8T圆锥曲线与导数
圆锥曲线的曲率半径与曲线弧长的数学推导过程详解
圆锥曲线的曲率半径与曲线弧长的数学推导过程详解圆锥曲线是解析几何中的重要内容,它包括了椭圆、双曲线和抛物线三种基本类型。
而我们这篇文章将详细讲解圆锥曲线的曲率半径与曲线弧长的数学推导过程。
一、椭圆曲线的曲率半径推导过程椭圆曲线是一个求解“离心率小于1的轨迹”的问题。
其数学表达式为:e = √(1 − e²/e²),其中e和e分别代表椭圆的长半轴和短半轴。
要推导椭圆曲线的曲率半径,我们首先需要求解椭圆曲线的参数方程。
设椭圆曲线上一点的坐标为(e, e),角度为e,长半轴和短半轴分别为e和e,焦点到该点的距离为e。
1. 第一步,建立坐标系并列出参数方程我们先建立一个以椭圆中心为原点的直角坐标系,然后列出椭圆曲线的参数方程:e = eeee(e)e = eeee(e)2. 第二步,求解椭圆曲线上一点到椭圆中心的距离e根据勾股定理,我们可以得到:e² = e² + e²将e和e的参数方程代入上式,得到:e² = e²eee²(e) + e²eee²(e)3. 第三步,求解e关于e的导数,并计算曲率半径对上式两边同时求导数,可得:2ee′ = 2e²eee(e)eee(e) − 2e²eee(e)eee(e)将e′表示为e关于e的导数,即:e′ = e²eee(e)eee(e) − e²eee(e)eee(e) / e最后,曲率半径的计算公式为:e = e² / |e′|4. 第四步,化简曲率半径的式子将e′的表达式代入曲率半径公式中,我们得到:e = e² / (e²eee(e)eee(e) − e²eee(e)eee(e) / e)化简上式,最终得到椭圆曲线的曲率半径公式:e = e²e / (e²eee²(e) + e²eee²(e))二、双曲线的曲率半径与弧长推导过程双曲线是解析几何中的另一个重要内容,其数学表达式为e²/e² − e²/e² = 1。
圆锥曲线综合 导数基本知识
圆锥曲线综合考点名称:圆锥曲线综合圆锥曲线的综合问题:1、圆锥曲线的范围问题有两种常用方法:(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;(2)所求量可表示为另一变量的函数,求函数的值域。
2、圆锥曲线的最值、定值及过定点等难点问题。
直线与圆锥曲线的位置关系:(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ>0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ<0时,直线和圆锥曲线没有公共点,相离.直线与圆锥曲线相交的弦长公式:若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.抛物线的性质(见下表):抛物线的焦点弦的性质:关于抛物线的几个重要结论:(1)弦长公式同椭圆.(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,又若切线PA⊥PB,则AB必过抛物线焦点F.利用抛物线的几何性质解题的方法:根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.抛物线中定点问题的解决方法:在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。
圆锥曲线的导数知识点总结
圆锥曲线的导数知识点总结在微积分中,导数是一个非常重要的概念。
导数可以用来描述曲线在某一点的斜率,以及曲线在该点的变化率。
在这篇文章中,我们将讨论圆锥曲线的导数,并总结相关的知识点。
圆锥曲线是指由一个平面直线在一个固定的点上旋转而成的曲线。
常见的圆锥曲线包括圆、椭圆、抛物线和双曲线。
在这篇文章中,我们将讨论这些不同类型的圆锥曲线的导数,并总结它们的特点。
首先,让我们来看看圆的导数。
圆的方程可以表示为 x^2 + y^2 = r^2,其中 r 表示圆的半径。
我们可以使用隐式求导法来求得圆在任意点的导数。
首先,我们对方程两边同时对 x求导,得到 2x + 2y(dy/dx) = 0。
然后,解出 dy/dx,得到 dy/dx = -x/y。
这就是圆在任意点的导数公式。
从这个式子中我们可以看出,圆的导数是一个关于 x 和 y 的函数,它随着坐标点的不同而不同。
接下来,让我们来看看椭圆的导数。
椭圆的一般方程可以表示为 x^2/a^2 + y^2/b^2 = 1。
我们可以使用同样的方法来求得椭圆在任意点的导数。
首先,对方程两边分别对 x 和 y 求导,得到 2x/a^2 + 2y/b^2(dy/dx) = 0。
然后,解出 dy/dx,得到 dy/dx = -x(a^2/b^2)/y。
和圆一样,椭圆的导数也是一个关于 x 和 y 的函数,它随着坐标点的不同而不同。
抛物线是另一种常见的圆锥曲线。
对于一般的抛物线方程 y = ax^2 + bx + c,我们可以使用求导法则来求得抛物线在任意点的导数。
对 y 关于 x 求导,得到 dy/dx = 2ax + b。
可以看出,抛物线的导数是一个关于 x 的线性函数。
这意味着抛物线在每个点的导数都是一条直线,斜率由抛物线的二次项系数 a 决定。
最后,让我们来看看双曲线的导数。
对于一般的双曲线方程 x^2/a^2 - y^2/b^2 = 1,我们可以使用同样的方法来求得双曲线在任意点的导数。
圆锥曲线解题技巧之八利用曲线的导数解题
圆锥曲线解题技巧之八利用曲线的导数解题圆锥曲线解题技巧之八:利用曲线的导数解题圆锥曲线是高中数学中重要的内容之一,解题时我们常常会遇到需要利用曲线的导数进行求解的情况。
本文将介绍一些常见的圆锥曲线解题技巧,帮助读者更好地理解和掌握这一知识点。
一、圆锥曲线的导数概念回顾在解题之前,我们首先对圆锥曲线的导数概念进行回顾。
圆锥曲线的导数,可以理解为曲线在某点处的切线斜率。
利用导数,我们可以求解曲线的切线方程,进而分析曲线的性质和特点。
二、利用导数求解直线与圆锥曲线的交点有时我们需要求解直线与圆锥曲线的交点,可以利用导数来进行求解。
假设直线方程为y=kx+b,圆锥曲线方程为y=f(x),我们可以通过以下步骤进行求解:1. 将直线方程代入圆锥曲线方程,得到一个关于x的方程f(x)-kx-b=0。
2. 求解方程f(x)-kx-b=0,得到曲线与直线的交点的横坐标x。
3. 将求得的横坐标x代入直线方程,得到交点的纵坐标y。
三、利用导数求解切线方程在解题过程中,有时我们需要求解曲线某点处的切线方程。
我们可以利用导数来求解切线方程,具体步骤如下:1. 求取曲线方程的导数,得到导函数。
2. 将导函数的值与给定点的坐标代入切线方程的公式y-y₁=k(x-x₁),其中k为导函数的值。
通过以上步骤,我们可以得到曲线某点处的切线方程,进而分析曲线在该点的切线斜率和特性。
四、利用导数求解曲线的凹凸性和拐点曲线的凹凸性和拐点是研究曲线特性的重要内容。
我们可以利用导数来求解曲线的凹凸性和拐点:1. 求取曲线方程的二阶导数,得到二阶导函数。
2. 判断二阶导函数的正负性:若二阶导函数大于0,则曲线在该点凹向上;若二阶导函数小于0,则曲线在该点凹向下。
3. 求解二阶导函数等于0的点,这些点即为曲线的拐点。
通过以上步骤,我们可以分析曲线的凹凸性和拐点,进一步掌握曲线的性质以及解题过程中的一些特殊情况。
结语本文介绍了利用圆锥曲线的导数进行解题的一些技巧和方法。
圆锥曲线不联立 导数压轴不求导
圆锥曲线不联立导数压轴不求导在数学领域,圆锥曲线和导数都是非常重要且广泛应用的概念。
然而,很多人在学习过程中都会对圆锥曲线的联立和导数的压轴求导感到困惑。
本文将从简到繁地分析这两个主题,帮助读者更深入地理解它们的内涵和应用。
一、圆锥曲线不联立圆锥曲线是指平面上由一个固定点F(称为焦点)和一个固定直线L (称为准线)决定的点P到焦点和准线的距离之比是一个常数e(离心率)的点集合。
圆锥曲线包括椭圆、双曲线和抛物线三种类型。
在解析几何和微积分中,研究圆锥曲线的方程和性质对于理解曲线的形状和运动规律起着至关重要的作用。
然而,在学习圆锥曲线时,很多人会感到困惑的一个重要问题就是联立。
联立是指将两个或多个方程进行组合,通过求解共同满足的解来研究曲线的交点、相切点等问题。
而有些情况下,圆锥曲线并不需要进行联立,例如在研究特定类型的曲线时,可以直接利用曲线的性质和方程来解决问题,无需进行联立。
以双曲线为例,其方程为x^2 /a^2 - y^2 /b^2 = 1。
我们要求证曲线上一点处的切线斜率不等于2。
这时,我们可以直接利用双曲线的导数性质而无需进行联立方程。
这种情况下,圆锥曲线不需要联立,通过直接利用曲线的性质即可解决问题。
二、导数压轴不求导导数是微积分中的一个非常重要的概念,它描述了函数在某一点的变化率。
求导是微积分中的一个核心技能,通过求导可以研究函数的增减性、凹凸性、极值等重要性质。
然而,在实际应用中,有时候我们并不需要通过求导来得到导数的具体数值,而是通过导数的性质和变化规律来分析问题。
当我们要研究函数的增减性或曲线的凹凸性时,可以通过导数的符号和零点来分析,而无需进行具体的导数计算。
这就是所谓的“导数压轴不求导”,即在分析问题时,可以通过导数的性质和规律来得到结论,而无需进行具体的导数计算。
另外,有时候我们也可以通过导数的定义和极限的性质来得到导数的性质和应用,而无需进行具体的导数计算。
这种情况下,导数的计算变得次要,而导数的性质和变化规律成为了重要的研究对象。
高考数学《圆锥曲线的概念与性质,与弦有关的计算问题》复习
高考考点
1. 圆锥曲线的定义、标准方程与性质 2. 圆锥曲线中的最值(范围)及与弦有关的问题 3. 直线与圆锥曲线位置关系的判断与证明问题 4. 圆锥曲线中的定点,定值问题
考点解读
1.求圆锥曲线的标准方程、离心率、双曲线的渐近线方程 2.考查圆锥曲线的定义、性质
设 AB 是过抛物线 y2=2 px p 0 焦点 F 的弦,若 A(x1,y1),B(x2,y2 ) ,
则
①x1x2=
p2 4
,
y1 y2=
p2
;
②弦长
AB
=x1+x2+p=
2 sin
p
2
( 为弦 AB 的倾斜角);
③ 1 1 2 ;④以弦 AB 为直径的圆与准线相切. | FA | | FB | p
y=
b a
x;
焦点坐标 F1(-c,0),F2 c,0 .
②双曲线
y2 a2
x2 b2
=1
(a
0,b
0) 的渐近线方程为
y=
a b
x,
焦点坐标 F1(0,-c),F2 (0,c) .
(3)抛物线的焦点坐标与准线方程
①抛物线 y2= 2 px p 0 的焦点坐标为 ( p ,0) ,准线方程为 x= p .
3.与相交有关的向量问题的解决方法 在解决直线与圆锥曲线相交,所得弦端点的有关的向量问题时, 一般需利用相应的知识,将该关系转化为端点坐标满足的数量关系, 再将其用横(纵)坐标的方程表示,从而得到参数满足的数量关系,进而求解. 4.圆锥曲线中最值问题:主要是求线段长度的最值、三角形面积的最值等.
5.圆锥曲线中的范围问题:关键是选取合适的变量建立目标函数和不等关系. 该问题主要有以下三种情况: (1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解; (2)若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程, 再代入圆锥曲线方程中,用判别式等于零求得切点坐标, 这个切点就是距离取得最值的点,若是在圆或椭圆上, 则可将点的坐标以参数形式设出,转化为三角函数的最值求解.
圆锥曲线和导数
圆锥曲线和导数圆锥曲线1.位置关系的判定方法一般有两种:(1)代数方法:转化为方程根个数的判定(2)几何方法:通过图形本身的特征,寻找存在交点个数的位置关系,列等量(不等)关系式.2. 直线与椭圆(双曲线)的综合(1)设:设交点A(x1,y1),B(x1,y1),设直线l:y=kx+b,椭圆(双曲线)C:mx2+ny2=1(mn>0椭圆,mn<0双曲线);(2)联(硬解定理):联立直线方程与椭圆(双曲线)方程{mx2+ny2=1,消去y得:{y=kx+b(nk2+m)x2+2kbnx+nb2-1=0Δ=nk2-mnb2+m>0,{x1+x2=-2kbn/nk2+m,{y1+y2=2mb/nk2+m,{x1x2=nb2-1/nk2+m {y1y2=mb2-k2/nk2+m根系关系是一种设而不求的思想(设点不求点,用系数代替),其目的是代入到与交点有关的关系式中,实现多元归一.(3)化:条件(结论)几何性质转化为几何等量关系再转化为坐标运算弦长公式,|EF|=√(x1+x2)2+(y1-y2)2=√1+k2|x1-x2|=√1+k2•√(x1+x2)2-4x1x2;|EF|=√(x1+x2)2+(y1-y2)2=√1+k2•√Δ/|nk2+m|=√1+k2•√nk2-mnb2+m/|nk2+m|(硬解定理).以AB为直径的圆经过原点O⇒OE⊥OF⇒x1x2+y1y2=0⇒nb2-1+mb2-k2/nk2+m=0,即(n+m)b2=1+k2(硬解定理).(4)整:抓住元,将结论表示成某参(一般为斜率或点坐标等)的函数式;(5)算:根据结论不同问法选取不同的求解策略求解取值范围一般有两种解题策略:①利用题设中或明或暗的不等式关系构造不等式解得范围;②选择合适的参数构造目标函数,转化为函数值域问题.对于比较复杂的动态过程,理顺动态因素之间的从属关系、先后关系.3. 一般性质结论在平面直角坐标系中,A、B、C为平面内不共线的三点,向量CA=(x1,y2),向量CB=(x2,y2),则S△ABC=1/2|x1y2-x2y1|.在平面直角坐标系中,A、B、C为平面内不共线的三点,且三点坐标分别为A(x1,y2),B(x2,y2),C(x0,y0),O为坐标原点,则S⇒AOB=1/2|x1y2-x2y1|,S⇒ABC=1/2|(x1-x0)(y2-y0)-(x2-x0)(y1-y0)|.对椭圆x2/a2+y2/b2=1,过原点的两条直线l1和l2分别与椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S,若直线l1与l2的斜率之积为-b2/a2(在x轴)或-a2/b2(在y轴),则(1)x12+x22=a2;(2)y12+y22=b2;(3)S=2ab.(在x轴)或(1)x12+x22=b2;(2)y12+y22=a2;(3)S=2ab.(在y轴)4.焦点三角形的相关结论以椭圆x2/a2+y2/b2=1(a>b>0)上一点P(x0,y O)(y O≠0)和焦点F1(-c,0),F2(c,0)为顶点的⇒PF1F2(焦点三角形)中,若∠F1PF2=θ,则(1)|PF1|+|PF2|=2a.(2)4c2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cosθ.(3)|PF1|•|PF2|=2b2/1+cosθ.(4)S⇒PF1F2=1/2|PF1|•|PF2|•sinθ=b2tan(θ/2).以双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y O)(y O≠0)和焦点F1(-c,0),F2(c,0)为顶点的⇒PF1F2(焦点三角形)中,若⇒F1PF2=θ,则(1)||PF1|-|PF2||=2a.(2)4c2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cosθ.(3)|PF1|•|PF2|=2b2/1-cosθ.(4)S⇒PF1F2=1/2|PF1|•|PF2|•sinθ=b2tan-1(θ/2).4. 结论:抛物线E:x2=2py第一象限上一动点P的切线,与椭圆C:x2/a2+y2/b2=1(a>b>0)交于不同的两点A、B,线段AB中点为D,直线OD与过点P且垂直于x轴的直线交于点M,则点M在定直线y=-pb2/a2上,当且仅当a2=4b2时,S1/S2的最大值为定值9/4;5.曲线一般性质总结:圆锥曲线:过圆锥曲线E:ax2+bxy+cy2+dx+ey+f=0上任一点P(x0,y0)引两条弦PA、PB,若k PA k PB=k或k PA+k PB=k(k≠a/c椭圆双曲线,k≠0抛物线),则直线AB经过定点.曲线过定点题型方法归纳:①参数元关法②探索定点③关系法6.[答题模板]第一步:假设结论存在.第二步:以存在为条件,进行推理求解.第三步:明确规范表述结论,若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设.第四步:反思回顾,查看关键点、易错点及解题规范.7. 椭圆与双曲线焦点弦性质总结:圆锥曲线上的一点P(x0,y0)到焦点的线段称为焦半径.焦半径常考公式;焦半径公式(I):对左、右焦点分别为F1(-c,0),F2(c,0)的椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y0),有|PF1|=|a+ex0|,|PF2|=|a-ex0|.焦半径公式(Ⅱ):对左、右焦点分别为F1(-c,0),F2(c,0)的椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y0),有|PF1|=b2/a-ccosα(椭圆)或|PF1|=b2/|a+ccosα|(双曲线),|PF2|=b2/a+ccosβ(椭圆)或|PF2|=b2/|a-ccosβ|(双曲线),其中α、β为焦半径PF1、PF2与x轴正半轴所成的角焦点弦长公式:若椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)的焦点弦AB,设其倾斜角为α,有|AB|=2ab2/|a2-c2•cos2α|.焦点弦定理已知焦点在x轴上的圆锥曲线C,经过其焦点F的直线交曲线于A、B两点,直线AB的倾斜角为θ,斜率为k(k≠0),向量AF= λ向量FB,则曲线C的离心率e满足等式:|ecosθ|=|λ-1/λ+1|,e=√1+k2|λ-1/λ+1|推论已知焦点在y轴上的圆锥曲线C,经过其焦点F的直线交曲线于A、B两点,直线AB的倾斜角为θ,斜率为k(k≠0),向量AF=λ向量FB,则曲线C的离心率e满足等式:|esinθ|=|λ-1/λ+1|,e=√1+k-2|λ-1/λ+1|.8.抛物线性质总结:过抛物线C:y2=2px(p>0)的焦点F作直线l交抛物线于A(x1,y1),B(x2,y2)两点,且A在x轴上方,直线l的倾斜角为θ,A、B在准线上的射影分别为P,Q,线段PQ的中点为R,AB的中点为M.(1)y1•y2=-p2;x1•x2=p2/4;(2)k2=2p/y1+y2;(3)|AF|=x1+p/2=p/1-cosθ,|BF|=x1+p/2=p/1+cosθ(4)|AF|-1+|BF|-1=2/p;(5)|AB|=2p/sin2θ (6)S△OAB=p2/2sinθ;在直角梯形APQB中;(7)⇒PFQ=90o(以PQ为直径的圆与AB相切),⇒ARB=90o(以AB为直径的圆与准线相切);①|AF|,|RF|,|BF|成等比数列;②|AF|,|AR|,|AB|成等比数列;③|BF|,|BR|,|AB|成等比数列;(8)直角梯形APQB对角线过原点O;(9)以AF(或BF)为直径的圆与y轴相切;若过焦点作直线l的垂线n交抛物线于C、D两点,倾斜角为α.(10)|AB|-1+|CD|-1=1/2p;(11)|AB|+|CD|=8p/sin22α⇒[8p,+∞);(12)|AB|•|CD|=16p2/sin22α⇒[16p2,+∞);(13)⇒APF的面积,⇒PFQ的面积的一半,⇒BQF的面积,成等比数列;(12)若向量AF=λ向量FB,则cosθ=|λ-1|/|λ+1|,√1+k l2=|λ+1|/|λ-1|9.曲线性质总结:曲线C:x2=2py与直线l:y=kx+b(b>0)交于M、N两点.结论1:曲线C在点M、N处的切线的交点Q的横坐标与两点的横坐标成等差数列,即2x Q=x m+x N.结论2:曲线C在点M、N处的切线的交点Q的轨迹为y=-b;结论3:过直线y=-b上任一点做曲线C的切线,切点分别为M、N,则直线MN恒过定点T(0,b);结论4:当直线l经过曲线C的焦点时,有MQ⊥NQ.10.结论已知椭圆C:x2/a2+y2/b2=1或y2/a2+x2/b2=1(a>b>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A、B,线段AB 的中点为M.(1)直线OM的斜率与l的斜率的乘积为定值-b2/a2或-a2/b2;(2)若l过点(a,b),延长线段OM与C交于点P,当四边形OAPB 为平行四边形时,则直线l的斜率k l=(4±√7)/3•b/a或k l=(4±√7)/3•a/b.11. 一般性结论:已知椭圆C:x2/a2+y2/b2=1(a>b>0),点A为椭圆上的动点,点B为直线y=ab/c上的动点,若OA丄OB,则直线AB与圆x2+y2=b2相切. 导数1.求过某点处的切线方程解题过程①确定切点P(x0,y0);②求导f'(x);③求斜率k=f'(x0);④点斜式y-y0=k(x-x0)(*)⑤将点P代入切线;⑥将求得的切点代入(*).三次函数切线条数:过三次函数f(x)=ax3+bx2+cx+d(a≠O)图象的对称中心作切线l,则坐标平面被切线l和函数f(x)的图象分割为四个区域,有以下结论:(1)当定点P在中心N或在I和Ⅲ区域时,过点P的切线有1条;(2)当定点P在函数f(x)或切线l上且不在N时,过点P的切线有2条;(3)当定点P在Ⅱ或在Ⅳ区域时,过点P的切线有3条.记法:内一,上二,外三2.隐零点估值与代换解法(1)分而治之寻找充分条件,逐个求解不等式;(2)找点过程中放缩的出发点是使不等式能解,易解;(3)结合“点”所在的区间,以及各部分的“阶”,进行放缩.3. 极值点偏移对数不等式lnx1-lnx2>2(x1-x2)/x1+x2偏移.4.构造法的经验总结有两点:①因为图象y=e x变化递增的速度比y=lnx快,所以才去“分家”构造新函数的形式,而此时的关键是构造怎样的函数形式.②联想到常见幂函数、指数函数、对数函数两两组合构成的新函数. (1)幂函数与指数函数的组合:y=x+e x,y=x-e x,y=xe x,y=e x/x,y=x/e x,y=x n e x,y=e x/x n,y=x n/e x;(2)幂函数与对数函数的组合:y=x+lnx,y=xlnx,y=x/lnx,y=lnx/x,y=x n lnx,y=lnx/x n,y=x n/lnx.5.(1)以导数为工具证明超越不等式大致有三种不同的思路:①直接化为最值(或确界);②调整结构,分离函数,证最小值大于最大值;③部分放缩与函数逼近.(2)证明超越不等式的通性通法为直接化为最值,会涉及导函数的隐零点,也就是无法求出导函数具体零点,这时一般有两个处理方式:①整体代入化为代数式;②缩小导函数隐零点的范围,从而达到确定最值符号.。
导数,圆锥曲线,指数函数,对数函数知识点整理
第一部分、基本初等函数第二部分圆锥曲线椭圆1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率)01c e e a ==<<双曲线3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率)1c e e a ==>渐近线方程b y x a=±a y x b=±5、实轴和虚轴等长的双曲线称为等轴双曲线.抛物线6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2px =2p y =-2p y =离心率1e =第三部分 导数及其应用1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000;.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.4、常见函数的导数公式:①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.8、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.。
圆锥曲线知识点总结大全
圆锥曲线知识点总结大全终于要学习圆锥曲线知识点了,高二数学本身的知识体系而言,它主要是对数学知识的深入学习和新知识模块的补充。
圆锥曲线知识点总结有哪些你知道吗?一起来看看圆锥曲线知识点总结,欢迎查阅!圆锥曲线知识点大全圆锥曲线的应用【考点透视】一、考纲指要1.会按条件建立目标函数研究变量的最值问题及变量的取值范围问题,注意运用数形结合、几何法求某些量的最值.2.进一步巩固用圆锥曲线的定义和性质解决有关应用问题的方法.二、命题落点1.考查地理位置等特殊背景下圆锥曲线方程的应用,修建公路费用问题转化为距离最值问题数学模型求解,如例1;2.考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力,如例2;3.考查双曲线的概念与方程,考查考生分析问题和解决实际问题的能力,如例3.【典例精析】例1:(2004?福建)如图,B地在A地的正东方向4km 处,C地在B地的北偏东300方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上选一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是( )A.(2-2)a万元B.5a万元C. (2+1)a万元D.(2+3)a万元解析:设总费用为y万元,则y=a?MB+2a?MC∵河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.,∴曲线PG是双曲线的一支,B 为焦点,且a=1,c=2.过M作双曲线的焦点B对应的准线l的垂线,垂足为D(如图).由双曲线的第二定义,得=e,即MB=2MD.∴y= a?2MD+2a?MC=2a?(MD+MC)≥2a?CE.(其中CE是点C到准线l的垂线段).∵CE=GB+BH=(c-)+BC?cos600=(2-)+2×=. ∴y≥5a(万元).答案:B.例2:(2004?北京,理17)如图,过抛物线y2=2px(p0)上一定点P(x0,y0)(y00),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).(1)求该抛物线上纵坐标为的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.解析:(1)当y=时,x=.又抛物线y2=2px的准线方程为x=-,由抛物线定义得,所求距离为.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB.由y12=2px1,y02=2px0,相减得:,故.同理可得,由PA、PB倾斜角互补知, 即,所以, 故.设直线AB的斜率为kAB, 由,,相减得, 所以.将代入得,所以kAB是非零常数.例3:(2004?广东)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m,试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上)解析:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020).设P(x,y)为巨响发生点,由A、C同时听到巨响声,得|PA|=|PC|,故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|-|PA|=340×4=1360.由双曲线定义知P点在以A、B为焦点的双曲线上,依题意得a=680,c=1020,∴b2=c2-a2=10202-6802=5×3402,故双曲线方程为.用y=-x代入上式,得x=±680,∵|PB||PA|,∴x=-680,y=680,即P(-680,680),故PO=680.答:巨响发生在接报中心的西偏北450距中心680 m处.【常见误区】1.圆锥曲线实际应用问题多带有一定的实际生活背景, 考生在数学建模及解模上均不同程度地存在着一定的困难, 回到定义去, 将实际问题与之相互联系,灵活转化是解决此类难题的关键;2.圆锥曲线的定点、定量、定值等问题是隐藏在曲线方程中的固定不变的性质, 考生往往只能浮于表面分析问题,而不能总结出其实质性的结论,致使问题研究徘徊不前,此类问题解决需注意可以从特殊到一般去逐步归纳,并设法推导论证.【基础演练】1.(2005?重庆) 若动点()在曲线上变化,则的最大值为( )A. B.C. D.22.(2002?全国)设,则二次曲线的离心率的取值范围为( )A. B.C. D.3.(2004?精华教育三模)一个酒杯的轴截面是一条抛物线的一部分,它的方程是x2=2y,y∈[0,10] 在杯内放入一个清洁球,要求清洁球能擦净酒杯的最底部(如图),则清洁球的最大半径为( )A. B.1 C. D.24. (2004?泰州三模)在椭圆上有一点P,F1、F2是椭圆的左右焦点,△F1PF2为直角三角形,则这样的点P有( )A.2个B.4个C.6个D.8个5.(2004?湖南) 设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|, |FP3|,...组成公差为d的等差数列,则d的取值范围为.6.(2004?上海) 教材中坐标平面上的直线与圆锥曲线两章内容体现出解析几何的本质是.7.(2004?浙江)已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1,(1)若直线AP 的斜率为k,且|k|?[],求实数m的取值范围;(2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.8. (2004?上海) 如图, 直线y=x与抛物线y=x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B) 的动点时, 求ΔOPQ面积的最大值.9.(2004?北京春) 2003年10月15日9时,神舟五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行.该轨道是以地球的中心为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点.近地点A距地面200km,远地点B 距地面350km.已知地球半径R=6371km.(1)求飞船飞行的椭圆轨道的方程;(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约,问飞船巡天飞行的平均速度是多少km/s?(结果精确到1km/s)(注:km/s即千米/秒)关于双曲线知识点总结双曲线方程1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或.②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P 在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证:=.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.双曲线方程知识点在高考中属于比较重要的考察点,希望考生认真复习,深入掌握。
高中数学圆锥曲线求导法则分析
高中数学圆锥曲线求导法则分析在高中数学中,圆锥曲线是一个重要的概念,包括抛物线、椭圆、双曲线等。
求导是数学中的一项基本运算,对于圆锥曲线的求导法则,我们需要掌握一些基本原理和技巧。
本文将对圆锥曲线的求导法则进行详细分析,并通过具体的题目举例,帮助读者理解和掌握这一内容。
首先,我们来看抛物线的求导法则。
抛物线的一般方程为y=ax^2+bx+c,其中a、b、c为常数。
对于抛物线上的任意一点(x, y),我们需要求出它的导数。
根据导数的定义,我们可以通过求出函数的斜率来得到导数的值。
对于抛物线来说,斜率即为切线的斜率。
举例来说,考虑抛物线y=2x^2+3x+1。
我们需要求出点(2, 13)处的切线斜率。
首先,我们可以求出函数的导函数,即y'=4x+3。
然后,将x=2代入导函数中,得到斜率为11。
因此,点(2, 13)处的切线斜率为11。
接下来,我们来看椭圆的求导法则。
椭圆的一般方程为(x/a)^2+(y/b)^2=1,其中a、b为椭圆的半长轴和半短轴。
同样地,我们需要求出椭圆上的任意一点的导数。
以椭圆x^2/4+y^2/9=1为例,我们需要求出点(2, 3)处的切线斜率。
首先,我们可以将椭圆方程转化为y的显式函数,即y=3√(1-x^2/4)。
然后,我们求出导函数y',即y'=-3x/2√(4-x^2)。
最后,将x=2代入导函数中,得到斜率为-3/√5。
因此,点(2, 3)处的切线斜率为-3/√5。
最后,我们来看双曲线的求导法则。
双曲线的一般方程为(x/a)^2-(y/b)^2=1,其中a、b为双曲线的参数。
同样地,我们需要求出双曲线上的任意一点的导数。
以双曲线x^2/4-y^2/9=1为例,我们需要求出点(2, 3)处的切线斜率。
首先,我们可以将双曲线方程转化为y的显式函数,即y=3√(x^2/4-1)。
然后,我们求出导函数y',即y'=3x/2√(x^2-4)。
圆锥曲线复习课课件
将问题转化为函数问题,利用函数的性质和图像,求解相关 问题。
05
圆锥曲线的问题与挑战
圆锥曲线中的难题与挑战
圆锥曲线中的复杂计算
圆锥曲线问题往往涉及大量的计算和复杂的数学公式,需要学生 具备较高的数学计算能力和逻辑思维能力。
圆锥曲线中的抽象概念
圆锥曲线问题常常涉及到抽象的概念和性质,需要学生具备较好的 数学基础和空间想象力。
利用圆锥曲线的参数方程,将问 题转化为参数的取值范围或最值 问题,简化计算。
圆锥曲线的特殊解题方法
焦点三角形法
利用圆锥曲线的焦点三角形,结合正 弦定理、余弦定理等,求解相关问题 。
切线法
通过圆锥曲线的切线性质,结合导数 和切线斜率,求解相关问题。
圆锥曲线的综合解题方法
数形结合法
将几何性质与代数表达式相结合,通过数形结合的方法,直 观地解决问题。
作用。
光线的弯曲程度与圆锥曲线的离 心率有关,离心率越大,光线弯
曲程度越明显。
圆锥曲线的对称性质
圆锥曲线具有对称性,包括中 心对称、轴对称和面对称等。
圆具有中心对称和轴对称,椭 圆和双曲线只有中心对称,抛 物线只有轴对称。
对称性是圆锥曲线的一个重要 性质,在解决几何问题时具有 广泛应用。
03
圆锥曲线的应用
路,提高解题能力。
培养数学思维
学生应注重培养数学思维,提高 逻辑推理能力和空间想象力,以
便更好地解决圆锥曲线问题。
如何进一步深化对圆锥曲线的研究
研究圆锥曲线的性质
01
学生可以进一步研究圆锥曲线的性质和特点,探索其内在规律
和数学之美。
探索圆锥曲线与其他数学领域的联系
02
学生可以探索圆锥曲线与其他数学领域之间的联系,例如与代
导数圆锥曲线解题方法
导数圆锥曲线解题方法
求解导数圆锥曲线的方法可以分为以下几个步骤:
1. 确定圆锥曲线的方程:圆锥曲线包括抛物线、椭圆、双曲线等,不同类型的曲线有不同的方程形式。
根据给定的曲线问题,确定所求曲线的方程。
2. 求取导数表达式:将确定的曲线方程进行求导,得到导数的表达式。
根据曲线的类型和方程形式,使用相应的求导规则进行计算。
3. 求取导数值或导数函数:根据具体的问题,求取导数的值或者导数的函数表达式。
这个步骤可能需要进一步的代数运算或者数值计算。
4. 分析导数的性质:通过对导数值或导数函数的分析,得出导数的性质。
例如,导数为正表示曲线上的点在递增,导数为零表示曲线上的点可能是极值点,导数为负表示曲线上的点在递减等。
5. 应用导数解题:根据问题的具体要求,利用得到的导数信息解决问题。
例如,求曲线上的最值点、确定曲线的切线方程、研究曲线的凹凸性等。
总之,求解导数圆锥曲线的方法包括确定曲线方程、求取导数表达式、求取导数值或函数、分析导数的性质和应用导数解题。
具体的步骤和方** 根据问题的不同而有所差异。
高中数学里面的圆锥曲线和导数哪个更难?为什么?
⾼中数学⾥⾯的圆锥曲线和导数哪个更难?为什么?市重点⾼中任职⼗余年之久的数学教师告诉你,⾼中数学⾥⾯导数肯定更难,为何我会得出这个结论呢?⾸先第⼀个我们从圆锥曲线与导数常考题型来分析。
参加过⾼考的⼈应该都知道。
⾼考题这些顺序都是按照从易到难的顺序出题的。
从近⼏年的全国卷,命题顺序来看,导数始终放在圆锥曲线的后⾯。
⼜或者说导数经常是放在最后⼀题,也就是我们常说的压轴题。
这类题⽬的出现它必然取⼀个选拔决定性的作⽤,也就是真正“学霸”与“中等⽣”的分界点。
真正在⾼考当中导数能得到满分的同学,那么正常试卷我相信他的数学成绩⾃然不会差,⾄少在140以上。
除了粗⼼⼤意,我觉得没有理由,他做出来的题⽬会被扣分。
⼀:圆锥曲线知识点及其对应题型:这这个地⽅我讲述⼀点,就是圆锥曲线⾥⾯⼀个定值问题都分为8类(篇幅有限,我只是选取解析⼏何⾥⾯有个重要的知识点来做出具体的总结):1:⾓为定值;2:斜率定值(倾斜⾓为定值);3:线段长度为定值;4:⾯积定值;5:数量积为定值;6:直线⽅程定值;7:斜率积定值(椭圆⼀组的性质);8:运算关系为定值。
其实解析⼏何的问题做多了能够得到每⼀种问题的具体解题⽅法。
我们就圆锥曲线⾯积定制来做出解释吧:只要算出点到直线的距离其实也就是它的⾼以及底边的长,那么⽤代数式来表⽰就能够得到题⽬说要我们找的关系,问题能够解决。
⼆:导数题知识点及其对应题型:导数基本知识点我们就不分析,相信⼤家都有所了解。
但是导数也就是⾼中数学与⼤学数学的⼀个过渡点,在⼤学数学内容⾥与⾼中联系最新的也就是倒数有关概念及其知识点。
相⽐于圆锥曲线这个就显得重要的多。
到时候问题是⽐较抽象的,提醒也是⽐较复杂的,常考的内容就是⼀个“零点的存在性定理”以及⼀个“隐零点”的问题。
很多的学⽣他导数学完,竟然连⼆阶求导的意义何在都弄不清楚,这是⼤部分⼈所反映的问题,但是⼀个基本的把⾓求导却是90%导数题⽬⾥⾯都必须要⽤到的。
以及我们作为⽼师来讲,做过⽆数张各省市的调研卷以及联考试卷,但是对于宝树这⼀张却⽆法得出⼀个⾮常具体机型的详细总结以及解决办法。
圆锥曲线论+导数极限论
圆锥曲线论+导数极限论
圆锥曲线论是数学中的一个分支,主要研究圆锥曲线的性质和特征。
圆锥曲线包括椭圆、双曲线和抛物线三种类型。
这些曲线在几何上具有一些独特的性质,例如焦点、直径、离心率等。
导数极限论是微积分中的一个重要内容,主要研究函数的导数和极限的性质。
导数是函数在某一点处的变化率,通过导数可以确定函数的斜率和函数的极值点。
极限是函数接近某一值时的趋势,通过极限可以判断函数的收敛性和发散性。
在圆锥曲线论中,导数极限论常常被用来证明圆锥曲线的一些性质。
例如,通过求曲线上某一点处的切线的斜率,可以证明这一点处的离心率等于焦距与直径的比值。
导数极限论也可以用来求解圆锥曲线的一些问题。
例如,通过求解极限可以确定曲线的渐近线和极值点。
综上所述,导数极限论在圆锥曲线论中扮演着重要的角色,它能够帮助我们理解和解决圆锥曲线的问题。
导数,圆,圆锥曲线,逻辑小结PPT课件
(一)定义的应用
互动 3.已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐 练习 标的最小值。
解:设A(x , y ), B(x y ), AB中点M (x, y)
11
22
2 MN AD BC , MN p y 1 y,
2
4
AD BC 2( 1 y)
4
AD AF , BC BF
圆锥曲线
椭圆、双曲线、抛物线的标准方程和图形性质
几何条件 标准方程
椭圆
双曲线
抛物线
与两个定点 与两个定点的 与一个定点和
的距离的和等 距离的差的绝对 一条定直线的距
于常数
值等于常数
离相等
x2 y2 a2 b2 1(a b 0)
x2 y2 a2 b2 1(a 0,b 0)
y2 2 px( p 0)
AF BF 2( 1 y) 4
ABF中, AF BF AB 2
2( y 1 ) 2,即y 3
4
4
y
M
AF
o
D
N
B
x
C
互动 练习
(一)定义的应用
x 16 2(x 16) x 48 , y 3 119
5
5
5
5
3. 动点P 到直线 x+4=0 的距离减去它到点M(2,0)的距 离之差等于2,则点P 的轨迹是 ( D )
94
说明:(1)从图形分析,应有四个解
(2)利用方程求解时,应注意 对K的讨论
y
O
x
例.直线y=x-2与抛物线y2=2x相交于A、B 求证:OA⊥OB (课本P130例2)。
证法1:将y=x-2代入y2=2x中,得 (x-2)2=2x 化简得 x2-6x+4=0
高中数学圆锥曲线和导数知识点总结
圆锥曲线方程 知识要点一、椭圆方程及其性质.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+椭圆的第二定义:PFe d=,PF 点P 到定点F 的距离,d 为点P 到直线l 的距离 其中F 为椭圆焦点,l 为椭圆准线①椭圆的标准方程:12222=+b y a x 的参数方程为⎩⎨⎧==θθsin cos b y a x (20πθ )(现在了解,后面选修4-4要详细讲).②通径:垂直于对称轴且过焦点的弦叫做通径,椭圆通径长为ab 22③设椭圆:12222=+b y a x 上弦AB 的中点为M (x 0,y 0),则斜率k AB =2020b xa y -,对椭圆:12222=+b x a y , 则k AB =2020a xb y -.弦长AB =⑸若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (可用余弦定理与a PF PF 221=+推导). 若是双曲线,则面积为2tan b θ.二、双曲线方程及其性质.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-双曲线的第二定义:PFe d=,PF 点P 到定点F 的距离,d 为点P 到直线l 的距离 其中F 为双曲线的焦点,l 为双曲线的准线 2.双曲线的简单几何性质:注:①双曲线标准方程:)0,(1),0,(12222 b a bx a y b a b y a x =-=-.参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . (现在了解,后面选修4-4要详细讲)②通径:垂直于对称轴且过焦点的弦叫做通径,椭圆通径长为ab 22③焦半径:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或上、下焦点)aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201④设双曲线22221x y a b -=:上弦AB 的中点为M (x 0,y 0),则斜率k AB =2020b x a y ,对双曲线:22221y x a b -=, 则k AB =2020a xb y .弦长AB=⑤常设与22221x y a b -=渐近线相同的双曲线方程为2222x y a bλ-=;常设渐近线方程为0mx ny ±=的双曲线方程为2222m x n y λ-= 例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程?⑥从双曲线一个焦点到另一条渐近线的距离等于b⑦直线与双曲线的位置关系:将直线方程代入双曲线方程得到一元二次方程,讨论方程二次项系数和∆三、抛物线方程及其性质.抛物线的定义:PF d =,PF 为点P 到定点F 的距离,d 为点P 到直线l 的距离 其中F 为抛物线的焦点,l 为抛物线的准线设0 p ,抛物线的标准方程、类型及其几何性质:注:①抛物线通径为2p ,这是过焦点的所有弦中最短的.②px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pt y ptx )(t为参数). (现在了解,后面选修4-4要详细讲)4.抛物线的焦半径、焦点弦.(抛物线中常用结论和方法)如图所示,抛物线方程为y 2=2px (p >0).(1)焦半径设A 点在准线上的射影为A 1,设A (x 1,y 1),准线方程为x =-p2,由抛物线定义|AF |=|AA 1|=x 1+p 2. 抛物线上任意一条弦的弦长为 (2)关于抛物线焦点弦的几个结论设AB 为过抛物线y 2=2px (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),AB 中点为00(,)M x y ,直线AB的倾斜角为θ,则①x 1x 2=p 24,y 1y 2=-p 2,12x x ≠时,有1222p x x p k+=+②|AB |=2psin 2θ=x 1+x 2+p =12222()p p x x k+≠,0AB p k y =,22sin AOB p S θ∆=③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为90°; ⑤1|F A |+1|FB |=2p .四、圆锥曲线的统一定义..4. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹.当10 e 时,轨迹为椭圆;当1=e 时,轨迹为抛物线;当1 e 时,轨迹为双曲线;当0=e 时,轨迹为圆(a ce =,当b a c ==,0时).5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.导数的基础知识一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()limx yf x x∆→∆=∆(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式:①'0()C C =为常数;②1()'n n x nx -=;11()'()'n n n x nx x---==-;1()'m mn n m x x n -==③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'xxe e = ⑥()'ln (0,1)xxa a a a a =>≠且; ⑦1(ln )'x x =; ⑧1(log )'(0,1)ln a x a a x a=>≠且 法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和差的导数等于导数的和差). 法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:左导右不导+左不导右导)法则3:2()'()()()'()[]'(()0)()[()]f x f xg x f x g x g x g x g x ⋅-⋅=≠ (口诀:(上导下不导-上不导下导)÷下平方)(2)复合函数(())y f g x =的导数求法:(理科必须掌握)①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x = 题型一、导数定义的理解 题型二:导数运算 1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a =( )319.316.313.310.D C B A 三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ',即有()00V f t '=。
高二数学圆锥曲线与导数
一、导数1.导数的概念:f ′(x )= 0lim →∆x xx f x x f ∆-∆+)()(,导函数也简称导数.2.导数的几何意义和物理意义几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线斜率. ⑴函数f(x)在点x 0处有导数,则函数f(x)的曲线在该点处必有切线,且导数值是该切线的斜率;但函数f(x)的曲线在点x 0处有切线,函数f(x)在该点处不一定可导。
如f(x)=x 在x=0有切线,但不可导。
⑵函数y=f(x)在点x 0处的导数的几何意义是指:曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率,即曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率是f ′(x 0),切线方程为y -f(x 0)=f ′(x 0)(x -x 0)例:1.(20XX 年湖南,13)过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是______。
2.点P 在曲线y =x 3-x +32上移动,设点P 处切线的倾斜角为α,求α的范围. 3.求导公式:C ′=0(C 为常数);(x n )′=nx n -1;(sin x )′=cos x ;(cos x )′=-sin x ;(e x )′=e x ; (a x )′=a x ln a ;(ln x )′=x 1;(log a x )′=x1log a e …… 4.运算法则如果f (x )、g (x )有导数,那么[f (x )±g (x )]'=f '(x )±g ′(x ), [c ·f (x )]'=c f '(x ) ;(uv )′=u ′v +uv ′;(v u )′=2vv u v u '-' (v ≠0). 5.导数的应用:(一).用导数求函数单调区间的一般步骤. ⑴确定函数f(x)的定义区间; ⑵求函数f(x)的导数f ′(x);⑶令f ′(x)>0,或者“0≥”所得x 的范围(区间)为函数f(x)的单调增区间; 令f ′(x)<0,或者“0≤”得单调减区间.特别注意:已知函数式求其单调性与已知单调区间求参数的范围的区别。
高中数学圆锥曲线选知识点总结
高中数学圆锥曲线选知识点总结高中数学圆锥曲线是高中数学的一门重要内容,主要包括椭圆、双曲线和抛物线三种基本曲线。
以下是一份完整的高中数学圆锥曲线选知识点总结:1.定义:圆锥曲线是平面上的一条曲线,它是由一个交角不为直角的平面截一个圆锥所得到的截面图形。
2.椭圆:椭圆是一条平面曲线,它的定义是所有到两个给定点的距离之和等于定值的点所形成的轨迹。
椭圆的性质包括离心率、焦点、焦距、长轴、短轴、半焦距等。
3.双曲线:双曲线是一条平面曲线,它的定义是所有到两个给定点的距离之差等于定值的点所形成的轨迹。
双曲线的性质包括离心率、焦点、焦距、渐近线等。
4.抛物线:抛物线是一条平面曲线,它的定义是所有到一个给定点的距离等于定值的点所形成的轨迹。
抛物线的性质包括焦点、焦距、准线、对称轴、顶点等。
5.圆锥曲线的参数方程:圆锥曲线也可以用参数方程表示,例如椭圆的参数方程为x = a cos t,y = b sin t;双曲线的参数方程为x = a sec t,y = b tan t;抛物线的参数方程为x = at^2,y = 2at。
6.圆锥曲线的应用:圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用。
例如,在天文学中,行星轨道和彗星轨道就是圆锥曲线;在工程学中,喷气式飞机的外形和空气动力学研究中也常常使用圆锥曲线。
7.椭圆的方程:椭圆的标准方程为(x^2 / a^2) + (y^2 / b^2) = 1,其中a和b分别为椭圆长轴和短轴的长度。
可以通过椭圆的焦点坐标和离心率求得椭圆的方程。
8.双曲线的方程:双曲线的标准方程为(x^2 / a^2) - (y^2 / b^2) =1,其中a和b分别为双曲线的顶点到两条渐近线的距离。
同样可以通过双曲线的焦点坐标和离心率求得双曲线的方程。
9.抛物线的方程:抛物线的标准方程为y = ax^2 + bx + c,其中a、b、c为常数。
抛物线的顶点坐标为(-b / 2a, c - b^2 / 4a),焦距为1 / 4a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题组:高三数学教研组参考答案(一)详细解析【考点】数列与不等式的综合.【专题】综合题.【分析】(1)由△=an+1-4×3an+24=0得a n+1=3a n+2,再由a n+1=3a n+2得a n+1+1=3(a1+1),由此能够证明11+a1+11+a2+…+11+an<34.(2)当a1=a时,a n+1=(a+1)•3n-1,b n=(a+1)•3n-1-1-(3n-12)•2n,b n+1-b n=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,由此能求出使b n+1≥b n对一切n∈N+都成立的a的取值范围.【解答】解:(1)由△=an+1-4×3an+24=0得a n+1=3a n+2∴ a_=5,a3=17(2分)由a n+1=3a n+2得a n+1+1=3(a1+1),所以a n+1为首项为2公比为3的等比数列得a n+1=2•3n-1(5分),11+a1+11+a2+11+an=12[1+13++13n-1]=34-34•(13)n<34(8分)(2)当a1=a时,a n+1=(a+1)•3n-1,b n=(a+1)•3n-1-1-(3n-12)•2nb n+1-b n=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,所以a+1≥(23)n-1•(3n-6) 令 cn=(23)n-1(3n-6), cn+1-cn=(23)n-1(-n+4),所以 (cn)max=c4=c5=169,所以a≥79(16分)【点评】本题考查数列的性质和综合运用,解题时要注意公式的合理运用.(二)详细解析【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【专题】常规题型;计算题.【分析】(1)先求出导函数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数的单调区间;(2)讨论a的正负,根据函数y=f(x)与y=g(x)的单调增区间是区间(a,a+12)的子集建立方程组,解之即可;(3)欲使y=f(x)与y=g(x)的图象有三个不同的交点,则x3+ax2-a2x-1=ax2-x-1有三个解,可求出a的范围,根据a的范围求出y=g(x)在区间[0,14]上的最小值为h(a)即可.【解答】解:(1)f'(x)=3x2+2ax-a2=0解得:x= a3或-a当x∈(-∞,a3)或(-a,+∞)时,f'(x)>0,则f(x)的增区间为(-∞,a3),(-a,+∞)当x∈(a3,-a)时,f'(x)<0,∴减区间为(a3,-a)(4分)(2)当a<0时,则有{a+12≤a3或-a≤aa+12≤12a得a∈(-∞,-1](7分)当a>0时,则有{a+12≤-a或a3≤aa≥12a得a∈[22,+∞)(10分)所以a∈(-∞,-1]∪[22,+∞)(3)由x3+ax2-a2x-1=ax2-x-1得x(x2-a2+1)=0有三个解,所以a>1或a<-1 (12分)得h(a)={-14a-1(a≥2)a16-54(a<-1或1<a<2)(16分)【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,以及图象交点的问题,常常转化成方程根的个数,属于中档题命题组:高三数学教研组参考答案(一)详细解析【考点】反证法与放缩法;数列的求和;不等式的证明.【专题】计算题;证明题.【分析】(1)先计算数列的前8项猜想数列的特点,数列{a2k-1}、{a2k}(k∈N*)均为等比数列,从而利用等比数列的求和公式求解即可;对于否定性的结论的证明,往往利用反证法证明;(1)欲证此不等式∑k=1n2ka2k-1a2k<4恒成立,先对左边式子利用拆项法求和,后再进行放缩即得.【解答】解:(1)当r=0时,计算得数列的前8项为:1,1,2,2,4,4,8,8.从而猜出数列{a2k-1}、{a2k}(k∈N*)均为等比数列.(2分)∵a2k=a2k-1=2a2k-2,a2k+1=2a2k=2a2k-1,∴数列{a2k-1}、{a2k}(k∈N*)均为等比数列,∴a2k-1=a2k=2k-1.(4分)①∴S2k=2(a1+a3+a5++a2k-1)=2(2k-1)=2k+1-2,S2k-1=S2k-2+a2k-1=2k-2+2k-1=3×2k-1-2,∴ Sn={2n2+1-2, n=2k3×2n-12-2n=2k-1k∈N*.(6分)②证明(反证法):假设存在三项S m,S n,S p(m,n,p∈N*,m<n<p)是等差数列,即2S n=S m+S p成立.因m,n,p均为偶数,设m=2m1,n=2n1,p=2p1,(m1,n1,p1∈N*),∴2×2(2n1-1)=2(2m1-1)+2(2p1-1),即2×2n1=2m1+2p1,∴ 2n1-m1+1=1+2p1-m1,而此等式左边为偶数,右边为奇数,这就矛盾;(10分)(2)∵a2k=a2k-1+r=2a2k-2+r,∴a2k+r=2(a2k-2+r),∴{a2k+r}是首项为1+2r,公比为2的等比数列,∴a2k+r=(1+2r)•2k-1.又∵a2k+1=2a2k=2(a2k-1+r),∴a2k+1+2r=2(a2k-1+2r),∴{a2k-1+2r}是首项为1+2r,公比为2的等比数列,∴a2k-1+2r=(1+2r)•2k-1.(12分)∴ 2ka2k-1a2k=2k[(1+2r)•2k-1-2r]•[(1+2r)•2k-1-r]= 2k-1[(1+2r)•2k-2-r]•[(1+2r)•2k-1-r]= 21+2r•[1(1+2r)•2k-2-r-1(1+2r)•2k-1-r],∴∑k=1n2ka2k-1a2k=21+2r∑k=1n[1(1+2r)•2k-2-r-1(1+2r)•2k-1-r]= 21+2r[1(1+2r)•2-1-r-1(1+2r)•2n-1-r]<21+2r•21+2r-2r=41+2r.∵r≥0,∴41+2r≤4.∴∑k=1n2ka2k-1a2k<4.(16分)【点评】本题主要考查了等差数列、等比数列、不等式证明中的反证法与放缩法以及数列的求和,是一道综合性很强的题目,属于难题(二)详细解析【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数求闭区间上函数的最值.【专题】计算题;证明题.分析:(Ⅰ)若P=0,要证f(x)>1-x;即可转化为lnx-x+1>0在定义域内恒成立即可.在通过求导,研究其单调性,看函数的最小值,只要函数的最小值大于0即可.(Ⅱ)若在其定义域内f(x)是单调函数,求P的取值范围;先要明确定义域;在求导,求导后,只要满足导数在某区间恒大于0或在某区间恒小于0即可.在这里要注意对参数p进行讨论.(Ⅲ)对于区间(1,2)中的任意常数P,是否存在x0>0,使f(x0)≤g(x0)成立,这种题型属探索性问题;解决的关键在于弄懂题意.据题意可转化为:令F(x)=f(x)-g(x)=px-2lnx+e2-2epx,则问题等价于找一个x0>0使F(x)≤0成立,故只需满足函数的最小值F(x)min≤0即可.【解答】解:(Ⅰ)证明:当p=0时,f(x)=-lnx.令m(x)=lnx-x+1,则m′(x)=1x-1=1-xx.若0<x<1,m′(x)>0,m(x)递增;若x>1,m′(x)<0,m(x)递减,则x=1是m(x)的极(最)大值点.于是m(x)≤m(1)=0,即lnx-x+1≤0.故当p=0时,有f(x)≥1-x;(4分)(Ⅱ)解:对 f(x)=px-px-lnx求导,得f′(x)=p+px2-1x=px2-x+px2.①若p=0,f′(x)=-1x<0,则f(x)在(0,+∞)上单调递减,故p=0合题意.②若p>0, h(x)=px2-x+p=p(x-12p)2+p-14p≥p-14p.则必须 p-14p≥0,f′(x)≥0,故当p≥12时,f(x)在(0,+∞)上单调递增.③若p<0,h(x)的对称轴 x=12p<0,则必须h(0)≤0,f′(x)≤0,故当p<0时,f(x)在(0,+∞)上单调递减.综合上述,p的取值范围是 (-∞,0]∪[12,+∞);(Ⅲ)解:令 F(x)=f(x)-g(x)=px-2lnx+e2-2epx.则问题等价于找一个x0>0使F(x)≤0成立,故只需满足函数的最小值F(x)min≤0即可.因F′(x)=p-2x-e2-2epx2=(px-e)(px-2+e)px2=px2(x-ep)(x-2-ep),而 x>0,1<p<2,ep>2p>0,2-ep<0,故当 0<x<ep时,F′(x)<0,F(x)递减;当 x>ep时,F′(x)>0,F(x)递增.于是, F(x)min=F(ep)=e-2+2lnp+e-2=2e+2lnp-4>0.与上述要求F(x)min≤0相矛盾,故不存在符合条件的x0.【点评】(1)若在其定义域内f(x)是单调函数,求参数的取值范围;先要明确定义域;在求导,求导后,只要满足导数在某区间恒大于0或在某区间恒小于0即可.这是通性通法.(2)对于区间任意给定的某区间,某代数式恒成立问题,解决的关键在于弄懂题意.据题意一般可可转化为构造一个函数,求满足函数的最小值或者函数的最大值即可.命题组:高三数学教研组班级: 姓名: 得分:(一)、设常数0a ≥,函数2()ln 2ln 1f x x x a x =-+-((0,))x ∈+∞.(Ⅰ)令()()g x xf x '=(0)x >,求()g x 的最小值,并比较()g x 的最小值与零的大小; (Ⅱ)求证:()f x 在(0,)+∞上是增函数;(Ⅲ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.(二)、定义:若数列{}n A 满足21n n A A =+,则称数列{}n A 为“平方递推数列”。
已知数列{}n a 中,21=a ,点),(1+n n a a 在函数x x x f 22)(2+=的图像上,其中n 为正整数。
(Ⅰ)证明:数列{}12+n a 是“平方递推数列”,且数列{})12lg(+n a 为等比数列。
(Ⅱ)设(Ⅰ)中“平方递推数列”的前n 项之积为n T ,即12(21)(21)(21)n n T a a a =+++ ,求数列{}n a 的通项及n T 关于n 的表达式。
(Ⅲ)记n a n T b n 12log +=,求数列{}n b 的前n 项之和n S ,并求使2008n S >的n 的最小值。