浙大材料科学基础课件第一部分

合集下载

《材料科学基础》课件

《材料科学基础》课件

THANKS
感谢观看
稳定性
材料在化学环境中保持其组成和结构的能力。
腐蚀性
材料与化学物质反应的能力,一些材料容易受到腐蚀。
活性
材料参与化学反应的能力和程度。
耐候性
材料在各种气候条件下的稳定性,如耐紫外线、耐风雨等。
材料的力学性质
弹性模量
描述材料抵抗弹性变形的能力。
硬度
材料表面抵抗被压入或划痕的能力。
韧性
材料吸收能量并抵抗断裂的能力。
材料科学的发展历程
总结词
概述材料科学的发展历程,包括重要的里程碑和代表 性人物。
详细描述
材料科学的发展历程可以追溯到古代,如中国的陶瓷和 青铜器制作,古埃及的石材加工等。然而,材料科学作 为一门独立的学科是在20世纪中期才开始形成的。在 这个时期,一些重要的里程碑包括开发出高温超导材料 、纳米材料和光电子材料等新型材料,这些材料的出现 极大地推动了科技的发展。同时,一些杰出的科学家如 诺贝尔奖得主也在这个领域做出了卓越的贡献。随着科 技的不断进步,材料科学的发展前景将更加广阔。

绿色材料与可持续发展
绿色材料
采用环保的生产方式,开发具有环保性能的新型材料,如可降解 塑料、绿色建材等。
节能减排
通过采用新型材料和技术,降低能源消耗和减少污染物排放,实现 节能减排的目标。
可持续发展
推动材料科学的发展,实现经济、社会和环境的协调发展,促进可 持续发展。
非晶体结构与性质
非晶体的结构特征
非晶体中的原子或分子的排列是无序的,不遵循长程有序的晶体 结构。
非晶体的物理和化学性质
非晶体的物理和化学性质与晶体不同,如玻璃态物质具有较好的化 学稳定性和机械强度。

《材料科学基础》课件

《材料科学基础》课件

晶体与非晶体材料
晶体材料具有有序排列的原子或分子结构,而非晶体材料具有无序排列的结 构。晶体材料的性质受到晶体结构的影响。
材料物理性质
材料的物理性质包括密度、热导率、电导率、磁性等。这些性质影响着材料 在各种条件下的表现和应用。
材料化学性质
材料的化学性质指的是材料与其他物质发生化学反应的能力和性质。它们决定了材料的耐腐蚀性、稳定 性和反应性。

常见材料的分类和特征
金属
金属具有良好的导电性和导热性,适用于制 造结构件和导电元件。
聚合物
聚合物具有轻量、耐疲劳等特点,适用于制 造塑料制品和弹性件。
陶瓷
陶瓷具有优良的耐高温性和绝缘性,适用于 制造耐磨、耐腐蚀的零部件。
复合材料
复合材料具有多种材料的优点,适用于制造 航空航天和汽车等领域的高性能材料。
汽车
应用于汽车制造中的车身和发动机部件。
电子
应用于电子器件的制造,如半导体材料等。
《材料科学基础》PPT课 件
本课件将介绍材料科学的基础知识,包括材料科学的概述、晶体与非晶体材 料、材料的物理性质和化学性质、常见材料的分类和特征、材料的加工方式, 以及材料工程应用。
材料科学概述
材料科学是研究材料的组成、结构、性质和应用的学科。它涉及各种材料,包括金属、陶瓷、聚合物和 复合材料。
材料加工
1
原材料采集
从矿石、石油等中采集原材料,准备
材料处理
2
进入加工过程。
通过熔融、挤压、锻造等方式改变材
料的形态和性能。
3
零部件制造
将材料加工成适合使用的零部件,如
总装与测试
4
铸件、锻件、塑料制品等。
将零部件组装成成品,进行测试和质 量检查。

第一章 材料科学基础 绪论PPT课件

第一章 材料科学基础 绪论PPT课件

❖ 功能材料是具有优良的电学、磁学、光学、 热学、声学、力学、化学和生物学功能及 其相互转化的功能,被用于非结构目的的 高技术材料。
1.4.3 材料按服役的领域来分类
根据材料服役的技术领域可分为建筑 材料、信息材料、航空航天材料、能源材 料、生物医用材料等。
❖ 火箭发动机的燃烧室与喷嘴, 需要承受2000℃的高温而不 氧化,它是用石墨表面喷涂 一层二硅化钼材料制成。石 墨已被大量用作核能工业的 “减速剂”。雷达中大型电 子管外壳,既要耐高温,又 要有优良的超高频和绝缘性 能,它是用氧化铝高频陶瓷 制成。核反应堆外部的防护 层是用一种含钡的特种水泥 筑成的。
是为高温技术服务的基础材料。尽管各国对其定义不同, 但基本含义是相同的,即耐火材料是用作高温窑炉等热 工设备的结构材料,以及用作工业高温容器和部件的材 料,并能承受相应的物理化学变化及机械作用。
大部分耐火材料是以天然矿石(如耐火粘土、硅石、菱镁 矿、白云母等)为原料制造的。
按矿物组成分为氧化硅质、硅酸铝质、镁质、白云石质、 橄榄石质、尖晶石质、含碳质、含锆质耐火材料及特殊 耐火材料;
等系统的材 料科学知识
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
1.4.4 材料按结晶状态分类
单晶材料 多晶材料 非晶态材料 准晶材料
单晶材料是由一个比较完整的晶粒构成的 材料,如单晶纤维、单晶硅;
多晶材料是由许多晶粒组成的材料,其性 能与晶粒大小、晶界的性质有密切的关系。

材料科学基础第一节金属变形概述PPT课件

材料科学基础第一节金属变形概述PPT课件

滑移面为(001),并不是fcc的滑移面,故为
不动位错,由于位错 [110]与1[110]为不动位
错,造成其运动阻力增大,6故强度增大。
三、位错的增殖
1.F-R源 作用于弯曲位错线上的外加切应力:
Gb 2R
R—位错线弯曲半径 后退 下40 页
●图8-19
CD位错两端被钉扎, 当其受切应力作用时,会 发生弯曲由前面所介绍 的知识,弯曲严重两处位 错必为异号位错,相互抵 消,使位错线形成了位错 环而扫出晶体,CD位 错在线张力的作用下拉
12
(3)在不同滑移面的交线上,通过位错反 应形成固定位错,在被定扎的位错后面产生 位错的塞积,它将阻碍后续位错的继续运动。
二、滑移面及滑移方向
●为什么滑移面都是原子最密排面,滑移 方向都是最密排方向?
后退 下页
13
●三种典型金属的滑移面及滑移方向
晶格点 阵类型
fcc
滑移面
111
滑移方向
110
110
(3)1cm长的位错线上铁原子数为:
n 1cm
7
12.8 61 08cm4.0310 后退 下46 页
因位错线长为 10 8 cm,故位错线上总的铁原子数为
n8
78
15
2 1n 0 1 4 .0 1 3 0 10 4 .0 1 30
(4)偏聚于位错线下方的碳原子总数为:
n n 15 c 24.03 10
后退 下页
28
●扩展位错的交滑移:首先扩展位错会 先束集,然后交滑移到另一滑移面,再 分解为两个不完美位错,中间夹一层错; 层错能大,则d减小,扩展位错易于交滑 移。
●螺位错的交滑移
●扩展位错的交滑移
返回

《材料科学基础》课件

《材料科学基础》课件

1 2
a
101
1 6
a
121
1 3
a
111
3-11
全位错
几何条件:
shockley不全位错
Franker不全位错
• 能量条件:
shockley不全位错
全位错
Franker不全位错
b=a/3<111>和{111}面垂直。纯刃位错。
b垂直于滑移面,不是fcc晶体的滑移方向, 不能滑移,只可攀移。
ቤተ መጻሕፍቲ ባይዱ
4、(3-8)比较刃位错和螺位错的异同点。
14、表征晶体中晶向和晶面的方法有 解析法 和 图示 法。(晶 体投影图 )
二、分析计算
1、(2-3)(1)晶面A在x、y、z轴上的截距分别是2a、3b和 6c,求该晶面的米勒指数;(2)晶面B在x、y、z轴上的截 距分别是a/3、b/2和c,求该晶面的米勒指数。
1 : 1 : 1 3: 2:1 236
3 0.40183
0.683
•(4) CsCl的分子量为:
(35.453 +132.905 )=168.358,
•阿佛加得罗常数是6.0238×1023;
•每个CsCl分子的质量A为:
168.358/(6.0238×10 ) 23
ZM / N A a3
1168.358 /(6.02 1023) (0.4018 107 )3
配位数是8.
[CsCl 8] 或 [ClCs8]配位六面体。
(4)
对CsCl晶体,晶体结构为简 单立方,晶胞中含有一个 正离子一个负离子,沿体 对角线正负离子相切:
3a 2r 2r
a=0.4018nm
3a 2 (0.167 0.181) 0.696

《材料科学基础教案》PPT课件

《材料科学基础教案》PPT课件

1学时 1学时 2学时 3学时 2学时 1学时
教材及教学参考书
1.,《材料科学基础教程》 赵品 XX工业大学出版社 2.《材料科学基础教程习题与解答》 赵品 XX工业大学出版社 3.《材料科学基础》 赵品 XX工业大学出版社 1999年 4.《金属学原理》 刘国勋主编 工业冶金出版社 1980年 5.《金属学》 胡庚祥主编 上海科技出版社 1980年 6.《金属学教程》卢光熙主编 机械工业出版社 1985年 7.《金属学原理》 李 超主编 哈工大出版社 1996年 8.《材料科学基础》 马泗春主编 XX科学技术出版社 1998年 9.《材料科学基础》石德珂主编 XX交大出版社 1995年
第二部分 总纲
• 一、课程性质及教学目的 • 二、课程内容 • 三、与其它课程的关系 • 四、教学对象 • 五、教学时间 • 六、教学地点 • 七、教学指导思想 • 八、教学重点 • 九、教学难点 • 十、教学方法 • 十一、学时分配 • 十二、教学过程 • 十三、实验内容 • 十四、教材及教学参考书
编 XX科学技术出版社 1998年
7《材料科学基础》石德珂主编 XX交大出版社
1995年
讲授内容
1、材料在国民经济中的重要地位与作用 2、材料的分类 3、材料的发展历史 4、材料科学的发展方向 5、本课程的任务与内容
材料在国民经济中的重要地位与作用
材料是用来制造各种有用物件的物质. 它是人类生存与发展、征服和改造自然的物质基础,也是 人类社会现代文明的重要支柱.因此史学家将人类发展分为石 器时代、青铜器时代、铁器时代、水泥时代、钢时代、硅时 代和新材料时代.材料科学的发展及进步成为衡量一个国家科 学技术发展的重要标准.材料科学的发展在国民经济中占有极 其重要的地位,因此,材料、能源、信息被誉为现代经济发展 的三大支柱.

浙大材料科学基础课件part

浙大材料科学基础课件part

滑动面表示符号:平移为a/2、b/2或c/2时,写作a、b或c;沿体对角线平移1/2距离,写作n;沿面对角线平移1/4距离,写作d。

(2)螺旋轴:由回转轴和平行于轴的平移构成。

图1-24为3次螺旋轴,绕轴回转120º并沿轴平移c/3。

螺旋轴按其回转方向有右旋和左旋之分螺旋轴表示符号:21(表示2次、c/2),31(表示3次、c/3、右旋),32(表示3次、c/3、左旋),41(表示4次、c/4、右旋),42(4次、c/2),43(表示4次、c/4、左旋),61(6次、c/6、右旋),62(6次、c/3、右旋),63(6次、c/2),64(6次、c/6、左旋),65(6次、c/3、左旋)所有对称要素归纳:回转对称轴:1、2、3、4、6对称面:m(2)对称中心:1(z)回转-反演轴:3、4、6滑动面:a、b、c、n、d螺旋轴:21、31、32、41、42、43、61、62、63、64、65(二)点群、单形及空间群点群:晶体可能存在的对称类型。

通过宏观对称要素在一点上组合运用而得到。

只能有32种对称类型,称32种点群表1- 3 32种点群及所属晶系*2/m表示其对称面与二次轴相垂直,/表示垂直的意思。

其余类推同一晶系晶体可为不同点群的原因:阵点上原子组合情况不同。

如错误!未找到引用源。

,对称性降低,平行于六面体面的对称面不存在,4次对称轴也不存在。

理想晶体的形态―单形和聚形:单形:由对称要素联系起来的一组同形等大晶面的组合。

32种对称型总共可以导出47种单形,如错误!书签自引用无效。

,错误!书签自引用无效。

,错误!书签自引用无效。

所示聚形:属于同一晶类的两个或两个以上的单形聚合而成的几何多面体。

大量的晶体形态是由属于同一晶类的单形聚合而成的封闭一定空间的几何多面体,如单形四方柱与平行双面形成了四方柱体的真实晶体形态空间群:描述晶体中原子通过宏观和微观对称要素组合的所有可能方式。

属于同一点群的晶体可因其微观对称要素的不同而分属不同的空间群,空间群有230种,见教材中表1- 4国际通用的空间群符号及其所代表的意义为:P:代表原始格子以及六方底心格子(六方底心格子为三方晶系和六方晶系所共有)。

材料科学基础-第1章

材料科学基础-第1章

复合材料和纳米材料
1 复合材料
由两种或更多种不同材料组成,具有综合性 能优于单一材料。
2 纳米材料
具有纳米级尺寸的材料,具有特殊的电学、 磁学和光学性质造和航空航天等领域。
聚合物材料
用于塑料制品、纤维和包装材料等领域。
陶瓷材料
用于电子、玻璃和医疗器械等领域。
材料的晶体结构、晶格缺陷和晶界等对性能的影响。
2
特定结构的特定性能
不同结构的材料具有不同的力学、电学和热学性能。
3
性能优化
通过调整材料的结构来优化其性能,例如热处理和合金化。
基础金属和非金属材料
基础金属材料
如铁、铜、铝等,具有良好的导电性和导热性,广 泛用于电子和建筑领域。
非金属材料
如玻璃、塑料和陶瓷等,具有良好的绝缘性和耐腐 蚀性,在化工和医疗领域有重要应用。
复合材料
用于航空航天、运动器材和建筑领域。
材料科学的发展和未来趋势
1
新材料的发展
石墨烯、有机发光二极管等新材料的研究和应用。
2
可持续发展
可再生能源、环保材料和循环利用的发展。
3
智能材料的兴起
具有传感、响应和自修复功能的智能材料的研究。
总结和回顾
材料科学是一个广泛的领域,涵盖了各种材料和应用领域。掌握材料特征、结构与性能的关系对于材料科学的 发展至关重要。
材料科学基础-第1章
材料科学研究材料的特征、性能和应用。它是现代工程学的基础,涉及多个 领域,包括金属、聚合物、陶瓷、复合材料和纳米材料等。
材料的特征和分类
1 材料的特征
2 材料的分类
材料的密度、强度、导电性和导热性等特性。
金属、陶瓷、聚合物和复合材料等不同类型 的材料。

浙大材料科学基础课件

浙大材料科学基础课件

(六)晶界的特性晶界的特性:不完整,畸变较大,存在晶界能,晶粒长大和晶界的平直化能减小晶界总面积,降低晶界总能量;晶界常温下对塑性变形起阻碍作用,显然,晶粒越细,金属材料的强度、硬度也越高;晶界有较高动能及缺陷,熔点较低,腐蚀速度较快第三章固溶体固溶体:类似于液体中含有溶质的溶液,晶体中含有外来杂质原子的一种固体的溶液固溶体特点:掺入外来杂质原子后原来的晶体结构不发生转变。

但点阵畸变,性能变化如多数合金,硅中掺入磷和硼都是固溶体固溶度:外来组分量可在一定范围内变化,不破坏晶体结构的最大溶解度量中间相:超过固溶体的溶解限度时,可能形成晶体结构不同,处于两端固溶体的中间部位的新相固溶体分类:置换固溶体,间隙固溶体,缺位固溶体,如错误!未找到引用源。

所示溶体的有序和无序分类:据溶质原子在溶剂晶体结构中排列的有序与否区分。

达某一尺度为有序畴;长程有序可为超结构有限和无限固溶体分类:两组元在固态呈无限溶解,即为(连§3-1影响固溶度的因素结构相同只是完全固溶的必要条件,不是充分条件续固溶体)无限固溶体一、休姆-罗瑟里(Hume-Rothery)规律固溶体固溶度的一般规律:1、尺寸因素:当尺寸因素不利时,固溶度很小;2、化学亲和力:稳定中间相(和组元的化学亲和力有关)会使一次固溶体的固溶度下降(中间相自由能曲线低);3、电子浓度:电子浓度(价电子数和原子数的比值)影响固溶度和中间相稳定性,100)100(vx x V a e +-=(溶质价为v ,溶剂价为V )。

还有适用于某些合金系的“相对价效应” ,即高价元素在低价中的固溶度大二、尺寸因素尺寸与溶解度关系:溶质与溶剂原子的尺寸相差大,畸变大,稳定性就低,溶解度小点阵常数的改变:置换固溶体,平均点阵常数增大或收缩,如错误!未找到引用源。

所示;间隙固溶体,总是随溶质溶入而增大。

维伽定律:固溶体点阵常数a 与溶质的浓度x 之间呈线性关系:x a a a a )(121-+=。

《材料科学基础》课件第1章 材料的结构

《材料科学基础》课件第1章 材料的结构
◆ 晶体与非晶体区别:
(a)是否具有周期性、对称性; (b)是否有确定的熔点; (c)是否各向异性; 单晶体的各向异性
25
1.2 晶体学基础 1.2.2 空间点阵和晶胞
为了便于分析研究晶体中原子或分子的排 列情况,可把它们抽象为规则排列于空间的无 数个几何点,这些点子可以是原子或分子的中 心,也可以是彼此等同的原子群或分子群的中 心,但各个点子的周围环境必须相同,这种点 的空间排列称为空间点阵。
3. 晶胞
空间点阵
27
晶胞
1.2 晶体学基础
1.2.2 空间点阵和晶胞
28
1.2 晶体学基础
◆选取晶胞的原则:
1.2.2 空间点阵和晶胞
① 应反映出点阵的高度对称性; ② 棱和角相等的数目最多; ③ 棱边夹角为直角时,直角数目最多; ④ 晶胞体积最小。
29
1.2 晶体学基础 4. 晶格(点阵)参数
1.2.2 空间点阵和晶胞
⑷ 简单正交
⑸ 底心正交
⑹ 体心正交
34
⑺ 面心正交
1.2 晶体学基础
1.2.2 空间点阵和晶胞
(四)四方 a=b≠c =β=γ=90°
⑻ 简单四方
⑼ 体心四方
(五)菱方 a=b=c =β=γ≠90°
⑽ 简单菱方
35
1.2 晶体学基础 (六 )六方 a=b≠c =β=90°,γ=120°
共价键 相邻原子价电子各处于 相反的自旋状态,原子 核间的库仑引力 离子键 原子得、失电子后形成 负、正离子,正负离子 间的库仑引力 金属键 自由电子气与正离子实 之间的库仑引力 分子键 原子间瞬时电偶极矩的 感应作用
18

较强
最弱
1.1 材料的结合方式 1.1.2工程材料的键性 实际上使用的工程材料,有的是单纯的一种键,更多

材料科学基础第一章ppt课件

材料科学基础第一章ppt课件

我国材料的历史进程 (Historical perspective)
• 漫长而又曲折的历程:
简 单 → 复 杂 单 一 性 能 → 综 合 性 能
结 构 材 料 → 功 能 材 料 单 一 材 料 → 复 合 材 料
石 器 时 代 ( S t o n eA g e ) : 石 斧 、 凿 、 刀 、 铲 、 箭 头 、 纺 轮 、 钵 等 ( 西 安 半 坡 遗 址 )
薛定谔方程

描述原子中一个电子的空间和能量,可用四个量子数(quantum numbers)表示
主 量 子 数 n : 决 定 原 子 中 电 子 能 量 和 核 间 距 离 , 即 量 子 壳 层 , 取 正 整 数 K 、 L 、 M 、 N 、 O 、 P 、 Q i e l e c t r o ns h e l l 轨 道 动 量 量 子 数 l : 与 电 子 运 动 的 角 动 量 有 关 , 取 值 为 0 , 1 , 2 , n 1 , s , p , d , f i s h a p eo ft h ee l e c t r o ns u b s h e l l 磁 量 子 数: m 定 原 子 轨 道 或 电 子 云 在 空 间 的 伸 展 方 向 , 取 值 为 l , ( l 1 ) , 1 ,0 , 1 , l i 决 i i i s p a t i a lo r i e n t a t i o n o fa n e l e c t r o n c l o u d 1 1 自 旋 角 动 量 量 子 数 s : 表 示 电 子 自 旋 ( s p i n m o m e n t ) 的 方 向 , 取 值 为 + 或 i 2 2
金 属 材 料 ( M e t a l l i cM a t e r i a l s ) : 钢 铁 、 铝 、 铜 、 钛 合 金 陶 瓷 材 料 ( C e r a m i c s ) : A lO、 i C 、 S iN、 i O、 i N 2 3 S 3 4 S 2 T 或 无 机 非 金 属 材 料 ( I n o r g a n i cM a t e r i a l s ) 高 分 子 材 料 ( H i g hP o l y m e r s ) : 纤 维 、 蛋 白 质 、 聚 乙 烯 、 聚 氯 乙 烯 M a t e l-M a t r i x 复 合 材 料 ( C o m p o s i t e s ) : C o m p o s i t e s P o l y m e r-M a t r i x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙大材料科学基础课件第一部分
前言
料及工程的角度看,材料可归属于实验学科,但是随着新材料的不断发展,材料学科更表现出了它科学性和综合性的一面。

在当今高新技术的不断推动下,各种新材料的涌现,要求我们只有在掌握更高深的基础理论及更多学科综合知识的基础上才有可能了解它和应用它。

着重介绍了包括晶体结构、晶体结构的不完整性、固溶体和非晶态固体在内的全部内容。

并对固体材料中质点的运动和迁移以及晶格振动和电子运动做了一定的阐述。

本课程着重概念的建立和演绎,并介绍了这些基本概念在具体的材料中的应用范例和普适性,与传统的“材料科学基础”类书籍相比,本课程原则上摒弃了原来以单一材料作为专业基础时所建立的一套编排体系,也即摒弃了以金属、非金属等单一材料本身进行介绍的情况,而以物质结构状态等为新的主线和新观点出发介绍与所有材料相关的科学基础问题,这更有利于读者全面了解和掌握整个材料的基本科学问题。

面了解材料的基本科学理论,了解材料的多样性。

通过对本课程的学习,能大大促进学生对材料科学整体学科概念的建立和基本理论的掌握,适应当今科学技术的发展要求,对认识和掌握材料的内在本质问题有很大的帮助。

第一章晶体结构
本章节包括三部分内容
§1-1晶体学基础
§1-2晶体化学基本原理
§1-3典型晶体结构
§1-1晶体学基础
为了更有效地使用材料以及开发设计新材料,必需了解影响材料性能的各种因素,掌握提高其性能的途径。

材料性能决定因素:内部微观构造。

研究材料必需从材料内部的矛盾性寻找改善和发展材料的途径,由于材料的许多特性与结构状态有关,因此,要更深入了解材料,必须首先掌握材料基本构造,包括原子相互作用和结合力,原子分布规律等
固态材料分类:晶体与非晶体
晶体外形:不一定都是规则的,与形成条件有关
晶体特点:原子(或分子)在三维空间作有规则的周期性重复排列。

液体转变为晶体是突变的,有一定的凝固点和熔点。

各向异性
晶体又有单晶体和多晶体,有天然和人工之分
单晶体:一个晶核生长而成
多晶体:许多不同位相的小晶体组成
非晶体外观:一种过冷态液体,只是物理性质不同于通常液体,如玻璃
非晶体特点:无长程的周期性排列。

从液态到非晶态固体的转变是逐渐过渡的,没有明显的凝固点。

各向同性
掌握材料性能,不根据外观,必需从原子排列情况确定
一、空间点阵
对空间点阵的了解是认识和描述晶体的基础,包括以下五个方面
(一)对空间点阵的概念的了解
(二)对晶胞的分析
(三)对晶系的认识
(四)对布拉菲点阵掌握
(五)对晶体结构与空间点阵关系的掌握
(一)空间点阵的概念
为便于分析研究晶体中原子或分子的排列情况,晶体中原子或分子抽象为规则排列几何点
空间点阵:晶体中原子或分子的空间规则排列如错误!未找到引用
源。

所示,表现出长程周期性的特性
点阵特点:各阵点为彼此等同的原子群或分子群的中心,周围环境
都相同,在空间的位置一定
点阵基本要素:阵点
(二)晶胞
晶胞:点阵中取出的一个反映点阵对称性的代表性基本单元(通常取
最小平行六面体)。

在点阵中基本单元选取如错误!未找到引用源。

所示。

为更好表现点
阵对称性,可不取简单晶胞,如取体心、面心或底心晶胞 晶胞描述:1、晶轴X 、Y 、Z ;2、点阵常数a 、b 、c ;3、晶轴夹角
α β γ 错误!未找到引用源。

晶胞矢量描述:c b a r w v u uvw ++=
式中r uvw 为从原点到某一阵点的矢量,u 、v 、w 分别表示沿三个点阵矢量的平移量,亦即该阵点的坐标
(三)晶系
晶系:按晶胞外形即棱边长度之间的关系和晶轴夹角情况归类,每
一类别即一个晶系。

晶系只有七种!如表1- 1所示
表1- 1 晶系七种晶系:
(四)布拉菲点阵
空间点阵可有多少排列形式?按“每个阵点的周围环境相同”的要求,有:
布拉菲点阵:空间点阵的排列形式。

空间点阵只有14种!如错误!未找到引用源。

所示
14种布拉菲点阵的晶胞:1- 简单单斜(及动画演示);3-简单正交(及动画演示);5-体心正交(及动画演示);7-简单六方
(及动画演示);9-简单四方(及动画演示);11-简单立方
(及动画演示);13-面心立方(及动画演示)
14种布拉菲点阵的选取主要是考虑到更好反映晶体对称性等因素,也有其他的取法,如:
六方晶胞:六方点阵取的棱柱形晶胞。

也可取成如错误!未找到引用源。

所示的平行六面体,但这样显示不出此点阵的对称特点
与六方晶胞相同,体心立方晶胞可用初级晶胞(三斜)来表示,面心立方晶胞也可用菱形来表示(见错误!未找到引用源。

),其缺点是它们的高度对称性得不到反映,故一般不采用这样的表示方法。

(五)晶体结构与空间点阵
晶体结构与空间点阵区别:空间点阵是晶体质点排列几何学抽象,描述周期性和对称性,由于各阵点的周围环境相同,它只可
能有14种类型;晶体结构是指晶体中原子(包括同类的或异
类的原子)或分子的具体排列情况,它们能组成各类型排列,
因此可能存在的晶体结构是无限的
晶体结构与空间点阵的关联:晶体结构按其原子或分子排列的周期性和对称性归属于14种空间点阵中的一种。

不同结构可属同
一点阵,相似结构又可能属不同点阵。

如错误!未找到引用
源。

为具有相同点阵的晶体结构示意、错误!未找到引用源。

则为晶体结构相似而点阵不同的情况
特殊空间点阵确定:考虑周围环境相同,确定阵点(可几个原子共同组成)。

如图1-7为密排六方晶体结构,密排六方
结构由0,0,0和2/3,1/3,1/2两原于为阵点组成简六方点

空间格子符号:表示14种空间点阵。

如最简单格子,为原始格子,
符号P
晶族:表示晶体结构对称性高低。

如立方晶系,属高级晶族表1- 2空间点阵、晶系与晶族
二、晶向指数和晶面指数
在分析研究有关晶体的生长、变形、相变以及性能等各方面的问题时,常需涉及晶体中某些方向(称为晶向)和原子所构成的平面(称为晶面)。

定义:
晶向:晶体的方向
晶面:原子所构成的平面
如何来表示晶向和晶面呢?
为了便于表示各种晶向和晶面,需要确定一种统一的标号,称为晶向指数和晶面指数。

国际上通用的是用密勒(Mil1er)指数表示。

相关文档
最新文档