天津市部分区2017届高三质量调查理科数学试题(一)含答案

合集下载

天津市部分区高考数学一模试卷(理科) Word版含解析

天津市部分区高考数学一模试卷(理科) Word版含解析

2017年天津市部分区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1 B.0 C.1 D.23.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4 B.6 C.8 D.104.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3 B.2C.4D.125.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A.=1 B.=1C.=1 D.=17.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣8.已知函数f(x)=,若函数g(x)=f(x)+2x﹣a有三个零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣3)D.(0,﹣3)二、填空题:本大题共6小题,每小题5分,共30分).9.已知a,b∈R,i是虚数单位,若复数=ai,则a+b=.10.(﹣)7的展开式中,x﹣1的系数是.(用数字填写答案)11.某三棱锥的三视图如图所示,则该几何体的体积为.12.直线y=4x与曲线y=4x3在第一象限内围成的封闭图形的面积为.13.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),曲线C的参数方程为(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为.14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f(log|x+1|)<f(﹣1),则x的取值范围是.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[,]时,求函数f(x)的最大值和最小值.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:(Ⅰ)若从这10名学生中随机选出2名学生发言,求这2名学生不属于同一班级的概率;(Ⅱ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅱ)求二面角P﹣AB﹣C的余弦值;(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n 项和T n.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.2017年天津市部分区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)【考点】交、并、补集的混合运算.【分析】先分别求出集合A和B,从而得到C R A,由此能求出集合A∩(∁R B).【解答】解:∵集合A={x|0<x≤3,x∈N}={1,2,3},B={x|y=}={x|x≤﹣3或x≥3},∴C R A={x|﹣3<x<3},集合A∩(∁R B)={1,2}.故选:A.2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1 B.0 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,3),化目标函数z=x﹣y为y=x﹣z.由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为0.故选:B.3.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4 B.6 C.8 D.10【考点】程序框图.【分析】利用循环结构可知道需要循环4次,根据条件求出i的值即可.【解答】解:第一次循环,s=﹣2<5,s=﹣1,i=2,第二次循环,s=﹣1<7,s=1,i=4,第三次循环,s=1<9,s=5,i=6,第四次循环,s=5<11,s=13,i=8,第五次循环,s=13≥13,此时输出i=8,故选:C.4.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3 B.2C.4D.12【考点】正弦定理.【分析】由已知及正弦定理可得:c=,进而利用余弦定理即可求得a的值.【解答】解:∵sinA﹣2sinC=0,∴由正弦定理可得:c=,∵B=,b=6,∴由余弦定理b2=a2+c2﹣2accosB,可得:62=a2+(a)2﹣2a,整理可得:a=4,或﹣4(舍去).故选:C.5.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】解不等式,求出关于p的x的范围,根据函数的性质求出关于q的x 的范围,根据集合的包含关系判断充分必要条件即可.【解答】解:由x2﹣4x+3≤0,解得:1≤x≤3,故命题p:1≤x≤3;f(x)==x+,x>0时,f(x)有最小值2,x<0时,f(x)有最大值﹣2,故命题q:x≠0,故命题p是命题q的充分不必要条件,故选:A.6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A.=1 B.=1C.=1 D.=1【考点】圆锥曲线的综合.【分析】确定抛物线y2=20x的焦点坐标、双曲线﹣=1(a>0,b>0)的一条渐近线的方程,利用抛物线的焦点到双曲线渐近线的距离为4,求出b,a,即可求出双曲线的方程.【解答】解:抛物线y2=20x的焦点坐标为(5,0),双曲线﹣=1(a>0,b>0)的一条渐近线的方程为bx+ay=0,∵抛物线的焦点到双曲线渐近线的距离为4,∴=4,即b=4,∵c=5,∴a=3,∴双曲线方程为:=1.故选:D.7.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣【考点】向量在几何中的应用.【分析】利用已知条件,建立直角坐标系,求出相关点的坐标,然后求解向量的数量积.【解答】解:建立如图所示的直角坐标系:在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则A(0,0),B(1,0),C(﹣1,),O(0,),M(0,),=(1,﹣),=(﹣1,)=﹣1﹣=﹣.故选:D.8.已知函数f(x)=,若函数g(x)=f(x)+2x﹣a有三个零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣3)D.(0,﹣3)【考点】根的存在性及根的个数判断.【分析】由题意可得需使指数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,判断x≤0,与x>0交点的情况,列出关于a的不等式,解之可得答案.【解答】解:g(x)=f(x)+2x﹣a=,函数g(x)=f(x)+2x﹣a有三个零点,可知:函数图象的左半部分为单调递增指数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=﹣a﹣1,最多两个零点,如上图,要满足题意,函数y=2x+2x是增函数,x≤0一定与x相交,过(0,1),g(x)=2x+2x﹣a,与x轴相交,1﹣a≥0,可得a≤1.还需保证x>0时,抛物线与x轴由两个交点,可得:﹣a﹣1>0,△=4(a+1)2﹣4(1﹣a)>0,解得a<﹣3,综合可得a<﹣3,故选:C.二、填空题:本大题共6小题,每小题5分,共30分).9.已知a,b∈R,i是虚数单位,若复数=ai,则a+b=4.【考点】复数代数形式的乘除运算.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,再根据两个复数相等的充要条件求得a、b的值,可得a+b的值.【解答】解:=ai,则===ai,∴2﹣b=0,2+b=2a,∴b=2,a=2,∴a+b=4,故答案为:410.(﹣)7的展开式中,x﹣1的系数是﹣280.(用数字填写答案)【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于﹣1,求出r的值,即可求得x﹣1的系数.=•(﹣2)r•,令【解答】解:∵(﹣)7的展开式的通项公式为T r+1=﹣1,求得r=3,可得x﹣1的系数为•(﹣8)=﹣280,故答案为:﹣280.11.某三棱锥的三视图如图所示,则该几何体的体积为2.【考点】由三视图求面积、体积.【分析】根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,求出它的体积.【解答】解:根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,计算三棱锥的体积为V=××2×2×3=2.故答案为:2.12.直线y=4x与曲线y=4x3在第一象限内围成的封闭图形的面积为1.【考点】定积分.【分析】先根据题意画出区域,然后然后依据图形得到积分上限为1,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】1解:先根据题意画出图形,得到积分上限为1,积分下限为0,曲线y=4x3与直线y=4x在第一象限所围成的图形的面积是∫01(4x﹣4x3)dx,而∫01(4x﹣4x3)dx=(2x2﹣x4)|01=2×1﹣1=1∴曲边梯形的面积是1,故答案为:1.13.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),曲线C的参数方程为(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为x+y﹣4=0.【考点】直线的参数方程.【分析】普通方程为y﹣1=a(x﹣3),过定点P(3,1),当弦长|AB|最短时,CP⊥AB,求出CP的斜率,可得AB的斜率,即可得出结论.【解答】解:直线l的参数方程为,普通方程为y﹣1=a(x﹣3),过定点P(3,1)曲线C的参数方程为(α为参数),普通方程为(x﹣2)2+y2=4,当弦长|AB|最短时,CP⊥AB,∵k CP==1,k AB=﹣1∴直线l的普通方程为x+y﹣4=0,故答案为:x+y﹣4=0.14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f(log|x+1|)<f(﹣1),则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】利用函数是偶函数得到不等式f(log|x+1|)<f(﹣1),等价为f (|log2|x+1||)<f(1),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),即|log2|x+1||<1∴﹣1<log2|x+1|<1,解得x的取值范围是.故答案为.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[,]时,求函数f(x)的最大值和最小值.【考点】三角函数的周期性及其求法;三角函数的最值.【分析】(Ⅰ)利用和与差公式打开,根据二倍角公式和辅助角公式化解为y=Asin (ωx+φ)的形式,再利用周期公式求函数的最小正周期,(Ⅱ)当x∈[,]时,求出内层函数的取值范围,结合三角函数的图象和性质,可求出f(x)的最大值和最小值.【解答】解:(Ⅰ)==,∴函数f(x)的最小正周期.(Ⅱ)由(Ⅰ)知,∵,∴,∴,故当时,函数f(x)的最大值为.当时,函数f(x)的最小值为.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:(Ⅰ)若从这10名学生中随机选出2名学生发言,求这2名学生不属于同一班级的概率;(Ⅱ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为,由此能求出这2名学生不属于同一班级的概率.(Ⅱ)X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】(本小题满分13分)解:(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为…设2名学生不属于同一班级的事件为A所以.…(Ⅱ)X可能的取值为0,1,2,3,,,,.…所以X的分布列为所以.…17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅱ)求二面角P﹣AB﹣C的余弦值;(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取PD的中点F,连接EF,CF,证明BE∥CF即可;(Ⅱ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,求出法向量即可;(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,求出法向量即可;(Ⅲ)建系同(II)利用向量求解.【解答】解:(Ⅰ)证明:取PD的中点F,连接EF,CF∵E,F分别是PA,PD的中点,∴EF∥AD且;…∵,BC∥AD,∴EF∥BC且EF=BC;∴BE∥CF.…又BE⊄平面PCD,CF⊂平面PCD,∴BE∥平面PCD.…(Ⅱ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,,.…设平面PAB的一个法向量为n=(x,y,z),则从而令x=2,得n=(2,0,﹣1).…同理可求平面ABD的一个法向量为.….平面ABD和平面ABC为同一个平面,所以二面角P﹣AB﹣C的余弦值为.…(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,C(0,0,1),B (1,0,1),,…设平面PAB的一个法向量为=(x,y,z),则,,令,得x=z=1,即.…易求平面ABC的一个法向量为.….所以二面角P﹣AB﹣C的余弦值为.…(Ⅲ)(方法一)建系同(II)(方法一),设Q(0,x,0),由(II)知平面ABCD的一个法向量为,;…若BQ与平面ABCD所成的角为,则==sin解得,所以Q(0,,0),,.…(方法二)建系同(II)(方法二),设,则,,由(II)知平面ABCD的一个法向量为.…若BQ与平面ABCD所成的角为,则.解得,则,从而…18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n 项和T n.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,可得{a n}为等差数列.再利用等差数列的通项公式与求和公式即可得出.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1),lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1),作差可得b n=,(n≥2).c n==,再利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,所以{a n}为等差数列.由a6=11,前9项和为81,得a1+5d=11,d=81,解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1)…①,lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1)…②①﹣②,得,∴b n=,(n≥2).b1=3满足上式,因此b n=,(n≥2).c n==,∴数列{c n}的前n项和T n=+…++,又2T n=+…+,以上两式作差,得T n=+2﹣,,因此,T n=﹣.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意,得,然后求解离心率即可.(Ⅱ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.求出椭圆方程,直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y,设A(x1,y1),B(x2,y2),利用韦达定理求出AB的中点,推出﹣,且m≠0,利用弦长公式以及三角形的面积,推出结果即可.【解答】(本小题满分13分)解:(Ⅰ)由题意,得,…则,结合b2=a2﹣c2,得,即2c2﹣3ac+a2=0,…亦即2e2﹣3e+1=0,结合0<e<1,解得.所以椭圆C的离心率为.…(Ⅱ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.所以椭圆方程为.…易得直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y得(3+4k2)x2+8kmx+4m2﹣12=0,所以△=64k2m2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)>0.设A(x1,y1),B(x2,y2),则,.…由,得AB的中点,因为N在直线上,所以,解得k=﹣.…所以△=48(12﹣m2)>0,得﹣,且m≠0,|AB|=|x2﹣x1|===.又原点O到直线l的距离d=,…所以.当且仅当12﹣m2=m2,m=时等号成立,符合﹣,且m≠0.所以△OAB面积的最大值为:.…20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围判断函数的单调性即可;(Ⅲ)根据函数的极值的个数求出a的范围,求出4f(x1)﹣2f(x2)的解析式,根据函数的单调性证明即可.【解答】解:(Ⅰ)当a=1时,f(x)=﹣x2+x﹣lnx,f′(x)=﹣x+1﹣,则f(1)=,f'(1)=﹣1,所以所求切线方程为y﹣=﹣(x﹣1),即2x+2y﹣3=0.(Ⅱ)由f(x)=﹣x2+ax﹣lnx,得f′(x)=﹣x+a﹣=﹣.令g(x)=x2﹣ax+1,则f′(x)=﹣,①当△=a2﹣4<0,即﹣2<a<2时,g(x)>0恒成立,则f′(x)<0,所以f)x)在(0,+∞)上是减函数.②当△=0,即a=±2时,g(x)=x2±2x+1=(x±1)2≥0,则f′(x)≤0,所以f(x)在(0,+∞)上是减函数.③当△=a2﹣4>0,即a<﹣2或a>2.(i)当a<﹣2时,g(x)=x2﹣ax+1是开口向上且过点(0,1)的抛物线,对称轴方程为x=(<﹣1),则g(x)>0恒成立,从而f′(x)<0,所以f(x)在(0,+∞)上是减函数.(ii)当a>2时,g(x)是开口向上且过点(0,1)的抛物线,对称轴方程为x=(>1),则函数g(x)有两个零点:,列表如下:综上,当a≤2时,f(x)的减区间是(0,+∞);当a>2时,f(x)的增区间是,减区间是,.(Ⅲ)证明:根据(Ⅱ),当a>2时,f(x)有两个极值点x1,x2,(x1<x2),则x1,x2是方程g(x)=0的两个根,从而.由韦达定理,得x1x2=1,x1+x2=a.又a﹣2>0,所以0<x1<1<x2====.令,h(t)=﹣t+3lnt+2,(t>1),则.当1<t<2时,h'(t)>0;当t>2时,h′(t)<0,则h(t)在(1,2)上是增函数,在(2,+∞)上是减函数,从而h(t)max=h(2)=3ln2+1,于是4f(x1)﹣2f(x2)≤1+3ln2.2017年4月10日。

2017高考天津卷数学卷(理)及答案

2017高考天津卷数学卷(理)及答案

2017天津卷(理)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C = (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1(C )32(D )3 (3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年高考真题——理科数学(天津卷)解析版

2017年高考真题——理科数学(天津卷)解析版

绝密★启用前【试卷点评】2017年天津高考数学试卷考点变化不大,题型结构与2016年相同,从知识结构角度看,试卷考查内容覆盖面广,与往年基本一致。

与此同时,试卷命题中出现的综合与创新,体现了能力立意的命题思路与稳中求变的命题特点。

整卷难度分布合理,具有较好的区分度,整体难度与去年相比稍有降低。

纵观整篇试卷,命题严格按照《考试说明》与课程标准,双基内容占了相当大的比例,体现了命题人回归教材、突出主干的思路,重视对考生基本数学素养的考查。

对于此部分题目,只要考生熟练掌握基本概念和定理,就可以轻松得分。

试卷在知识点选择上与去年相比略有改变,考验学生基础知识掌握的全面性。

试卷命题风格稳定,试题布局合理,利于考生发挥自身真实水平,具有较好的信度和效度。

在注重基础和应用的同时,今年天津高考试卷也加强了综合性与创新性的考查,以提高试卷区分度,如第8题,主要考查基本初等函数的图象和性质,设问综合了分段函数单调性、函数零点以及图象变换等典型考点,充分考查了考生的数形结合思想与转化化归思想,考验学生的知识理解深度与分析问题解决问题的能力。

第19题总的来说需要考生熟练掌握解析几何中常见几何图形性质的代数表达并合理选择参数简化运算,对考生的运算和解题技巧要求较高。

第20题设问较为新颖,命题具有一定的抽象性与综合性,需要学生基于三次函数单调性与极值最值的关系进行探索分析,考查函数与方程、分类讨论、转化等数学思想,问题思路环环相扣,逻辑严密,难度较大,充分考验学生的心理素质,具有较好的区分度,体现了高考的选拔性,另外也给优秀学生提供了展示自身能力的平台,也引导我们数学教学工作需注重数学能力与创新意识的培养。

2016年天津理科数学试卷继续稳字当头,平凡问题考查真功夫,没有出现任何偏题怪题,有利于学生考出好成绩,也对中学数学教学回归教材、扎实基础有很好的导向作用。

【试卷解析】一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I (A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-=U I I ,,,,,, ,选B. 【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 【答案】D【考点】线性规划【名师点睛】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,本题就是第三类实际应用问题.(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1 (C )2 (D )3 【答案】C【解析】依次为8N = ,7,6,2N N N ===,输出2N = ,选C. 【考点】 程序框图【名师点睛】识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合. (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A【考点】 充要条件【名师点睛】本题考查充要条件的判断,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分不必要条件,若B 是A 的真子集,则A 是B 的必要不充分条件.(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离心率为2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得224,14,22188x y a b c a b c ==-⇒===⇒-=- ,选B. 【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a b λλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.(8)已知函数23,1, ()2, 1.x x xf xx xx⎧-+≤⎪=⎨+>⎪⎩设a∈R,若关于x的不等式()||2xf x a≥+在R上恒成立,则a的取值范围是(A)47[,2]16-(B)4739[,]1616-(C)[23,2]-(D)39[23,]16-【答案】A当1x>时,(*)式为222xx a xx x--≤+≤+,32222xx ax x--≤≤+,又3232()2322x xx x--=-+≤-(当233x=时取等号),222222x xx x+≥⨯=(当2x=时取等号),所以232a-≤≤,综上47216a-≤≤.故选A.【考点】不等式、恒成立问题【名师点睛】首先满足()2xf x a≥+转化为()()22x xf x a f x--≤≤-去解决,由于涉及分段函数问题要遵循分段处理原则,分别对x的两种不同情况进行讨论,针对每种情况根据x的范围,利用极端原理,求出对应的a的范围.二. 填空题:本大题共6小题,每小题5分,共30分.(9)已知a∈R,i为虚数单位,若i2ia-+为实数,则a的值为 .【答案】2-【解析】()(2)(21)(2)2122(2)(2)555a i a i i a a i a a i i i i -----+-+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(,)z a bi a b R =+∈, 当0b ≠时,z 为虚数, 当0b =时,z 为实数, 当0,0a b =≠时,z 为纯虚数.(10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【考点】 球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.(11)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 【考点】极坐标【名师点睛】再利用公式222cos ,sin ,x y x y ρθρθρ===+ 把极坐标方程化为直角坐标方程,再解联立方程组根据判别式判断出交点的个数,极坐标与参数方程为选修课程,要求灵活使用公式进行坐标变换及方程变换.(12)若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b R a b ab ∈+≥ ,当且仅当a b =时取等号;(2),a b R +∈ ,2a b ab +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.(13)在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r,且4AD AE ⋅=-u u u r u u u r,则λ的值为___________.【答案】311 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+u u u r u u u r u u u r u u u r u u u r ,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=u u u r u u u r u u u r u u u r u u u r u u u r .【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的,AB AC u u u r u u u r已知模和夹角,选作基地易于计算数量积.(14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答) 【答案】 1080【解析】413454541080A C C A +=【考点】计数原理、排列、组合【名师点睛】计数原理包含分类计数原理(加法)和分步计数原理(乘法),组成四位数至多有一个数字是偶数,包括四位数字有一个是偶数和四位数字全部是奇数两类,利用加法原理计数. 三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 【答案】 (1) 13b =.(2)7226【解析】试题分析:利用正弦定理“角转边”得出边的关系2a b =,再根据余弦定理求出cos A , 进而得到sin A ,由2a b =转化为sin 2sin A B =,求出sin B ,进而求出cos B ,从而求出2B 的三角函数值,利用两角差的正弦公式求出结果.学科&网(Ⅱ)由(Ⅰ)及a c <,得213cos 13A =,所以12sin 22sin cos 13A A A ==, 25cos 212sin 13A A =-=-.故πππ72sin(2)sin 2cos cos 2sin 44426A A A +=+=.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 16.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【答案】(1)1312(2)1148试题解析:(Ⅰ)随机变量X的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X==-⨯-⨯-=,11111111111 (1)(1)(1)(1)(1)(1)(1)23423423424P X==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X==⨯⨯=.所以,随机变量X的分布列为X0 1 2 3P 14112414124随机变量X的数学期望1111113 ()012342442412 E X=⨯+⨯+⨯+⨯=.(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+== 1111111142424448=⨯+⨯=.所以,这2辆车共遇到1个红灯的概率为11 48.【考点】离散型随机变量概率分布列及数学期望【名师点睛】求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些?当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.;列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.(17)(本小题满分13分)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱P A ,P C ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【答案】 (1)证明见解析(2)10521 (3)85 或12试题解析:如图,以A 为原点,分别以AB u u u r ,AC u u u r,AP u u u r 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(Ⅰ)证明:DE u u u r =(0,2,0),DB u u u r=(2,0,2-).设(,,)x y z =n ,为平面BDE 的法向量, 则0DE DB ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n ,即20220y x z =⎧⎨-=⎩.不妨设1z =,可得(1,0,1)=n .又MN u u u u r =(1,2,1-),可得0MN ⋅=u u u u r n . 因为MN ⊄平面BDE ,所以MN //平面BDE.(Ⅲ)依题意,设AH =h (04h ≤≤),则H (0,0,h ),进而可得(1,2,)NH h =--u u u u r ,(2,2,2)BE =-u u u r.由已知,得2|||22|7|cos ,|21||||523NH BE h NH BE NH BE h ⋅-<>===+⨯u u u u r u u u ru u u u r u u u r u u u u r u u u r ,整理得2102180h h -+=,解得85h =,或12h =.所以,线段AH 的长为85或12.【考点】直线与平面平行、二面角、异面直线所成的角【名师点睛】空间向量是解决空间几何问题的锐利武器,不论是求空间角、空间距离还是证明线面关系利用空间向量都很方便,利用向量夹角公式求异面直线所成的角又快又准,特别是借助平面的法向量求线面角,二面角或点到平面的距离都很容易. 18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .【答案】 (1)32n a n =-.2nn b =.(2)1328433n n n T +-=⨯+. 【解析】试题分析:根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列首项1a 和公差d 及等比数列的公比q ,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确.(II )解:设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯L1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【考点】等差数列、等比数列、数列求和【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和方法有倒序相加法,错位相减法,裂项相消法和分组求和法等,本题考查错位相减法求和. (19)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 【答案】 (1)22413y x +=, 24y x =.(2)3630x y +-=,或3630x y --=. 【解析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D的坐标,最后根据APD △的面积为62解方程求出m ,得出直线AP 的方程. 试题解析:(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12ca =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键. (20)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈U ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈U 满足 041||p x q Aq -≥. 【答案】 (1)增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-.(2)(3)证明见解析试题解析:(Ⅰ)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--, 进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:x(,1)-∞-1(1,)4-1(,)4+∞ ()g x '+ - + ()g x↗↘↗所以,()g x 的单调递增区间是(,1)-∞-,1(,)4+∞,单调递减区间是1(1,)4-. (Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-.由(Ⅰ)知,当[1,2]x ∈时,()0g x '>,故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减;当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增.因此,当00[1,)(,2]x x x ∈U 时,1100()()()0H x H x f x >=-=,可得1()0,()0H m h m >>即.令函数200()()()()H x g x x x f x =--,则20()()()H x g x g x '=-.由(Ⅰ)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈U 时,220()()0H x H x <=,可得20()0,()0H m h x <<即. 所以,0()()0h m h x <.所以()h x 在(1,2)内至少有一个零点,不妨设为1x ,则110()()()()0p ph g x f q x qx =--=. 由(I )知()g x 在[1,2]上单调递增,故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p pf f p p p q p q pq aq q qx q g x g g q +--+-=≥=.因为当[12],x ∈时,()0g x >,故()f x 在[1,2]上单调递增, 所以()f x 在区间[1,2]上除0x 外没有其他的零点,而0p x q≠,故()0pf q ≠.又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数, 从而432234|2336|1p p q p q pq aq +--+≥. 所以041|2|()p x q g q -≥.所以,只要取()2A g =,就有041||p x q Aq-≥. 【考点】导数的应用【名师点睛】判断()g x 的单调性,只需对函数求导,根据()g x '的导数的符号判断函数的单调性,求出单调区间,有关函数的零点问题,先利用函数的导数判断函数的单调性,了解函数的图象的增减情况,再对极值点作出相应的要求,可控制零点的个数.。

天津市部分区2017届高三下学期质量调查(一)数学(理)试题 Word版含答案

天津市部分区2017届高三下学期质量调查(一)数学(理)试题 Word版含答案

天津市部分区2017年高三量调查试卷(一)数学(理工类)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{|03,},{|A x x x N B x y =<≤∈==,则()R A C B =A .{}1,2B .{}1,2,3C .{}0,1,2D .(0,1)2、若变量,x y 满足约束条件23030230x y x y x y --≤⎧⎪+-≥⎨⎪-+≤⎩,则z x y =-的最大值为A .-1B .0C .1D .23、阅读如图所示的程序框图,运行相应的程序,则输出i 的值为 A .4 B .6 C .8 D .104、在ABC ∆中,,,A B C 的对边分别为,,a b c ,若,6,s i n 2s i n 03B b AC π==-=,则a =A .3 B...125、已知()221:430,:x p x x q f x x+-+≤=存在最大值和最小值,则p 是q 的A .充分不必要条件B .充要条件C .必要而不充分条件D .既不充分也不必要条件6、已知抛物线220y x =的焦点F 恰好为双曲线22221(0,0)x y a b a b-=>>的一个焦点,且点F 到双曲线的渐近线的距离是4,则双曲线的方程为A .2214116x y -= B .221214x y -= C .22134x y -= D .221916x y -= 7、在ABC ∆中,022,120,AC AB BAC O ==∠=是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是A .56-B .76-C .73-D .53- 8、已知函数()22,(,0]21,(0,)x x f x x ax x ⎧∈-∞⎪=⎨++∈+∞⎪⎩,若函数()()2g x f x x a =+-有三个零点,则实数a 的取值范围是A .(0,)+∞B .(,1)-∞-C .(,3)-∞-D .(3,0)-第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卷的横线上.. 9、已知,,a b R i ∈是虚数单位,若复数21biai i+=-,则a b += 10、72)x的展开式中,1x -的系数是 (用数字填写答案)11、某三棱锥的三视图如图所示,则该几何体的体积为 12、直线4y x =与曲线24y x =在第一象限围成的封闭图形 的图形的面积为13、在直线坐标系xOy 中,直线l 的参数方程为3(1x tt y at =+⎧⎨=+⎩为参数,a R ∈),曲线C 的参数方程为22cos (2sin x y ααα=+⎧⎨=⎩为参数)设直线l 与曲线C 交于A 、B 两点,当弦长AB 最短时,直线l 的普通方程为14、已知()f x 是定义在R 上的偶函数,且在区间[0,)+∞ 上单调递增,若实数x 满足12(log 1)(1)f x f +<-,则x 的取值是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 15、(本小题满分12分) 已知函数()sin()cos 16f x x x π=-+.(1)求函数()f x 的最小正周期;(2)当[,]122x ππ∈时,求函数()f x 的最大值和最小值.16、(本小题满分13分)某校高三年级准备矩形一次座谈会,其中三个班被邀请的学生数如下表所示:(1)若从这10名学生中随机选出2名学生发言,求这2名学生不属于同一班级的概率; (2)若从这10名学生中随机选出3名学生发言,设X 为来自高三(1)班的学生人数,求随机变量X 的分布列和数学期望.17、(本小题满分13分)如图,五面体PABCD 中,CD ⊥平面,PAD ABCD 为直角梯形,1,,22BCD PD BC CD AD AP PD π∠====⊥ . (1)若E 为AP 的中点,求证://BE 平面PCD ; (2)求二面角P AB C --的余弦值;(3)若点Q 在线段PA 上,且BQ 与平面ABCD 所成的角为6π,求CQ 的长.18、(本小题满分13分)已知正项数列{}n a 满足211111142(2,)n n nn n n n a a a n n N a a a a ++--++-+=-≥∈,且611a =,前9项和为81.(1)求数列{}n a 的通项公式;(2)若数列{}lg n b 的前n 项和为lg(21)n +,记12n nn n a b c +=,求数列{}n c 的前n 项和n T .21、(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>,且椭圆上的点到一个焦点的最短距离为3b .(1)求椭圆C 的离心率;(2)若点M 在椭圆C 上,不过原点的直线l 与椭圆C 相交于A 、B 两点,与直线OM 相较于点N ,且N 是线段AB 的中点,求OAB ∆面积的最大值.20、(本小题满分14分) 已知函数()21ln ()2f x x ax x a R =-+-∈ . (1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若函数()f x 有两个极值点1212,()x x x x <,求证:124()2()13ln 2f x f x -≤+.天津市部分区2017年高三质量调查试卷(一)数 学(理工类)一、选择题:(1)-(4)ABCC (5)-(8)ADDC 二、填空题:(9)4 (10)280- (11)2 (12)1 (13)4=0+-x y (14))1,21()23,3(--- 三、解答题:(15)(本小题满分13分) 解:(Ⅰ)()sin()cos 1=(sin coscos sin )cos 1666=-+-+f x x x x x x πππ,..............2分2113i n c o s c o s s i n 2c o s 2244=-+-+x x x x x ,1313=(c o s s i n 2s i n c o s 2)=s i n (2)2664264-+-+x x x πππ.............................4分 所以周期22T ππ==. .......................................................................................................6分 (Ⅱ)由(Ⅰ)知13()sin(2)264=-+f x x π,因为]2,12[ππ∈x ,所以52[0,]66-∈x ππ,...................................................................8分 所以sin(2)[0,1]6-∈x π,.................................................................................................10分故当3π=x 时,函数()f x 的最大值为45;当12π=x 时,函数()f x 的最小值为43. .......................................................................................................................................13分 (16)(本小题满分13分)解:(Ⅰ)从10名学生随机选出2名的方法数为210C ,选出2人中不属于同一班级的方法数为111143332C C C C ⋅+⋅ …………………4分设2名学生不属于同一班级的事件为A所以111143332102C C C C 11()C 15P A ⋅+⋅==. ………………………………………………6分 (Ⅱ)X 可能的取值为0,1,2,337310C 7657(0)C 109824P X ⨯⨯====⨯⨯; 2173310C C 676321(1)C 2109840P X ⨯⨯⨯====⨯⨯⨯;1273310C C 6737(2)C 109840P X ⨯⨯====⨯⨯; 33310C 61(3)C 1098120P X ====⨯⨯. ………………………………10分 所以X 的分布列为所以721719()012324404012010=⨯+⨯+⨯+⨯=E X ……………………………………13分 (17)(本小题满分13分)(Ⅰ)证明:取PD 的中点F ,连接CF EF , ∵F E ,分别是PA ,PD 的中点, ∴AD EF //且AD EF 21=;…………………………1分 ∵AD BC 21=,AD BC //, ∴BC EF //且BC EF =;∴CF BE //. …………………………3分 又⊄BE 平面PCD ,⊂CF 平面PCD , ∴//BE 平面PCD .…………………………4分(Ⅱ)(方法一) 以P 为坐标原点,PA PD ,所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则(0,0,0),(1,0,0)P A D,1(1,0,1),(2C B13(0,3,0),(,,1),(1,2PA AB AD ==-=- .……………………………6分设平面PAB 的一个法向量为(,,)x y z n =,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩n n 从而0,10.22x y z ⎧=⎪⎨-+=⎪⎩ 令2x =,得(2,0,1)-n =. …………………………7分同理可求平面ABD 的一个法向量为m =. …………………………8分cos ,⋅===n m n m n m 平面ABD 和平面ABC 为同一个平面,所以二面角C AB P --的余弦值为5. …………………………10分 (方法二) 以D 为坐标原点,DC DA ,所在直线分别为x 轴和z 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则1((2,0,0),(0,0,0)2P A D ,(0,0,1),(1,0,1),C B 33(,,0),(1,0,1),2PA AB =-=- ……………………6分设平面PAB 的一个法向量为(,,)x y z n =,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩n n ,3020x y x z⎧=⎪⎨⎪-+=⎩,令y =1x z ==,即(1n =. …………………………7分易求平面ABC 的一个法向量为(0,1,0)m =. (8)分cos ,5⋅===n m n m nm 所以二面角C AB P -- …………………………10分 (Ⅲ)(方法一)建系同(II)(方法一),设(0,,0),Q x 由(II)知平面ABCD的一个法向量为m =,1(,1)22BQ x =---;…………………………11分若BQ 与平面ABCD 所成的角为6π,则sin 6BQBQ π⋅==m m解得33=x,所以(0,3Q (1,1),3CQ =--213CQ =.…………………13分 (方法二)建系同(II)(方法二),设3(,0)2AQ AP λλ==-,则3(1,1),2BQ BA AQ λ=+=--3(2,1),2CQ CA AQ λ=+=-- 由(II)知平面ABCD 的一个法向量为(0,1,0)m =.…………………………11分若BQ 与平面ABCD 所成的角为6π,则sin 6BQ BQ π⋅==mm.解得23λ=,则(1,1)CQ =-,从而2||1CQ ==………13分(18)(本小题满分13分)解:(Ⅰ)由241121111-=+-++--+n n nn n n n a a a a a a a ,得112212124-+-+-=+n n n n n a a a a a ,整理得n n n a a a 211=+-+,所以{}n a 为等差数列,…………… 2分 由116=a ,前9项和为81,得12-=n a n ;…………… 4分 当1=n 时,3lg lg 1=b ,即31=b ;当2≥n 时,)12lg(lg lg lg 21+=+++n b b b n …………………………………①,)12lg(lg lg lg 121-=+++-n b b b n …………………………………②①-②,得21lg lg(21)lg(21)lg 21n n b n n n +=+--=-, 所以1212-+=n n b n (n ≥2) 31=b 满足n b ,所以1212-+=n n b n …………… 7分(Ⅱ)112122+++=⋅=n n n n n n b a c …………… 8分 2341357212222n n n T ++=++++,又1233572122222n nn T +=++++, …………… 9分 以上两式作差,得23132222122222n n n n T ++=++++-. 所以21111131112132122()1222222212n n n n n n n T -++-++=++++-=+--, 因此,152522n n n T ++=-.……………………………… 13分 (19)(本小题满分13分) 解:(Ⅰ)由题意,得b c a 33=-,…………………………………1分 则221()3a cb -=,结合222b ac =-,得2221()()3a c a c -=-,即22230c ac a -+=,……………………………………………………2分 亦即22310e e-+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12.………………………………………………4分 (Ⅱ)由(Ⅰ)得2a c =,则223b c =.将2M 代入椭圆方程2222+143x y c c =,解得1c =.所以椭圆方程为22+143x y =.………………………………………………6分 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上,故直线l 的斜率存在. 设直线l 的方程为(0)y kx m m =+≠,与22+143x y =联立消y 得 222(34)84120k x kmx m +++-=,所以222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->.设1122(,),(,)A x y B x y ,则122834kmx x k +=-+,212241234m x x k -=+.……………………8分由121226()234m y y k x x m k +=++=+,得AB 的中点2243(,)3434km mN k k-++, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =-. ……………10分所以248(12)0m ∆=->,得m <<,且0m ≠,12AB x =-==又原点O 到直线l 的距离d =………………………………12分所以12AB O S ==△22122m m -+≤=.当且仅当2212,m m m -==m <,且0m ≠.所以B OA △ ………………………………14分 (20)(本小题满分14分)解:(Ⅰ)当1a =时,21()ln 2f x x x x =-+-,1()1f x x x'=-+-, 则1(1)2f =,(1)1f '=-, 所以所求切线方程为1(1)2y x -=--,即2230x y +-=. (Ⅱ)由21()ln 2f x x ax x =-+-,得211()x ax f x x a x x -+'=-+-=-.令2()1g x x ax =-+,则()()g x f x x'=-. ①当240a ∆=-<,即22a -<<时,()0g x >恒成立,则()()0g x f x x'=-<, 所以()f x 在(0,)+∞上是减函数.②当240a ∆=-=,即2a =±时,22()21(1)0g x x x x =±+=±≥,则()()0g x f x x'=-≤, 所以()f x 在(0,)+∞上是减函数.③当240a ∆=->,即2a <-或2a >. (i)当2a <-时,2()1g x x ax =-+是开口向上且过点()0,1的抛物线,对称轴方程为(1)22a a x =<-,则()0g x >恒成立,从而()()0g x f x x'=-<, 所以()f x 在(0,)+∞上是减函数.(ii)当2a >时,2()1g x x ax =-+是开口向上且过点()0,1的抛物线,对称轴方程为(1)22a a x =>,则函数()g x 有两个零点1212)x x x x =<显然,列表如下:综上,当2a ≤时,()f x 的减区间是(0,)+∞;当2a >时,()f x 的增区间是,减区间是,)+∞. (Ⅲ)根据(Ⅱ),当2a >时,()f x 有两个极值点1212,()x x x x <,则12,x x 是方程2()10g x x ax =-+=的两个根,从而2211221,1ax x ax x =+=+. 由韦达定理,得12121,x x x x a =+=.又20a ->,所以1201x x <<<.2212111222114()2()4(ln )2(ln )22f x f x x ax x x ax x -=-+---+- 22111222244ln 22ln x ax x x ax x =-+-+-+ 222211122224(1)4l n 2(1)2l nx x x x x x =-++-+-++222122122ln 2x x x x =-++ 22222223ln 2x x x =-++. 令22(1)t x t =>,2()3ln 2(1)h t t t t t=-++>, 则2223(1)(2)()1t t h t t t t --'=--+=-. 当12t <<时,()0h t '>;当2t >时,()0h t '<,则()h t 在(1,2)上是增函数,在(2,)+∞上是减函数, 从而max ()(2)3ln 21h t h ==+,于是124()2()13ln 2f x f x -≤+.。

2017年高考理数真题天津卷(试题及详细答案解析)

2017年高考理数真题天津卷(试题及详细答案解析)

2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至5页.答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分.参考公式:·如果事件 A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·如果事件 A ,B 相互独立,那么 P (AB )=P (A ) P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高.·球的体积公式343V R =π.其中R 表示球的半径.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I ( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{|15}x x ∈-≤≤R2.设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为( ) A.23 B.1 C.32D.3 3.阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A.0B.1C.2D.34.设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离 心率为2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.22144x y -=B.22188x y -=C.22148x y -=D.22184x y -=6.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( )A.a b c <<B.c b a <<C.b a c <<D.b c a <<7.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( ) A.23ω=,12ϕπ= B.23ω=,12ϕ11π=- C.13ω=,24ϕ11π=- D.13ω=,24ϕ7π= 8.已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( ) A.47[,2]16-B.4739[,]1616-C.[-D.39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二. 填空题:本大题共6小题,每小题5分,共30分.9.已知a ∈R ,i 为虚数单位,若i 2ia -+为实数,则a 的值为 . 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .11.在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 12.若,a b ∈R ,0ab >,则4441a b ab ++的最小值为___________. 13.在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r ,且4AD AE ⋅=-u u u r u u u r ,则λ的值为___________.14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值;。

2017年天津卷(理科数学)含答案

2017年天津卷(理科数学)含答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅰ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ).·棱柱的体积公式V =Sh .·球的体积公式.其中S 表示棱柱的底面面积,其中表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,则【B 】343V R =πR {1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ()A B C =(A )(B )(C )(D )(2)设变量满足约束条件则目标函数的最大值为【D 】 (A ) (B )1(C ) (D )3(3)阅读右面的程序框图,运行相应的程序,若输入的值为24,则输出的值为【C 】(A )0 (B )1(C )2(D )3(4)设,则“”是“”的【A 】(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线的左焦点为,.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为【B 】(A ) (B )(C )(D )(6)已知奇函数在R 上是增函数,.若,,,则a ,b ,c 的大小关系为【C 】{2}{1,2,4}{1,2,4,6}{|15}x x ∈-≤≤R ,x y 20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩z x y =+2332N N θ∈R ππ||1212θ-<1sin 2θ<22221(0,0)x y a b a b -=>>F F (0,4)P 22144x y -=22188x y -=22148x y -=22184x y -=()f x ()()g x xf x =2(log 5.1)a g =-0.8(2)b g =(3)c g =(A ) (B )(C )(D ) (7)设函数,,其中,.若,,且的最小正周期大于,则【A 】(A ),(B ),(C ),(D ),(8)已知函数设,若关于x 的不等式在R 上恒成立,则a 的取值范围是【A 】(A )(B ) (C )(D )第Ⅰ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

天津市和平区2017届高三第一次质量调查(一模)考试数学(理)试题--含答案

天津市和平区2017届高三第一次质量调查(一模)考试数学(理)试题--含答案

≥ ≤ ≥ 温馨提示:本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

祝同学们考试顺利!第Ⅰ卷 选择题(共40分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3. 本卷共8小题,每小题5分,共40分。

参考公式:∙如果事件B A ,互斥,那么 ∙如果事件B A ,相互独立,那么)()()(B P A P B A P += )()()(B P A P AB P =.∙柱体的体积公式Sh V=. ∙锥体的体积公式Sh V 31=.其中S 表示柱体的底面积, 其中S 表示锥体的底面积,h 表示柱体的高. h 表示锥体的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 设集合}2,1,1{-=A ,}2,1{2-+=a a B ,若}2,1{-=B A ,则a 的值为 (A) 2-或1- (B) 0或1 (C) 2-或1 (D) 0或2- (2) 设变量y x ,满足约束条件⎪⎩⎪⎨⎧--+--+,032,01,03y x y x y x 则目标函数y x z 23+=的取值范围是(A) ]22,6[ (B) ]22,7[ (C) ]22,8[ (D) ]23,7[ (3) 在△ABC 中,若4=AB ,3==BC AC ,则C sin 的值为 (A)32 (B) 91(C) 35 (D) 954(4) 阅读右边的程序框图,运行相应的程序,则输出的S 的值为 (A)23(B) 35(C) 2441(D)60103(5) “21-++x x ≤5”是“2-≤x ≤3”的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件(6) 已知B A 、分别为双曲线12222=-by a x (0,0>>b a )的左、右顶点,P 为双曲线上一点,且△ABP 为等腰三角形,若双曲线的离心率为2,则ABP ∠的度数为(A) ︒30 (B) ︒60 (C) ︒120 (D) ︒30或︒120 (7) 如图,在平行四边形ABCD 中,3π=∠BAD ,2=AB ,1=AD .若N M 、分别是边AD 、 CD 上的点,且满足λ==DCNCAD MD ,其中]1,0[∈λ, 则⋅的取值范围是(A) ]1,3[-- (B) ]1,3[- (C) ]1,1[- (D) ]3,1[(8) 已知函数⎪⎩⎪⎨⎧+--<-+=,2,132,2,32)(22x x x x x x x f 若关于x 的方程0)(=-m x f 恰有五个不相等的实数解,则m 的取值范围是(A) ]4,0[ (B) )4,0( (C) )5,4( (D) )5,0(第Ⅱ卷 非选择题(共110分)注意事项:1. 用钢笔或圆珠笔直接答在答题卷上,答在本试卷上的无效。

2017年天津市高考数学试卷(理科)详细解析版

2017年天津市高考数学试卷(理科)详细解析版

2017 年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合 A={ 1,2, 6} ,B={ 2,4} ,C={ x∈R| ﹣ 1≤ x≤5} ,则( A∪ B)∩C=()A.{ 2} B.{ 1, 2,4} C.{ 1, 2, 4, 5}D. { x∈R| ﹣1≤x≤ 5}2.(5 分)设变量 x,y 满足约束条件,则目标函数z=x+y 的最大值为()A.B.1 C.D.33.(5 分)阅读右面的程序框图,运行相应的程序,若输入N 的值为 24,则输出 N的值为()A.0 B.1C.2 D.34.(5 分)设θ∈R,则“|θ﹣| <”是“ sin<θ”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.( 5 分)已知双曲线﹣=1(a>0,b> 0)的左焦点为 F,离心率为.若经过 F 和 P( 0, 4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=16.( 5 分)已知奇函数 f(x)在 R 上是增函数, g(x)=xf(x).若 a=g(﹣ log25.1),b=g( 20.8),c=g(3),则 a, b, c 的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a7.(5 分)设函数 f(x)=2sin(ωx+φ),x∈R,其中ω>0,| φ| < x.若 f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=8.(5 分)已知函数 f( x)=,设a∈R,若关于x的不等式f(x)≥ | +a| 在 R 上恒成立,则 a 的取值范围是()A.[ ﹣,2]B.[ ﹣,]C.[ ﹣2,2] D.[﹣2,]二 .填空题:本大题共 6 小题,每小题 5 分,共 30 分.9.(5 分)已知 a∈R,i 为虚数单位,若为实数,则a的值为.10.( 5 分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18,则这个球的体积为.11.( 5 分)在极坐标系中,直线4ρ cos(θ﹣)+1=0与圆ρ =2sin的θ公共点的个数为.12.( 5 分)若 a,b∈ R,ab>0,则的最小值为.13.( 5 分)在△ ABC 中,∠ A=60°, AB=3, AC=2.若=2,=λ ﹣(λ14.( 5 分)用数字1, 2, 3, 4, 5, 6, 7, 8,9 组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)三.解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算步骤.15.( 13 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a>b,a=5, c=6, sinB= .(Ⅰ)求 b 和 sinA 的值;(Ⅱ)求 sin( 2A+)的值.16.(13 分)从甲地到乙地要经过3 个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设 X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有 2 辆车独立地从甲地到乙地,求这 2 辆车共遇到 1 个红灯的概率.17.( 13 分)如图,在三棱锥 P﹣ABC中, PA⊥底面 ABC,∠ BAC=90°.点 D,E, N 分别为棱 PA,PC,BC的中点, M 是线段 AD 的中点, PA=AC=4,AB=2.(Ⅰ)求证: MN ∥平面 BDE;(Ⅱ)求二面角C﹣ EM﹣N 的正弦值;(Ⅲ)已知点 H 在棱 PA上,且直线 NH 与直线 BE所成角的余弦值为,求线段 AH 的长.18.( 13 分)已知 { a n} 为等差数列,前 n 项和为 S n(n∈N+),{ b n} 是首项为 2 的等比数列,且公比大于 0, b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求 { a n} 和{ b n} 的通项公式;+(Ⅱ)求数列 { a2n b2n﹣1} 的前 n 项和( n∈ N ).19.(14 分)设椭圆+ =1(a>b>0)的左焦点为 F,右顶点为 A,离心率为.已知 A 是抛物线 y2(>)的焦点,F 到抛物线的准线l的距离为.=2px p0(I)求椭圆的方程和抛物线的方程;(II)设 l 上两点 P,Q 关于 x 轴对称,直线 AP 与椭圆相交于点 B(B 异于 A),直线 BQ 与 x 轴相交于点 D.若△ APD的面积为,求直线AP的方程.20.(14 分)设 a∈Z,已知定义在 R 上的函数 f(x)=2x4+3x3﹣3x2﹣6x+a 在区间(1, 2)内有一个零点 x0,g(x)为 f(x)的导函数.(Ⅰ)求 g( x)的单调区间;(Ⅱ)设 m∈[ 1,x0)∪(x0,2] ,函数 h(x)=g(x)(m﹣x0)﹣ f(m ),求证:h(m) h( x0)< 0;(Ⅲ)求证:存在大于0 的常数 A,使得对于任意的正整数p,q,且∈ [ 1,x0)∪( x0,2] ,满足 |﹣x0|≥.2017 年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5 分)设集合 A={ 1,2, 6}, B={ 2, 4}, C={ x∈ R|﹣1≤x≤ 5},则( A∪B)∩C=()A.{ 2} B.{ 1, 2, 4}C.{ 1, 2, 4, 5}D.{ x∈R|﹣1≤x≤5}【分析】由并集概念求得A∪B,再由交集概念得答案.【解答】解:∵ A={ 1, 2,6} ,B={ 2,4} ,∴ A∪B={ 1,2,4,6} ,又 C={ x∈ R| ﹣1≤x≤5} ,∴( A∪ B)∩ C={ 1,2,4} .故选:B.【点评】本题考查交、并、补集的混合运算,是基础题.2.(5 分)设变量 x, y 满足约束条件,则目标函数z=x+y 的最大值为()A.B.1 C.D.3【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:变量 x,y 满足约束条件的可行域如图:目标函数 z=x+y 结果可行域的 A 点时,目标函数取得最大值,由可得 A( 0, 3),目标函数 z=x+y 的最大值为: 3.故选:D.【点评】本题考查线性规划的简单应用,考查计算能力以及数形结合思想的应用.3.(5 分)阅读上面的程序框图,运行相应的程序,若输入N 的值为 24,则输出 N 的值为()A.0 B.1 C.2D. 3【分析】根据程序框图,进行模拟计算即可.【解答】解:第一次 N=24,能被 3 整除, N=≤3 不成立,第二次 N=8,8 不能被 3 整除, N=8﹣ 1=7,N=7≤3 不成立,第三次 N=7,不能被 3 整除, N=7﹣ 1=6,N==2≤3 成立,输出 N=2,故选 C【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.4.(5 分)设θ∈R,则“|θ﹣| <”是“ sin<θ”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解: | θ﹣| < ?﹣<θ﹣<? 0<θ<,sin θ<? ﹣+2kπ<θ<+2kπ,k∈Z,则( 0,)? [﹣+2kπ, +2kπ] ,k∈ Z,可得“|θ﹣| <”是“sin<θ”的充分不必要条件.故选: A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.5.( 5 分)已知双曲线﹣=1(a>0,b> 0)的左焦点为 F,离心率为.若经过 F 和 P( 0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=1【解答】解:设双曲线的左焦点F(﹣ c,0),离心率 e= =,c=a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x,则经过 F 和 P(0,4)两点的直线的斜率k==,则=1,c=4,则 a=b=2,∴双曲线的标准方程:;故选B.【点评】本题考查双曲线的简单几何性质,等轴双曲线的应用,属于中档题.6.(5 分)已知奇函数(f x)在 R 上是增函数, g( x)=xf( x).若 a=g(﹣ log25.1),b=g( 20.8),c=g(3),则 a, b, c 的大小关系为()A. a<b<c B.c<b< a C.b<a<c D.b<c<a【分析】由奇函数 f( x)在 R 上是增函数,则 g( x)=xf(x)偶函数,且在( 0,+∞)单调递增,则 a=g(﹣ log25.1) =g(log25.1),则 2<﹣ log25.1<3,1<20.8< 2,即可求得 b<a<c【解答】解:奇函数 f (x)在 R 上是增函数,当 x>0,f(x)> f( 0) =0,且 f ′( x)> 0,∴ g(x) =xf(x),则 g′(x)=f(x)+xf (′x)> 0,∴g( x)在( 0,+∞)单调递增,且 g(x) =xf(x)偶函数,∴a=g(﹣ log25.1)=g( log25.1),则 2<﹣ log25.1<3,1<20.8<2,由 g(x)在( 0,+∞)单调递增,则g( 20.8)< g(log25.1)< g(3),∴ b< a< c,故选C.【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题.7.(5 分)设函数 f(x)=2sin(ωx+φ),x∈ R,其中ω> 0,|φ|<x.若 f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由 f(x)的最小正周期大于2π,得,又 f()=2,f()=0,得,∴ T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin( x+φ),由 f()=,得 sin(φ+)=1.∴ φ+=,k∈ Z.取 k=0,得φ=<π.∴,φ= .故选:A.【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin(ωx+φ)型函数的性质,是中档题.8.( 5 分)已知函数 f( x)=,设a∈R,若关于x的不等式f(x)≥ | +a| 在R上恒成立,则a的取值范围是()A.[﹣,2]B.[﹣,]C.[﹣2,2]D.[﹣2,]【分析】讨论当 x≤1 时,运用绝对值不等式的解法和分离参数,可得﹣x2+ x ﹣ 3≤ a≤x2﹣x+3,再由二次函数的最值求法,可得 a 的范围;讨论当 x> 1 时,同样可得﹣( x+ )≤ a≤ + ,再由基本不等式可得最值,可得 a 的范围,求交集即可得到所求范围.【解答】解:当 x≤ 1 时,关于 x 的不等式 f(x)≥ |+a| 在 R 上恒成立,即为﹣ x2+x﹣ 3≤+a≤x2﹣ x+3,即有﹣ x2+ x﹣3≤a≤x2﹣x+3,由 y=﹣x2+x﹣3 的对称轴为 x= < 1,可得 x= 处取得最大值﹣;由 y=x2﹣x+3 的对称轴为 x=<1,可得 x= 处取得最小值,则﹣≤a≤①当 x>1 时,关于 x 的不等式 f( x)≥ | +a| 在 R 上恒成立,即为﹣( x+ )≤ +a≤x+,即有﹣(x+)≤ a≤ +,由 y=﹣( x+)≤﹣ 2=﹣ 2 (当且仅当 x= >1)取得最大值﹣ 2;由 y=x+≥2=2(当且仅当 x=2>1)取得最小值 2.则﹣ 2 ≤ a≤2②由①②可得,﹣≤a≤2.故选: A.【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题.二 .填空题:本大题共 6 小题,每小题 5 分,共 30 分.9.(5 分)已知 a∈R, i 为虚数单位,若为实数,则 a 的值为﹣2 .【解答】解:===﹣i由为实数,可得﹣=0,解得 a=﹣ 2.故答案为:﹣ 2.【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题.10.( 5 分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18,则这个球的体积为.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴ 6a2=18,则a2=3,即 a= ,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即 R= ,则球的体积 V=π?()3=;故答案为:.【点评】本题主要考查空间正方体和球的关系,利用正方体的体对角线等于直径,结合球的体积公式是解决本题的关键.11.( 5 分)在极坐标系中,直线 4ρ cos(θ﹣)+1=0与圆ρ =2sin的θ公共点的个数为2.【分析】把极坐标方程化为直角坐标方程,求出圆心到直线的距离 d,与半径比较即可得出位置关系.【解答】解:直线 4ρcos(θ﹣)+1=0 展开为: 4ρ+1=0,化为: 2 x+2y+1=0.2,θ化为直角坐标方程:22,配方为:2+( y﹣12圆ρ=2sin 即θρ ρx +yx).=2sin=2y=1∴圆心 C( 0, 1)到直线的距离 d==<1=R.∴直线 4ρcos(θ﹣)+1=0与圆ρ=2sin的θ公共点的个数为2.故答案为:2.直线的距离公式,考查了推理能力与计算能力,属于中档题.12.( 5 分)若 a,b∈R,ab> 0,则的最小值为4.【解答】解: a,b∈R,ab> 0,∴≥==4ab+≥2=4,当且仅当,即,即 a=,b=或a=﹣,b=﹣时取“=;”∴上式的最小值为4.故答案为: 4.【点评】本题考查了基本不等式的应用问题,是中档题.13.( 5 分)在△ ABC 中,∠ A=60°, AB=3, AC=2.若=2,=λ ﹣(λ∈ R),且=﹣4,则λ的值为.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠ A=60°, AB=3, AC=2, =2 ,∴= + = += +(﹣)=+,又=λ ﹣(λ∈R),∴=(+)?(λ﹣) =(λ﹣) ?﹣+ λ(λ﹣)× × ×cos60°﹣×32+ λ× 22﹣,∴λ ,解得λ= .= 3 2= 4=1故答案为:.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.14.( 5 分)用数字 1, 2, 3, 4, 5, 6, 7, 8,9 组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有1080个.(用数字作答)【分析】根据题意,要求四位数中至多有一个数字是偶数,分2种情况讨论:①、四位数中没有一个偶数数字,②、四位数中只有一个偶数数字,分别求出每种情况下四位数的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分 2 种情况讨论:、四位数中没有一个偶数数字,即在1、3、5、7、9 种任选 4 个,组成一共四位数即可,有 A54=120 种情况,即有 120 个没有一个偶数数字四位数;②、四位数中只有一个偶数数字,在1、3、5、7、9 种选出 3 个,在2、4、6、8 中选出 1 个,有 C53?C41=40 种取法,将取出的 4 个数字全排列,有 A44=24 种顺序,则有 40×24=960 个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080 个;故答案为: 1080.【点评】本题考查排列、组合的综合应用,注意要分类讨论.三 .解答题:本大题共 6 小题,共 80 分.15.( 13 分)在△ ABC中,内角 A, B,C 所对的边分别为 a,b,c.已知 a>b,a=5, c=6, sinB= .(Ⅰ)求 b 和 sinA的值;(Ⅱ)求 sin( 2A+)的值.【分析】(Ⅰ)由已知结合同角三角函数基本关系式求得 cosB,再由余弦定理求得b,利用正弦定理求得 sinA;(Ⅱ)由同角三角函数基本关系式求得cosA,再由倍角公式求得sin2A, cos2A,展开两角和的正弦得答案.【解答】解:(Ⅰ)在△ ABC中,∵ a>b,故由 sinB= ,可得 cosB= .由已知及余弦定理,有∴ b=.由正弦定理得sinA=∴ b=,=13,,.sinA=;(Ⅱ)由(Ⅰ)及a<c,得 cosA=,∴sin2A=2sinAcosA= ,cos2A=1﹣2sin2A=﹣.故 sin( 2A+)==.【点评】本题考查正弦定理和余弦定理在解三角形中的应用,考查倍角公式的应用,是中档题.16.( 13 分)从甲地到乙地要经过3 个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设 X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有 2 辆车独立地从甲地到乙地,求这 2 辆车共遇到 1 个红灯的概率.【分析】(Ⅰ)随机变量X 的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.【解答】解:(Ⅰ)随机变量 X 的所有可能取值为0, 1, 2, 3;则 P(X=0)=(1﹣)×(1﹣)(1﹣)=,P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=,P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=,P(X=3)=××=;所以,随机变量X 的分布列为X0123P随机变量 X 的数学期望为 E(X)=0×+1×+2×+3×=;(Ⅱ)设 Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1) =P(Y=0, Z=1)+P( Y=1,Z=0)=P(Y=0)?P(Z=1)+P( Y=1)?P( Z=0)=×+×=;所以,这 2 辆车共遇到 1 个红灯的概率为.【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.( 13 分)如图,在三棱锥 P﹣ABC中, PA⊥底面 ABC,∠ BAC=90°.点 D,E, N 分别为棱 PA, PC,BC的中点, M 是线段 AD 的中点, PA=AC=4,AB=2.(Ⅰ)求证: MN∥平面 BDE;(Ⅱ)求二面角C﹣EM﹣ N 的正弦值;(Ⅲ)已知点 H 在棱 PA上,且直线 NH 与直线 BE所成角的余弦值为,求线段AH 的长.【分析】(Ⅰ)取 AB 中点 F,连接 MF、NF,由已知可证 MF∥平面 BDE,NF∥平面BDE.得到平面 MFN∥平面 BDE,则 MN∥平面 BDE;(Ⅱ)由 PA⊥底面 ABC,∠ BAC=90°.可以 A 为原点,分别以 AB、AC、AP 所在直线为 x、y、z 轴建立空间直角坐标系.求出平面 MEN 与平面 CME的一个法向量,由两法向量所成角的余弦值得二面角 C﹣EM﹣N 的余弦值,进一步求得正弦值;(Ⅲ)设 AH=t,则 H( 0, 0, t),求出的坐标,结合直线NH 与直线 BE所成角的余弦值为列式求得线段AH 的长.【解答】(Ⅰ)证明:取AB 中点 F,连接 MF、NF,∵M 为 AD 中点,∴ MF∥BD,∵BD? 平面 BDE,MF?平面 BDE,∴ MF∥平面 BDE.∵N 为 BC中点,∴ NF∥AC,又D、E 分别为 AP、PC的中点,∴ DE∥AC,则 NF∥DE.∵ DE? 平面 BDE,NF?平面 BDE,∴ NF∥平面 BDE.又MF∩NF=F.∴平面 MFN∥平面 BDE,则 MN∥平面 BDE;(Ⅱ)解:∵ PA⊥底面 ABC,∠ BAC=90°.∴以 A 为原点,分别以 AB、AC、AP 所在直线为 x、y、z 轴建立空间直角坐标系.∵PA=AC=4, AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E ( 0, 2, 2),则,,设平面 MEN 的一个法向量为,由,得,取 z=2,得.由图可得平面 CME的一个法向量为.∴ cos<>=.∴二面角 C﹣EM﹣N 的余弦值为,则正弦值为;(Ⅲ)解:设 AH=t,则 H(0,0,t ),,.∵直线 NH 与直线 BE所成角的余弦值为,∴ | cos<>| =|| =|| =.解得: t=4.∴当 H 与 P 重合时直线 NH 与直线 BE 所成角的余弦值为,此时线段 AH 的长为 4.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.18.( 13 分)已知{ a n}为等差数列,前 n 项和为 S n(n∈N+),{ b n}是首项为 2 的等比数列,且公比大于 0, b2+b3=12,b3=a4﹣ 2a1,S11=11b4.(Ⅰ)求 { a n} 和{ b n} 的通项公式;(Ⅱ)求数列 { a2n b2n﹣1} 的前n项和(n∈N+).【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{ a n}和{ b n} 的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】解:( I)设等差数列 { a n} 的公差为 d,等比数列 { b n} 的公比为 q.由已知 b2 +b3=12,得 b1(q+q2) =12,而 b1 =2,所以 q+q2﹣6=0.又因为 q> 0,解得 q=2.所以, b n=2n.由b3=a4﹣2a1,可得 3d﹣ a1=8①.由S11=11b4,可得 a1 +5d=16②,联立①②,解得a1 =1, d=3,由此可得 a n=3n﹣ 2.所以,数列 { a n} 的通项公式为 a n =3n﹣ 2,数列 { b n} 的通项公式为 b n=2n.由a2n=6n﹣2, b2n﹣1=4n,有 a2n b2n﹣1=(3n﹣ 1) 4n,故T n=2×4+5×42+8×43+⋯+(3n﹣1)4n,4T n=2× 42+5×43+8×44+⋯+( 3n﹣1)4n+1,上述两式相减,得﹣ 3T n =2×4+3× 42+3×43+⋯+3× 4n﹣( 3n﹣1)4n+1==﹣( 3n﹣2)4n+1﹣8得 T n=.所以,数列 { a2n b2n﹣1 } 的前 n 项和为.【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查计算能力.19.( 14 分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为 A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l 的距离为.(I)求椭圆的方程和抛物线的方程;(II)设 l 上两点 P,Q 关于 x 轴对称,直线 AP与椭圆相交于点 B(B 异于 A),直线 BQ 与 x 轴相交于点 D.若△ APD的面积为,求直线AP的方程.【分析】(I)根据椭圆和抛物线的定义、性质列方程组求出a,b,p 即可得出方程;( II)设 AP 方程为 x=my+1,联立方程组得出B, P, Q 三点坐标,从而得出直线 BQ 的方程,解出 D 点坐标,根据三角形的面积列方程解出m 即可得出【解答】(Ⅰ)解:设 F 的坐标为(﹣ c, 0).依题意可得,解得 a=1,c= , p=2,于是 b2=a2﹣c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(Ⅱ)解:直线l 的方程为 x=﹣ 1,设直线 AP 的方程为 x=my+1( m≠0),,解得点 P(﹣ 1,﹣),故Q(﹣1,).,消去x,整理得(3m2+4)y2+6my=0,解得 y=0,或 y=﹣.∴ B(,).∴直线 BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令 y=0,解得 x=,故D(,0).∴ | AD| =1﹣=.又∵△ APD 的面积为,∴×=,2整理得 3m ﹣2 | m|+ 2=0,解得 | m| =,∴ m=±.第 17 页(共 20 页)20.( 14 分)设 a∈ Z,已知定义在 R 上的函数 f(x)=2x4+3x3﹣ 3x2﹣6x+a 在区间( 1,2)内有一个零点 x0, g(x)为 f( x)的导函数.(Ⅰ)求 g(x)的单调区间;(Ⅱ)设 m∈[ 1,x0)∪( x0, 2],函数 h(x)=g(x)( m﹣x0)﹣ f(m),求证: h(m)h(x0)< 0;(Ⅲ)求证:存在大于 0 的常数 A,使得对于任意的正整数p,q,且∈ [1,x0)∪( x0,2],满足|﹣x0|≥.【分析】(Ⅰ)求出函数的导函数g( x)=f ′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由 h(x) =g(x)(m﹣x0)﹣ f( m),推出 h(m)=g( m)(m﹣x0)﹣ f(m ),令函数 H (x)=g( x)(x﹣x )﹣ f(x),求出导函数 H′( x)101利用(Ⅰ)知,推出h(m)h(x0)< 0.(Ⅲ)对于任意的正整数p,q,且,令 m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[ 1, x0)时,当 m∈( x0,2] 时,通过 h(x)的零点.转化推出 |﹣x0| =≥=.推出| 2p4+3p3q﹣3p2q2﹣6pq3 +aq4| ≥1.然后推出结果.【解】(Ⅰ)由 f(x) =2x4+3x3﹣ 3x2﹣ 6x+a,得 g(x)=f ′( x)=8x3+9x2﹣6x﹣6,进而可得 g′(x)=24x2+18x﹣ 6.令 g′( x)=0,解得 x=﹣ 1,或 x= .当 x 变化时, g′(x), g( x)的变化情况如下表:x(﹣∞,﹣ 1)(﹣,)(,∞)1+ g′(x)+﹣+g(x)↗↘↗所以, g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣ 1,).(Ⅱ)证明:由h( x) =g(x)( m﹣x0)﹣ f(m ),得 h(m)=g(m)(m﹣x0)﹣ f( m),所以 h( x0)=g(x0)(m﹣ x0)﹣ f (m).令函数 H (x)=g( x)(x﹣x )﹣ f(x),则 H′(x)=g′(x)( x﹣ x ).1010由(Ⅰ)知,当x∈ [ 1,2] 时, g′(x)> 0,故当 x∈[ 1, x0)时, H′1( x)< 0, H1(x)单调递减;当 x∈( x0,2] 时, H′1(x)> 0,H1(x)单调递增.因此,当 x∈ [ 1,x0)∪( x0, 2] 时, H1(x)> H1(x0)=﹣f(x0)=0,可得 H1( m)> 0 即 h(m)> 0,令函数 H (x)=g(x )(x﹣x )﹣ f( x),则 H′( x)=g′(x )﹣ g( x).由(Ⅰ)20020知, g( x)在 [ 1,2] 上单调递增,故当x∈[ 1,x0)时, H′2(x)> 0,H2(x)单调递增;当 x∈( x , 2] 时, H′(x)< 0, H (x)单调递减.因此,当x∈[ 1,022x0)∪( x0, 2] 时, H2(x)> H2(x0)=0,可得得 H2( m)< 0 即 h(x0)< 0,.所以, h(m) h( x0)< 0.(Ⅲ)对于任意的正整数p,q,且,令 m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[ 1, x0)时, h( x)在区间( m,x0)内有零点;当m∈( x0,2] 时, h(x)在区间( x0,m)内有零点.所以 h(x)在( 1, 2)内至少有一个零点,不妨设为 x1,则 h(x1)=g( x1)(﹣x0)﹣ f()=0.由(Ⅰ)知 g(x)在 [ 1,2] 上单调递增,故 0< g( 1)< g(x1)< g(2),于是 |﹣x0| =≥=.因为当 x∈[ 1,2] 时, g(x)> 0,故 f(x)在 [ 1,2] 上单调递增,所以 f(x)在区间 [ 1,2] 上除 x0外没有其他的零点,而≠x0,故f()≠ 0.又因为 p, q, a 均为整数,所以 | 2p4+3p3q﹣ 3p2q2﹣6pq3+aq4| 是正整数,从而 | 2p4+3p3q﹣ 3p2q2﹣6pq3+aq4| ≥1.所以 |﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.【点评】本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查分类讨论思想以及转化思想的应用,是难度比较大的题目.第 20 页(共 20 页)。

2017年高考理数真题天津卷(试题及详细答案解析)

2017年高考理数真题天津卷(试题及详细答案解析)

2
2
2
5

x2
x 2
3
x
1 4
2
47 16
47 16
(当
x
1 4
时等号成立),
x2
3 2
x
3
x
3 4
2
39 16
39 16
(当
x
3 4
时等号成立),
∴ 47 a 39 ,
16
16
当 x 1 时,①式可化为 x 2 x a x 2 ,∴ 3x 2 a x 2 ,
x2
1 3
,
24
D.
1 3
,
24
8.已知函数
f
(x)
x
2
x
x
2 x
,
x
3, x 1, 1.

aR
,若关于
x
的不等式
f
(x)
|
x 2
a
|

R
上恒成立,
则 a 的取值范围是( )
A. [ 47 , 2] 16
B. [ 47 , 39] 16 16
C. [2 3, 2]
D. [2 3, 39] 16
b
13
∴ b 13 , sin A 3 13 . 13
(Ⅱ)由(Ⅰ)及 a c 得 cos A 2 13 , 13
∴ sin 2 A 2sin Acos A 12 , cos 2 A 1 2sin 2 A 5 ,
13
13

sin
2
A
4
sin
2 Acos
E,N 分别为棱 PA,PC,BC 的中点,M 是线段 AD 的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面 BDE; (Ⅱ)求二面角 C-EM-N 的正弦值;

天津五区县2017届高三一模理科综合试题及答案

天津五区县2017届高三一模理科综合试题及答案

天津市部分区2017年高三质量调查试卷(一)
理科综合化学部分参考答案
选择题共6题,每题6分,共36分
1.D 2.A 3.B 4.D 5.C 6.D
7.(14分,除注明外每空2分。


(1)第三周期第ⅥA族(1分)(1分)
(2)S2->O2->Na+(1分)Cl2+H2S=2HCl+S↓(合理即可)
(3)(1分)4AgBr+N2H4= 4Ag+N2↑+4HBr1:2
(4)氧化钠过氧化钠
(5)b
8.(18分,除注明外每空2分。


(1)羧基、硝基
(2)ac
(3)丙烯醇
(4)6(任写一种即可)
(5)(共4分,其中第一步1分,第二步条件和产物正确得2分,第三步条件和产物正确得1分。

若顺序颠倒不得分,条件或产物的结构简式写错不得分)
9.(18分,每空2分。


(1)2H+ + SnO=Sn2++H2O c Sn2++2e-= Sn
(2)①KMnO4或KClO3蒸馏烧瓶
②缺少温度计D与E之间缺少干燥装置
③Sn 4++4OH -=H 2SnO 3↓+H 2O
④92.0%
10.(14分,除标明外,每空2分)
(1) ①6a+b+2c 3
②>(1分) 由图可知,随着温度的升高,K 1增大、K 2减小,则△H 1>0、 △H 2<0,所以a >b
(2) b (1分)
(3) ①ad ②0.04 mol·L −1·min −1
1200 ③p 1>p 2>p 3。

2017年高考理科数学天津卷(含答案解析)

2017年高考理科数学天津卷(含答案解析)

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷参考公式:·如果事件,A B 互斥,那么()()()P AB P A P B =+.·如果事件,A B 相互独立,那么()()()P AB P A P B =.·棱柱的体积公式V Sh =.其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式343V R π=.其中R 表示球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,2,6A =,{}2,4B =,{}|15C x R x =∈-≤≤,则()A B C =A .{}2B .{124},,C .16}2{4,,, D .{}1|5x R x ∈-≤≤2.设变量x ,y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为A .23B .1C .32D .33.阅读右边所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的 A .0B .1C .2D .34.设θ∈R ,则“ππ121||2θ-<”是“1sin 2θ<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件5.已知双曲线()222210,0x y a b a b-=>>的左焦点为F.若经过F 和()0,4P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144y x -= B .22188y x -= C .22148y x -= D .22184y x -=6.已知奇函数f x ()在R 上是增函数,g x xf x =()().若25.1a g log =-(),0.82b g =(),3c g =(),则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<7.设函数2sin f x x ωϕ=+()(),x ∈R ,其中0ω>,πϕ<.若5π28f ⎛⎫=⎪⎝⎭,11π08f ⎛⎫= ⎪⎝⎭,且f x ()的最小正周期大于2π,则 A .2π,312ωϕ== B .211π,312ωϕ==-C .111π,324ωϕ==-D .17π,324ωϕ==8.已知函数()23,1,2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()2f x a x ≥+在R 上恒成立,则a 的取值范围是毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)A .47,216⎡⎤⎢⎥⎣⎦-B .4739,1616-⎡⎤⎢⎥⎣⎦C.2-⎡⎤⎣⎦D.3916-⎡⎤⎢⎥⎣⎦第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 10.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .11.在极坐标系中,直线π4cos 106ρθ⎛⎫-+= ⎪⎝⎭与圆2sin ρθ=的公共点的个数为 .12.若a ,b ∈R ,0ab >,则4441a b ab++的最小值为 .13.在ABC ∆中,60A ∠=︒,3AB =,2AC =.若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为 .14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (1)求b 和sin A 的值; (2)求π24sin A +()的值. 16.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.17.(本小题满分13分)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证:MN ∥平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为21,求线段AH 的长.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n S n ∈Ν(),{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和*n ∈N ().19.(本小题满分14分)设椭圆222210x y a ba b +=>>()的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线()220y px p =>的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD ∆AP 的方程.20.(本小题满分14分)设a Z ∈,已知定义在R 上的函数()4322336f x x x x x a =+--+在区间()12,内有一个零点0x ,()g x 为()f x 的导函数. (1)求()g x 的单调区间;(2)设0012[]m x x ∈,)(,,函数()()()()0h x g x m x f m =--,求证:()()00h m h x <;(3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且00[]12qx x p∈,)(,,满足041p x q Aq -≥.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2017年普通高等学校招生全国统一考试(天津卷)数学答案解析1.【答案】B 【解析】{}(){}1,2,4,6,1,2,4AB A BC ==,选项B 符合.【提示】解题时应根据集合的运算法则,以及集合元素的三大特征,借助数轴或图示求解.【考点】集合的运算 2.【答案】D【解析】作出约束条件所表示的可行域如图中阴影部分所示,由z x y =+得y x z =-+,作出直线y x =-,平移使之经过可行域,观察可知,最优解在()03B,处取得,故max 033z =+=,选项D 符合.【提示】常常需画出约束条件所表示的可行域,画图时一定要注意边界是实线还是虚线,求解时要注意z 的几何意义。

2017天津高考真题数学理(含解析)

2017天津高考真题数学理(含解析)

2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)第I卷一、选择题(共8小题,每小题5分,共40分):在每小题给出的四个选项中,只有一项符合题目要求. (1)已知全集,集合,集合,则集合(A)(B)(C)(D)(2)设变量、满足约束条件,则目标函数的最大值为(A)(B)(C)(D)(3)阅读右边的程序框图,运行相应的程序,则输出的值为(A)(B)(C)(D)(4)设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(5)如图,在圆中,、是弦的三等分点,弦、分别经过点、.若,,,则线段的长为(A)(B)(C)(D)(6)已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线的准线上,则双曲线的方程为(A)(B)(C)(D)(7)已知定义在上的函数(为实数)为偶函数,记,,,则、、的大小关系为(A)(B)(C)(D)(8)已知函数函数,其中,若函数恰有4个零点,则的取值范围是(A)(B)(C)(D)第II卷二、填空题(本大题共6小题,每小题5分,共30分).(9)是虚数单位,若复数是纯虚数,则实数的值为.(10)一个几何体的三视图如图所示(单位:),则该几何体的体积为.(11)曲线与直线所围成的封闭图形的面积为.(12)在的展开式中,的系数为.(13)在中,内角、、所对的边分别为、、,已知的面积为,,则的值为.(14)在等腰梯形中,已知,,,,动点和分别在线段和上,且,,则的最小值为.三、解答题(本大题共6小题,共80分),解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数,(I)求最小正周期;(II)求在区间上的最大值和最小值.16.(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.(I)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;(II)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.17.(本小题满分13分)如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点.(I)求证:平面;(II)求二面角的正弦值;(III)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长18.(本小题满分13分)已知数列满足(为实数,且),,,,且,,成等差数列.(I)求的值和的通项公式;(II)设(),求数列的前项和.19.(本小题满分14分)已知椭圆的左焦点为,离心率为,点在椭圆上且位于第一象限,直线被圆截得的线段的长为,.(I)求直线的斜率;(II)求椭圆的方程;(III)设动点在椭圆上,若直线的斜率大于,求直线(为原点)的斜率的取值范围.20.(本小题满分14分)已知函数(),其中,.(I)讨论的单调性;(II)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(III)若关于的方程(为实数)有两个正实根、,求证:.2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)第I卷一、选择题(满分40分)题号 1 2 3 4 5 6 7 8答案 A C B A A D C D二、填空题(满分30分)9.10.11.12.13.14.三、解答题(满分80分)15.(本小题满分13分)解:(Ⅰ)由题意可知所以.(Ⅱ)因为,所以,,所以的最小值为,最大值为.16.(本小题满分13分)解:(Ⅰ)设事件:“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”.由题意可知,.(Ⅱ)由题意,的可能取值为,,,.由题意可知,,,,.所以的分布列为:所以.17.(本小题满分14分)证明:(Ⅰ)在,且与交于点,由题意可知四棱柱中,所以,又因为为的中点,所以,,又因为为的中点,所以,.所以四边形是平行四边形.所以.平面因为平面,所以平面.(Ⅱ)以为轴,为轴,为轴建立空间直角坐标系,如图:则,,,,,,平面的法向量为,为,,,令得,.设平面的法向量为,、为,,,令得,.所以,因为二面角为锐角,所以二面角的正弦值为.(Ⅲ)设,,,.所以.平面的法向量为,由已知得,,解得,所以,线段的长为.18.(本小题满分13分)解:(I)依题意,,.因为,,成等差数列,所以,所以,或者(舍)当时,;当时,。

天津市和平区2017届高三上学期期末质量调查数学理试题Word版含答案

天津市和平区2017届高三上学期期末质量调查数学理试题Word版含答案

数学(理)学科第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|60A x x x =-->,{}|31B x x =-≤≤,则A B =I ( )A .(2,1]-B .(3,2]--C .[3,2)--D .(,1](3,)-∞+∞U 2.设变量x ,y 满足约束条件10,10,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数4z x y =+的最大值为( )A .4B .11C .12D .143.如图,在ABC ∆中,若5AB =,7AC =,60B ∠=︒,则BC 等于( )A. B. C .8 D.4.阅读如图的程序框图,运行相应的程序,则输出的T 的值为( )A .57B .120C .183D .247 5.已知log 2a ,log 2b R ∈,则“222a b >>”是“log 2log 2a b <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.已知双曲线22221x y a b-=(0a >,0b >)的两条渐进线与抛物线28y x =-的准线分别交于A ,B 两点,O 为坐标原点,若ABO ∆的面积为 )AB .2 CD .47.如图,在平行四边形ABCD 中,3BAD π∠=,2AB =,1AD =,若M 、N 分别是边BC 、CD 上的点,且满足BM NC BC DCλ==,其中[]0,1λ∈,则AM AN ⋅u u u u r u u u r 的取值范围是( ) A .[]0,3B .[]1,4C .[]2,5D .[]1,7 8.已知函数22,0,()2,0,x x f x x x x -<⎧=⎨-+≥⎩若关于x 的方程1()2f x x m =+恰有三个不相等的实数解,则m 的取值范围是( )A .30,4⎡⎤⎢⎥⎣⎦B .3(0,)4 C .90,16⎡⎤⎢⎥⎣⎦ D .9(0,)16第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知13z a i =+,234z i =-,若12z z 为纯虚数,则实数a 的值为 .10.91(2x的展开式中的常数项为 .(用数学作答) 11.几何体的三视图如图所示(单位:cm ),则该几何体的体积为 2cm .12.直线3y kx =+(0k ≠)与圆226490x y x y +--+=相交于A 、B两点,若||AB =,则k 的值是 .13.设0a b >>,则21()a b a b +-的最小值是 . 14.定义在R 上的奇函数()f x 是周期为2的周期函数,当[0,1)x ∈时,()21x f x =-,则2(log 3)f 的值为 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分13分) 已知函数()cos(2)2sin()sin()344f x x x x πππ=-++-. (1)求()f x 的最小正周期;(2)求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间. 16. (本小题满分13分)甲、乙两人各进行3次射击,甲、乙每次击中目标的概率分别为12和23. (1)求甲至多击中目标2次的概率;(2)记乙击中目标的次数为X ,求随机变量X 的分布列和数学期望.17. (本小题满分13分)如图,四边形ABCD 是正方形,PA ⊥平面ABCD ,//EB PA ,4AB PA ==,2EB =,F 为PD 的中点.(1)求证:AF PC ⊥;(2)求证://BD 平面PEC ;(3)求锐角三角形D PC E --的余弦值.18. (本小题满分13分)设数列{}n a 满足条件11a =,1132n n n a a -+=+⋅.(1)求数列{}n a 的通项公式;(2)若n nb n a =,求数列{}n b 的前n 项和n S . 19. (本小题满分14分)已知椭圆E :22221(0)x y a b a b +=>>经过点(2,3)A ,离心率12e =. (1)求椭圆E 的方程;(2)若12F AF ∠的角平分线所在的直线l 与椭圆E 的另一个交点为B ,C 为椭圆E 上的一点,当ABC ∆的面积最大时,求C 点的坐标.20. (本小题满分14分) 已知函数3221()233f x x ax a x =-+-(a R ∈且0a ≠). (1)当1a =-时,求曲线()y f x =在(2,(2))f --处的切线方程;(2)当0a >时,求函数()y f x =的单调区间和极值;(3)当[]2,22x a a ∈+时,不等式|'()|3f x a ≤恒成立,求a 的取值范围.和平区2016-2017学年度第一学期高三年级数学(理)学科期末质量调查试卷答案一、选择题1-5:CBCBA 6-8:BCD二、填空题9.4 10.21211.12.34- 13.414.13- 三、解答题15.解:(1)∵1()cos 22(sin cos )(sin cos )2f x x x x x x x =++- ∴()f x 的最小正周期22T ππ==. 则63k x k ππππ-+≤≤+,k Z ∈, 所以,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在,64x ππ⎡⎤∈-⎢⎥⎣⎦上单调递增. 16.解:(1)∵甲3次均击中目标的概率为311()28=, ∴甲至多击中目标目标2次的概率为17188-=. (2)随机变量X 的所有可能取值为0,1,2,3.03321(0)(1)327P X C ==-=,123222(1)(1)339P X C ==⨯⨯-=,223224(2)(1)339P X C ==⨯⨯-=(), 33328(3)()327P X C ===. ∴随机变量X 的分布列为∴随机变量X 的数学期望()01232279927E X =⨯+⨯+⨯+⨯=. 17.(1)证明:依题意,PA ⊥平面ABCD ,如图,以A 为原点,分别以AD u u u r 、AB u u u r 、APu u u r 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.依题意,可得(0,0,0)A ,(0,4,0)B ,(4,4,0)C ,(4,0,0)D ,(0,0,4)P ,(0,4,2)E ,(2,0,2)F .∵(2,0,2)AF =u u u r ,(4,4,4)PC =-u u u r ,∴80(8)0AF PC ⋅=++-=u u u r u u u r , ∴AF PC ⊥.(2)证明:取PC 的中点M ,连接EM .∵(2,2,2)M ,(2,2,0)EM =-u u u u r ,(4,4,0)BD =-u u u r ,∴2BD EM =u u u r u u u u r ,∴//BD EM .∵EM ⊂平面PEC ,BD ⊄平面PEC ,∴//BD 平面PEC .(3)解:∵AF PD ⊥,AF PC ⊥,PD PC P =I ,∴AF ⊥平面PCD ,故(2,0,2)AF =u u u r 为平面PCD 的一个法向量.设平面PCE 的法向量为(,,)n x y z =r ,∵(4,4,4)PC =-u u u r ,(0,4,2)PE =-u u u r ,∴0,0,n PC n PE ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即4440,420,x y z y z +-=⎧⎨-=⎩ 令1y =,得1x =,2z =,故(1,1,2)n =r .∴cos ,2AF n <>==u u u r r , ∴锐二面角D PC E --18.解:(1)∵11a =,1132n n n a a -+-=⋅,∴121321()()()n n n a a a a a a a a -=+-+-++-…0121323232n -=+⨯+⨯++⨯… 101211(12)13(222)1332212n n n ---⨯-=++++=+⨯=⨯--…(2n ≥), ∵当1n =时,113221-⨯-=式子也成立,∴数列{}n a 的通项公式1322n n a -=⨯-.(2)解:∵1322n n n b na n n -==⋅-,即:013122b =⨯⨯-,123224b =⨯⨯-,233326b =⨯⨯-,…∴123n n S b b b b =++++…01213(1222322)(2462)n n n -=⨯+⨯+⨯++⋅-++++…….设01211222322n n T n -=⨯+⨯+⨯++⋅…,①则2212 1222(1)22n n n T n n -=⨯+⨯++-⋅+⋅…,②①-②,得0121(2222)2(21)2n n n n n T n n --=++++-⋅=--⋅…,∴(1)21n n T n =-⋅+,∴3(1)232(123)n n S n n =-⋅+-++++…3(1)2(1)3nn n n =-⋅-++. 19.解:(1)由椭圆E 经过点(2,3)A ,离心率12e =, 可得22222491,1,4a b a b a ⎧+=⎪⎪⎨-⎪=⎪⎩ 解得2216,12,a b ⎧=⎪⎨=⎪⎩ ∴椭圆E 的方程为2211612x y +=. (2)由(1)可知1(2,0)F -,2(2,0)F ,则直线1AF 的方程为3(2)4y x =+,即3460x y -+=, 直线2AF 的方程为2x =,由点A 在椭圆E 上的位置易知直线l 的斜率为正数.设(,)P x y 为直线l 上任意一点,|2|x =-,解得210x y --=或280x y +-=(斜率为负数,舍去). ∴直线l 的方程为210x y --=.设过C 点且平行于l 的直线为20x y m -+=, 由221,161220x y x y m ⎧+=⎪⎨⎪-+=⎩,整理得2219164(12)0x mx m ++-=,由22(16)4194(12)0m m ∆=-⨯⨯-=,解得276m =,因为m 为直线20x y m -+=在y 轴上的截距,依题意,0m >,故m =∴C点的坐标为(. 20.解:(1)∵当1a =-时,321()233f x x x x =---,2'()43f x x x =---, ∴82(2)8633f -=-+=,'(2)4831f -=-+-=. ∴[]2(2)3y x =--+,即所求切线方程为3380x y -+=. (2)∵22'()43()(3)f x x ax a x a x a =-+-=---.当0a >时,由'()0f x >,得3a x a <<;由'()0f x <,得x a <或3x a >. ∴函数()y f x =的单调递增区间为(,3)a a ,单调递减区间为(,)a -∞和(3,)a +∞, ∵(3)0f a =,34()3f a a =-, ∴当0a >时,函数()y f x =的极大值为0,极小值为343a -. (3)2222'()43(2)f x x ax a x a a =-+-=--+,∵'()f x 在区间[]2,22a a +上单调递减, ∴当2x a =时,2max '()f x a =,当22x a =+时,2min '()4f x a =-.∵不等式|'()|3f x a ≤恒成立,∴220,3,43,a a a a a ≥⎧⎪≤⎨⎪-≥-⎩解得13a ≤≤,故a 的取值范围是[]1,3.。

2017年高考理科数学天津卷含答案

2017年高考理科数学天津卷含答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A,B互斥,那么·如果事件A,B相互独立,那么P(A∪B)=P(A)+P(B).P(AB)=P(A) P(B).·棱柱的体积公式V=Sh. ·球的体积公式343V R =π.其中S表示棱柱的底面面积,其中R表示球的半径.h表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,6},{2,4},{|15}A B C x x===∈-≤≤R,则()A B C=【B】(A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为【D 】 (A )23 (B )1(C )32 (D )3(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为【C 】(A )0 (B )1(C )2(D )3(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的【A 】(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为【B 】(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为【C 】(A )a b c << (B )c b a <<(C )b a c <<(D )b c a << (7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则【A 】(A )23ω=,12ϕπ=(B )23ω=,12ϕ11π=-(C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是【A 】(A )47[,2]16-(B )4739[,]1616-(C)[-(D)39[16-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年高考真题——数学(理)(天津卷) Word版含答案

2017年高考真题——数学(理)(天津卷) Word版含答案

绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ). ·棱柱的体积公式V =Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =(A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 (3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a << (C )b a c << (D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )47[,2]16-(B )4739[,]1616-(C )[- (D )39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年天津市高考理科数学试题及解析

2017年天津市高考理科数学试题及解析

2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ). ·棱柱的体积公式V =Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C = (A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-=,,,,,, ,选B.(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 【答案】D【解析】目标函数为四边形ABCD 及其内部,其中324(0,1),(0,3),(,3),(,)233A B C D --,所以直线z x y =+过点B 时取最大值3,选D.学*科*网(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 【答案】C【解析】依次为8N = ,7,6,2N N N ===,输出2N = ,选C.(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F 若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. (6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a << (C )b a c <<(D )b c a <<【答案】C(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则(A )23ω=,12ϕπ=(B )23ω=,12ϕ11π=-(C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不学&科&网等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616- (C)[- (D)39[]16- 【答案】A所以2a -≤≤, 综上47216a -≤≤.故选A .学&科*网第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

天津市部分区2017年高三数学下学期质量调查试题(一)理(扫描版)

天津市部分区2017年高三数学下学期质量调查试题(一)理(扫描版)

天津市部分区2017年高三数学下学期质量调查试题(一)理(扫描版)天津市部分区2017年高三质量调查试卷(一)数 学(理工类)一、选择题:(1)-(4)ABCC (5)-(8)ADDC 二、填空题:(9)4 (10)280- (11)2 (12)1 (13)4=0+-x y (14))1,21()23,3(--- 三、解答题:(15)(本小题满分13分) 解:(Ⅰ)()sin()cos 1=(sin coscos sin )cos 1666=-+-+f x x x x x x πππ,。

.。

.。

..2分 231313sin cos cos 1=sin 2cos 222444=-+-+x x x x x , 1313=(cos sin 2sin cos 2)=sin(2)2664264-+-+x x x πππ.。

.。

..。

.。

..。

.。

...。

..。

4分 所以周期22T ππ==。

..。

.。

.。

..。

..。

.。

..。

.。

.。

...。

.。

.。

.。

.。

.。

....。

.。

.。

..。

.。

.。

.。

.。

....。

.....。

.。

.。

..6分 (Ⅱ)由(Ⅰ)知13()sin(2)264=-+f x x π, 因为]2,12[ππ∈x ,所以52[0,]66-∈x ππ,。

.。

.。

..。

..。

.。

.。

.。

.。

.。

.。

..。

.。

.。

.。

.....。

..。

..。

..。

8分 所以sin(2)[0,1]6-∈x π,....。

.。

..。

.。

.。

.。

...。

.....。

.。

..。

..。

.。

.。

....。

.。

....。

......。

.。

..。

...。

.。

...。

..。

10分 故当3π=x 时,函数()f x 的最大值为45;当12π=x 时,函数()f x 的最小值为43。

..。

.。

..。

..。

..。

...。

.。

..。

.。

...。

.。

.。

.。

.。

..。

.。

.。

.。

..。

.。

......。

.。

.。

..。

.。

..。

..。

.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市部分区2017年高三量调查试卷(一)数学(理工类)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{|03,},{|A x x x N B x y =<≤∈==,则()R A C B =A .{}1,2B .{}1,2,3C .{}0,1,2D .(0,1)2、若变量,x y 满足约束条件23030230x y x y x y --≤⎧⎪+-≥⎨⎪-+≤⎩,则z x y =-的最大值为A .-1B .0C .1D .23、阅读如图所示的程序框图,运行相应的程序,则输出i 的值为 A .4 B .6 C .8 D .104、在ABC ∆中,,,A B C 的对边分别为,,a b c ,若,6,s i n 2s i n 03B b AC π==-=,则a =A .3 B...125、已知()221:430,:x p x x q f x x+-+≤=存在最大值和最小值,则p 是q 的A .充分不必要条件B .充要条件C .必要而不充分条件D .既不充分也不必要条件6、已知抛物线220y x =的焦点F 恰好为双曲线22221(0,0)x y a b a b-=>>的一个焦点,且点F 到双曲线的渐近线的距离是4,则双曲线的方程为A .2214116x y -= B .221214x y -= C .22134x y -= D .221916x y -= 7、在ABC ∆中,022,120,AC AB BAC O ==∠=是BC 的中点,M 是AO 上一点,且3AO MO = ,则MB MC ⋅的值是A .56-B .76-C .73-D .53- 8、已知函数()22,(,0]21,(0,)x x f x x ax x ⎧∈-∞⎪=⎨++∈+∞⎪⎩,若函数()()2g x f x x a =+-有三个零点,则实数a 的取值范围是A .(0,)+∞B .(,1)-∞-C .(,3)-∞-D .(3,0)-第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卷的横线上.. 9、已知,,a b R i ∈是虚数单位,若复数21biai i+=-,则a b += 10、72)x的展开式中,1x -的系数是 (用数字填写答案)11、某三棱锥的三视图如图所示,则该几何体的体积为 12、直线4y x =与曲线24y x =在第一象限围成的封闭图形 的图形的面积为13、在直线坐标系xOy 中,直线l 的参数方程为3(1x tt y at =+⎧⎨=+⎩为参数,a R ∈),曲线C 的参数方程为22cos (2sin x y ααα=+⎧⎨=⎩为参数)设直线l 与曲线C 交于A 、B 两点,当弦长AB 最短时,直线l 的普通方程为14、已知()f x 是定义在R 上的偶函数,且在区间[0,)+∞ 上单调递增,若实数x 满足12(log 1)(1)f x f +<-,则x 的取值是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 15、(本小题满分12分) 已知函数()sin()cos 16f x x x π=-+.(1)求函数()f x 的最小正周期;(2)当[,]122x ππ∈时,求函数()f x 的最大值和最小值.16、(本小题满分13分)某校高三年级准备矩形一次座谈会,其中三个班被邀请的学生数如下表所示:(1)若从这10名学生中随机选出2名学生发言,求这2名学生不属于同一班级的概率; (2)若从这10名学生中随机选出3名学生发言,设X 为来自高三(1)班的学生人数,求随机变量X 的分布列和数学期望.17、(本小题满分13分)如图,五面体PABCD 中,CD ⊥平面,PAD ABCD 为直角梯形,1,,22BCD PD BC CD AD AP PD π∠====⊥ . (1)若E 为AP 的中点,求证://BE 平面PCD ; (2)求二面角P AB C --的余弦值;(3)若点Q 在线段PA 上,且BQ 与平面ABCD 所成的角为6π,求CQ 的长.18、(本小题满分13分)已知正项数列{}n a 满足211111142(2,)n n nn n n n a a a n n N a a a a ++--++-+=-≥∈,且611a =,前9项和为81.(1)求数列{}n a 的通项公式;(2)若数列{}lg n b 的前n 项和为lg(21)n +,记12n nn n a b c +=,求数列{}n c 的前n 项和n T .21、(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>,且椭圆上的点到一个焦点的最短距离为3b .(1)求椭圆C 的离心率;(2)若点M 在椭圆C 上,不过原点的直线l 与椭圆C 相交于A 、B 两点,与直线OM 相较于点N ,且N 是线段AB 的中点,求OAB ∆面积的最大值.20、(本小题满分14分) 已知函数()21ln ()2f x x ax x a R =-+-∈ . (1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若函数()f x 有两个极值点1212,()x x x x <,求证:124()2()13ln 2f x f x -≤+.天津市部分区2017年高三质量调查试卷(一)数 学(理工类)一、选择题:(1)-(4)ABCC (5)-(8)ADDC 二、填空题:(9)4 (10)280- (11)2 (12)1 (13)4=0+-x y (14))1,21()23,3(--- 三、解答题:(15)(本小题满分13分) 解:(Ⅰ)()sin()cos 1=(sin coscos sin )cos 1666=-+-+f x x x x x x πππ,..............2分2113i n c o s c o s s i n 2c o s 2244=-+-+x x x x x ,1313=(c o s s i n 2s i n c o s 2)=s i n (2)2664264-+-+x x x πππ.............................4分 所以周期22T ππ==. .......................................................................................................6分 (Ⅱ)由(Ⅰ)知13()sin(2)264=-+f x x π,因为]2,12[ππ∈x ,所以52[0,]66-∈x ππ,...................................................................8分 所以sin(2)[0,1]6-∈x π,.................................................................................................10分故当3π=x 时,函数()f x 的最大值为45;当12π=x 时,函数()f x 的最小值为43. .......................................................................................................................................13分 (16)(本小题满分13分)解:(Ⅰ)从10名学生随机选出2名的方法数为210C ,选出2人中不属于同一班级的方法数为111143332C C C C ⋅+⋅ …………………4分设2名学生不属于同一班级的事件为A所以111143332102C C C C 11()C 15P A ⋅+⋅==. ………………………………………………6分 (Ⅱ)X 可能的取值为0,1,2,337310C 7657(0)C 109824P X ⨯⨯====⨯⨯; 2173310C C 676321(1)C 2109840P X ⨯⨯⨯====⨯⨯⨯;1273310C C 6737(2)C 109840P X ⨯⨯====⨯⨯; 33310C 61(3)C 1098120P X ====⨯⨯. ………………………………10分 所以X 的分布列为所以721719()012324404012010=⨯+⨯+⨯+⨯=E X ……………………………………13分 (17)(本小题满分13分)(Ⅰ)证明:取PD 的中点F ,连接CF EF , ∵F E ,分别是PA ,PD 的中点, ∴AD EF //且AD EF 21=;…………………………1分 ∵AD BC 21=,AD BC //, ∴BC EF //且BC EF =;∴CF BE //. …………………………3分 又⊄BE 平面PCD ,⊂CF 平面PCD , ∴//BE 平面PCD .…………………………4分(Ⅱ)(方法一) 以P 为坐标原点,PA PD ,所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则(0,0,0),(1,0,0)P A D,1(1,0,1),(2C B1(,(1,2PA AB AD === .……………………………6分设平面PAB 的一个法向量为(,,)x y z n =,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩n n从而0,10.22x y z ⎧=⎪⎨-+=⎪⎩ 令2x =,得(2,0,1)-n =. …………………………7分同理可求平面ABD的一个法向量为m =. …………………………8分cos ,⋅===n m n m n m 平面ABD 和平面ABC 为同一个平面,所以二面角C AB P --的余弦值为5. …………………………10分 (方法二) 以D 为坐标原点,DC DA ,所在直线分别为x 轴和z 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则1((2,0,0),(0,0,0)2P A D ,(0,0,1),(1,0,1),C B3(,(1,0,1),2PA AB ==- ……………………6分设平面PAB 的一个法向量为(,,)x y z n =,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩n n,3020x y x z ⎧=⎪⎨⎪-+=⎩,令y =1x z ==,即(1n =. …………………………7分易求平面ABC 的一个法向量为(0,1,0)m =. …………………………8分cos ,5⋅===n m n m n m 所以二面角C AB P --…………………………10分 (Ⅲ)(方法一)建系同(II)(方法一),设(0,,0),Q x 由(II)知平面ABCD的一个法向量为m =,1(,1)22BQ x =--- ;…………………………11分若BQ 与平面ABCD 所成的角为6π,则sin 6BQ BQ π⋅==m m解得33=x,所以(0,3Q (1,1),3CQ =--3CQ =.…………………13分 (方法二)建系同(II)(方法二),设3(,0)2AQ AP λλ==- ,则3(1,1),2BQ BA AQ λ=+=--3(2,1),2CQ CA AQ λ=+=--由(II)知平面ABCD 的一个法向量为(0,1,0)m =.…………………………11分若BQ 与平面ABCD 所成的角为6π,则sin 6BQ BQ π⋅==m m.解得23λ=,则1)CQ =-,从而||CQ ==………13分(18)(本小题满分13分)解:(Ⅰ)由241121111-=+-++--+n n nn n n n a a a a a a a ,得112212124-+-+-=+n n n n n a a a a a ,整理得n n n a a a 211=+-+,所以{}n a 为等差数列,…………… 2分 由116=a ,前9项和为81,得12-=n a n ;…………… 4分 当1=n 时,3lg lg 1=b ,即31=b ;当2≥n 时,)12lg(lg lg lg 21+=+++n b b b n …………………………………①,)12lg(lg lg lg 121-=+++-n b b b n …………………………………②①-②,得21lg lg(21)lg(21)lg 21n n b n n n +=+--=-, 所以1212-+=n n b n (n ≥2) 31=b 满足n b ,所以1212-+=n n b n …………… 7分(Ⅱ)112122+++=⋅=n n n n n n b a c …………… 8分 2341357212222n n n T ++=++++ ,又1233572122222n n n T +=++++ , …………… 9分 以上两式作差,得23132222122222n n n n T ++=++++- . 所以21111131112132122()1222222212n n n n n n n T -++-++=++++-=+-- ,因此,152522n n n T ++=-.……………………………… 13分 (19)(本小题满分13分) 解:(Ⅰ)由题意,得b c a 33=-,…………………………………1分 则221()3a cb -=,结合222b ac =-,得2221()()3a c a c -=-,即22230c ac a -+=,……………………………………………………2分 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12.………………………………………………4分 (Ⅱ)由(Ⅰ)得2a c =,则223b c =.将M 代入椭圆方程2222+143x y c c =,解得1c =.所以椭圆方程为22+143x y =.………………………………………………6分 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上,故直线l 的斜率存在. 设直线l 的方程为(0)y kx m m =+≠,与22+143x y =联立消y 得 222(34)84120k x kmx m +++-=,所以222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->.设1122(,),(,)A x y B x y ,则122834kmx x k +=-+,212241234m x x k -=+.……………………8分由121226()234m y y k x x m k +=++=+,得AB 的中点2243(,)3434km mN k k-++, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =-. ……………10分所以248(12)0m ∆=->,得m <<,且0m ≠,12AB x =-==又原点O 到直线l 的距离d =………………………………12分所以12AB O S ==△22122m m -+≤=.当且仅当2212,m m m -==m <,且0m ≠.所以B OA △ ………………………………14分 (20)(本小题满分14分)解:(Ⅰ)当1a =时,21()ln 2f x x x x =-+-,1()1f x x x'=-+-, 则1(1)2f =,(1)1f '=-, 所以所求切线方程为1(1)2y x -=--,即2230x y +-=. (Ⅱ)由21()ln 2f x x ax x =-+-,得211()x ax f x x a x x -+'=-+-=-.令2()1g x x ax =-+,则()()g x f x x'=-. ①当240a ∆=-<,即22a -<<时,()0g x >恒成立,则()()0g x f x x'=-<, 所以()f x 在(0,)+∞上是减函数.②当240a ∆=-=,即2a =±时,22()21(1)0g x x x x =±+=±≥,则()()0g x f x x'=-≤, 所以()f x 在(0,)+∞上是减函数.③当240a ∆=->,即2a <-或2a >. (i)当2a <-时,2()1g x x ax =-+是开口向上且过点()0,1的抛物线,对称轴方程为(1)22a a x =<-,则()0g x >恒成立,从而()()0g x f x x'=-<, 所以()f x 在(0,)+∞上是减函数.(ii)当2a >时,2()1g x x ax =-+是开口向上且过点()0,1的抛物线,对称轴方程为(1)22a a x =>,则函数()g x 有两个零点1212)x x x x =<显然,列表如下:综上,当2a ≤时,()f x 的减区间是(0,)+∞;当2a >时,()f x 的增区间是,减区间是,)+∞. (Ⅲ)根据(Ⅱ),当2a >时,()f x 有两个极值点1212,()x x x x <,则12,x x 是方程2()10g x x ax =-+=的两个根,从而2211221,1ax x ax x =+=+. 由韦达定理,得12121,x x x x a =+=.又20a ->,所以1201x x <<<.2212111222114()2()4(ln )2(ln )22f x f x x ax x x ax x -=-+---+- 22111222244ln 22ln x ax x x ax x =-+-+-+ 222211122224(1)4l n 2(1)2l nx x x x x x =-++-+-++222122122ln 2x x x x =-++ 22222223ln 2x x x =-++. 令22(1)t x t =>,2()3ln 2(1)h t t t t t=-++>, 则2223(1)(2)()1t t h t t t t --'=--+=-. 当12t <<时,()0h t '>;当2t >时,()0h t '<,则()h t 在(1,2)上是增函数,在(2,)+∞上是减函数, 从而max ()(2)3ln 21h t h ==+,于是124()2()13ln 2f x f x -≤+.。

相关文档
最新文档