大学物理狭义相对论习题及答案
1 第5章狭义相对论习题及答案1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系?答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。
在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。
2. 狭义相对论的两个基本原理是什么?答:狭义相对论的两个基本原理是:(1)相对性原理在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。
3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。
解在相对论中,不是一切都是相对的,也有绝对性存在的方面。
如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。
4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生?(1)两事件发生于S 系的同一地点;(2)两事件发生于S 系的不同地点。
解由洛伦兹变化2()vt t x c g ¢D =D -D 知,第一种情况,0x D =,0t D =,故'S 系中0t ¢D =,即两事件同时发生;第二种情况,0x D ¹,0t D =,故'S 系中0t ¢D ¹,两事件不同时发生。
5-5飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求:(1)地面站测得飞船B 的速率;(2)飞船B 测得飞船A 的速率。
狭义相对论课后题目解答
狭义相对论课后题目解答思考题1 在狭义相对论中,下列说法中哪些是正确的?(A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.[A ,B ,D]解答:真空中的光速为自然界的极限速率,任何物体的速度都不大于光速;质量、长度、时间与运动是紧密联系的,这些物理量的测量结果与参考系的选择有关,也就是与观察者的相对运动状态有关;同时同地具有绝对性,同时异地则具有相对性;相对论时间膨胀效应即运动的时钟变慢。
答案:(A 、B 、D )2 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?[ 没对准 ]解答:在K ’系中,A ’、B ’点的时空坐标分别为:()(),,,A A B B A x t B x t ''''''由题意:0A B t t t '''∆=-=,A B x x x L ''''∆=-=在K 系中,这两点的时空坐标分别为:()(),,,A A B B A x t B x t根据洛仑兹变换,220A B u ut x L t t t '''∆+∆∆=-==≠ 故,在K 系中的观测者看到这两只钟没有对准。
3 静止的μ子的平均寿命约为τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,此μ子有无可能到达地面?[有可能]解答:μ子的固有寿命为:60210s τ-=⨯,根据相对论时间膨胀效应,对于地面参考系运动μ子的寿命为:653.1610s τ--==≈⨯μ子在τ时间内运动的距离为:50.998 3.16109461s u c m τ-==⨯⨯≈而μ在8km 的高空,小于它运动的距离,所以μ子可以到达地面。
大学物理-狭义相对论习题和解答
⎪ ⎪⎪ v第十七章 狭义相对论17—1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少?[解] 飞船静止长度l 0 为其固有长度,地球上测得其长度为运动长度,由长度收缩公式,有:l = l 0= l 0 2解得: = c 2即: v =c = 0.866c 217—2 宇宙射线与大气相互作用时能产生 介子衰变,此衰变在大气上层放出 粒子,已知 粒子的速率为 v = 0.998c ,在实验室测得静止 粒子的平均寿命为2.2 ⨯10-6 s ,试问在 8000m 高空产生的 粒子能否飞到地面?[解] 地面上观测到的 子平均寿命与固有寿命之间的关系t = t 0子运行距离l = vt = v t 0子能飞到地面。
= 0.998c ⨯ 2.2⨯10- = 1042m17—3 在 S 系中观测到两个事件同时发生在 x 轴上,其间距离为 1m ,在 S ,系中观测这两个事件之间的距离是 2m 。
求在 S ,中测得的这两个事件发生的时间间隔。
[解] 在 S 系中两事件时间间隔∆t = 0, 由 Lorentz 变换x ' = x - ut t ' = t - u x c 2 ⎧ ∆x ' ⎪ 得: =⎨ ⎪∆t ' = ⎩∆t - ∆x ∆x c 2 = - c 2 将∆x ' = 2m , ∆x = 1m 代入上两式,得u = 3 c , 2∆t ' = -5.77 ⨯10-9 s 17—4 远方一颗星体以 0.80c 的速率离开我们,我们接收到它辐射来的闪光按 5 昼夜的周期变化,求固定在这星 1 - ( v )2 c 3 3 1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭ 1 - (u / c )2 1 - (u / c )21 - (u / c )2 1 - (u / c )21 - 0.8021 - 0.99652 1 - (u / c )2 1 - (u / c )2 0 体上的参考系中测得的闪光周期。
狭义相对论练习题
基本要求
1. 了解绝对时空观下的伽利略变换
2. 理解相对时空观下的洛伦兹变换 3. 掌握相对时空观下的三个结论: (1)同时相对 (2)时间延缓 (3)长度收缩 4. 掌握质速关系 质能关系
相对论时空下的三个问题 第十八章狭义 相对论
3.1.2 绝对时空观和伽利略变换
2
v L L0 1 2 16m c L L 16 t 8 0.6c 1.8 10 υ
8 t 8.89 10 s
相对论时空下的三个问题 第十八章狭义 相对论
作业
P216页 16题
P218页
P225页
22题
5题
相对论时空下的三个问题 第十八章狭义 相对论
相对论部分练习题
3-13题
解:
0.5s
3 0 0.3s 5
选择答案:B
0
1
2
相对论时空下的三个问题 第十八章狭义 相对论
相对论部分练习题
3-14题 解: (1)在太阳参照系中测量地球的半径,在 它绕太阳公转的方向上缩短的最多 。
(2) R R0 1 2
1
u t 2 x c t 2 2 1 u c
u/c 0,回到伽利略变换。
0
相对论时空下的三个问题 第十八章狭义 相对论
洛伦兹变换
x x ut 1 u c
2 2
u t 2 x c t 1 u 2 c2
u u
x
逆变换
x ut 1 u 2 c2
u t 2 x c t 1 u 2 c2
c
c2
(2) ( (4)
3 2)c
狭义相对论4个例题
解法二:从S′系观测, 解法二:从S′系观测,小球 从后壁运动到前壁所需要 的时间为 l0 ∆t′ = u0 由洛伦兹变换,可得在S 由洛伦兹变换,可得在S系 观察该过程所需的时间
于是小球自后壁运动到前 壁所经历的时间,从S 壁所经历的时间,从S系观 测应为
2 2 l0 1+ u0v c2 l l0 1− v c ∆t = = = 2 2 w u0 (1− v c ) u0 1− v2 c2 1+ u0v c2
可见µ子能穿越大气层是一客观事实,在S 可见µ子能穿越大气层是一客观事实,在S系 描述为µ子的寿命延长,在S′系描述为大气层 描述为µ子的寿命延长,在S′系描述为大气层 的厚度变薄,两者得出的结论是一致的,这 一事实也说明了时钟延缓与长度缩短两种效 应的的联系。
速度合成公式
例题3 例题3 一固有长度(物 体在相对它为静止的 惯性系内的长度)为ι0 的车厢,以速度v 的车厢,以速度v相对 于地面系S 于地面系S作匀速直线 运动。在车厢中,从 后壁以速度u 后壁以速度u0向前推出 一个小球,求地面观 察者测得小球从后壁 运动到前壁所经历的 时间。 解:解法一:设和车 厢固连的惯性坐标系 为S′系,选地面为S系, S′系,选地面为S 设在S 设在S系测得小球相对 地面的速度为u .根据 地面的速度为u .根据 速度合成公式
u0 + v u= 1+ u0v c2
所以从S 所以从S系测得小球相对车 厢的速度为
w = u −v = u0 + v −v 1+ u0v c2 u0 ( − v2 c2 ) 1 = 1+ u0v c2
例题3 例题3 一固有长度(物体在相对 它为静止的惯性系内的长度) 的车厢,以速度v 为ι0的车厢,以速度v相对于地 面系S 面系S作匀速直线运动。在车厢 中,从后壁以速度u 中,从后壁以速度u0向前推出一 个小球,求地面观察者测得小 球从后壁运动到前壁所经历的 时间。 解:解法一:设和车厢固连的 惯性坐标系为S′系,选地面为S 惯性坐标系为S′系,选地面为S 系,设在S 系,设在S系测得小球相对地面 的速度为u .根据速度合成公式 的速度为u .根据速度合成公式
第10章狭义相对论习题
2
0 . 85 c 0 . 9 c 1 0 . 9 c 0 . 85 c c
2
0 . 992 c
最小速率 :
vx v u x 1 uv x c
2
( 0 . 85 c ) 0 . 9 c 1 0 . 9 c ( 0 . 85 c ) c
2
n 1
c
9. 把一个静止质量为m0的粒子由静止加速到0.1c所需的功是多少?由速率 0.89c加速到0.99c所需的功又是多少?
解:粒子的静能量为:
E0 m0c
E1 m 1c
2
2
速度为0.1c时,该粒子的总能量为:
m 0c
2
1 0 .1
2
1 .0 0 5 m 0 c
2
因此将粒子由静止加速到0.1c所需要做的功为:
u c
2 2
x c
2 )
t (1
u x c
2 2
t c
2
)
l 0 (1
u c
2 2
v) )
1 (u
1 (u
)
v 1 (u
c
2
3.一个静止的K0介子能衰变成一个+介子和一个 — 介子,这两个介子的速率均 为0.85c.现有一个以速率0.90c相对于实验室运动的K0介子发生上述衰变。以实验 室为参考系,两个介子可能有的最大速率和最小速率是多少? 解:最大速率 :
2 1 ( 0 .9 6 c ) c
x1
x 1 ut 1 1 (u
2
2 )
100 0 . 96 c 0
2 1 ( 0 . 96 c ) c
狭义相对论练习册答案
狭义相对论练习册答案狭义相对论是爱因斯坦于1905年提出的理论,它主要研究在不同惯性参考系中物理定律的不变性。
以下是一些狭义相对论的练习题及其答案。
练习一:时间膨胀假设一个宇航员以接近光速的速度(例如0.9c)旅行了10光年。
根据狭义相对论,宇航员经历的时间与地面观察者测量的时间有何不同?答案:根据狭义相对论的时间膨胀公式:\[ \Delta t' = \frac{\Delta t}{\gamma} \]其中,\( \Delta t \) 是地面观察者测量的时间,\( \Delta t' \) 是宇航员经历的时间,\( \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \) 是洛伦兹因子。
对于0.9c的速度,\( \gamma \) 大约为2.294。
因此,宇航员经历的时间是:\[ \Delta t' = \frac{10}{2.294} \approx 4.36 \text{ 光年} \]练习二:长度收缩一个物体在静止参考系中的长度是10米。
当它以0.9c的速度相对于观察者运动时,观察者会测量到的长度是多少?答案:长度收缩公式为:\[ L = L_0 \sqrt{1-v^2/c^2} \]其中,\( L \) 是运动参考系中的长度,\( L_0 \) 是静止参考系中的长度。
代入数值:\[ L = 10 \times \sqrt{1-(0.9)^2} \approx 4.5 \text{ 米} \]练习三:质能等价一个质量为1千克的物体,当它以接近光速的速度运动时,它的相对论质量是多少?答案:相对论质量公式为:\[ m = m_0 / \sqrt{1-v^2/c^2} \]其中,\( m \) 是相对论质量,\( m_0 \) 是静止质量。
对于0.9c的速度,\( \gamma \) 大约为2.294。
因此,相对论质量是:\[ m = 1 / \sqrt{1-(0.9)^2} \approx 2.294 \text{ 千克} \]练习四:速度相加两个物体A和B,A相对于地面以0.6c的速度运动,B相对于A以0.8c的速度运动。
章狭义相对论基础习题解答
狭义相对论基础习题解答一 选择题1. 判断下面几种说法是否正确 ( )(1) 所有惯性系对物理定律都是等价的。
(2) 在真空中,光速与光的频率和光源的运动无关。
(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。
A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。
2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1) 不同时, (2) 不同时 解:答案选A 。
3.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。
A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4)解:同时是相对的。
答案选B 。
4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。
飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m解: ?x ′=90m, u =0.8 c , 8790/(310)310s t -'∆=⨯=⨯()270m x x u t ''∆=∆+∆=。
狭义相对论基础练习题及答案
狭义相对论基础练习题一、填空1、一速度为U的宇宙飞船沿X轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为________________________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为________________________。
2、一门宽为a,今有一固有长度为L0(L>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。
若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为________________________。
3、在地球上进行的一场足球赛持续的时间为90秒,在以速率为0.8cυ=飞行的飞船上观测,这场球赛的持续时间为_______________________。
4、狭义相对论的两条基本原理中,相对性原理说的是_________________________________________;光速不变原理说的是_________________________________________。
5、当粒子的动能等于它静止能量时,它的运动速度为_______________________;当粒子的动量等于非相对论动量的2倍时,它的运动速度为______________________。
6、观察者甲以4c/5的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L,截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲携带测得此棒的密度为_____________________;乙测得此棒的密度为_______________。
7、一米尺静止在'K系,且与'X轴的夹角为30,'K系相对于K系的X轴的正向的运动速度为0.8c,则K系中测得的米尺的长度为L=___________;他与X轴的夹角为θ=___________。
8、某加速器将电子加速到能量E=2×106eV时,该电子的动能Ek=_______________________eV。
力学习题-第11章狭义相对论(含答案)
3. 设 S 和 S′是两个相对作匀速直线运动的惯性系,则在 S 系中同一时刻、不同地点发生的
两个事件,在 S′系一定不同时发生 答案:对
4. 两只相对运动的标准时钟 A 和 B,从 A 所在的所在惯性系观察,走得快得是 A,从 B 所 在的所在惯性系观察,走得快得是 B。 答案:对
5. 可以同时发生的两个事件的空间间隔,在它们同时发生的惯性系中最短 答案:错
D. 惯性系与非惯性系之间 答案:C
7. 设 S′系的 X′轴与 S 系的 X 轴始终重合,S′系相对 S 系以匀速 u 沿 X(X′)轴运动,一刚 性直尺固定在 S′系中,它与 X′轴正向的夹角为 45 度,则在 S 系中测量该尺与 X 轴正向的夹 角为
A. 大于 45 度 B. 等于 45 度 C. 小于 45 度 D. 若 u 沿 X′轴正向则大于 45 度、若 u 沿 X′轴负向则小于 45 度 答案:A
第十一单元 狭义相对论 单元测验题 一、单选题 1. 设地球可看做惯性系,则按照牛顿力学的经典时空观,下列说法错误的是 A. 在地球上同时发生的两个事件,在人造卫星上观察也是同时发生的 B. 在地球上两个事件相隔 1 小时发生,在人造卫星上观察也相隔 1 小时 C. 在地球上某处测量向各个方向传播的光速大小,结果都相同 D. 在地面上测量一列火车的长度,火车静止时和高速运动时测量的结果相同 答案:C
10. 自然界中任何真实物体在真空中的运动速度都不能大于 c
答案:对
6. 可以同地发生的两个事件的时间间隔,在它们同地发生的惯性系中最短 答案:对
7. 在惯性系中观测,运动物体在其运动方向上的长度要缩短 答案:对
8. 当两个参考系的相对运动速度远小于光速时,可用伽利略变换代替洛伦兹变换 答案:对
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。
请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。
2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。
参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。
参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。
又在K '系x '轴上放置一固有长度为0l 的细杆,从K 系测得次杆的长度为l ,则(D )A 、00;l l t t <∆<∆;B 、00;l l t t >∆<∆;C 、00;l l t t >∆>∆;D 、00;l l t t <∆>∆。
参考答案:2221c v x c v t t --=' 2221c v x c vt t -∆-∆='∆ 2201cv t t -∆=∆ 2201c v l l -= 5.边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x 、y 轴平行。
今有惯性系k '以c 6.0的速度相对于K 系沿x 轴作匀速直线运动,则从k '系测得薄板的面积为 (B ) A 、26.0a ; B 、28.0a ; C 、236.0a ; D 、264.0a 。
参考答案:2201c v l l -= ()22222208.06.011a c c a c v S S =-=-= 6.一静止长度为100m 的飞船相对地球以c 6.0的速度飞行,一光脉冲从船尾传到船头。
求地球上的观察者侧的光脉冲从船尾发出和到达船头两个事件的空间间隔为(B )A 、100m ;B 、80m ;C 、200m ;D 、148m 。
参考答案:221c v t v x x -'+'=()m 2002531)531(11020220022==⎪⎭⎫ ⎝⎛-+=-+=-'∆+'∆=∆L L c v c L vL c v t v x x7.某核电站年发电量为h kw 10111⋅⨯,它等于J 103616⨯的能量,如果这是由核材料的全部静止能转化产生的,则需要消耗核材料的质量为(D )A 、kg 0.4 ;B 、kg 0.8;C 、kg 10)121(8⨯ ;D 、kg 10128⨯。
参考答案:2mc E = ()()kg 0.4103103628162=⨯⨯==c E m 8.根据相对论力学,动能为MeV 25.0的电子,其运动速度约等于(C ) A 、c 1.0 ; B 、c 5.0 ; C 、c 75.0 ; D 、c 85.0。
参考答案: 2222221c m c cv m c m mc E e e e k --=-=()()cc c m c m E c v e e k 74.01099.21011.911099.21011.9106.11025.011111228312831196222=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯⨯⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛+⨯⨯⨯⨯⨯⨯-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-=--- 9.一个电子运动速度c v 99.0=,它的动能是(C ) A 、MeV 0.4;B 、MeV 5.3;C 、MeV 1.3;D 、MeV 5.2。
参考答案: 202c m mc E k -=()()()MeV 12.31060.11031011.9199.011119283122222222=⨯⨯⨯⨯⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--=-=--c c c m c cv m c m m c E e e e k二.填空题1.狭义相对论的两条基本原理中,相对性原理表述为_在所有惯性系中,物理定律的表达形式相同;光速不变原理表述为在所有惯性系中,真空中的光速具有相同的量值c 。
2.以速度v 相对于地球做匀速直线运动的恒星所发射的光子,其相对于地球的速度大小为c 。
3.宇宙飞船相对于地面以速度v 做匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光脉冲,经过t ∆(飞船上的钟)时间后,被尾部的接收器收到,则由此刻可知飞船的固有长度为t c ∆。
(用真空中的光速c 表示)4.一观察测者测得一沿长度方向匀速运动的米尺长度为0.8m ,则此米尺以18108.1-⋅⨯=s m v 的速度接近观察者。
参考答案: 221cv l l -= ()188220108.1510335318.011-⋅⨯=⨯⨯==⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=s m c c l l c v 5.一门宽为l 。
今有一固有长度为0l ()l l 〉0的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。
若门外的观察者认为此杆的两端可同时被拉进门,则该杆相对于门的运动速率v 至少为21⎪⎪⎭⎫ ⎝⎛-=llc v 。
参考答案:221c v l l -= 201⎪⎪⎭⎫ ⎝⎛-=l l c v 6.一宇航员要到离地球为5光年的星球去旅行。
如果宇航员希望把该路程缩短为3光年,所称的火箭相对于地球的速度c 54。
(用真空中的光速c 表示) 参考答案:2201c v l l -= c c l l c v 541045.951045.93112151520=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯-=⎪⎪⎭⎫ ⎝⎛-= 7.某惯性系同时、同地发生的两件事,在有其他相对运动的惯性系考察时,上述两件事一定同时;某惯性系同时、不同地发生的两件事,在有其他相对运动的惯性系考察时,上述两事件一定不同时 8.狭义相对论中,一静止质量为0m 的质点,其质量m 与速度v 的关系式为2201c v m m -=;其动能表达式202c m mc E k -=。
9.把一个静止质量为e m 的电子,从静止加速到c 6.0,需对它做功241c m e 。
(用真空中的光速c 表示) 参考答案:202c m mc E k -= 2222222411c m c m c cv m c m mc W e e e e =--=-= 三.计算题1.一飞船船身固有长度为m L 1000=,相对于地面以c v 8.0=的匀速度在地面观测站的上空飞过。
(1)观测站测得飞船的船身通过观测站的时间间隔是多少? (2)宇航员测得船身通过观测站的时间间隔是多少?解:(1)()s c l c l v l t l l cv l l 780000220105.210341003438.06.06.064.011-⨯=⨯⨯⨯====∆=-=-=(2)()s c l c l v l t 780001017.410341005458.0-⨯=⨯⨯⨯====∆ 2. 两个惯性系中的观察者O O '和以0.6c 的相对速度互相接近。
如果O测得两者的初始距离是20m ,求O '测得两者经过多长时间后相遇。
()()()s 1089.81033803806.016m 168.0206.012018822220-⨯=⨯⨯====∆=⨯=-⨯=-=c c v l t c c c v l l3. 相对地球上的观察者,一宇航员以s m /108.73⨯的速度要地球飞行30天,他的人体生物钟在旅行中间少了多少秒?如果他的飞行速度变为c 8.0又会怎样?()s 1076.8360024301103108.711111142830220220-⨯=⨯⨯⨯⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⨯⨯-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--=∆t c v t c v t t ()s 1073.13600243015313600243018.01111116222220⨯=⨯⨯⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--=∆c c t c v t c vt t 4. 一电子以c v 8.0=的速率运动。
试求: (1) 电子的总能量是多少?(2) 电子的经典力学的动能与相对论动能之比是多少?如果电子的速度为c 99.0,比值又为多少?()()()()()()()%01.819910020099199119910099.02121%482512251643328.02121)2(1081.599.011031011.91)1(22222222222132228312222=-⨯⨯=⎪⎪⎭⎫ ⎝⎛-=-='==⨯==-='⨯=-⨯⨯⨯=-==--c m c m c m m c v m E E c m c m c m m c v m E E J c c c cv m m c E e e e e k k e e e e k k e。