高一数学竞赛试题
数学竞赛试题高一及答案
数学竞赛试题高一及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 + 3x + 1的图像关于直线x = -1/2对称,则下列哪个函数的图像也关于直线x = -1/2对称?A. g(x) = x^2 + 2x + 3B. h(x) = -x^2 + 2x - 3C. i(x) = x^2 - 2x + 3D. j(x) = -x^2 - 2x - 3答案:B2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∪B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 3, 4}答案:A3. 若方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为:A. 1B. 2C. 3D. 5答案:C4. 函数y = |x - 2| + 3的图像与x轴交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 已知等差数列的前三项依次为2, 5, 8,则该数列的第五项为________。
答案:112. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,则圆心坐标为________。
答案:(3, 4)3. 函数y = sin(x)在区间[0, π]上的最大值为________。
答案:14. 已知三角形的三边长分别为3, 4, 5,则该三角形的面积为________。
答案:6三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 =c^2(c为第三边长),则该三角形为直角三角形。
证明:根据勾股定理,若三角形的两边长为a和b,且满足a^2 + b^2 = c^2,则第三边c所对的角θ为直角,即θ = 90°。
因此,该三角形为直角三角形。
2. 解方程:2x^2 - 3x - 2 = 0。
解:首先,我们计算判别式Δ = b^2 - 4ac = (-3)^2 - 4*2*(-2) = 9 + 16 = 25。
高一数学竞赛选拔试题
姓名_________班级__________
一:选 (log2x)]=log3[log (log3y)]=log5[log (log5z)]=0,那么( )
(A) z<x<y (B) x<y<z (C) y<z<x (D) z<y<x
2.由方程|x-1|+|y-1|=1确定的曲线所围成的图形的面积是( )
(A)1(2)2(C) (D)4
3.设有三个函数,第一个是y=f(x),它的反函数就是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,那么第三个函数是()
(A)y=-f(x) (B) y=-f(-x) (C) y=-f-1(x) (D) y=-f-1(-x)
8.设函数f(x)满足关系式af(xn)+f(-xn)=bx,其中a2≠1,n为奇数,则f(x)__________,.
9.函数y=(Sinx+1)(Cosx+1)(- )的最小值为________,
10.y=( )lgcosx的单调递减区间是_________;
11.方程Sinx+Cosx=-k在区间[0,π]上有两个不相等实根,则实数k的取值范围是__________;
12.当时a∈_________,,关于x的方程|x|=ax+1无实数根
四:解答题(每小题20分,共60分)
13. .已知:f(x)=( )2(x≥1),f-1(x)为f(x)的反函数,又g(x)= + +2,求f-1(x)定义域,单调区间和g(x)的最小值;
14.已知方程:mx4-(m-3)x2+3m=0有一根小于-2,其余三根大于-1,求m的取值范围,
第十五届“希望杯”数学竞赛第一试试题及答案整理
A. log3 x -1
-x
B. 2 - 3
C. 3-2+x
D. 2 - log3 x
A
4பைடு நூலகம்
40
二、 组填空题(每题 分,共 分) 11 . 已 知 函 数
f (x)
=
ì í
1,
x为有理数,
g(
x)
=
ì í
0,
x为有理数,
当
xÎR 时 ,
î0,x为无理数.
î1,x为无理数.
f (g (x)) = _______, g ( f( )x) = _ _ _ _ _ _ _ .
B. 减法 D. 除法
{ } 9.等比数列
an
中,“
a 1
<
a 3
”是“
a 7
<
a 9
”的(
)
A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件
D. 既不充分又不必要条件
10.已知函数 f (x) 的图象与函数 g(x) = 3x 的图象关于点 (0,1) 对称,则 f (x) =( )
4. 等差数列
{an
}
、
{bn}
的前
n
项的和分别为
Sn
、
Tn
,且
Sn Tn
=
3n - 3 ,则 a6 2n + 3 b6
=(
)
A. 3 2
B. 1
6
C.
5
27
D.
23
5. 如图,EF 是梯形 ABCD 的中位线,则在向量 1 ( AD + BC) 、
2
A
1 ( AC + BD) 、 1 (2AD - AB - CD) 中,与 EF 相等的向量的个 E
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。
A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。
A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。
7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。
8. 一个正六边形的内角为______度。
9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。
10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。
三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。
14. 求函数y = x^3 - 3x^2 + 2x的极值点。
15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。
四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。
答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。
当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
数学竞赛高一试题及答案
数学竞赛高一试题及答案一、选择题(每题5分,共10分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 4B. 6C. 8D. 102. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共10分)3. 已知\( a \)、\( b \)、\( c \)为三角形的三边长,且\( a^2 + b^2 = c^2 \),这个三角形是________。
4. 将\( 1 \)、\( 2 \)、\( 3 \)三个数字排列成三位数,所有可能的组合数是________。
三、解答题(每题15分,共30分)5. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = a_n + 2n \),求\( a_5 \)。
6. 一个直角三角形的斜边长为\( 5 \),一条直角边长为\( 3 \),求另一条直角边长。
四、证明题(每题15分,共30分)7. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。
8. 证明:若\( a \)、\( b \)、\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则这个三角形是直角三角形。
五、综合题(每题15分,共20分)9. 一个工厂计划在一年内生产\( x \)个产品,已知生产每个产品的成本是\( 10 \)元,销售每个产品的价格是\( 20 \)元。
如果工厂希望获得的利润不少于\( 10000 \)元,求\( x \)的最小值。
10. 已知函数\( g(x) = x^3 - 6x^2 + 11x - 6 \),求\( g(x) \)的极值点。
答案:一、选择题1. 答案:B. 6(计算方法:\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 2 + 3 + 1 = 6 \))2. 答案:B. 50π(计算方法:圆面积公式为\( πr^2 \),代入\( r = 5 \))二、填空题3. 答案:直角三角形4. 答案:6(排列组合方法:\( 3 \times 2 \times 1 = 6 \))三、解答题5. 答案:\( a_5 = 1 + 2(1) + 2(2) + 2(3) + 2(4) = 1 + 2 + 4 +6 + 8 = 21 \)6. 答案:根据勾股定理,另一条直角边长为\( 4 \)(计算方法:\( 5^2 - 3^2 = 4^2 \))四、证明题7. 证明:根据等差数列求和公式,\( 1 + 2 + ... + n =\frac{n(n+1)}{2} \),立方后得到\( \left(\frac{n(n+1)}{2}\right)^2 \),展开后即为\( 1^3 + 2^3 + ... + n^3 \)。
高一数学竞赛试题
高一数学竞赛试题(1)(注意:共有二卷,时间100分钟, 满分150)第一卷(本卷100分)一、选择题(每小题5分,共50分)1.下列结论中正确的是( )A .{}{}3,2,1,00∈B .{}无理数∈2C .{}φ==0|2x xD .{}{}等腰直角三角形等腰三角形∈2.若集合M={x │x 2-3x+2≥0},N={x|5<x ,R x ∈},则M ∩N 是( )A .}15|{≤<-x x B. }52|{<≤x xC. }5215|{<≤≤<-x x x 或D. φ3.函数2-=x y 的图象是( )4. 一个教室的面积为x m 2, 其窗子的面积为y m 2, (x>y), 如果把y/x 称为这个教室的亮度, 现在教室和窗子同时增加z m 2, 则其亮度将( ) A. 增加 B. 减小 C. 不变 D. 不确定5.奇函数)()0,(,)(),0()(x f x x x f x f 上的则在上的表达式为在-∞+=+∞的 表达式为f(x)=( )A .x x +- B .x x -- C .x x -+-D .x x --- 6.函数()22--+=x x x f 是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数7.已知x x 322-≤0,则函数f (x ) = x 2 +x +1 ( )A. 有最小值43, 但无最大值 B. 有最小值43, 有最大值1C. 有最小值1,有最大值419D. 以上选项都不对8. 方程ax 2+2x+1=0至少有一个负实根的充要条件是( )A. 0<a ≤1B. a<1C. 0<a ≤1或a<0D. a ≤19. 已知)2(log ax y a -=在[0,1]上为x 的减函数,则a 的取值范围为() A .(0,1) B .(1,2) C .(0,2) D .),2[+∞ 10.若 02log 2log <<b a ,则( )A. 0<a <b <1B. 0<b <a <1C. a >b >1D. b >a >1二.填空题(每小题5分,共15分)11.数y=)1(log 21--x x 的定义域是____________________12.“若0)2)(1(=+-y x ,则21-==y x 或”的否命题是_________________________________________________13.函数y=1313+-x x 的反函数是______________________________三.解答题(共35分. 需要写出详细求解过程)14.(10分)(1)求函数4236)(22-++-=x x x x f 的定义域;(2)已知函数43)(-=x x f 的值域为[-1,5],求函数)(x f 的定义域。
高一全国数学竞赛试题
高一全国数学竞赛试题一、选择题(每题5分,共10分)1. 下列哪个数不是有理数?- A. π- B. √2- C. 0.33333...(无限循环小数)- D. -1/32. 如果一个函数f(x)在区间[a, b]上连续,并且在这个区间上f(x)的值域为[c, d],那么下列哪个选项是正确的?- A. f(a) = c- B. f(b) = d- C. f(a) ≤ c- D. f(x)在[a, b]上存在最大值和最小值二、填空题(每题5分,共20分)1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
2. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是____。
3. 一个圆的半径为5,求该圆的面积。
三、解答题(每题15分,共30分)1. 证明:对于任意正整数n,n^5 - n 能被30整除。
2. 解不等式:|x + 2| + |x - 3| ≥ 5。
四、综合题(每题25分,共50分)1. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
工厂每月固定成本为F元,每月生产x件产品。
求工厂的月利润函数,并讨论其增减性。
2. 在平面直角坐标系中,已知点A(-1, 2)和点B(4, -1),求直线AB的方程,并求出该直线与x轴和y轴的交点坐标。
五、附加题(10分)1. 一个数列{a_n}的前n项和为S_n,已知a_1 = 1,且对于所有n > 1,有a_n = 1/2(a_{n-1} + S_{n-1})。
求证:数列{a_n}是等差数列。
结束语数学竞赛不仅是一场智力的较量,更是一次思维的锻炼。
希望同学们能够通过练习这些题目,提高自己的数学素养和解题能力。
预祝大家在数学竞赛中取得优异的成绩!。
数学竞赛试题及答案高中生
数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。
解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。
因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。
由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。
所以 \( a^2 + 5a + 6 = 0 \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。
将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。
解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。
将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。
试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。
四川宜宾2024年高中数学联赛(初赛)高一组试题+答案
2024宜宾市高中数学联赛(初赛)试题(高一组)(考试时间120分钟满分120分)题号一二三四合计得分复核人一、填空题(本小题满分64分,每小题8分)1.已知函数()()0,6sin >⎪⎭⎫⎝⎛-=ωπωx x f ,若()⎪⎭⎫⎝⎛≤3πf x f 对任意的实数x 都成立,则ω的最小取值为2.已知12,0,0=+>>b a b a ,则ba ab+2的最大值为3.已知函数()()a x g x x f x +=+=+22,1,若对任意的[]4,31∈x ,存在[]1,32-∈x ,使得()()21x g x f ≥成立,则实数a 的取值范围是4.定义{}c b a ,,max 为c b a ,,中的最大值,设()⎭⎬⎫⎩⎨⎧-=x x x x h 6,38,max 2,则()x h 的最小值为5.若区间[]b a ,满足:①函数()x f 在区间[]b a ,上有定义且单调;②函数在区间[]b a ,上的值域也为[]b a ,,则称区间[]b a ,为函数的共鸣区间.函数()31x x f =的一个共鸣区间为;若函数()k x x f -+=12存在共鸣区间,则实数k 的取值范围是6.已知ABC ∆的三边为c b a ,,,满足βα=++=++222222222,a c c b b a c b a ,则ABC ∆的面积为7.若函数()b ax x x f ++=2与坐标轴有三个交点C B A 、、,且ABC ∆的外心在x y =上,则ABC∆;8.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”()Benz -ercedes M 的o log 很相似,故形象地称其为“奔驰定理).“奔驰定理”的内容如下:如图,已知O 是ABC ∆内一点,BOC ∆、AOC ∆、AOB ∆的面积分别为C B A S S S 、、,则0=⋅+⋅+⋅OC S OB S OA S C B A .若O 是ABC ∆锐角内的一点,C B A 、、是ABC ∆的三个内角,且O 点满足OA OC OC OB OB OA ⋅=⋅=⋅,则下列说法正确的是(填序号)①O 是ABC ∆的外心;②π=+∠A BOC ;得分评卷人二、(本大题满分16分)9.已知cba、、均为正实数,且1222=++cba.(1)求证:1≤++cabcab;(2)求证:1242424≥++bcabca.得分评卷人三、(本大题满分20分)10.下图是函数()()⎪⎭⎫⎝⎛<<>>+=20,0,0,sin πϕωϕωA x A x f 的部分图像,N M 、是()x f 与x 轴的两个不同交点,D 是图像的最高点且横坐标为4π,点()10,F 是线段DM 的中点.(1)求函数()x f 的解析式及()x f 在()ππ2,内的单调增区间;(2)当⎦⎤⎢⎣⎡-∈12512ππ,x 时,函数()()12+-=x af x f y 的最小值为21,求实数a 的值.得分评卷人四、(本大题满分20分)11.已知集合()()(){}成立都有,对定义域内任意的存在正实数x f a x f x a x f M a >+=;(1)若()22x x f x-=,判断()x f 是否为1M 中的元素,并说明理由;(2)若()3413+-=x x x g ,且()a M x g ∈,求实数a 的取值范围;(3)若()⎪⎭⎫ ⎝⎛+=x k x x h 3log,其中[)R k x ∈+∞∈,,1,且()2M x h ∈,求()x h 的最小值.得分评卷人年宜宾市高中数学竞赛试题9115.[0,1]答案不唯一;[1,2)二、9.证明:(1)因为a ,b ,c 均为正实数,且a 2+b 2+c 2=1,所以ab +bc +ac=2ab +2bc +2ac2≤()a 2+b 2+()b 2+c 2+()a 2+c 22=a 2+b 2+c 2=1,当且仅当a =b =c 故ab +bc +ac ≤1.(2)因为a ,b ,c 均为正实数,且a 2+b 2+c 2=1,所以a 4c 2+b 4a 2+c 4b2+a 2+b 2+c 2=æèçöø÷a 4c 2+c 2+æèçöø÷b 4a 2+a 2+æèçöø÷c 4b 2+b 2≥=2()a 2+b 2+c 2=2,当且仅当a =b =c 故a 4c 2+b 4a 2+c 4b2≥1.三、10.解:(1)因为点F (0,1)是线段DM 的中点,所以点D æèöøπ4,2,M æèöø-π4,0.因为函数f (x )=A sin (ωx +φ),所以A =2,周期T =4×éëêùûúπ4-æèöø-π4=2π=2πω,所以ω=1.因为f æèöøπ4=2sin æèöøπ4+φ=2,所以π4+φ=π2+2k π,k ∈Z ,解得φ=π4+2k π,k ∈Z .又0<φ<π2,所以φ=π4,所以f (x )=2sin æèöøx +π4.令2k π-π2≤x +π4≤2k π+π2,k ∈Z ,解得2k π-3π4≤x ≤2k π+π4,k ∈Z .当k =1时,5π4≤x ≤9π4,所以函数f (x )在(π,2π)内的单调递增区间为éëöø5π,2π.所以x +π4∈éëùûπ6,2π3,所以f (x )=2sin æèöøx +π4∈[1,2].令t =f (x ),则t ∈[1,2],所以y =t 2-at +1,t ∈[1,2].又y =t 2-at +1图象的对称轴为t =a 2,当a 2≤1,即a ≤2时,y min =1-a +1=12,解得a =32.当1<a 2<2,即2<a <4时,y min =-a 24+1=12,解得a =±2(舍去).当a 2≥2,即a ≥4时,y min =4-2a +1=12,解得a =94(舍去).综上,a =32.四、11.解:(1)因为f (1)=f (0)=1,所以f (x )∉M 1.(2)由题意可得g ()x +a -g ()x =()x +a 3-x 3-14()x +a +14x=3ax 2+3a 2x +a 3-14a .由g (x )∈M a ,得3ax 2+3a 2x +a 3-14a >0对任意的x ∈R恒成立,所以9a 4-12a æèöøa 3-14a <0,解得a >1,故实数a 的取值范围是(1,+∞).(3)因为h ()x +2-h ()x =log 3éëùû()x +2+k x +2-log 3æèöøx +k x >0,即log 3éëùû()x +2+k x +2>log 3æèöøx +k x ,所以()x +2+k x +2>x +k x >0对任意x ∈[1,+∞)都成立,故-x 2<k <x (x +2)对任意x ∈[1,+∞)都成立.令s (x )=-x 2(x ≥1),t (x )=x (x +2)(x ≥1),则s (x )max =s (1)=-1,t (x )min =t (1)=3,所以-1<k <3.当-1<k ≤0时,易判断h (x )在[1,+∞)上单调递增,所以h ()x min =h ()1=log 3()1+k .年宜宾市高中数学竞赛试题(高一组)参考答案令t =x +k x,则t 1-t 2=x 1+k x 1-æèçöø÷x 2+k x 2=()x 1-x 2()x 1x 2-k x 1x 2.由0<k ≤1≤x 1<x 2,得x 1-x 2<0,x 1x 2-k >0,x 1x 2>0,所以t 1-t 2<0,即0<t 1<t 2,所以log 3t 1<log 3t 2,即h (x 1)<h (x 2),所以h (x )在[1,+∞)上单调递增,所以h ()x min =h ()1=log 3()1+k .当1<k <3时,由1≤x 1<x 2≤k ,得x 1-x 2<0,x 1x 2-k <0,x 1x 2>0,所以t 1-t 2>0,即t 1>t 2>0,所以log 3t 1>log 3t 2,即h (x 1)>h (x 2),所以h (x )在[]1,k 上单调递减.同理可证h (x )在[)k ,+∞上单调递增,所以h ()x min =h ()k =log 3()2k .综上,h ()x min =ìíîlog 3()1+k ,-1<k ≤1,log 3()2k ,1<k <3.。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若a,b,c是三角形的三边长,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 函数f(x) = 2x³ - 3x² + 1在区间[-1,2]上的最大值是:A. 1B. 7C. 9D. 无法确定3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的元素个数:A. 3B. 4C. 5D. 64. 等差数列的首项a₁ = 3,公差d = 2,第10项a₁₀的值是:A. 23B. 25C. 27D. 295. 圆的方程为(x - 2)² + (y - 3)² = 9,圆心到直线x + 2y - 7= 0的距离是:A. 2B. 3C. 4D. 56. 已知函数y = |x| + 1的图像与直线y = kx平行,那么k的值是:A. 1B. -1C. 0D. 无法确定二、填空题(每题4分,共20分)7. 若二次函数y = ax² + bx + c的顶点坐标为(-1, -4),则a =_______。
8. 已知等比数列的首项为2,公比为3,第5项的值为 _______。
9. 一个正六边形的内角和为 _______。
10. 若直线y = 2x + b与曲线y = x² - 3x相切,则b = _______。
11. 圆的方程为x² + y² = 25,圆上一点P(4,3)到圆心的距离是_______。
三、解答题(每题25分,共50分)12. 已知直线l₁:2x - 3y + 6 = 0与直线l₂:x + y - 2 = 0相交于点M,求点M的坐标。
13. 已知函数f(x) = x³ - 3x + 2,求证:对于任意的x > 0,都有f(x) > x。
高一数学竞赛试题及答案
高一数学竞赛试题一.选择题(本大题共有10个小题,每小题5分,共50分.)1、设集合A={}43.21,,,a a a a ,若A 中所有三元子集的三个元素之和组成集合{}8,5,3,1-=B ,则A =( )A .{}6,2,1,3-B .{}6,2,0,3-C .{}6,2,1,1-D .{}6,1,0,3- 2、等差数列{}n a 中,已知10573a a =,且01<a ,则前n 项和S n 中最小的是( ) A .S 7或S 8 B .S 12 C .S 13 D .S 15 3、已知函数x a x f 3sin)(π=,a等于抛一骰子得到的点数,则)(x f y =在[0,4]上至少有5个零点的概率为( ) A .31 B .21 C .32 D .654、若方程 04)1(2=++-x m x 在(0,3]上有两个不相等的实数根,则m 的取值范围为( ) A .(3,310) B .[3,310) C .[3,310] D .(3,310]5、已知在半径为2的圆O上有A、B、C、D四点,若AB=CD=2,AB、CD中点分别为O 1,O2,则△O2AB 的面积最大值为( ) A .32 B .22 C .3 D .336、函数)123(log )(2-++-=a x ax x f a 对于任意的x ∈(0,1]恒有意义,则实数a 的取值范围为( ) A .a >0且a ≠1 B .a ≥21且a ≠1 C .a >21且a ≠1 D .a >17、已知0<α2<090<β<0180,a =βαcos )(sin ,βαsin )(cos =b ,βαcos )(cos =c ,则a ,b ,c 大小关系为( )A .a >c >bB .a >b >cC .b >a >cD .c >a >b8、已知数列}{n a 满足1a =1,1321113121--+⋯⋯+++=n n a n a a a a ,2(≥n )*N n ∈,若100=k a ,则k 为( )A .100B .300C .200D .4009、设P为△AB C内一点,且ACAB AP 5152+=,则△PB C与△AB C的面积之比为( ) A .51 B .53C .54 D .5210、若任意满足⎪⎩⎪⎨⎧≤-≥-+≤-03050y y x y x 的实数x ,y ,不等式222)()(y x y x a +≤+恒成立,则实数a 的最大值为( ) A.1322 B.1325 C. 2 D.2513二、填空题(每小题5分,共25分)11、如图,四边形ABCD中,A=60°, AD ⊥CD ,DB⊥BC,AB=32,BD=4,则BC 的长为 。
高一数学《函数与方程》竞赛试题与答案
高一数学《函数与方程》竞赛试题第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有()A .0对B .1对C .2对D .3对2.(2021·黑龙江·鸡西实验中学高一竞赛)已知函数()lg ,010=11,10x x f x x x ⎧<≤⎨-+>⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是()A .()1,10B .()111,C .()1011,D .()10+∞,3.(2022安徽·高一竞赛)已知单调函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()9g x f x x =+-的零点所在的区间为A .(1,2)B .(2,3)C .(3,4)D .(4,5)4.(2022浙江温州·高一竞赛)已知函数32log ,0()41,0x x f x x x x ⎧>=⎨++≤⎩,函数()()F x f x b =-有四个不同的零点1x ,2x ,3x ,4x ,且满足:1234x x x x <<<,则1234x x x x +的值是().A .-4B .-3C .-2D .-15.(2022广东潮州·高一竞赛)已知()()20f x ax bx c a =++>,分析该函数图像的特征,若方程()0f x =一根大于3,另一根小于2,则下列推理不一定成立的是()A .232ba<-<B .240ac b -≤C .()20f <D .()30f <6.(2022湖南·衡阳市八中高一竞赛)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(01)a f x x a -+=<<恰有三个不同的实数根,则实数a 的取值范围是()A.1,42⎛⎫⎪ ⎪⎝⎭B.4⎛ ⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.(2022陕西渭南·高二竞赛)已知定义在R 上的函数()f x 满足:(](]222,1,0()2,0,1x x f x x x ⎧--∈-⎪=⎨-∈⎪⎩且(2)()f x f x +=,52()2xg x x -=-,则方程()()f x g x =在区间[]37-,上的所有实根之和为()A .14B .12C .11D .78.(2022河南·高三竞赛(理))已知函数lg ,0,()2,0,x x x f x x ⎧>⎪=⎨≤⎪⎩若关于x 的方程2()()10f x af x -+=有且只有3个不同的根,则实数a 的值为A .2-B .1C .2D .3二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2021·福建·厦门一中高一竞赛)已知定义在R 上的偶函数f (x ),满足f (x +2)=-f (x )+f (1),且在区间[0,2]上是增函数,下列命题中正确的是()A .函数()f x 的一个周期为4B .直线4x =-是函数()f x 图象的一条对称轴C .函数()f x 在[6,5)--上单调递增,在[5,4)--上单调递减D .方程()0f x =在[0,2021]内有1010个根10.(2022·湖南衡阳·高二竞赛)已知函数()22,0log ,0x x f x x x +≤⎧=⎨>⎩,若()f x a =有三个不等实根123,,x x x ,且123x x x <<,则()A .()f x 的单调递减区间为()0,1B .a 的取值范围是()0,2C .123x x x 的取值范围是(]2,0-D .函数()()()g x f f x =有4个零点11.(2022·山东德州·高二竞赛)对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数.人们更习惯称之为“取整函数”,例如:[]3.54-=-,[]2.12=,则下列命题中的真命题是()A .[1,0]x ∀∈-,[]1x =-B .x ∀∈R ,[]1x x <+C .函数[]y x x =-的值域为[0,1)D .方程22022[]20230x x --=有两个实数根12.(2022·辽宁高二竞赛)已知函数()221,0log ,0xx f x x x ⎧+≤⎪=⎨>⎪⎩,()()()222g x f x mf x =-+,下列说法正确的是()A .()y f x =只有一个零点()1,0B .若()y f x a =-有两个零点,则2a >C .若()y f x a =-有两个零点1x ,()212x x x ≠,则121=x x D .若()g x 有四个零点,则32m >第II 卷(非选择题)三、填空题:本题共4个小题,每小题5分,共20分.13.(2021·浙江省杭州学军中学高一竞赛)已知函数()11||f x x x x +=-++,则方程()()21f x f x -=所有根的和是___________.14.(2022浙江高三竞赛)已知()f x 是偶函数,0x ≤时,()[]f x x x =-(符号[]x 表示不超过x 的最大整数),若关于x 的方程()() 0f x kx k k =+>恰有三个不相等的实根,则实数k 的取值范围为__________.15.(2021·浙江省杭州学军中学高一竞赛)已知函数222101,()2 1,x mx x f x mx x ⎧+-≤≤=⎨+>⎩,,,若()f x 在区间[)0,+∞上有且只有2个零点,则实数m 的取值范围是_________.16.(2021·浙江省杭州学军中学高一竞赛)已知函数22log (2),20()21,0x x f x x x x +-<≤⎧=⎨-+>⎩,若函数[]2()(())(1)(())()g x f f x a f f x R a a =-++∈恰有8个不同零点,则实数a 的取值范围是____________.四、解答题:本大题共5小题,17题共10分,其余各题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.(2022湖南·高三竞赛)已知二次函数2()163f x x x p =-++.(1)若函数在区间[1,1]-上存在零点,求实数p 的取值范围;(2)问是否存在常数(0)q q ≥,使得当[,10]x q ∈时,()f x 的值域为区间D ,且D 的长度为12q -.(注:区间[,]a b ()a b <的长度为b a -).18.(2022浙江高二竞赛)已知函数()2,,f x x ax b a b =++∈R ,(1)0f =.(1)若函数()y f x =在[0,1]上是减函数,求实数a 的取值范围;(2)设()()()21212x xF x f a =-+--,若函数()F x 有三个不同的零点,求实数a 的取值范围;19.(2022四川高一竞赛))已知函数()21log f x x =+,()2xg x =.(1)若()()()()()F x f g x g f x =⋅,求函数()F x 在[]1,4x ∈的值域;(2)若()H x 求证()()11H x H x +-=.求12320212022202220222022H H H H ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值;(3)令()()1h x f x =-,则()()()()24G x h x k f x =+-,已知函数()G x 在区间[]1,4有零点,求实数k 的取值范围.20.(2022广东高一竞赛)已知函数21()log 4(1)22x xf x k k k ⎡⎤=⋅--++⎢⎣⎦.(1)当2k =时,求函数()f x 在[0,)+∞的值域;(2)已知01k <<,若存在两个不同的正数a ,b ,当函数()f x 的定义域为[],a b 时,()f x 的值域为[1,1]a b ++,求实数k 的取值范围.21.(2022·山西运城高二竞赛)已知函数()()44log 41log 2x x f x =+-,()142log 23x g x a a -⎛⎫=⋅- ⎪⎝⎭.(1)若1x ∀∈R ,对[]21,1x ∃∈-,使得()221420x xf x m +≥-成立,求实数m 的取值范围;(2)若函数()f x 与()g x 的图象有且只有一个公共点,求实数a 的取值范围.22.(2022江苏盐城高一竞赛)若定义域为(0,)+∞的函数()f x 满足()0a f x f x ⎛⎫+= ⎪⎝⎭,则称()f x 为“a 型”弱对称函数.(1)若函数sin ()ln 1x mf x x x +=-+为“1型”弱对称函数,求m 的值;(2)已知函数()f x 为“2型”弱对称函数,且函数()f x 恰有101个零点(1,2,...,101)i x i =,若1011i i x =∑>λ对任意满足条件函数()f x 的恒成立,求λ的最大值.高一数学《函数与方程》竞赛试题答案一、单选题:本题共8小题,每小题5分,共40分。
全国高中数学竞赛试题及答案
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
必修一数学竞赛试题及答案
必修一数学竞赛试题及答案奥赛班数学能力评估一试题卷MATHEMATICS]本卷满分:150分考试时间:120分钟)一、单项选择题(本大题分10小题,每题5分,共50分)1.已知函数$f(x)(x\in R)$是以4为周期的奇函数。
当$x\in(,2)$时,$f(x)=\ln(x^2-x+b)$.若函数$f(x)$在区间$[-2,2]$上有5个零点,则实数$b$的取值范围是(。
)A.$-1<b\leq1$B.$b\leq-1$或$b>1$C.$-1<b<1$或$b=1$D.$b< -1$或$b\geq1$2.设$M=\alpha\alpha=x^2-y^2$,$x,y\in Z$,则对任意的整数$n$,形如$4n,4n+1,4n+2,4n+3$的数中。
不是$M$中的元素的数为(。
)A.$4n$B.$4n+1$XXXD.$4n+3$3.若集合$A=\{(m,n)(m+1)+(m+2)+\cdots+(m+n)=\}$,$m\in Z$,$n\in N^*$,则集合$A$中的元素个数为(。
) A.$4030$B.$4032$C.$$D.$$4.不定方程$(n-1)!=nk-1$正整数解的个数为(。
)A.$3$B.$4$C.$5$D.$6$5.设$a,b,c$为实数,$f(x)=(x+a)\frac{x^2+bx+c}{x^2+1}$,$g(x)=(ax+1)\frac{ax^2+bx+1}{x^2+1}$.记集合S=\{x|f(x)=0\}$,$T=\{x|g(x)=0\}$,$S,T$分别为集合$S,T$的元素个数。
则下列结论不可能的是(。
)A.$S=1$且$T=0$B.$S=1$且$T=1$C.$S=2$且$T=2$D.$S=2$且$T=3$6.设集合$M=\{(x,y)-xy=45,x,y\in N\}$,则集合$M$中的元素个数为(。
)A.$1$B.$2$C.$3$D.$4$7.已知函数$f(x)$是定义在$R$上的奇函数。
高一数学竞赛试题
高一数学竞赛试题一、单选题1.若集合A ={-2,-1,0,1},B ={x |x 2+2x <0},则A ∩B =( )A .{-1}B .{-1,0}C .{-2,-1,0}D .{-1,0,1} 2.对于任意0a >且1a ≠,函数()log (1)3a f x x =-+的图象必经过点( ) A .(4,2) B .(2,4) C .(2,3) D .(3,2) 3.在ABC 中、角A ,B 均为锐角,cos sin A B >,则C ∠是( )A .直角B .锐角C .钝角D .不确定4.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 5.下列说法正确的是( )A .若0a b >>,则b b m a a m+<+ B .若a b >,则22ac bc >C .若0a b >>,则11a b b a +>+ D .若,R a b ∈,则2a b +6.函数2||2x y x e =-在[]–2,2的图象大致为( )A .B .C .D . 7.已知0.22a -=,ln3b =,0.2log 3c =,则( )A .b c a <<B .a c b <<C .c a b <<D .c b a << 8.若关于x 的方程(||)1x x a +=有三个不同的实数解,则实数a 的可能取值( ) A .-5B .-2C .2D .3二、多选题9.下列命题正确的是( )A .长度等于半径的弦所对的圆心角为1弧度B .若tan α≥0,则k π≤α<π2 +k π(k ∈Z )C .若角α的终边过点P (3k ,4k )(k ≠0),则sin α=45D .当2k π<α<π4+2k π(k ∈Z )时,sin α<cos α 10.已知函数)123f x =,则( ) A .()17f = B .()225f x x x =+C .()f x 的最小值为258- D .()f x 的图象与x 轴只有1个交点 11.命题“x R ∀∈,则2x <”的一个必要不充分条件是( )A .1x <B .3x <C .3x >D .5x ≤12.设a >0,b >0,a +b =1,则下列说法正确的是( )A .41a b +的最小值为9B .222a b +的最小值为23CD三、填空题 13.函数()f x =______.14. 3log 5lg5lg321-+=____________ 15.223(8)--⨯ __. 16.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.四、解答题17.已知集合{}1A x x =≥,集合{}33,B x a x a a R =-≤≤+∈.(1)当4a =时,求A B ;(2)若B A ⊆,求实数a 的取值范围.18.已知α为第三象限角,且3sin cos tan()22()sin tan(2)2f ππαααπαπαπα⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫+- ⎪⎝⎭.(1)化简()f α;(2)若()f α=,求cos()πα+的值.19.已知函数2()21f x x ax =+-,[1,1]x ∈-.(1)若12a =,求函数()f x 的最值; (2)若a ∈R ,记函数()f x 的最小值为()g a ,求()g a 关于a 的函数解析式.20.已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x 千件(025x <≤)并全部销售完,每千件的销售收入为()R x (单位:万元),且21108(010),3()17557(1025).x x R x x x x ⎧-<≤⎪⎪=⎨⎪-++<≤⎪⎩(1)写出年利润()f x (单位:万元)关于年产量x (单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)21.已知函数()y f x =的图像与()log (0a g x x a =>,且1)a ≠的图像关于x 轴对称,且()g x 的图像过点(9,2).(1)求函数()f x 的解析式;(2)若(31)(5)f x f x ->-+成立,求实数x 的取值范围.22.已知函数f(x)=log a(2+3x)-log a(2-3x)(a>0,a≠1).(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性,并证明;(3)当0<a<1时,求关于x的不等式f(x)≥0的解集.。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. πC. √2D. 0.33333(无限循环小数)答案:B2. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。
A. -15B. -7C. -3D. 1答案:B3. 一个圆的半径为r,圆心到直线的距离为d,如果d < r,那么该直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内含答案:B4. 如果一个等差数列的前三项和为9,第四项为5,求该数列的首项a1。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共12分)5. 一个长方体的长、宽、高分别是a、b、c,其体积的公式是______。
答案:abc6. 若sinθ = 1/3,且θ在第一象限,求cosθ的值。
答案:2√2/37. 已知等比数列的前n项和公式为S_n = a1(1 - r^n) / (1 - r),其中a1是首项,r是公比。
如果S_5 = 31,a1 = 1,求r的值。
答案:2三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 能被30整除。
证明:由题意,我们需要证明n^5 - n 能被30整除。
首先,我们知道任何正整数n都能被1、2、3、5中的至少一个整除。
设n = 2a + b,其中a和b是整数,且b属于{0, 1, 2, 3, 4}。
则n^5 - n = (2a + b)^5 - (2a + b) = 32a^5 + 20a^4b + 5a^3b^2 + a^2b^3 + 2ab^4 - 2a - b。
可以看到,除了最后两项,其他项都能被2整除。
对于最后两项,我们有2a - b = 2(a - b/2),当b为偶数时,2a - b能被2整除;当b为奇数时,a - b/2为整数,所以2a - b也能被2整除。
同理,b - 1能被3整除,因为b属于{0, 1, 2, 3, 4}。
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题1.若直线l1:y = -2x + 3,直线l2过点(1,5)且与l1垂直,则l2的方程是:A. y = x + 4B. y = -x + 6C. y = x - 4D. y = -x + 4答案:C2.已知集合A = {x | |x - 3|< 2},则A的值是: A. (-∞, 1) U (5, ∞) B. (-∞,1) U (3, ∞) C. (1, 5) D. (1, 5] U (5, ∞)答案:D二、填空题1.若a、b满足a+b=5,且ab=6,则a和b的值分别是____。
答案:2和32.若某几何体的体积V和表面积S满足S=3V,且V>0,则该几何体的体积V的值为____。
答案:1/3三、解答题1.设数列{an}满足a1=1,a2=2,an+2 = an + 2n,求数列的通项公式。
解答:首先给出数列的前几项: a1 = 1 a2 = 2 a3 = 1 + 2 × 1 = 3 a4 = 2 + 2 × 2 =6 a5 = 3 + 2 × 3 = 9 … 从数列的前几项可以观察到,第n项的值为n^2 - 1。
所以数列的通项公式为an = n^2 - 1。
2.已知函数f(x) = x^3 - 3x^2 + 4x - 2,求f(x)的最小值及取得最小值时的x值。
解答:对于任意x,有f’(x) = 3x^2 - 6x + 4。
令f’(x) = 0,可以解得x = 1。
再求f’‘(x) = 6x - 6,当x = 1时,f’’(x) = 0。
所以x = 1是f(x)的极小值点。
代入f(x) = x^3 - 3x^2 + 4x - 2计算得最小值为-2。
所以f(x)的最小值是-2,取得最小值时的x值为1。
四、简答题1.数列的极限是什么?如何判断一个数列的极限存在?答:数列的极限是指当项数趋向无穷大时,数列的项的值趋向的一个确定的数。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. √3B. 0.33333(无限循环)C. πD. 1/32. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(-1) 的值。
A. 4B. 6C. 8D. 103. 一个圆的半径为 5,求其面积。
A. 25πB. 50πC. 75πD. 100π4. 若 a + b + c = 6,且 a^2 + b^2 + c^2 = 14,求 ab + bc + ca 的值。
A. 2B. 4C. 6D. 8二、填空题(每题5分,共20分)5. 已知等差数列的首项为 2,公差为 3,求第 10 项的值是__________。
6. 已知等比数列的首项为 4,公比为 2,求前 5 项的和是__________。
7. 若函数 g(x) = x^3 - 2x^2 + 3x - 4 的导数是 g'(x),则 g'(1) 的值是 __________。
8. 一个长方体的长、宽、高分别是 3、4、5,求其对角线的长度(保留根号)是 __________。
三、解答题(每题15分,共60分)9. 证明:对于任意正整数 n,都有 1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。
10. 解不等式:|x - 1| + |x - 3| ≥ 5。
11. 已知函数 h(x) = x^3 - 6x^2 + 11x - 6,求其极值点。
12. 已知一个三角形的三个顶点分别为 A(1, 2),B(-1, -1),C(3, 4),求其面积。
答案一、选择题1. 正确答案:C(π 是无理数)2. 正确答案:A(f(-1) = 2(-1)^2 - 3(-1) + 1 = 4)3. 正确答案:B(面积= πr^2 = 25π)4. 正确答案:B(根据柯西-施瓦茨不等式)二、填空题5. 第 10 项的值是 2 + 9*(10-1) = 296. 前 5 项的和是 4 + 8 + 16 + 32 + 64 = 1267. g'(x) = 3x^2 - 4x + 3,g'(1) = 3 - 4 + 3 = 28. 对角线的长度是√(3^2 + 4^2 + 5^2) = √50三、解答题9. 证明:根据调和级数的性质,我们知道 1/n^2 随着 n 的增大而减小,且 1/n^2 < 1/(n-1)^2,因此可以构造不等式 1^2 + 1/2^2 +1/3^2 + ... + 1/n^2 < 1 + 1/(1*2) + 1/(2*3) + ... + 1/((n-1)*n) = 1 + 1 - 1/n < 2。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题4分,共20分)1. 若一个等差数列的首项为3,公差为5,那么它的第n项可以表示为:A. 3 + 5(n-1)B. 3 + 5nC. 5 + 3(n-1)D. 5 + 3n2. 下列哪个分数可以化简为1/2?A. 3/6B. 5/10C. 7/14D. 9/183. 已知函数f(x) = x^2 - 6x + 9,求f(x)的最小值。
A. -36B. -9C. 0D. 94. 若a, b, c是等比数列,且a + b + c = 0,那么b^2的值是:A. a^2 + c^2B. -a^2 - c^2C. acD. -ac5. 一个圆的半径是5cm,求这个圆的面积(圆周率取3.14)。
A. 78.5平方厘米B. 157平方厘米C. 200平方厘米D. 314平方厘米二、填空题(每题5分,共20分)6. 一个等比数列的前三项分别是2, 6, 18,那么它的第四项是_______。
7. 函数g(x) = |2x - 3| + |x + 1|的最小值是_______。
8. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长(根据勾股定理)是_______。
9. 一个圆的周长是12π,那么这个圆的直径是_______。
三、解答题(每题10分,共60分)10. 已知等差数列的前n项和为S_n = n^2 + 2n,求这个等差数列的前三项。
11. 求解方程:\(\frac{1}{x-1} + \frac{2}{x-2} = 3\)。
12. 一个圆与直线y = 2x + 3相交于点P,圆心坐标为(1, 0),且半径为2。
求点P的坐标。
13. 证明:若a, b, c, d是正整数,且满足a^2 + b^2 = c^2 + d^2,则a + b = c + d。
14. 一个等差数列的前10项和为110,且第10项是第2项的3倍,求这个等差数列的公差和首项。
高一数学竞赛答案一、选择题答案1. A2. D3. D4. B5. B二、填空题答案6. 547. 28. 59. 6三、解答题答案10. 首项为2,公差为4,前三项为2,6,10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水寨中学2010-2011学年高一级数学竞赛试题
本试卷满分100分;考试用时90分钟
一、选择题:本大题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{0,1,2,3,5},{1,2,4,6},A B ==则集合A
B =( )
A .{0,1,2,3,4}
B .{1,2,3,4}
C .{1,2}
D .{0} 2.若AB =(2,4),AC =(1,3),则BC =( )
A .)1,1(
B .)1,1(--
C .)7,3(
D .)7,3(-- 3. 在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( )A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D.无法判定4.已知{}n a 是等差数列,6720a a +=,7828a a +=,则该数列前13项和13S 等于( )
A.132
B.156
C.110
D.100
5.若数据123,,,,n x x x x 的平均数x =5,方差22σ=,则数据12331,31,31,
,31n x x x x ++++的平均数为( ),方差为( )
A.5, 16
B.16, 18
C.15, 7
D.16, 2
6.要得到函数y=sinx 的图象,只需将函数y=cos(x-
6
π
)的图象( ) A. 向左平移3π个单位. B. 向右平移3π
个单位.
C .向左6π平移个单位. D. 向右平移6
π
个单位.
7.若,x y 满足条件2
22x y x y ≤⎧⎪
≤⎨⎪+≥⎩
,则2z x y =+的取值范围是( )
A .[]4,5
B .[]2,5
C .[]4,6
D .[]2,6 8.已知y =f (x )的定义域为(-2,2),既是奇函数又是减函数,且f (a -2)+f (8-a 2)<0, 则a 的取值范围是( )
A .
,3) B .(3
, C .
(4) D .(-2,3)
二、填空题:本大题共4小题,每个小题4分,共16分。
9.在右图一个算法的流程图中(图中x N +∈),若当输入x 的值为10时, 输出的结果为 10.函数2()1
x
f x x =
-的值域是 11. 函数)3
(sin 12π
+
-=x y 的最小正周期是
12.将长度为1的线段随机折成三段,则三段能构成三角形的概率是_________
三、解答题:本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤。
13.(本小题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示)。
已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数最多?有多少件? (3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?
14. (本小题满分10分)已知函数)1(log )(),1(log )(x x g x x f a a -=+=(1)a >.
(1)求函数()()()F x f x g x =-的定义域; (2)判断()()()F x f x g x =-的奇偶性,并说明理由; (3)求使()()()0F x f x g x =->成立的x 的集合.
15.(本小题满分10分)已知△ABC 的内角A 、B 、C 所对的边分别为,,,a b c 且2a =,
3cos 5
B =
. (1) 若4b =,求sin A 的值;(2) 若△ABC 的面积4ABC S ∆=,求,b c 的值. 16.(本小题满分12分)已知{}n b 是等差数列,145,1103211=+⋅⋅⋅+++=b b b b b 。
(1)求数列{}n b 的通项公式; (2)设{}n a 的通项1
log (1)(1)n a n
a a
b =+
>,n S 是{}n a 前n 项的和,试比较n S 与1log 3
1
+n a b 的大小,并证明你的结论。
水寨中学2010-2011学年高一级数学竞赛答题卷
题目
一 选择题 二 填空题
13
14
15
16
总分
得分
1 2 3 4 5 6 7 8
(本大题共4小题,每小题4分,共16分.)
9. 10. 11. 12.
三、解答题(本大题共4小题,共44分,解答须写出文字说明、证明过程或演算步骤)
13.(12分)
班别: 学号: 姓名:
……O ……密……O ……封……O ……线……O ……密……O ……封……O ……线……O ……密……O ……封……O ……线……O
……O ……密……
O ……封……
O ……线……
O ……密……
O ……封……
O ……线……
O ……密……
O ……封……
O ……线……O
水寨中学2010-2011学年高一级数学竞赛参考答案
(本大题共4小题,每小题4分,共16分.)
9. 1 ; 10.()
(){},22,;-∞+∞≠或y y 2 11. π; 12.
14
三、解答题(本大题共4小题,共44分,解答须写出文字说明、证明过程或演算步骤)
13. 解:(1)依题意知第三组的的频率为41
2346415
=+++++,又因为第三组的频数为
12,∴本次活动的参评作品数为
605
112
=(件) …………………4分 (2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有
181
464326
60=+++++⨯
(件)。
…………………8分 (3)第四组的获奖率是,9
5
1810=第六组上交的作品数量为
31
464321
60=+++++⨯(件)。
∴第六组的获奖率为96
32=,显然第六组的获奖率较高。
…………………12分
14.(1)解:()()()log (1)log (1)a a F x f x g x x x =-=+-- 若要函数有意义,
则 10
10
x x +>⎧⎨
->⎩ 即11x -<<,所以所求函数定义域为{}11x x -<< ………3分
(2)解:在定义域内对任意x 都有()()()log (1)log (1)a a F x f x g x x x -=---=-+-+
[]log (1)log (1)()a a x x F x =-+--=- ,所以()()()F x f x g x =-是奇函数……6分
(3)解:()()0f x g x ->即log (1)log (1)0a a x x +--> , log (1)log (1)a a x x +>-
因为1a >时,所以原不等式等价于10
1011x x x x +>⎧⎪
->⎨⎪+>-⎩
解得: 01x << …………9分
所以原不等式的解集为{01}x x << …………………10分
15.解:(1) ∵cosB=
3
5>0,且0<B<π, ∴
4
5=. …………………2分
由正弦定理得a b
sinA sinB
=
, …………………3分 42asinB 25sinA b 45⨯
===. …………………5分 (2) ∵S △ABC =1
2
acsinB=4, …………………7分
∴14
2c 425
⨯⨯⨯=, ∴c=5. …………………9分
由余弦定理得b 2=a 2+c 2-2accosB ,
∴b =
==
…………………10分 16.解:(1)由已知可得11
1
1045145b b d =⎧⎨+=⎩ ……………………2分
解得3d = …………………4分 所以1(1)332n b n n =+-⋅=- ……………………5分 (2)
131
log (1)log 3232
n a a
n a n n -=+
=-- 258(31)
log 147(32)
n a
n S n ⋅⋅⋅⋅⋅⋅⋅-∴=⋅⋅⋅⋅⋅⋅⋅- ……………………7分
又
11
log log 3
a n a
b +=
…………………8分 11log log 3
n a n a
S b +∴-=
…………………9分
设n T
=
11n n T T +===>
所以n T 是单调递增的,故有11n T T ≥=
> …………………………11分 因为1a >,11log log log 103n a n a n a S b T +-=>=,即11
log 3
n a n S b +>
…12分。