基因分离定律和基因自由组合定律区别

合集下载

基因的分离定律和自由组合定律区别 有哪些不同

基因的分离定律和自由组合定律区别 有哪些不同

基因的分离定律和自由组合定律区别有哪些不同
基因的分离定律是一对等位基因的遗传规律,描述的是等位基因分离的情况;而基因的自由组合定律则是两对及两对以上的等位基因间的遗传规律,属于非等位基因组合的情况。

基因的分离定律和自由组合定律区别有哪些不同
1基因的分离定律和自由组合定律区别
1、研究性状:
基因的分离定律:1对;
基因的自由组合定律:2对或n对(n>2,下同)。

2、等位基因对数:
基因的分离定律:1对;
基因的自由组合定律:2对或n对。

3、等位基因与染色体的关系:
基因的分离定律:位于1对同源染色体上;
基因的自由组合定律:分别位于2对或2对以上同源染色体上。

4、细胞学基础(染色体的活动):
基因的分离定律:减数第一次分裂后期,同源染色体分离:
基因的自由组合定律:减数第一次分裂后期,非同源染色体自由组合;减数第一次分裂前期,同源染色体的非姐妹染色单体间交叉互换。

5、遗传本质:
基因的分离定律:等位基因分离:
基因的自由组合定律:非同源染色体上的非等位基因的重组互不干扰。

2基因的分离定律和自由组合定律的联系
1、在形成配子时,两个基因定律同时其作用。

在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体2、分离定律是最基本的遗传定律,是自由组合定律的基础。

高中生物42总复习:分离定律和自由组合定律-知识讲解_分离定律和自由组合定律

高中生物42总复习:分离定律和自由组合定律-知识讲解_分离定律和自由组合定律

高考总复习分离定律和自由组合定律编稿:杨红梅审稿:闫敏敏【考纲要求】1.掌握对分离现象和自由组合现象的解释和验证。

2.学会孟德尔遗传定律在育种及人类医学实践中的应用。

【考点梳理】【高清课堂:03-分离定律和自由组合定律】要点一、分离定律的研究对象同源染色体上的一对基因分离定律的实质:同源染色体上的等位基因分离【高清课堂:03-分离定律和自由组合定律】要点二、自由组合定律的研究对象非同源染色体上的非等位基因AaBb自交:9:3:3:1AaBb测交:1:1:1:1自由组合定律的实质:非同源染色体上的非等位基因自由组合要点三、两对相对性状的遗传实验1.实验分析2.相关结论(1)F1的配子共有16种组合,F2共有9种基因型,4种表现型。

(2)F2中双显性性状的个体占9/16,单显性性状的个体(绿圆、黄皱)各占3/16,双隐性性状的个体占1/16。

(3)F2中纯合子占4/16(1/16YYRR+1/16YYrr+l/16yyRR+1/16yyrr),杂合子占:1-4/16=12/16。

(4)F2中亲本类型(Y_R_+ yyrr)占10/16,重组类型占6/16(3/16Y_rR+3/16yyR_)。

要点四、对自由组合现象的解释①黄色和绿色是一对相对性状,圆粒和皱粒是另一对相对性状,且两对相对性状分别由两对同源染色体上的两对等位基因分别控制。

②亲本基因型为YYRR和yyrr,分别产生YR、yr的配子。

③F1的基因型为YyRr,F1表现型为黄色圆粒(杂合)。

④F1自交通过减数分裂产生配子时,根据基因的分离定律,每对等位基因(Y与y,R与r)随着同源染色体分离而分开,即Y与y分离,R与r分离。

与此同时,非等位基因(Y与R,Y与r,y与R,y与r)随着非同源染色体的自由组合而自由组合(Y与R或r,y与R或r)。

控制不同性状的等位基因分离和组合彼此独立进行,互不干扰,所以,F1产生的雌、雄配子就各有四种:YR、Yr、yR、yr,且数目比接近1∶1∶1∶1。

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系基因的分离定律是一对等位基因的遗传规律,描述的是等位基因分离的情况(重点指出了等位基因之间是互相独立的.);而基因的自由组合定律则是两对及两对以上的等位基因间的遗传规律,属于非等位基因组合的情况(重点指出非同源染色体上的非等位基因是可以任意组合的)。

基因的分离定律是基因的自由组合定律的基础,基因的自由组合定律中的每对等位等位基因都要相互分离,这些非等位基因才能进行自由组合。

基因的分离定律和自由组合定律都发生在减数分裂过程中,而且发生的时间也是相同的。

1、相对性状:同种生物同一性状的不同表现类型,叫做相对性状。

(此概念有三个要点:同种生物——豌豆,同一性状——茎的高度,不同表现类型——高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。

3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。

4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。

5、显性基因:控制显性性状的基因,叫做显性基因。

一般用大写字母表示,豌豆高茎基因用D表示。

6、隐性基因:控制隐性性状的基因,叫做隐性基因。

一般用小写字母表示,豌豆矮茎基因用d表示。

7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。

(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。

显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。

等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。

D∶d=1∶1;两种雌配子D∶d=1∶1。

)8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。

9、表现型:是指生物个体所表现出来的性状。

10、基因型:是指与表现型有关系的基因组成。

11、纯合体:由含有相同基因的配子结合成的合子发育而成的个体。

遗传的三大规律分离定律、自由组合定律、连锁和交换定律

遗传的三大规律分离定律、自由组合定律、连锁和交换定律

• (5) 如果某一卵原细胞形成基因型为ABdXE 的卵细胞,则其形成的第二极体的基因型为
______________________________________ _______,该卵原细胞形成的卵细胞及第二 极体的基因型比例为_____________ _______。
• (6)如果只考虑一对常染色体,相同基因型的个 体杂交,后代表现型及比例为A_B_:A_bb: aaB_:aabb=51%:24%:24%:1%,则交换率为 _ ____。
• 现有基因型为AABBEE和aabbee两果蝇杂 交,F1测定结果如下: AaBbEe121只, AabbEe119只, aaBbee118只, aabbee122 只,由此可知F1雌雄果蝇的基因型 为 ……………………………( )
• A、AB//ab E//e (♀)和ab//ab e//e(♂)
6.在100个初级精母细胞的减数分裂中,有50个细胞的染色体发生了 一次交换,在所形成的配子中,互换型的配子有______个,百分率 占_____%。
7.现有甲(AABBDD)、乙(aabbdd)两品系果蝇杂交,F1测交的结果是: AaBbDd112只,AabbDd119只,aaBbdd122只,aabbdd120只,由此可 知F1的雌雄果蝇的基因型分别是:雌果蝇____________,雄果蝇 ____________。
P
BB VV
× bb
vv
灰身长翅
黑身残翅
配子 F1测交
B
b
V
Bb 雄V v
灰身长翅
v
×
b
b

vv
黑身残翅
配子
B
V
b
b
v
v

简述分离定律、自由组合定律及其实质

简述分离定律、自由组合定律及其实质

简述分离定律、自由组合定律及其实质。

1)分离定律:
内容:在生物的体细胞中,决定生物体遗传性状的一对遗传因子不相融合,在配子的形成过程中彼此分离,随机分别进入不同的配子中,随配子遗传给后代。

实质:分离定律揭示了一个基因座上等位基因的遗传规律——等位基因随同源染色体的分开而分离。

2)自由组合定律:
内容:具有独立性的两对或多对相对性状的遗传因子进行杂交时,在子一代产生配子时,在同一对遗传因子分离的同时,不同对的遗传因子表现为自由组合。

实质:形成配子时非同源染色体上的基因自由组合。

遗传学定律

遗传学定律

遗传学定律遗传学是研究遗传现象和遗传规律的科学。

通过观察和实验,遗传学家总结出了一些重要的遗传定律,这些定律揭示了遗传物质的传递规律和基因的表达方式。

本文将对遗传学定律进行详细阐述,以便更好地理解遗传学的基本原理。

1. 孟德尔定律孟德尔定律是遗传学的基石,也被称为遗传学的第一定律。

孟德尔通过对豌豆杂交的研究,发现了隐性和显性基因的存在,以及基因在遗传中的分离和重新组合。

他总结了两个重要定律:分离定律和自由组合定律。

分离定律指出,不同性状的基因在生殖过程中能够分离,保持其独立性;自由组合定律则指出,不同性状的基因在生殖过程中能够自由组合,而不受其他基因的影响。

2. 孟德尔定律的延伸除了孟德尔定律,还有一些遗传学定律对于遗传现象的理解也起到了重要作用。

比如,染色体理论和连锁不平衡定律。

染色体理论指出,基因是储存在染色体上的,而染色体在生殖过程中也会遵循孟德尔的分离和自由组合定律。

连锁不平衡定律则指出,某些基因之间存在着紧密联系,它们很难在遗传过程中分离,因此会遗传为一体。

3. 多基因遗传定律多基因遗传定律是指在一个性状上,有多个基因同时发挥作用,从而产生连续性变化的现象。

这个定律对于解释人类的复杂性状非常重要,比如身高、体重等。

根据这个定律,人类的身高不仅受到单个基因的影响,还受到多个基因的共同作用,因此会呈现出连续性的变化。

4. 突变定律突变是遗传学中的一个重要概念,它是指基因在复制过程中发生突然变异的现象。

突变定律指出,突变是基因变异的主要来源,它提供了遗传变异的物质基础。

突变可以是有害的,导致疾病的发生;也可以是有益的,促进物种进化的进程。

5. 随机分离定律随机分离定律是指在遗传过程中,基因的分离是随机发生的。

也就是说,每个个体在生殖过程中,所含的基因会随机地分离到下一代中。

这个定律保证了基因的多样性,为物种的适应性演化提供了基础。

遗传学定律的研究和应用,不仅为人们揭示了基因的传递规律和表达方式,也为人类的健康和进化提供了重要的科学依据。

基因的分离定律和基因的自由组合定律

基因的分离定律和基因的自由组合定律

基因的分离定律和基因的自由组合定律的区别和联系
基因的分离定律基因的自由组合定律
区别
研究性状1对2对或n对(n>2,下同)
等位基因对数1对2对或n对
等位基因与染色
体的关系
位于1对同源染色体上分别位于2对或2对以上同源染色体上
细胞学基础
(染色体的活动)
减数第一次分裂后期,同
源染色体分离
减数第一次分裂后期,非同源染色体自由组合;减数第
一次分裂前期,同源染色体的非姐妹染色单体间交叉互

遗传本质等位基因分离非同源染色体上的非等位基因的重组互不干扰
F1
基因对数12或n
配子类型
及其比例
222或2n
1:1数量相等
配子组合数442或4n
F2
基因型种数332或3n
表现型种数222或2n
表现型比例3:19:3:3:1[(3:1)2]或(3:1)n
F1




基因型种数222或2n
表现型种数222或2n
表现型比例1:11:1:1:1或(1:1)n
联系①在形成配子时,两个基因定律同时其作用。

在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体上的非等位基因自由组合。

②分离定律是最基本的遗传定律,是自由组合定律的基础。

基因的分离定律和自由组合定律

基因的分离定律和自由组合定律

基因的分离定律和自由组合定律引言基因是生物遗传信息的基本单位,它决定了个体的遗传特征。

基因的分离定律和自由组合定律是遗传学的基本原理,对于理解基因的传递和变异具有重要意义。

本文将详细探讨基因的分离定律和自由组合定律的概念、实验证据以及在实际应用中的意义。

I. 基因的分离定律基因的分离定律是指在杂交过程中,父本的两个基因分离并独立地传给子代的定律。

这一定律由格里高利·孟德尔在19世纪提出,并通过豌豆杂交实验得到了验证。

A. 孟德尔的豌豆实验孟德尔通过对豌豆的杂交实验,发现了基因的分离定律。

他选取了具有明显差异的性状进行杂交,例如花色、种子形状等。

通过连续进行多代的杂交实验,孟德尔观察到了一些规律性的现象。

B. 孟德尔定律的内容孟德尔总结出了三个基本定律: 1. 第一定律:也称为单因素遗传定律或分离定律。

即在杂交过程中,两个互相对立的基因副本(等位基因)分别来自于父本的两个基因组合,并独立地传给子代。

这就保证了基因的纯合性和杂合性的维持。

2. 第二定律:也称为双因素遗传定律或自由组合定律。

即两个不同的性状在杂交过程中独立地传递给子代。

这说明基因在遗传过程中是相互独立的。

3. 第三定律:也称为自由组合定律的互换定律。

即在同一染色体上的基因通过互换(交叉互换)来进行重组,从而形成新的基因组合。

C. 孟德尔定律的意义孟德尔的豌豆实验揭示了基因的分离和自由组合的规律,为后续的遗传学研究奠定了基础。

这些定律对于理解基因的传递、变异以及遗传规律具有重要意义。

此外,孟德尔的定律还为遗传育种提供了理论依据,对农业和生物学领域产生了深远的影响。

II. 自由组合定律自由组合定律是指在杂交过程中,不同染色体上的基因在配子形成过程中独立地组合的定律。

这一定律由托马斯·亨特·摩尔根等科学家在20世纪初通过果蝇实验得到了验证。

A. 摩尔根的果蝇实验摩尔根通过对果蝇的杂交实验,发现了基因的自由组合定律。

孟德尔的分离定律和自由组合定律

孟德尔的分离定律和自由组合定律

孟德尔的分离定律和自由组合定律全文共四篇示例,供读者参考第一篇示例:孟德尔的分离定律和自由组合定律是遗传学的基石,揭示了遗传因素在后代中如何传递和表现的规律。

这两个定律的发现使得孟德尔成为遗传学之父,并为后来的基因学奠定了基础。

在本文中,我们将深入探讨这两个定律的原理和意义。

孟德尔的分离定律是指在杂交实验中,亲本的遗传因素在子代中以特定的比例进行分离,并且保持独立的传递。

这个定律是通过孟德尔对豌豆植物的杂交实验中发现的。

他发现,在某些特定的性状上,比如颜色和形状,纯合子亲本的基因会在子代中以3:1的比例分离。

这就意味着,一个亲本植物携带的两种基因会在子代中被分开,而且每个子代仅携带其中的一种。

这一发现揭示了遗传因素在后代中是如何被传递和表现的,并为后来的基因概念奠定了基础。

分离定律的意义在于它揭示了遗传因素如何在后代中传递和表现,以及遗传信息是如何被维持和变异的。

这一定律的发现对于后来的遗传学研究起到了巨大的影响,帮助科学家们理解了遗传学中一些重要的概念,比如基因的概念和表现型与基因型之间的关系。

通过这一定律,我们可以更好地了解生物体中的遗传信息如何被传递和演化,以及遗传变异是如何产生的。

另一个重要的定律是孟德尔的自由组合定律。

这个定律是指在杂交实验中,不同性状的遗传因素在子代中以自由组合的方式出现,而且各种性状之间是独立的。

也就是说,一个亲本植物携带的不同性状的基因会在子代中以各种可能的组合方式出现,而且它们之间是相互独立的。

这一发现帮助科学家们理解了遗传因素在后代中的组合规律,以及不同基因之间的互相作用。

自由组合定律的意义在于它揭示了遗传因素之间的独立性和多样性,帮助科学家们更好地理解了遗传因素在后代中的表现和传递。

通过这一定律,我们可以更深入地了解遗传因素之间的相互作用和影响,以及它们在生物体中是如何产生多样性和适应性的。

第二篇示例:孟德尔的分离定律和自由组合定律是遗传学的两个重要定律,是植物遗传学的创始人孟德尔通过对豌豆杂交实验的研究发现的。

高一生物苏教版必修2第3章 微专题突破 基因分离定律和自由组合定律的区别及异常分离比的分析

高一生物苏教版必修2第3章 微专题突破 基因分离定律和自由组合定律的区别及异常分离比的分析
3 3
2.在家鼠中短尾(T)对正常尾(t)为显性。一只短尾鼠与一只正常尾鼠交 配,后代中正常尾鼠与短尾鼠比例相同;而短尾类型相交配,子代中有一种 类型死亡,能存活的短尾鼠与正常尾鼠之比为 2∶1,则不能存活类型的基因 型可能是( A.TT C.tt ) B.Tt D.TT 或 Tt
A
[ 由题干可知, Tt( 短尾鼠 )×Tt( 短尾鼠 )→T_( 短尾鼠 )∶tt( 正常鼠 ) =
B
[位于不同对同源染色体上说明遵循基因的自由组合定律, F1(AaBb)
测交按照正常的自由组合定律表现型应是四种表现型且比例为 1∶1∶1∶1, 而现在是 1∶3,那么 F1 自交后原本的 9∶3∶3∶1 应是两种表现型有可能是 9∶7、13∶3 或 15∶1,故 A、C、D 正确;而 B 中的 3 种表现型是不可能的, 故 B 错误。]
双显性和一种单显性表现为同一种性状,其余正常表现 12∶3∶1
双显性、双隐性和一种单显性表现为同一种性状,另一种 单显性表现为另一种性状 13∶3
1∶4∶6∶ 4∶1
A 与 B 的作用效果相同,但显性基因越多,其效果越强 1(AABB)∶4(AaBB + AABb)∶6(AaBb + AAbb + aaBB)∶4(Aabb+aaBb)∶1(aabb)
[对点训练] 1. 基因型为 AABBCC 和 aabbcc 的两种豌豆杂交, 按自由组合规律遗传, F2 中基因型和表现型的种类数以及显性纯合子的概率依次是( 1 A.27、8、64 1 C.18、6、32 1 B.27、8、32 1 D.18、6、64 )
A [F1 的基因型为 AaBbCc,按每对基因的自交后代来看,其基因型的 1 种类是 3,表现型种类是 2,显性纯合子的概率为4。三对基因同时考虑,F2 13 基因型有 3 种,表现型有 2 种,显性纯合子概率为(4) 。]

孟德尔分离定律和自由组合定律

孟德尔分离定律和自由组合定律

孟德尔分离定律和自由组合定律孟德尔分离定律和自由组合定律,说起来,这俩东西可不简单,但又能让你大开眼界。

要是你问我,这些定律要是用白话来说,简直就像是基因的“社交规则”。

对了,别听起来像啥学术话,咱们就好好聊聊这些定律怎么跟咱们身边的生活扯上关系,能咋样“玩”得更溜。

说到孟德尔分离定律,这就是“基因分家”的游戏。

嗯,你可别小看这个游戏,它可是自然界的一条黄金法则。

就拿爸爸妈妈的遗传来说好了,咱们每个人身上都有爸爸一半的基因,也有妈妈一半的基因。

别急,听我细说。

举个例子,假如爸爸的基因有个“黑头发”这一特征,妈妈那边也有个“黑头发”的基因。

根据孟德尔的定律,他们的孩子也会有“黑头发”的概率很高。

可你别以为这就完事了,其实爸爸妈妈基因里面可能还有其他“小秘密”。

这可不只是黑头发或者蓝眼睛的事,基因里面可是藏着一堆决定身高、肤色、智力这些你想不到的“基因包袱”呢。

好啦,别以为基因只是“随便遗传”就行了。

其实这些基因在父母体内可是有点“挑剔”,他们像是参加抽奖一样,分“奖品”时特别讲究。

什么叫“分离”?就是爸爸的基因会随机给一个,妈妈的基因也会随机给一个。

所以,像黑头发这种事,可能爸爸给你一个“黑”,妈妈给你一个“黑”,结果你还是黑头发;但有可能爸爸给你“黑”,妈妈给你“棕”,于是你就可能有棕色头发了!你懂的,就是这么神奇,基本就是“分家产”那样的游戏。

再来说说自由组合定律。

你可以把它想成“基因自由市场”。

在这个市场上,每一种性状的基因就像是不同的“股票”,你有这个,你就可能有那个;你没有,你就另有一番天地。

这个定律的意思就是说,虽然你有爸爸妈妈的基因组合,但这些基因并不会严格地按照某种规则配对,而是像下棋一样,可以随便组合。

比如说你可能继承了爸爸的高个子基因,妈妈的眼睛大基因,再加上外婆的好嗓子基因,哎,这就是“自由市场”带来的结果。

说起来,基因和性状的搭配就像是一个大拼盘,有的组合让人惊艳,有的组合嘛,呵呵,稍微让人有点无语。

基因组合定律和自由组合定律的区别

基因组合定律和自由组合定律的区别

基因组合定律和自由组合定律的区别示例文章篇一:《基因组合定律和自由组合定律的区别》嘿,同学们!今天咱们来好好聊聊基因组合定律和自由组合定律这两个超级有趣的东西。

我先来说说基因组合定律吧。

这就像是搭积木,每一块积木都有它特定的位置和作用。

基因组合定律说的是在形成配子的时候,等位基因会相互分离。

比如说,咱们假设一种生物的一个基因有A和a这两种等位基因,那在产生配子的时候,A和a就得分开,不能同时跑到一个配子里面去。

这就好比是两个人要分东西,一人拿一样,不能都拿走同一样东西呀。

我给你们讲个故事吧。

我有个好朋友叫小明,他特别喜欢收集卡片。

他有一套卡片是关于动物的,里面有猫和狗的卡片。

就像基因一样,猫和狗的卡片是不同的类型。

如果他要把这些卡片分给两个小伙伴,那他就不能把猫的卡片都给一个人,狗的卡片也给这个人,而是要分开来给。

这就是基因组合定律的一个很简单的类比啦。

那自由组合定律呢?这个就更酷了。

自由组合定律是说,在形成配子的时候,非等位基因可以自由组合。

还是拿基因来说,假设有两个不同的基因,一个是A和a,另一个是B和b。

在产生配子的时候,A可以和B组合在一起形成AB的配子,也可以和b 组合在一起形成Ab的配子;同样的,a也可以和B组合,或者和b组合。

这就像是你在搭配衣服,有上衣和裤子两种不同的东西,上衣有红色和蓝色,裤子有牛仔裤和运动裤。

那你可以红色上衣配牛仔裤,也可以红色上衣配运动裤,蓝色上衣也能有这两种搭配方式。

这就是自由组合定律啦。

我再举个例子。

我们班上在做小组活动,要分组出去采集植物标本。

老师规定每个小组要有男生和女生。

男生有高个子的小刚和矮个子的小强,女生有扎辫子的小美和短头发的小莉。

那分组的时候呢,就可以有小刚和小美一组,也可以是小刚和小莉一组,小强也能和小美或者小莉组合。

这就像是基因的自由组合一样。

那这两个定律有啥区别呢?基因组合定律主要是讲等位基因的分离,就像我前面说的分卡片,是一种基因内部的事情。

基因分离定律和基因自由组合定律区别

基因分离定律和基因自由组合定律区别

首先,我们必须熟悉了解基因分离规律和基因自由组合规律的区别,为此我们整理了一下表格:
其次:可采用综合联系的方法来学习孟德尔。

从细胞水平看,基因的分离定律和自由组合定律都发生在减数分裂形成配子的过程中,它们之间的关系可
最后,关于基因分离规律和基因自由组合规律的解题技巧。

关于两对(或多对)相对性状的遗传题目的求解,可先研究每一对相对性状(基因),然后再把它们的结果综合起来考虑。

基因自由组合定律是建立在基因分离定律基础之上的,研究多对相对性状的遗传规律,两种并不矛盾。

如纯种黄色圆粒豌豆(YYRR)和纯种绿色皱粒豌豆(yyrr)杂交,F2中四种后代的表现型及其比例,可依据两对相对性状单独遗传时出现的概率来计算。

如黄色出现的概率为3/4,圆粒出现的概率为3/4,即子二代黄色圆粒出现的概率为3/4(黄色)×3/4(圆粒)=9/16(黄色圆粒)。

这是利用基因分离定律来解决较复杂的基因自由组合定律问题的一种简单方法,其
理论依据是概率计算中的乘法定理(两个或两个以上的独立事件同时出现的概率等于各自概率的乘积)。

上海高中生物基因的分离定律和基因的自由组合定律的区别和联系

上海高中生物基因的分离定律和基因的自由组合定律的区别和联系

学习必备欢迎下载
上海高中生物——基因的分离定律和基因的自由组合定律的区别和联系
基因的分离定律基因的自由组合定律
区别
研究性状1对2对或n对(n>2,下同)
等位基因对数1对2对或n对等位基因与染色体的关系位于1对同源染色体上分别位于2对或2对以上同
源染色体上
细胞学基础
(染色体的活动)
减数第一次分裂后期,同源
染色体分离
减数第一次分裂后期,非同
源染色体自由组合;减数第
一次分裂前期,同源染色体
的非姐妹染色单体间交叉
互换
遗传本质等位基因分离非同源染色体上的非等位
基因的重组互不干扰
F
1
基因对数12或n
配子类型
及其比例
222或2n
1:1数量相等配子组合数442或4n
F
2
基因型种数332或3n
表现型种数222或2n
表现型比例3:19:3:3:1[(3:1)2]或(3:1)
n
F
1




基因型种数222或2n
表现型种数222或2n
表现型比例1:11:1:1:1或(1:1)n
联系①在形成配子时,两个基因定律同时其作用。

在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体上的非等位基因自由组合。

②分离定律是最基本的遗传定律,是自由组合定律的基础。

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系基因的分离定律是一对等位基因的遗传规律,描述的是等位基因分离的情况(重点指出了等位基因之间是互相独立的.);而基因的自由组合定律则是两对及两对以上的等位基因间的遗传规律,属于非等位基因组合的情况(重点指出非同源染色体上的非等位基因是可以任意组合的)。

基因的分离定律是基因的自由组合定律的基础,基因的自由组合定律中的每对等位等位基因都要相互分离,这些非等位基因才能进行自由组合。

基因的分离定律和自由组合定律都发生在减数分裂过程中,而且发生的时间也是相同的。

1基因的分离规律知识点1、相对性状:同种生物同一性状的不同表现类型,叫做相对性状。

(此概念有三个要点:同种生物——豌豆,同一性状——茎的高度,不同表现类型——高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。

3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。

4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。

5、显性基因:控制显性性状的基因,叫做显性基因。

一般用大写字母表示,豌豆高茎基因用D表示。

6、隐性基因:控制隐性性状的基因,叫做隐性基因。

一般用小写字母表示,豌豆矮茎基因用d表示。

7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。

(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。

显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。

等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。

D∶d=1∶1;两种雌配子D∶d=1∶1。

)8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。

9、。

分离定律和自由组合定律的比较

分离定律和自由组合定律的比较
基因型
2种,1:1
表现型
2种,1:1
联系
分离定律和自由组合定律的比较
分离定律
自由组合定律


研究性状
一对相对性状
两对或两对以上相对性状
等位基因对数
一对
两对或两对以上
F1配子类型及比例
2种,1:1
4种,1:1:1:1或2n种,(1:1)n
F2
基因型
3种,1:2:1
9种,(1: 2:1)2或3n种,(1: 2:1)n
1
2或n
配子类型
及其比例
2
22或2n
1:1
1:1:1:1或(1:1)n
配子组合数
4
42或4n
F2
基因型种数
3
32或3n
表现型种数
2
22或2n
表现型比例
3:1
9:3:3:1[(3:1)2]或(3:1)n
F1测交子代
基因型种数
2
22或2n
表现型种数
2
22或2n
表现型比例
1:1
1:1:1:1或(1:1)n
联系
①在形成配子时,两个基因定律同时其作用。(在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体上的非等位基因自由组合。)
②分离定律是最基本的遗传定律,是自由组合定律的基础。
表现型
2种,3:1
4种,9:3:3:1或2n种,(3:1)n
F1测交后代
基因型
2种,1:1
4种,1:1:1:1或2n种,(1:1)n
表现型
2种,1:1
4种,1:1:1:1或2n种,(1:1)n
联系
①在形成配子时,两个基因定律同时其作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首先,我们必须熟悉了解基因分离规律和基因自由组合规律的区别,为此我们整理了一下
?
最后,关于基因分离规律和基因自由组合规律的解题技巧。

关于两对(或多对)相对性状的遗传题目的求解,可先研究每一对相对性状(基因),然后再把它们的结果综合起来考虑。

基因自由组合定律是建立在基因分离定律基础之上的,研究多对相对性状的遗传规律,两种并不矛盾。

如纯种黄色圆粒豌豆(YYRR)和纯种绿色皱粒豌豆(yyrr)杂交,F2中四种后代的表现型及其比例,可依据两对相对性状单独遗传时出现的概率来计算。

如黄色出现的概率为3/4,圆粒出现的概率为3/4,即子二代黄色圆粒出现的概率为3/4(黄色)×3/4(圆粒)=9/16(黄色圆粒)。

这是利用基因分离定律来解决
较复杂的基因自由组合定律问题的一种简单方法,其理论依据是概率计算中的乘法定理(两个或两个以上的独立事件同时出现的概率等于各自概率的乘积)。

相关文档
最新文档