1987数三

合集下载

1987数学二真题答案解析(试卷三)

1987数学二真题答案解析(试卷三)

故所围面积 s 1 (a2 1) a2 1 1(x2 1)dx a3 a 1 2 . 令 s 0 得驻点 a 3 .
2
2a 0
4 2 4a 3
3
由于 s
a
3/3
0 ,故所求点的坐标为 (
3 , 2) ,其最小值为 s 33
a
3/3
4 9
32. 3
(D)
(A)当 x 时为无穷大
(B)当 x 时有极限
(C)在 (,) 内有界
(D)在 (,) 内无界
(3) 设 f (x) 在 x a 处可导,则 lim f (a x) f (a x) 等于
(B)
x0
x
(A) f (a)
(B) 2 f (a)
(C)0
(D) f (2a)
(4) 设.A 为 n 阶方阵, 且 A a 0, 而 A* 是 A 的伴随矩阵,则 A* =
解:①

a
0
时,原式=
1 b2
sec2
xdx
1 b2
tan
x
c


当 b 0 时,
1 原式= a2
cs
c2
xdx
1 a2
cot
x
c

③ 当 ab 0 时,原式=
sec2 xdx 1 a2 tan2 x b2 ab
d(a tan x) b
(a tan x)2 1
1 ab
a arctan(
b
tan
x)
c
.
b
八、(本题满分 15 分)
(1)(7 分)求微分方程 x dy dx
x y ,满足条件 y |x
2 0 的解.

1987年贵州高考文科数学试题难度

1987年贵州高考文科数学试题难度

1987年贵州高考文科数学试题难度本试卷分第1卷和第II卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3.第1I卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上,如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B). 第1卷(共50分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求1.若集合M=(r|VE<4),N=(x |3x>1),则MON =().A:[r|0<r<2)B:(x<r<2)C:[r|3 <r<16)D:(x1<r<16)2.若i(1-=)=1,则:+3=()A:-2 B:-1 C:1D:23.在AABC中,点D在边AB上,BD =2DA.记CA=m,CD=n.则CB=().A:3m-2n B:-2m +3nC:3m + 2n D:2m +3n4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库,已知该水库水位为海拔148.5 m时,相应水面的面积为140.0km2;水位为海拔157.5 m时,相应水面的面积为180.0km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(V7= 2.65)(). A:1.0 x 100 m3 B:1.2 x 100 m3C:1.4 x 109 m3D:1.6 x 109 m35,从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为().A1/6 B1/3 C1/2 D2/36.记函数f(z)= sin(wr+)+b(w> 0)的最小正周期为T.若〈T<x,且y=f(z)的图像关于点(、2)中心对称,则f()=A.1 B3/2 C2/5 D3二、选择题:本题共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分,7.已知正方体ABCD-asic,Di,则().A:直线bcg与DA1所成的角为90°B:直线BC;与CA1所成的角为90°C:直线BC]与平面BB,DiD所成的角为45D:直线BC]与平面ABCD所成的角为45°8.已知函数f(r)=r3-r+1,则().A:f(r)有两个极值点B:f(r)有三个零点C:点(0,1)是曲线y=f(x)的对称中心D:直线y=2r是曲线y=f(z)的切线9.已知0为坐标原点,点A(1,1)在抛物线C:r=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则()A:C的准线为y=-1B:直线AB与C相切C:OPI-JOQ > |OA D:BPI-|BQI > |BA210.已知函数f(z)及其导函数J"(z)的定义域均为R,记g(z)= f'(r).若f(;-2r),9(2+r)均为偶函数,则().A:f(0)=09 B:g(-1)=g(2)C:f(-1)= f(4)D:g(-1)= g(2)三、填空题:本题共4小题,每小题5分,共20分.11.(1-)(z+ y)*的展开式中ry的系数为()(用数字作答).12.写出与圆r2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程15.若曲线y=(r+a)e有两条过坐标原点的切线,则a的取值范围是13.已知椭圆C:+=1(a>b>0),C的上顶点为A.两个焦点为Fi,Fz,离心率为过F:且垂直于AF2的直线与C交于D,E两点,DE=6,则AADE的周长是四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.14.(10分)记S,为数列(an的前n项和,已知a1=1,)是公差为:的等差数列.(1)求(an)的通项公式;(2)证明:=+-++<2.15.(12分)已知函数/(r)=e'-ar 和g(r)= ax-jnr有相同的最小值(1)求a;(2)证明:存在直线y=6,其与两条曲线y=f(r)和y= g(r)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列16.(12 分)cos A记AABC的内角A.B.C的对边分别为a.b.c,已知1+ sin A (1)若C=,求B;(2)求的最小值。

1987考研数学(改革前不分数一二三)真题+答案

1987考研数学(改革前不分数一二三)真题+答案
郝海龙:考研数学复习大全·配套光盘·1987 年数学试题参考解答
1987 年全国硕士研究生入学统一考试 数学试题参考解答
数 学(试卷Ⅰ)
一、填空题(每小题 3 分,满分 15 分. 只写答案不写解题过程)
(1) 与两直线
x 1
y
1
t
z 2 t

x 1 y 2 z 1 121
都平行,且过原点的平面方程是
1987 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·1987 年数学试题参考解答
(3) 已知连续随机变量 X 的密度为 f (x) 1 ex2 2x1 ,则 X 的数学期望为
方差为 1 / 2 .
1 ;X 的
十一、(本题满分 6 分)
设随机变量 X,Y 相互独立,其概率密度函数分别为
十、填空题(每小题 2 分,满分 6 分)
(1) 在一次试验中事件 A 发生的概率为 p ,现进行 n 次独立试验,则 A 至少发生一次的概率
为 1 (1 p)n ;而事件 A 至多发生一次的概率为 [1 (n 1) p](1 p)n1 .
(2) 三个箱子,第一个箱子有 4 个黑球 1 个白球,第二个箱子中有 3 个白球 3 个黑球,第三 个箱子中有 3 个黑球 5 五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个 球为白球的概率为 53/120 ,已知取出的是白球,此球属于第二箱的概率是 20 / 53 .
f13 )e y
ey
f1
f21 xey
f23
.
四、(本题满分 8 分)【 同数学Ⅰ、第四题 】
五、(本题满分 12 分)【 同数学Ⅰ、第五题 】
六、(本题满分 10 分)【 同数学Ⅰ、第六题 】

考研真题【1987-2002考研数(三)真题及解析】2002考研数三真题及解析

考研真题【1987-2002考研数(三)真题及解析】2002考研数三真题及解析

2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a =.(4)则2X 和2Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( ) (A) 5 (B)(C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解(C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程xyzxe ye ze -=所确定,求du . 五、(本题满分6分)设2(sin ),sin x f x x =求()x dx . 六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵. 十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +. 十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2002年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】112a- 【详解】ln “”里面为1∞“”型,通过凑成重要极限形式来求极限, 1(12)12211limln limln 1(12)(12)nn a an n n na n a n a -⋅-→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--.(2)【答案】2120(,)xxdx f x y dy ⎰⎰【详解】画出与原题中二次积分的限所对应的积分区域1D 与2D ,将它们的并集记为D . 于是111422104(,)(,)yydy f x y dx dy f x y dx +⎰⎰⎰(,)Df x y d σ=⎰⎰.再将后者根据积分定义化为如下形式,即2102x y x x →→从,从,所以2120(,)(,).xxDf x y d dx f x y dy σ=⎰⎰⎰⎰(3)【答案】1- 【详解】122212123,304134a a A a a α-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+ ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由于A α与α线性相关,(两个非零向量线性相关,则对应分量成比例),所以有233411a a a a ++==,得 2334, 1.a a a +=+=- 或,(0)A k k αα=≠(两个非零向量线性相关,则其中一个可以由另一个线性表出)即 231341a a a k a ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,得2334a ka a k a k =⎧⎪+=⎨⎪+=⎩,得 1.(1)a k =-=(4)【答案】0.02-.【详解】2X 、2Y 和2X 2Y 都是01-分布,而01-分布的期望值恰为取1时的概率p .由离散型随机变量X 和Y 的联合概率分布表可得2X 的可能取值为0和1,且2Y 的可能取值也为0和1,且X 和Y 的边缘分布为{}00.070.180.150.4P X ==++=;{}10.080.320.200.6P X ==++=; {}10.070.080.15P Y =-=+=;{}00.180.320.5P Y ==+=; {}10.150.200.35P Y ==+=;故有{}{}220,00,00.18,P X Y P X Y ======X0 10.4 0.6Y 1- 0 10.15 0.5 0.35{}{}{}220,10,10,10.070.150.22,P X Y P X Y P X Y =====-+===+= {}{}221,01,00.32,P X Y P X Y ======{}{}{}221,11,11,10.080.200.28,P X Y P X Y P X Y =====-+===+=而边缘分布律:{}{}2000.4P X P X ====,{}{}2110.6P X P X ====, {}{}2000.5P Y P Y ====,{}{}{}21110.150.350.5P Y P Y P Y ===-+==+=所以,22(,)X Y 的联合分布及其边缘分布为由上表同理可求得22X Y 的分布律为所以由01-分布的期望值恰为取1时的概率p 得到:2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()(5)【答案】1X -.【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望) 期望 ()()()1x E X xf x dx xe dx θθθ+∞+∞---∞===+⎰⎰样本均值 11ni i X X n ==∑用样本均值估计期望有 EX X =,即 111ni i X n θ=+=∑,解得未知参数θ的矩估计量为 11ˆ11n i i X X n θ==-=-∑.二、选择题 (1)【答案】(B)【详解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有lim ()().x f x f ξξ→= 即有lim[()()]0x f x f ξξ→-=.故选(B).方法2:排除法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩,有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C)与(D)的反例,(1,1]()11xx f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '=(当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B).(2)【答案】(D)【详解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因()min((),())r AB r A r B ≤.当m n >时,有()min((),())r AB r A r B n m ≤≤<.(系数矩阵的秩小于未知数的个数)方程组()0AB x =必有非零解,故应选(D).方法2:B 是n m ⨯矩阵, 当m n >时,,则()r B n =,(系数矩阵的秩小于未知数的个数)方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,故选(D).(3)【答案】(B)【详解】方法1:由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故TA A =.设()1TP APB -=,则111()TTT T T T T B P A P P AP P A P ---===上式左乘1T P-,右乘TP ,得111()()()T T T T T T P BP P P A P P ---=,即1T T A P BP -=,所以 1()T T A P BP ααλα-==两边左乘T P ,得 1()()T T T T P P BP P αλα-=得()T TB P P αλα=根据特征值和特征向量的定义,知1()TB P AP -=的对应于特征值λ的特征向量为T P α,即应选(B).方法2:逐个验算(A),(B),(C),(D)中哪个选项满足,由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故T A A =.设()1TP AP -属于特征值λ的特征向量为ξ,即()1TP APξλξ-=,其中()111TTTT T T P AP P A P P AP ---==对(A),即令1P ξα-=,代入111()TT P AP P P αλα---≠对(B),1()TT T P AP P α-1()TT T P A P P α-=1[())]T T TP A P P α-=TP A α=()T P λα=成立.故应选(B).(4)【答案】C【分析】(i)2χ变量的典型模式是:222212n X X X χ=+++,其中i X 要求满足:i X 相互独立,(0,1)iX N .称2χ为参数为n 的2χ变量.(ii) F 变量的典型模式是:12//X n F Y n =,其中,X Y 要求满足:X 与Y 相互独立,2212(),()Xn Yn χχ,称F 为参数为()12,n n 的F 变量.【详解】方法1:根据题设条件,X 和Y 均服从(0,1)N .故2X 和2Y 都服从2(1)χ分布,答案应选(C).方法2:题设条件只有X 和Y 服从(0,1)N ,没有X 与Y 的相互独立条件.因此,2X 与2Y的独立条件不存在,选(B)、(D)项均不正确.题中条件既没有X 与Y 独立,也没有(,)X Y 正态,这样就不能推出X Y +服从正态分布的选项(A).根据排除法,正确选项必为(C).三【详解】22000003arctan(1)arctan(1)limlim 1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等 22arctan(1)lim32x x t dt x →+⎰洛洛20arctan(1)2lim 3x x x x →+⋅2346ππ=⋅=.四【详解】方法1:用一阶微分形式不变性求全微分.123du f dx f dy f dz '''=++(,)z z x y =由x y z xe ye ze -=所确定,两边求全微分,有()()()()()x y z x y z d xe ye d ze d xe d ye d ze -=⇒-= x x y y z z xe dx e dx ye dy e dy ze dz e dz ⇒+--=+,解出 (1)(1),(10).(1)x y z e x dx e y dydz z e z +-+=+≠+设 所以 du =123(1)(1)(1)x y z e x dx e y dyf dx f dy f e z +-+'''++⨯+1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到z x ∂∂,z y∂∂.由x y zxe ye ze -=两边对x 求偏导数,有 (),x x z z z xe e ze e x∂+=+∂ 得x xz zz xe e x ze e∂+=∂+,(10)z +≠设.类似可得,y y z z z ye e y ze e ∂+=-∂+,代入,u u x y ∂∂∂∂表达式 1323(),()x xy yz zz zu xe e u ye e f f f f x ze e y ze e ∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得du 1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦.五【详解】首先要从2(sin )sin xf x x=求出()f x . 命2sin u x =,则有sin x =x =()f u =(通过换元求出函数的表达式)arcsin ()x f x dxx == sin 2sin cos cos ttt tdt t⎰(换元积分法) sin t tdt =2⎰[]2cossin t t t C=-++(分部积分法)2C ⎡=+⎣.六【分析】旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形绕x 轴旋转一周产生旋转体的体积2()baV f x dx π=⎰.【详解】(1) ()2225142(32)5aV xdx a ππ==-⎰22222420202a V a a x dy a a πππ=-=<<⎰.(2) 54124(32)5V V V a a ππ=+=-+ 根据一元函数最值的求法要求驻点,令34(1)0dVa a daπ=-=, 得1a =. 当01a <<时0dV da >,当12a <<时0dVda<,因此1a =是V 的唯一极值点且是极大值点,所以是V 的最大值点,129max 5V π=.七【解】(1) 369331()113(3)!(3)!nnn x x x x x y x n n ∞==+++++=+∑+!6!9!,由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而 ()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为212[cossin ]22xy e C x C x -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[sin ]3x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022211212111[00]331110(20(2022311223e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-+⎨⎪⎪⎪=-++⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为221cos 323x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211cos ().(3)!323xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在1x 2x 使得1[,]()max ()x a b f x M f x ∈==,2[,]()min ()x a b f x m f x ∈==,满足()m f x M ≤≤.又()0g x >,故根据不等式的性质()()()()mg x f x g x Mg x ≤≤根据定积分的不等式性质有()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰所以 ()().()babaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x dx ⎰与()bag x dx ⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内由连续函数的零点定理知要么()f x h -恒为正,从而根据积分的基本性质得(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,同理得(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九【详解】方法1:对系数矩阵记为A 作初等行变换21311000000n a b b b a b b b b a b b b a a b A bb a b b a a b b b ba b a a b -- -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪ ⎪=→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行当(0)a b =≠时,()1,0r A AX ==的同解方程组为120n x x x +++=,基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…,230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.当a b ≠时,000000ab b b b a a bA b a a bb a a b ⎛⎫⎪-- ⎪ ⎪→-- ⎪⎪⎪--⎝⎭23110010101001a b a b n a b a b bb ---⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行/()行/()行/() 12131(1)000110010101001bb n ba n b-⨯-⨯-⨯+-⎛⎫⎪-⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行行行行行行 当a b ≠且(1)a n b ≠--时,(1)0A a n b =+-≠,(),0r A n AX ==仅有零解. 当(1)a n b =--时,()1,0r A n AX =-=的同解方程组是121310,0,0,n x x x x x x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.方法2:方程组的系数行列式a b b bb a b b A b b abb b ba=(1)(1)2...(1)1(1)a n b b bb a n ba b b n a n b b ab a n b b ba+-+-+-+-把第,,列加到第列111[(1)]11b bb a bb an b b ab b ba +-提取第列的公因子 1210003-1[(1)]000-1000bbb a b an ba bna b--+---第行第行第行第行第行第行1[(1)]()n a n b a b -=+--(1)当a b ≠且(1)a n b ≠--时,0A ≠,()r A n =方程组只有零解. (2)当(0)a b =≠时,a a a a a a a a A a a a a a a aa ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦21000031000010000a a aa n ⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦第行第行第行第行第行第行111100001100000000a ⎡⎤⎢⎥⎢⎥⎢⎥⨯⎢⎥⎢⎥⎢⎥⎣⎦第行 方程组的同解方程组为120n x x x +++=基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…, 230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.(1)当(1)(0)a n b b =--≠时,(1)(1)(1)(1)n bb b bbn b b b A b b n bb b b b n b -⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭1,2,...,11111111111111111n bn n nn ⨯-⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行分别111121003100100n n n n nn n n -⎛⎫-⎪-⎪- ⎪- ⎪ ⎪- ⎪-⎝⎭行行行行行行 111111002,...,101011001n n n -⎛⎫⎪- ⎪ ⎪-⨯⎪ ⎪ ⎪-⎝⎭行分别000011002,...,10101001n ⎛⎫ ⎪-⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭把第行都依次加到第1行 ()1r A n =-,其同解方程组是121310,0,0,n x x x x x x -=⎧⎪-=⎪⎨⎪⎪-=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.十【详解】(1) 设λ是A 的任意特征值,α是A 的属于λ的特征向量,根据特征值、特征向量的定义,有 ,0,A αλαα=≠ ①两边左乘A ,得 2A αA λαλλα==2λα= ②②+2*①得 ()()2222A Aαλλα+=+因220A A +=,0α≠,从而上式()()22220A Aαλλα+=+=,所以有220λλ+=,故A 的特征值λ的取值范围为0,2-.因为A 是实对称矩阵,所以必相似于对角阵Λ,且Λ的主对角线上元素由A 的特征值组成,且()()2r A r =Λ=,故A 的特征值中有且只有一个0.(若没有0,则222-⎡⎤⎢⎥Λ=-⎢⎥⎢⎥-⎣⎦,故()()3r A r =Λ=与已知矛盾;若有两个0,则200-⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()1r A r =Λ=与已知矛盾;若三个全为0,则000⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()0r A r =Λ=与已知矛盾). 故220A -⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦即A 有特征值1232,0λλλ==-=.(2)A kE +是实对称矩阵,A 有特征值1232,0λλλ==-=,知A kE +的特征值为2,2,k k k --.因为矩阵正定的充要条件是它的所有的特征值均大于零,故A kE +正定200k k ->⎧⇔⎨>⎩2k k >⎧⇔⎨>⎩2k ⇔> 故2k >时A kE +是正定矩阵.十一【分析】(,)X Y 有四个可能值,可以逐个求出.在计算过程中要注意到取值与U 的值有关.U 的分布为均匀分布,计算概率不用积分都行,可以直接看所占区间的长度比例即可.【详解】(,)X Y 只有四个可能值(1,1),(1,1),(1,1)(1,1)----和.依照题意,有{}{}{}1(2)11,11,11;2(2)4P X Y P U U P U ---=-=-=≤-≤=≤-==--{}{}{}1,11,10;P X Y P U U P =-==≤->=∅= {}{}{}11,11,111;2P X Y P U U P U ==-=>-≤=-<≤={}{}{}11,11,11.4P X Y P U U P U ===>->=>=于是,(,)X Y 分布为(2) 因为22()()[()]D X Y E X Y E X Y +=+-+,所以我们应该知道X Y +和2()X Y +的分布律.对离散型随机变量,X Y +的取值可能有2,0,2;-2()X Y +的取值可能有0和4;{}{}121,1,4P X Y P X Y +=-==-=-={}{}{}1101,11,10,22P X Y P X Y P X Y +====-+=-==+= {}{}121,1,4P X Y P X Y +=====(){}{}2100,2P X Y P X Y +==+==(){}{}{}214222P X Y P X Y P X Y +==+=-++==.X Y +和2()X Y +的分布律分别为和所以由离散型随机变量的数学期望计算公式有:{}1()nk k k E X x P X x ==⋅=∑所以有,2224()0,()2442E X Y E X Y +=-+=+==. 22()()[()]2D X Y E X Y E X Y +=+-+=十二【详解】首先找出随机变量Y 的表达式. Y 由X 和2(小时)来确定,所以min(,2)Y X =.指数分布的X 的分布参数为 11,()5E X λ==其密度函数为:1510()500x X ex f x x -⎧>⎪=⎨⎪≤⎩其中0λ>是参数由分布函数的定义:{}{}()min(,2)F y P Y y P X y =≤=≤(1) 当0y <时,()0Y F y =(因为{}min ,2Y X =,其中X 和2都大于0,那么小于0是不可能事件)(2) 当2y ≥时,()1Y F y =(因为{}min ,2Y X =最大也就取到2,所以小于等于2是一定发生的,是必然事件)(3) 当02y ≤<时, {}{}{}()min(,2)F y P Y y P X y P X y =≤=≤=≤115501()15x y yyX f x dx e dx e ---∞===-⎰⎰所以1500()10212y Y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。

1987考研数三真题

1987考研数三真题
D
七、已知某商品的需求量 x 对价格 p 的弹性 3 p3 ,而市场对该商品的最大需求量为 1(万件).求需
求函数.
2x1 x2 4x3 3x4 4, 八、解线性方程组 3x1x1x3x2x4x313,,
7x1 7x3 3x4 3.
4 2 3
(A) f b f a f b aa b
()
(B) f b f x1 f b x1 x1 b (C) f x2 f x1 f x2 x1 x1 x2 (D) f x2 f a f x2 aa x2
1987 年全国硕士研究生入学统一考试数学(三)试题
一、判断题(每题 2 分)
1
(1) lim e x . x0
(2) x4 sin xdx 0 .
() ()



(3)若级数 an 与 bn 均发散,则级数 an bn 必发散.
n 1
n1
n 1
九、设矩阵
A和
B
满足
AB

A+2B
,求矩阵
B
,其中
A


1
1
0

.
1 2 3
3 1 2
十、求矩阵A Nhomakorabea 0
1
4

的实特征值及对应的特征向量.
1 0 1
十一、
(1) 已知随机变量 X 的概率分布为 PX 1 0.2,PX 2 0.3,PX 3 0.5.,试写出 X 的 分布函数 F x .
(5)若两事件 A 和 B 同时出现的概率 P AB 0 ,则

1987年全国统一高考数学试卷(文科)

1987年全国统一高考数学试卷(文科)

1987年全国统一高考数学试卷(文科)一、选择题(共8小题,每小题3分,满分24分)1.(3分)设S,T是两个非空集合,且S⊈T,T⊈S,令X=S∩T,那么S∪X等于()A.X B.T C.φD.S2.(3分)设椭圆方程为,令c2=a2﹣b2,那么它的准线方程为()A.B.C.D.3.(3分)设log34•log48•log8m=log416,那么m等于()A.B.9C.18 D.274.(3分)复数sin40°﹣icos40°的辐角为()A.40°B.140°C.220°D.310°5.(3分)二次函数y=f(x)的图象如图所示,那么此函数为()A.y=x2﹣4 B.y=4﹣x2C.D.6.(3分)函数f(x)是R上以2为周期的奇函数,已知当x∈(0,1)时,f(x)=log2,则f (x)在区间(1,2)上是()A.减函数,且f (x)<0 B.增函数,且f(x)<0C.减函数,且f(x)>0D.增函数,且f(x)>07.(3分)已知平面上一点P在原坐标系中的坐标为(0,m)(m≠0),而在平移后所得到的新坐标系中的坐标为(m,0),那么新坐标系的原点O′在原坐标系中的坐标为( A )A.(﹣m,m)B.(m,﹣m)C.(m,m)D.(﹣m,﹣m)8.(3分)(2012•德阳二模)要得到函数的图象,只需将函数y=sin2x的图象()A.向左平行移动B.向右平行移动C.向左平行移动D.向右平行移动二、解答题(共7小题,满分96分)9.(28分)已知方程表示双曲线,求λ的范围.10.(10分)发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t的函数:I A=Isinωt,I B=Isin(ωt+120°),I C=Isin(ωt+240°),求I A+I B+I C的值.11.(12分)在复平面内,已知等边三角形的两个顶点所表示的复数分别为,求第三个顶点所表示的复数.12.(12分)如图,三棱锥P﹣ABC中,已知PA⊥BC,PA=BC=L,PA,BC的公垂线ED=h.求证三棱锥P﹣ABC的体积V=L2h.13.(10分)设对所有实数x,不等式恒成立,求a的取值范围.14.(12分)设数列a1,a2,…,a n,…的前n项的和S n与a n的关系是S n=ka n+1,(其中k是与n无关的常数,且k≠1).(1)试写出用n,k表示的a n的表达式;(2)若=1,求k的取值范围.15.(12分)正方形ABCD在直角坐标平面内,已知其一条边AB在直线y=x+4上,C,D在抛物线x=y2上,求正方形ABCD的面积.1987年全国统一高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)设S,T是两个非空集合,且S⊈T,T⊈S,令X=S∩T,那么S∪X等于()A.X B.T C.φD.S考点:并集及其运算.分析:根据交集的性质,易得X⊆S,进而由并集的性质,可得答案.解答:解:若X=S∩T,则有X⊆S,由并集的意义,易得S∪X=S,故选D.点评:本题考查交、并集的性质与相互关系,注意X=S∩T⇒X⊆S,S∪X=S⇒X⊆S,反之也成立.2.(3分)设椭圆方程为,令c2=a2﹣b2,那么它的准线方程为()A.B.C.D.考点:椭圆的简单性质.专题:计算题.分析:先判断椭圆的焦点在x轴还是在y轴,再根据椭圆的性质可知椭圆的准线方程.解答:解:∵a>b,∴椭圆的焦点在x轴,根据椭圆的性质可知椭圆的准线方程为故选C点评:本题主要考查了椭圆的性质.属基础题.3.(3分)设log34•log48•log8m=log416,那么m等于()A.B.9C.18 D.27考点:对数的运算性质.分析:根据换底公式知,log4•log48•log8m===2,即可得答案.3解答:解:∵log4•log48•log8m===23∴lgm=2lg3=lg9∴m=9故选B.点评:本题主要考查对数运算中的换底公式的应用.4.(3分)复数sin40°﹣icos40°的辐角为()A.40°B.140°C.220°D.310°考点:复数的代数表示法及其几何意义.分析:化简成复数的三角形式即可解答:解:原复数可化成sin140°+icos140°,故辐角为140°,选B.点评:注意到复数的三角形式为z=r(cosθ+isinθ)5.(3分)二次函数y=f(x)的图象如图所示,那么此函数为()A.y=x2﹣4 B.y=4﹣x2C.D.考点:函数的图象.专题:数形结合.分析:先看图象的开口方向,再看定点坐标,结合所给的选项选出正确的答案.解答:解:由二次函数的图象是抛物线,开口向下,顶点(0,3),结合所给的选项,故答案选C.点评:本题考查二次函数图象的特征.6.(3分)函数f(x)是R上以2为周期的奇函数,已知当x∈(0,1)时,f(x)=log2,则f (x)在区间(1,2)上是()A.减函数,且f (x)<0 B.增函数,且f(x)<0C.减函数,且f(x)>0D.增函数,且f(x)>0考点:函数的单调性及单调区间.专题:计算题.分析:欲求f(x)在区间(1,2)上的性质,可先求出其解析式,根据解析式研究性质.解答:解:设﹣1<x<0,则0<﹣x<1,∴f(﹣x)=log2,又f(x)=﹣f(﹣x),∴f(x)=log2(1+x),∴1<x<2时,﹣1<x﹣2<0,∴f(x)=f(x﹣2)=log2(x﹣1).∴f(x)在区间(1,2)上是增函数,且f(x)<0.故选B.点评:已知奇函数的一侧的解析式,可以求出其关于原点对称的另一侧的解析式,这是奇函数的一个重要应用.7.(3分)已知平面上一点P在原坐标系中的坐标为(0,m)(m≠0),而在平移后所得到的新坐标系中的坐标为(m,0),那么新坐标系的原点O′在原坐标系中的坐标为( A )A.(﹣m,m)B.(m,﹣m)C.(m,m)D.(﹣m,﹣m)考点:向量在几何中的应用.专题:压轴题;阅读型.分析:利用平移公式求出平移向量,再利用平移公式求出新坐标系的原点O′在原坐标系中的坐标.解答:解:设按向量,则新坐标系的原点O′在原坐标系中的坐标为(k,l)则据平移公式故∴解得即新坐标系的原点O′在原坐标系中的坐标为(﹣m,m)故选项为A点评:本题考查平移公式的应用.8.(3分)(2012•德阳二模)要得到函数的图象,只需将函数y=sin2x的图象()A.向左平行移动B.向右平行移动C.向左平行移动D.向右平行移动考点:函数y=Asin(ωx+φ)的图象变换.专题:常规题型;压轴题.分析:假设将函数y=sin2x的图象平移ρ个单位得到,根据平移后,求出ρ进而得到答案.解答:解:假设将函数y=sin2x的图象平移ρ个单位得到y=sin2(x+ρ)=sin(2x+2ρ)=∴ρ=﹣∴应向右平移个单位故选D.点评:本题主要考查三角函数的平移.属基础题.二、解答题(共7小题,满分96分)9.(28分)已知方程表示双曲线,求λ的范围.考点:双曲线的标准方程;函数的定义域及其求法;极限及其运算;计数原理的应用;二项式系数的性质.专题:计算题.分析:根据双曲线定义可知,要使方程表示双曲线2+λ和1+λ同号,进而求得λ的范围.解答:解:依题意可知(2+λ)(1+λ)>0,求得λ<﹣2或λ>﹣1;故λ的范围为λ<﹣2或λ>﹣1.点评:本题主要考查了双曲线的标准方程.解题时要注意讨论焦点在x轴和y轴两种情况.10.(10分)发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t的函数:I A=Isinωt,I B=Isin(ωt+120°),I C=Isin(ωt+240°),求I A+I B+I C的值.考点:两角和与差的正弦函数.专题:计算题.分析:利用两角和的正弦公式,把sin(ωt+120°)和sin(ωt+240°)展开后代入I A+I B+I C的式子进行化简.解答:解:I A+I B+I C=Isinωt+Isin(ωt+120°)+Isin(ωt+240°)=I[sinωt+sin(ωt+120°)+sin(ωt+240°)]==I•0=0.点评:本题考查两角和的正弦公式的应用以及特殊角的三角函数值.11.(12分)在复平面内,已知等边三角形的两个顶点所表示的复数分别为,求第三个顶点所表示的复数.考点:复数代数形式的混合运算.分析:设第三个顶点所表示的复数为z,因为是正三角形,三边长相等,即复数的模相等,夹角60°,化简求解.解答:解:设第三个顶点所表示的复数为z那么根据题意,z﹣2和的模相等,辐角差为,因而;,点评:本题考查复数代数形式的混合运算,复数的三角形式的运算,考查复数的模等知识,是难度较大,运算量大,易出错.12.(12分)如图,三棱锥P﹣ABC中,已知PA⊥BC,PA=BC=L,PA,BC的公垂线ED=h.求证三棱锥P﹣ABC的体积V=L2h.考点:棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:由题意说明PAD是垂直边长的两个三棱锥的公共底面,求出其面积,再求体积即可.解答:证明:连接AD和PD∵BC⊥PA,BC⊥ED,PA与ED相交,∴BC⊥平面PAD,∵ED⊥PA,∴S△ABC=PA•ED=LhV B﹣PAD=(Lh)•BD=Lh•BD=Lh•CD同理,V C﹣PAD∴三棱锥P﹣ABC的体积V=Lh•BD+Lh•CD=Lh(BD+CD)=Lh•BC=L2h.若E,D不是分别在线段AP,BC上,结论仍成立.点评:本题考查学生空间想象能力,考查逻辑思维能力,棱锥的体积公式,是中档题.13.(10分)设对所有实数x,不等式恒成立,求a 的取值范围.考点:其他不等式的解法;二次函数的性质.专题:计算题;转化思想.分析:本题是一元二次不等式x∈R恒成立问题,用判别式法转化为:再求解.解答:解:由题意得:令,则(3)式变为z2﹣(log28﹣z)(﹣2z)<0,化简为z(6﹣z)<0,解得z>6或z<0(4)(2)式变为log28﹣z>0,即z<3,(5)综合(4),(5)得z<0,即,由此,(6)解(1),(6)得a取值范围:0<a<1.点评:本题主要考查一元二次不等式在实数集上恒成立问题,解法是用判断式法,要注意其开口方向.14.(12分)设数列a1,a2,…,a n,…的前n项的和S n与a n的关系是S n=ka n+1,(其中k是与n无关的常数,且k≠1).(1)试写出用n,k表示的a n的表达式;(2)若=1,求k的取值范围.考点:数列递推式;极限及其运算.专题:计算题;压轴题.分析:(1)由前n项的和S n与a n的关系a n+1=S n+1﹣S n,得到数列的递推公式,注意分析k是否为零,再求数列的通项公式.(2)利用极限的值和第(1)的结果,代入s n整理出关于k的式子,再求k的值.解答:解:(1)∵S n=ka n+1,∴a n+1=S n+1﹣S n=(ka n+1+1)﹣(ka n+1),∴a n+1=ka n+1﹣ka n,即(k﹣1)a n+1=ka n,∵若k≠0,则由题设知a1≠0,由(1)式易知a n≠0,n≥1,∴故该数列是公比为的等比数列,其首项为∴当k=0时,由(1)式知a n=0,上式当n≥1时对k=0也成立.(2)若,即,,∴∴k的范围:k<点评:本题由前n项和公式和s n和a n的关系式,求出递推公式,然后求数列的通项公式;再由所给的极限值求k的范围.15.(12分)正方形ABCD在直角坐标平面内,已知其一条边AB在直线y=x+4上,C,D在抛物线x=y2上,求正方形ABCD的面积.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:根据C,D两点在抛物线上可设出C,D的坐标,根据直线A,B的方程可知AB与y轴成的夹角,进而推断出角线AC与边AB也成450角,进而推断出AC∥y轴,和BD∥x轴,设出A,B的坐标,根据AB∥CD,对角线AC,BD互相垂直平分,联立方程求得s和t,则正方形ABCD的面积可求得.解答:解:∵C,D两点在抛物线上,∴可设C(s2,s),D(t2,,t),又∵A,B在直线y=x+4上,∴AB与y轴成450角,∵四边形ABCD为正方形,∴对角线AC与边AB也成450角,∴AC∥y轴,同理BD∥x轴,∴可设A(s2,s2+4),B(t﹣4,t)∵AB∥CD,对角线AC,BD互相垂直平分,所以有解得∴面积S1=|C1D1|2=[(﹣1)2﹣22]2+[(﹣1)﹣2]2=18,S2=|C2D2|2=[(﹣1)2﹣32]2+[(﹣1)﹣3]2=50.答:这样的正方形有两个,其面积分别为18,50.点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生的分析推理和数形结合思想的灵活运用.。

1987考研数学一、二、三真题+答案 【无水印】

1987考研数学一、二、三真题+答案 【无水印】

1987年全国硕士研究生入学统一考试数学试题参考解答数 学(试卷Ⅰ)一、填空题(每小题3分,满分15分. 只写答案不写解题过程)(1) 与两直线 112x y t z t =⎧⎪=-+⎨⎪=+⎩及 121121x y z ++-==都平行,且过原点的平面方程是 50x y -+=(2) 当x =1/ln 2-;时,函数2xy x =取得极小值.(3) 由ln y x =与两直线(1)y e x =+-及0y =围成图形的面积= 3 / 2 (4) 设L 为取正向的圆周922=+y x ,则曲线积分dy x xdx y xy L)4()22(2-+-⎰的值是π18- .(5) 已知三维线性空间的一组基底)1,1,0(,)1,0,1(,)0,1,1(321===ααα,则向量α=(2, 0, 0)在上述基底下的坐标是 ( 1 , 1 , -1 )二、(本题满分8分)求正的常数a 与b ,使式1sin 1lim220=+-⎰→dt ta t x bx x x 成立. 解:假若1b ≠,则根据洛必达法则有2200011lim lim(01sin cos x x x bx x b x →→==≠--⎰,与题设矛盾,于是1b =.此时2222100002111lim lim(lim(sin 1cos x x x x bx x x x →→→===--⎰,即1=,因此4a =.三、(本题满分7分)(1) 设函数,f g 连续可微,(,),()u f x xy v g x xy ==+,求,.u vx x∂∂∂∂ 解:1212()u x xy f f f y f x x x ∂∂∂''''=⋅+⋅=+⋅∂∂∂;()(1)v x xy g y g x x∂∂+''=⋅=+⋅∂∂.(2) 设矩阵A 和B 满足2AB A B =+,其中A =301110014⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求矩阵B .解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭.四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解.其中常数0a >.解:由特征方程3222(9)0r r a r +++=,知其特征根根为12,30,3r r ai ==-±. 故对应齐次方程的通解为33123cos sin x x y C C e x C e x --=++ ,其中123,,C C C 为任意常数.设原方程的特解为*()y x Ax =,代入原方程可得A =219a+. 因此,原方程的通解为*33123()cos sin x x y x y y C C e x C e x --=+=+++219a+x . 五、选择题(每小题3分,满分12分) (1) 设常数0k >,则级数21)1(n nk n n+-∑∞= (C )(A) 发散(B) 绝对收敛(C) 条件收敛(D) 收敛与发散与k 的值有关.(2) 设)(x f 为已知连续函数,⎰=t sdx tx f t I 0)(,0,0s t >>,则I 的值(D )(A) 依赖于s 和t (B) 依赖于s 、t 、x(C) 依赖于t 和x , 不依赖于s (D) 依赖于s , 不依赖于t (3) 设1)()()(lim 2-=--→a x a f x f a x ,则在点x a =处(B)(A) ()f x 导数存在,0)(≠'a f (B) ()f x 取得极大值(C) ()f x 取得极小值(D) ()f x 的导数不存在.(4) 设A 为n 阶方阵, 且0≠=a A , 而*A 是A 的伴随矩阵,则*A =(C)(A) a(B) a/1(C) 1-n a (D) n a六、(本题满分10分) 求幂级数1121+∞=∑n n n x n 的收敛域,并求其和函数. 解:记112n n n u x n +=,有1112lim lim (1)22n nn n n n n n x u x n u n x +++→∞→∞=⋅=+,令12x <,知原级数在开区间(2,2)-内每一点都收敛.又当2x =-时,原级数=111111(2)2(1)2n n n n n n n ∞∞++==-=-∑∑,故由莱布尼兹判别法知其收敛;而当2x =时,原级数=11111122(1)2n n n n n n n ∞∞++===-∑∑,显然发散,故幂级数的收敛域为)2,2[-. 又记111111()()()22n n n n n x S x x x xS x n n ∞∞+=====∑∑,其中111()()2n n xS x n ∞==∑,有1111()()21/2n n x S x x ∞-='==-∑,于是102()2ln()1/22x dx S x x x ==--⎰,因此幂级数的和函数为2()2ln 2S x x x=-,[2,2)x ∈-.七、(本题满分10分) 计算曲面积分2(81)2(1)4SI x y dydz y dzdx yzdxdy =++--⎰⎰,其中s 是曲线 )31(01≤≤⎩⎨⎧=-=y x y z 绕Y 轴旋转一周所形成的曲面,它的法向量与Y 轴正向的夹角恒大于/2π.解:S 的方程为221y x z =++,记1S :223,()y x z =+,知1S S +为封闭曲面,设其 方向取外侧,所围区域为Ω,则由高斯公式,有12(81)2(1)4S S I x y dydz y dzdx yzdxdy +=++--⎰⎰12(81)2(1)4S x y dydz y dzdx yzdxdy-++--⎰⎰12102(1)0S dv y dydz Ω=⋅---+⎰⎰⎰⎰⎰=3212(13)yz xD D dy dzdx dzdx --⎰⎰⎰⎰⎰31(1)16234y dy ππ=-+⋅⋅=⎰.八、(本题满分10分)设函数)(x f 在闭区间[0,1]上可微,对于[0,1]上的每个x ,函数的值都在开区间(0,1)内,且1)(≠'x f .证明 在(0,1)内有且仅有一个x ,使()f x x =.证:令()()h t f t t =-,知()h t 在闭区间[0,1]上连续,又由题设知0()1f x <<,于是 有(0)(0)00,(1)(1)10h f h f =->=-<. 故由零点定理,在(0,1)内有x ,使()f x x =.假若)(x f 在开区间(0,1)内有两个不同的点1x 和2x ,使得11()f x x =,22()f x x =, 不妨设12x x <,则易见)(x f 在闭区间[0,1]上连续,在(0,1)内可导,故由拉格朗日定理知,(0,1)ξ∃∈,使得2121()()()f x f x f x x ξ-'=-,即()1f ξ'=.此与1)(≠'x f 矛盾!故在(0,1)内使()f x x =的x 只能有一个.九、(本题满分8分)问,a b 为何值时,线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解?无解?有无穷多解? 并求出无穷多解时的通解.解:对方程组的增广矩阵进行初等变换,得11110111100122101221()013200101321100010A A b a b a b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭○1 当1≠a 时,系数行列式2(1)0A a =-≠,故由克拉姆法则,原方程组有唯一解; ○2 当1a =,且1b ≠-时, ()3,()2r A r A ==, ()()r A r A ≠,故原方程组无解;○3 当1a =,且1b =-时, ()()24r A r A ==<,故原方程组有无穷的解. 此时显然有 11110101110122101221()00000000000000000000A A b ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→→⎪ ⎪⎪⎪⎝⎭⎝⎭可见其通解为:12(1,1,0,0)(1,2,1,0)(1,2,0,1)T T T x c c =-+-+-,其中12,c c 为任意常数.十、填空题(每小题2分,满分6分)(1) 在一次试验中事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1]()1(1[---+n p p n .(2) 三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3个黑球,第三个箱子中有3个黑球5五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个 球为白球的概率为53/120,已知取出的是白球,此球属于第二箱的概率是20/53.(3) 已知连续随机变量X 的密度为1221)(-+-=x xe xf π,则X 的数学期望为 1 ;X 的方差为 1/2 .十一、(本题满分6分)设随机变量X ,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=它其0101)(x x f X ;⎩⎨⎧≤>=-00)(y y e y f y Y ,求随机变量Z =2X +Y 的概率密度函数()z f z .解:由题设,(,)X Y 的联合密度为01,0(,)()()0y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其 它, 故Z 的分布函数2()()(2)(,)z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰,○1 当0z <时,2()00z x y zF z dxdy +≤==⎰⎰,此时()00z f z '==;○2 当02z ≤≤时,200001()22z yzz z y y yz z F z dy e dx e dy ye dy ----==-⎰⎰⎰⎰,此时 011()()(1)22z y z z z f z F z e dy e -'===-⎰;○3 当2z >时,121220001()(1)1(1)2z x y x z zz F z dx e dy e dx e e -----==-=--⎰⎰⎰,此时 21()()(1)2zz z f z F z e e -'==-综上所述,Z =2X +Y 的概率密度函数为()z f z =122120(1)02(1)2zz z e z e e z ---<⎧⎪-≤≤⎨⎪->⎩数 学(试卷Ⅱ)一、(本题满分15分)【 同数学Ⅰ、第一题 】 二、(本题满分14分) (1)(6分)计算定积分2||2(||).x x x e dx --+⎰解:因||x xe-是奇函数,||||x x e -是偶函数,故 原式=22||202||226.x x x e dx xe dx e --==-⎰⎰(2)(8分)【 同数学Ⅰ、第二题 】三、(本题满分7分)设函数(,,),yz f u x y u xe ==,其中f 有二阶连续偏导数,求2.z x y∂∂∂解:121yz u f f f e f x x∂∂''''=⋅+=⋅+∂∂,2111312123()y y y y z f xe f e e f f xe f x y ∂'''''''''=⋅++⋅+⋅+∂∂. 四、(本题满分8分)【 同数学Ⅰ、第四题 】 五、(本题满分12分)【 同数学Ⅰ、第五题 】 六、(本题满分10分)【 同数学Ⅰ、第六题 】 七、(本题满分10分)【 同数学Ⅰ、第七题 】 八、(本题满分10分)【 同数学Ⅰ、第八题 】 九、(本题满分8分)【 同数学Ⅰ、第九题 】 十、(本题满分6分)设12,λλ为n 阶方阵A 的特征值,12λλ≠,而21,x x 分别为对应的特征向量,试证明:21x x +不是A 的特征向量.证:假若21x x +是A 的特征向量,设其对应的特征值为3λ,则有12312()()A x x x x λ+=+, 即123132Ax Ax x x λλ+=+. 又由题设条件知111Ax x λ=,222Ax x λ=,故有131232()()0x x λλλλ-+-=.因21,x x 是属于不同特征值的特征向量,所以21,x x 线性无关, 从而13λλ=,且13λλ=,此与12λλ≠矛盾!因此21x x +不是A 的特征向量.数 学(试卷Ⅲ)一、填空题(每小题2分,满分10分. 把答案填在题中横线上) (1) 设)1ln(ax y +=, 其中a 为非零常数,则22)1(,1ax a y ax ay +-=''+='.(2) 曲线y arctgx =在横坐标为1点处的切线方程是4221-+=πx y ; 法线方程是4/)8(2++-=πx y .(3) 积分中值定理的条件是()[,]f x a b 在闭区间上连续,结论是[,],()()()baa b f x dx f b a ξξ∃∈=-⎰使得(4) 32()1nn n lin e n -→∞-=+.(5)⎰='dx x f )(c x f +)(;⎰'badx x f )2(=)2(21)2(21a f b f -. 二、(本题满分6分) 求极限 011lim()1x x xe →--解:200000111111lim()lim lim lim lim 1(1)222x x x x x x x x x x e x e x e x x e x e x x x →→→→→------=====--. 三、(本题满分7分)设⎩⎨⎧-=-=)cos 1(5)sin (5t y t t x ,求 22,.dy d y dx dx解:因5sin ,55cos dy dx t t dt dt ==-,5sin )sin 5(1cos 1cos dy t t dx t t ==--(0+),故t tdx dy cos 1sin -=, 且222sin 1()1cos 5(1cos )d y d t dtdx dt t dx t =⋅=---四、(本题满分8分) 计算定积分⎰1arcsin xdx x .解:2211121000111arcsin arcsin 2242x xdx x x π=-=-⎰⎰⎰,令sin x t =,有22120sin cos cos 4t tdt t ππ==⎰⎰,因此101arcsin 4248x xdx πππ=-⋅=⎰. 五、(本题满分8分)设D 是曲线sin 1y x =+与三条直线0x =,π=x ,0y =围成的曲边梯形.求D 绕x 轴旋 转一周所生成的旋转体的体积.解:223(sin 1)42V x dx ππππ=+=+⎰. 六、证明题(本题满分10分)(1)(5分)若()f x 在(,)a b 内可导,且导数)(x f '恒大于零,则()f x 在(,)a b 内单调增加. 证:12,(,)x x a b ∀∈,不妨设12x x <,则()f x 在12[,]x x 上连续,在12(,)x x 内可导,故由拉格朗日中值定理,12(,)(,)x x a b ξ∃∈⊂,使得2121()()()()f x f x f x x ξ'-=-. 由于)(x f '在(,)a b 内恒大于零,所以()0f ξ'>,又210x x ->,因此21()()0f x f x ->, 即21()()f x f x >,表明()f x 在(,)a b 内单调增加.(2)(5分)若()g x 在x c =处二阶导数存在,且0)(='c g ,0)(<''c g ,则()g c 为()g x 的一个极大值.证:因()()()lim 0x c g x g c g c x c →''-''=<-,而0)(='c g ,故()lim 0x c g x x c→'<-.由极限的保号性,0δ∃>,当(,)x c c δ∈-时,有()0g x x c '<-,即()0g x '>,从而()g x 在(,)c c δ-单增;当(,)x c c δ∈+时,有()0g x x c'<-,即()0g x '<,从而()g x 在(,)c c δ-单减.又由0)(='c g 知,x c =是()g x 的驻点,因此()g c 为()g x 的一个极大值.七、(本题满分10分)计算不定积分⎰+x b x a dx2222cos sin ( 其中,a b 为不全为零的非负数 )解:① 当0a =时,原式=22211sec tan xdx x c b b =+⎰;②当0b =时, 原式=22211c cot cs xdx x c a a=-+⎰;③当0ab ≠时,原式=22222(tan )sec 11arctan(tan )tan (tan )1ad x xdx a b x c a a x b ab ab bx b==+++⎰⎰.八、(本题满分15分) (1)(7分)求微分方程y x dxdyx-=,满足条件0|2==x y 的解. 解:原方程即11dy y dx x+=,故其通解为11211()()2dx dx xx y e e dx c x c x -⎰⎰=+=+⎰. 因0|2==x y ,所以1c =-.于是所求初值问题的解为xx y 12-=.(2)(8分)求微分方程 x e x y y y =+'+''2 的通解.解:由特征方程2210r r ++=,知其特征根根为1,21r =-.故对应齐次方程的通解为12()x y C C x e -=+ ,其中12,C C 为任意常数. 设原方程的特解为*()()x y x e ax b =+,代入原方程可得a =14,b =-14. 因此,原方程的通解为*212()()x y x y y C C x e -=+=++ 14(1)x x e -. 九、选择题(每小题4分,满分16分) (1).+∞<<∞=x e x x x f x-,sin )(cos 是(D )(A )有界函数(B )单调函数(C )周期函数 (D )偶函数(2). 函数()sin f x x x -(D)(A )当∞→x 时为无穷大 (B )当∞→x 时有极限 (C )在),(+∞-∞内有界 (D )在),(+∞-∞内无界(3) 设()f x 在x a =处可导,则xx a f x a f x )()(lim--+→等于(B)(A ))(a f ' (B ))(2a f ' (C )0(D ))2(a f '(4) 【 同数学Ⅰ、第五(2)题 】十、(本题满分10分)在第一象限内,求曲线12+-=x y 上的一点,使该点处切线与所给曲线及两坐标围成的面积为最小,并求此最小面积.解:设切点的横坐标为a ,则切线方程为2(1)2()y a a x a --=--,即221y ax a =-++故所围面积2312201112(1)(1)224243a a a s a x dx a a +=+--+=++-⎰. 令0s '=得驻点a =.由于0a s ''>,故所求点的坐标为2)3,其最小值为a s =23.数 学(试卷Ⅳ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 10lim xx e →=∞( ⨯ ) (2)4sin 0x xdx ππ-=⎰( √ )(3) 若级数1nn a∞=∑与1nn b∞=∑均发散,则级数1()nn n ab ∞=+∑必发散( ⨯ )(4) 假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0, 那么矩阵A 的一切1r +阶子式都等于0 ( √ ) (5) 连续型随机变量取任何给定实数值的概率都等于0( √ )二、选择题(每小题2分,满分10分.) (1) 下列函数在其定义域内连续的是(A)(A ) ()ln sin f x x x =+(B )⎩⎨⎧>≤=0cos 0sin )(x xx xx f (C )⎪⎩⎪⎨⎧>-=<+=010001)(x x x x x x f (D )⎪⎩⎪⎨⎧=≠=0001)(x x xx f (2) 若函数f(x)在区间(,)a b 内可导,21,x x 是区间内任意两点,且21x x <,则至少存一点ξ,使得(C )(A) ()()()(),f b f a f b a a b ξξ'-=-<<. (B) 111()()()(),f b f x f b x x b ξξ'-=-<<.(C) 212112()()()(),f x f x f x x x x ξξ'-=-<<. (D) 222()()()(),f x f a f x a a x ξξ'-=-<<. (3) 下列广义积分收敛的是 (C )(A )dx xxe⎰∞+ln (B )⎰∞+exx dx ln (C )⎰+∞ex x dx 2)(ln (D )⎰∞+exx dx ln (4) 设A 是n 阶方阵,其秩r < n , 那么在A 的n 个行向量中(A)(A) 必有r 个行向量线性无关(B) 任意r 个行向量线性无关(C) 任意r 个行向量都构成极大线性无关向量组 (D) 任意一个行向量都可以由其它r 个行向量线性表示 (5) 若二事件A 和B 同时出现的概率P( A B ) = 0 , 则(C)(A) A 和B 互不相容(互斥) (B) AB 是不可能事件 (C) AB 未必是不可能事件(D) P (A )=0或P (B )=0三、计算下列各题(每小题4分,满分16分) (1) 求极限 xxx xe 10)1(lim +→.解:因 1ln(1)(1)x xe x xxxe e ++=, 而 ln(1)x x xe xe x+ (当0x →), 故 000ln(1)lim lim lim 1x x x x x x xe xe e xx →→→+===, 从而 10lim(1)x xx xe e →+=.(2)已知1111ln 22++-+=x x y , 求y '.解:1)1)y =-,y '=-=212xx +. (3) 已知 y x yx arctg z -+=,求dz .解:222()()()()()()1()1()x y x y dx dy x y dx dy d x y x y dz x y x y x y x y+-+-+---==++++--22ydx xdy x y -+=+(4)求不定积分dx ex⎰-12.解:t =,有1)t t t t t e tdt te e dt te e c c==-=-+=+⎰⎰⎰四、(本题满分10分)考虑函数sin y x = )2/0(π≤≤x ,问:(1) t 取何值时,图中阴影部分的面积1s 与2s 之和21s s s +=最小?(2 ) t 取何值时,21s s s +=最大?解:因10sin sin sin cos 1ts t t xdx t t t =-=+-⎰,22sin ()sin cos sin sin 22t s xdx t t t t t t πππ=--=+-⎰,故122sin 2cos sin 12s s s t t t t π=+=+--,(0)2t π≤≤.令0s '=,得s 在(0,)2π内的驻点4t π=.而()14s π=,()122s ππ=-,(0)1s =,因此 4t π=时,s 最小;0t =时,s 最大.五、(本题满分6分)将函数231)(2+-=x x x f 展成x 的级数,并指出收敛区间. 解:因111111()(2)(1)121212f x xx x x x x ==-=-⋅------,而011nn x x ∞==-∑,(1,1)x ∈-, 且0011()2212n n n n n x x x ∞∞====-∑∑,(2,2)x ∈-, 故1100111()(1)222nn n n n n n n f x x x x ∞∞∞+====+=+∑∑∑,其收敛区间为(1,1)-.六、(本题满分5分) 计算二重积分2x De dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3x y =围成的封闭区域. 解:联立y x =和3x y =,可解得两曲线交点的横坐标 0x =和1x =,于是22231130()12xx x x Dxe e dxdy dx e dy x x e dx ==-=-⎰⎰⎰⎰⎰ 七、(本题满分6分)已知某商品的需求量x 对价格P 的弹性为 33p -=η,而市场对商品的最大需求量为1(万件),求需求函数.解:由弹性的定义,有33p dx p x dp =-,即23dxp dp x=-, 于是有 3px ce -=,c 为待定常数.由题意 0p =时,1x =,故1c =,因此3p x e -=.八、(本题满分8分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 【123431820160x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,k 为任意常数】 解:对方程组的增广矩阵进行初等行变换,有2143410103101130120831101000167073300000---⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪⎪⎪⎪-⎝⎭⎝⎭故原方程组与下方程组同解:132343826x x x x x =-⎧⎪=-+⎨⎪=⎩,令30x =,可得原方程组的特解(3,8,0,6)T β=-. 又显然原方程组的导出组与下方程组同解:1323420x x x x x =-⎧⎪=⎨⎪=⎩,令31x =,可得导出组的基础解系(1,2,1,0)T η=-. 因此原方程组的通解为:1234(,,,)(3,8,0,6)(1,2,1,0)T T x x x x k =-+-,其中k 为任意常数.九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中A =423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭十、(本题满分6分) 求矩阵A =312014101--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.解:令0E A λ-=,即2(1)(45)0λλλ-++=,可见矩阵A 只有一个实特征值1λ=.易见,线性方程组()0E A X λ-=的基础解系为(0,2,1)T ,故A 对应于实特征值1λ=的特征向量为(0,2,1)T k ,(其中k 为非零任意常数).十一、(每小题4分,满分8分)(1) 已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======,试写出X 的分布函数()F x .解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x . (2) 已知随机变量Y 的概率密度为000)(2222<≥⎪⎩⎪⎨⎧=-y y e y f a y a y , 求随机变量YZ 1=的数学期望EZ .解:222222200111()()y y a a y EZ E f y dy edy dy Yy y a --+∞+∞+∞-∞===⋅==⎰⎰⎰. 十二、(本题满分8分)设有两箱同种零件.第一箱内装50件,其中10件一等品;第二箱内装有30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1) 先取出的零件是一等品的概率p ;(2) 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q . 解:设i B ={取出的零件为第i 箱中的},j A ={第j 次取出的是一等品},,1,2i j =, 显然12,B B 为正概完备事件组,故全概公式得(1) 11112121101182()()()()()2502305p P A P B P A B P B P A B ==+=⋅+⋅=; (2) 1211212122110911817276()()()()()25049230291421P A A P B P A A B P B P A A B ⨯⨯=+=⋅+⋅=⨯⨯, 于是,由贝叶斯公式得q =12211()690()0.48557()1421P A A q P A A P A ===≈.数 学(试卷Ⅴ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 【 同数学Ⅳ 第一(1)题 】 (2) 【 同数学Ⅳ 第一(2)题 】(3) 若函数()f x 在区间(,)a b 严格单增,则对区间(,)a b 内任何一点x 有()0f x '>. ( ⨯ ) (4) 若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =. ( ⨯ ) (5) 【 同数学Ⅳ 第一(5)题 】二、选择题(每小题2分,满分10分) (1) 【 同数学Ⅳ 第二(1)题 】 (2) 【 同数学Ⅳ 第二(2)题 】 (3) 【 同数学Ⅳ 第二(3)题 】 (4) 【 同数学Ⅳ 第二(4)题 】(5) 对于任二事件A 和B ,有()P A B -= (C)(A) ()()P A P B - (B) ()()()P A P B P AB -+ (C) ()()P A P AB - (D) )()()(B A P B P A P -- 三、计算下列各题(每小题4分,满分20分)(1) 求极限1ln(1)limx x arctgx→+∞+. 解:11ln(1)lim ln(1)0lim0lim /2x x x x x arctgx arctgx π→+∞→+∞→+∞++=== (2) 【 同数学Ⅳ 第三(2)题 】 (3) 【 同数学Ⅳ 第三(3)题 】 (4) 计算定积分dxex ⎰-12112解:t =,有111111021tt t te tdt tee dt e e ==-=-=⎰⎰⎰(5) 求不定积分⎰++5224x x xdx.解:22422221(1)11arctan 252(1)242xdx d x x c x x x ++==+++++⎰⎰. 四、(本题满分10分)考虑函数2y x =,10≤≤x ,问:(1) t 取何值时,图中阴影部分的面积(与数学Ⅳ第四题类似)1s 与2s 之和21s s s +=最小? (2 ) t 取何值时,21s s s +=最大?解:132223212041(1)33tts s s t x dx x dx t t t t =+=-+--=-+⎰⎰,(01)t ≤≤令0s '=,得(0,1)内的驻点12t =. 而11()24s =,1(0)3s =,2(1)3s =,因此 12t =时,s 最小;1t =时,s 最大.五、(本题满分5分)【 同数学Ⅳ 第六题 】 六、(本题满分8分)设某产品的总成本函数为21()40032C x x x =++,而需求函数为xp 100=,其中x 为产量(假定等于需求量),p 为价格. 试求:(1)边际成本; (2)边际收益; (3)边际利润; (4)收益的价格弹性. 解:(1)边际成本:()3MC C x x '==+;(2)收益函数:()R x p x =⋅=()MR R x'==;(3)利润函数:21()()()40032L x R x C x x x =-=--, 边际利润:()3ML L x x'==--;(4)收益的价格函数:2(100)()R x p==,收益的价格弹性:2222(100)1(100)p dR p R dp p =-⋅=-. 七、(本题满分8分)【 同数学Ⅳ 第八题 】 八、(本题满分7分)【 同数学Ⅳ 第九题 】 九、(本题满分6分)【 同数学Ⅳ 第十题 】十、(本题满分8分)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======, 试写出X 的分布函数()F x ,并求X 的数学期望与方差.解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x , 10.220.330.5 2.3EX =⨯+⨯+⨯=;222210.220.330.5 5.9EX =⨯+⨯+⨯=222() 5.9 2.30.61DX EX EX =-=-=十一、(本题满分8分)【 同数学Ⅳ 第十二题 】。

2020-1987年考研数学三真题及答案

2020-1987年考研数学三真题及答案

历年考研数学三真题解析及复习思路(数学三)2020年-1987年2020全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设()()limx af x f a b x a →-=-,则sin ()sin lim x a f x ax a→-=- ( )(A )sin b a (B )cos b a (C )sin ()b f a (D )cos ()b f a 【答案】(B ) 【解析】由()lim,x a f x ab x a →-=-得(),()f a a f a b '==,则(2)函数11ln 1()(1)(2)x xe xf x e x -+=--的第二类间断点的个数为 ( ) (A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()limlim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---; 1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x e x f x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞---- 故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。

1987-2008年考研数学真题解析及复习思路(数学三)

1987-2008年考研数学真题解析及复习思路(数学三)


③ f(x) 的奇偶性是
; ④ 其图形的拐点是

⑤ 凹凸区间是

⑥ 水平渐近线是

1110
1 (2)


1=
1011

0111
æ0 0 0 1ö
(3) 设矩阵 A = çç0 0 1 0÷÷ ,则 A -1 =

çç0 1 0 0÷÷
è1 0 0 0ø
(4) 设 P(A) = 0.4, P(A ∪ B) = 0.7,那么
五、(本题满分 5 分)【同试卷 Ⅳ 第六题】
六、(本题满分 8 分)
设某产品的总成本函数为 C( x) = 400 + 3x + 1 x2,而需求函数为 p = 100,其中 x 为Fra bibliotek量( 假定等于


需求量), p 为价格,试求:
(1) 边际成本;
(2) 边际收益;
(3) 边际利润;
(4) 收益的价格弹性.
的敛散性.



(2)
已知级数������

2 n
与������ b2n
都收敛,试证明级数������ an b n
绝对收敛.
n=1
n=1
n=1

历年考研数学真题解析及复习思路( 数学三)
五、(本题满分 8 分)
已知某商品的需求量 D 和供给量 S 都是价格 p 的函数:


D( p)

a, p2
八、(本题满分 8 分)
ìï2x1 - x2 + 4x3 - 3x4 = - 4,
解线性方程组
ïïx1 + x3 - x4 íï3x1 + x2 + x

1987年数三真题解析

1987年数三真题解析

【解析】
z x

1

1
x x
y y
2


2 y
x y2

y x2 y2
,
z y

1

1
x x
y y
2


x
2x y
2

x2
x
y2
dz

z x
dx

z y
dy


ydx xdy x2 y2
ydx xdy x2 y2
0
S2
2 t
sin
xdx


2
t

sin
t

cos t


2

t

sin
t
,
S

S1

S2

2

t

4

sin
t

2 cos t
1,
0t , 2
令 S'

2

t

4

cos
t
0,


0,
2

内得驻点
2
【答案】
x 1 x2
【解析】 y ln 1 x2 1 ln 1 x2 1 ,
2x
2x
y' 2 1 x2 2 1 x2 2 1 x2 1 1 x2 1 x 1 x2
(3)
z

arctan
x x

y y

1987高考数学全国卷及答案理-推荐下载

1987高考数学全国卷及答案理-推荐下载
1 x
(D) y 1 x2
(B)向右平行移动
3
(D)向右平行移动
6
(C)双曲线 (D)抛物线
(C) Y

2
二.(本题满分 28 分)本题共 7 小题,每一个小题满分 4 分 只要求 新疆 王新敞 奎屯
写出结果
(1)求函数 [答] 3
2
(2)已知方程
y tg 2x
x2
3
新疆
的周期 王新敞
2
(注:本题有多种解答)
四.(本题满分 12 分)
2 cos10
的值
新疆 王新敞
奎屯
如图,三棱锥 P-ABC 中,已知 PA⊥BC,PA=BC=L,PA,BC 的公垂
线 ED=h 求证三棱锥 P-ABC 的体积 新疆 王新敞 奎屯
V= 1 L2h.
6
证:连结 AD 和 PD∵BC⊥PA,BC⊥ED,
(4)已知 E,F,G,H 为空间中的四个点,设
命题甲:点 E,F,G,H 不共面,
命题乙:直线 EF 和 GH 不相交
(A)甲是乙的充分条件,但不是必要条件
(B)甲是乙的必要条件,但不是充分条件
(C)甲是乙的充要条件
(D)甲不是乙的充分条件,也不是乙必要条件
c
奎屯
b 0) ,令 c
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

1987年普通高等学校招生全国统一考试理科数学试题及答案

1987年普通高等学校招生全国统一考试理科数学试题及答案

1987年普通高等学校招生全国统一考试理科数学试题及答案一.(本题满分24分)本题共有8个小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的,把你认为正确结论的代号写在题后的圆括号内选对的得3分,不选、选错或者选出的代号超过一个的(不论是否都写在圆括号内),一律得0分 (1)设S ,T 是两个非空集合,且S T ,T S ,令X=S ⋂T ,那么S ⋃X 等于 ( D ) (A )X (B )T (C )φ (D )S(2)设椭圆方程为)0(12222>>=+b a by a x ,令22b a c -=,那么它的准线方程为 ( C )(A )c a y 2±= (B )c b y 2±= (C )c a x 2±= (D )cb x 2±=(3)设a,b 是满足ab<0的实数,那么 ( B ) (A )|a+b|>|a-b| (B )|a+b|<|a-b| (C )|a-b|<||a|-|b|| (D )|a-b|<|a|+|b| (4)已知E ,F ,G ,H 为空间中的四个点,设 命题甲:点E ,F ,G ,H 不共面,命题乙:直线EF 和GH 不相交 那么 ( A ) (A )甲是乙的充分条件,但不是必要条件 (B )甲是乙的必要条件,但不是充分条件 (C )甲是乙的充要条件(D )甲不是乙的充分条件,也不是乙必要条件⊆⊆(5)在区间)0,(-∞上为增函数的是 ( B ) (A ))(log 21x y --= (B )xx y -=1 (C )2)1(+-=x y (D )21x y +=(6)要得到函数32sin(π-=x y 的图象,只需将函数x y 2sin =的图象(图略) ( D )(A )向左平行移动3π (B )向右平行移动3π(C )向左平行移动6π (D )向右平行移动6π(7)极坐标方程θ+θ=ρcos 2sin 所表示的曲线是 ( B ) (A )直线 (B )圆 (C )双曲线 (D )抛物线 (8)函数2,2[)(arccos(cos ππ-∈=x x y 的图象是 ( A )二.(本题满分28分)本题共7小题,每一个小题满分4分只要求写出结果(1)求函数3x2tgy =的周期 [答]23π (2)已知方程11y 2x 22=λ+-λ+表示双曲线,求λ的范围 [答]λ>-1或λ<-2.(注:写出一半给2分)(3)若(1+x)n 的展开式中,x 3的系数等于x 的系数的7倍,求n.[答]8 (注:若给出8同时给出-5得2分)(A ) (B ) Y (C ) Y (D )π(4)求极限⎪⎭⎫⎝⎛++++++++∞→1n n 21n 31n 21n 1lim 2222n [答]2(5)在抛物线2x 4y =上求一点,使该点到直线5x 4y -=的距离为最短[答])1,21((6)由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数求这种五位数的个数[答]72(7)一个正三棱台的下底和上底的周长分别为30cm 和12cm ,而侧面积等于两底面积之差,求斜高[答]3 三.(本题满分10分)求︒︒︒︒70sin 50sin 30sin 10sin 的值 解:原式=16110cos 1680sin 10cos 240cos 20cos 10cos 10sin 221=︒︒=︒︒︒︒︒⋅(注:本题有多种解答) 四.(本题满分12分)如图,三棱锥P-ABC 中,已知PA ⊥BC ,PA=BC=L,PA,BC 的公垂线ED=h 求证三棱锥P-ABC 的体积V=61L 2h. 证:连结AD 和PD ∵BC ⊥PA ,BC ⊥ED ,PA 与ED 相交,∴BC ⊥平面PAD ∵ED ⊥PA ,∴S △ABC =21PA ·ED=21LhPE C A D BV B-PAD =31(21Lh)·BD=61Lh ·BD同理,V C-PAD =61Lh ·CD∴三棱锥P-ABC 的体积V=61Lh ·BD+61Lh ·CD=61Lh (BD+CD )=61Lh ·BC=61L 2h.若E ,D 不是分别在线段AP ,BC 上,结论仍成立 (此话不说,也不扣分) 五.(本题满分12分)设对所有实数x ,不等式0a4)1a (log 1a a 2log x 2a )1a (4log x 222222>+++++恒成立,求a 的取值范围 解:由题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧<+⋅+-+>+>+)3(0a 4)1a (log a )1a (4log 4)1a a 2log 2()2(,0a )1a (4log )1(,01a a2222222令,1a a2log z 2+=则(3)式变为,0)z 2)(z 8(log z 22<--- 化简为,0)z 6(z <-解得0z 6z <>或 (4) (2)式变为,0z 8log 2>-即,3z < (5) 综合(4),(5)得,01a a2log ,0z 2<+<即 由此,11a a2<+ (6)解(1),(6)得a 取值范围:.1a 0<< 六.(本题满分12分,共2个小题)设复数21z z 和满足关系式,0z A z A z z 2121=++其中A 为不等于0的复数证明:(1);|A ||A z ||A z |221=++(2).Az Az A z A z 2121++=++ 证:(1)|)A z (||)A z (||A z ||A z ||A z ||A z |21___________2121++=++=++222121|A |||A |||A A ||A A z A z A z z |===+++=(2),0A z ,0A z ,0A 21≠+≠+≠由此得222221221222121||||||))(())((A z A A z A A z A z A z z A z A z A z A z A z A z +=++++=++++=++ .||||||||||21212221A z Az A z A z A z A z A z ++=++=+++=七.(本题满分12分,共3个小题)设数列 ,,,,21n a a a 的前n 项的和S n 与n a 的关系是,)1(11nn n b ba S +-+-=其中b 是与n 无关的常数,且b ≠-1 (1)求1-n n a a 和的关系式;(2)写出用n 和b 表示n a 的表达式;(3)当10<<b 时,求极限n n S ∞→lim . )2()1()()1(1)1(1)()1(:1111≥++--=+++---=-=----n b ba ab b b a a b S S a nn n n n n n n n n 解)1()2()1(111≥+++=+-n b b a b b a n n n 由此解得)2(.)1(,111)2(21111b ba b ba S a +=∴+-+-==12112111323312132122212)1()3()2()3()1(1)1(1)1()1(11)1(1)1()1(11++--+-+--+-+-++++=+++++⎪⎭⎫ ⎝⎛+=++++⎪⎭⎫⎝⎛+=+++⎥⎦⎤⎢⎣⎡+++⎪⎭⎫⎝⎛+=+++⎪⎭⎫ ⎝⎛+=++⎥⎦⎤⎢⎣⎡++++=n nn n n n n n n n n n n n n n n n b b b b a b b b b a b b a b b b b a b b b b b b b a b b b b b b b a b b b bb b a b b b b a 得代入将由此推得⎪⎪⎩⎪⎪⎨⎧=≠+--=∴+++1,21,)1)(1(111b n b b b b b a n n n n 注:(2)也可用数学归纳法证明11lim ,0lim ,10)1(,111111))(()3(11=⎪⎭⎫⎝⎛+=<<≠⎪⎭⎫⎝⎛+-+⎪⎭⎫ ⎝⎛+⋅---=∞→∞→++nn n n nn n n b b b b b b b b b b S 时所以当.1lim,10=<<∞→n n S b 时 八.(本题满分10分)定长为3的线段AB 的两端点在抛物线y 2=x 上移动,记线段AB 的中点为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标 解:设A (x 1,y 1),B(x 2,y 2),AB 长度为3,那么x 1=y 12,x 2=y 22,(1)32=(x 2-x 1)2+(y 2-y 1)2=(y 22-y 12)2+(y 2-y 1)2=(y 2-y 1)2[(y 2+y 1)2+1](2) 线段AB 的中点M (x,y )到y 轴的距离为]1)1)(()[(41)(212221221222121-+++-=+=+=y y y y y y x x x 45)3(31)()(,45)132(41)2(]1)1)(()(2[410221221221221==++=-=-⨯≥-++-≥x x y y y y x y y y y 取得最小值时并且当得由下证x 能达到最小值,根据题意不妨设y 1>y 2 ,由(3)得)22,45()22,45(M 222y y y M .45x ,x ,x )1(,y y ,2y y ,3y y 210212,12121-∴±=+=⎩⎨⎧±=+=-或点坐标为点纵坐标相应的可取得最小值所以解得由由此解得九.(附加题,本题满分10分,共2个小题,每小题5分,不计入总分)(1)求极限.x 211lim xn ⎪⎭⎫ ⎝⎛-∞→ (2)设y ),x 1ln(x y 2'+=求解:.x 1x 2)x 1ln(y )2(ex 211lim x 211lim )1(2222121x2n xn +++='=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----∞→∞→。

考研数三(1987-1997年)历年真题

考研数三(1987-1997年)历年真题

1997年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1) 设()(ln )f x y f x e =,其中f 可微,则dy =___________.(2)若1201()()1f x f x dx x=++,则10()f x dx =⎰___________. (3) 差分方程12tt t y y t +-=的通解为___________.(4) 若二次型2221231231223(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是___________.(5) 设随机变量X 和Y 相互独立且都服从正态分布2(0,3)N ,而19,,X X 和19,,Y Y 分别是来自总体X Y 和的简单随机样本,则统计量U =服从___________分布(2分),参数为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 设561cos 2()sin ,()56xx x f x t dt g x -==+⎰,则当0x →时,()f x 是()g x 的 ( )(A) 低阶无穷小 (B) 高阶无穷小(C) 等价无穷小 (D) 同阶但不等价的无穷小(2) 若()()()f x f x x -=-∞<<+∞,在(,0)-∞内()0f x '>,且()0f x ''<,则在(0,+∞内有( )(A) ()0f x '>,()0f x ''< (B) ()0f x '>,()0f x ''> (C) ()0f x '<,()0f x ''< (D) ()0f x '<,()0f x ''>(3) 设向量组1α,2α,3α线性无关,则下列向量组中,线性无关的是 ( )(A) 12αα+,23αα+,31αα- (B) 12αα+,23αα+,1232ααα++ (C) 122αα+,2323αα+,313αα+(D) 123ααα++,1232322ααα-+,123355ααα+-(4) 设,A B 为同阶可逆矩阵,则 ( )(A) AB BA = (B) 存在可逆矩阵P ,使1P AP B -= (C) 存在可逆矩阵C ,使TC AC B = (D) 存在可逆矩阵P 和Q ,使PAQ B =(5) 设两个随机变量X 与Y 相互独立且同分布:{}{}111,2P X P Y =-==-={}1P X = {}112P Y ===,则下列各式中成立的是 ( )(A) {}12P X Y == (B) {}1P X Y ==(C) {}104P X Y +== (D) {}114P XY ==三、(本题满分6分)在经济学中,称函数1()[(1)]xxxQ x A KL δδ---=+-为固定替代弹性生产函数,而称函数1Q AK L δδ-=为Cobb-Douglas 生产函数(简称C —D 生产函数).试证明:但0x →时,固定替代弹性生产函数变为C —D 生产函数,即有lim ()x Q x Q →=.四、(本题满分5分)设(,,)u f x y z =有连续偏导数,()y y x =和()z z x =分别由方程0xye y -=和0xe xz -=所确定,求du dx.五、(本题满分6分)一商家销售某种商品的价格满足关系70.2p x =-(万元/吨),x 为销售量(单位:吨),商品的成本函数31C x =+(万元).(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时的销售量; (2) t 为何值时,政府税收总额最大.六、(本题满分6分)设函数()f x 在[0,)+∞上连续、单调不减且(0)0f ≥,试证函数1(),0,()0,0,x nt f t dt x F x x x ⎧>⎪=⎨⎪=⎩⎰若若 在[0,)+∞上连续且单调不减(其中0n >).七、(本题满分6分)从点1(1,0)P 作x 轴的垂线,交抛物线2y x =于点1(1,1)Q ;再从1Q 作这条抛物线的切线与x 轴交于2P ,然后又从2P 作x 轴的垂线,交抛物线于点2Q ,依次重复上述过程得到一系列的点1122,;,;;,;n n P Q P Q P Q .(1) 求n OP ;(2) 求级数1122n n Q P Q P Q P ++++的和.其中(1)n n ≥为自然数,而12M M 表示点1M 与2M 之间的距离. 八、(本题满分6分)设函数()f t 在[0,)+∞上连续,且满足方程222244()t x y t f t e f dxdy π+≤=+⎰⎰,求()f t . 九、(本题满分6分)设A 为n 阶非奇异矩阵,α为n 维列向量,b 为常数.记分块矩阵0,T T E A P Q A A b ααα*⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,其中A *是矩阵A 的伴随矩阵,E 为n 阶单位矩阵. (1) 计算并化简PQ ;(2) 证明:矩阵Q 可逆的充分必要条件是1TAb αα-≠.十、(本题满分10分)设三阶实对称矩阵A 的特征值是1,2,3;矩阵A 的属于特征值1,2的特征向量分别是12(1,1,1),(1,2,1)T T αα=--=--.(1) 求A 的属于特征值3的特征向量; (2) 求矩阵A .十一、(本题满分7分)假设随机变量X 的绝对值不大于1;11{1},{1}84P X P X =-===;在事件 {11}X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间长度成正比.试求X 的分布函数(){}F x P X x =≤.十二、(本题满分6分)游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第5分钟、25分钟和55分钟从底层起行. 假设一游客在早晨八点的第X 分钟到达底层候梯处,且X 在[0,60]上均匀分布,求该游客等候时间的数学期望.十三、(本题满分6分)两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时停用而另一台自行开动.试求两台记录仪无故障工作的总时间T 的概率密度()f t 、数学期望和方差.1996年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设方程yx y =确定y 是x 的函数,则dy =___________. (2) 设()arcsin x f x dx x C =+⎰,则1()dx f x =⎰___________.. (3) 设()00,x y 是抛物线2y ax bx c =++上的一点,若在该点的切线过原点,则系数应满足的关系是___________.(4) 设123222212311111231111n nn n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 其中(;,1,2,,)i j a a i j i j n ≠≠=.则线性方程组T A X B =的解是___________.(5) 设由来自正态总体2~(,0.9)X N μ容量为9的简单随机样本,得样本均值5X =,则未知参数μ的置信度为0.95的置信区间为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 累次积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成 ( )(A) 10(,)dy f x y dx ⎰(B) 10(,)dy f x y dx ⎰(C)1100(,)dx f x y dy ⎰⎰(D)1(,)dx f x y dy ⎰(2) 下述各选项正确的是 ( )(A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B)1n nn u v∞=∑收敛,则21nn u∞=∑与21nn v∞=∑都收敛(C) 若正项级数1n n u ∞=∑发散,则1n u n≥(D) 若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛(3) 设n 阶矩阵A 非奇异(2n ≥),A *是矩阵A 的伴随矩阵,则 ( )(A) 1()n A A A -**= (B) 1()n A A A +**=(C) 2()n A AA -**= (D) 2()n A AA +**=(4) 设有任意两个n 维向量组1,,m αα和1,,m ββ,若存在两组不全为零的数1,,m λλ 和1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-=,则( )(A) 1,,m αα和1,,m ββ都线性相关(B) 1,,m αα和1,,m ββ都线性无关(C) 1111,,,,,m m m m αβαβαβαβ++--线性无关(D) 1111,,,,,m m m m αβαβαβαβ++--线性相关(5) 已知0()1P B <<且()1212[]()()P A A B P A B P A B +=+,则下列选项成立的是( ) (A) ()1212[]()()P A A B P A B P A B +=+ (B) ()1212()()P A B A B P A B P A B +=+ (C) ()1212()()P A A P A B P A B +=+(D) ()()1122()()()P B P A P B A P A P B A =+三、(本题满分6分)设(),0,()0,0,xg x e x f x xx -⎧-≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1,(0)1g g '==-. (1)求()f x ';(2)讨论()f x '在(,)-∞+∞上的连续性.四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是,x y 的函数,其中(),()f u u ϕ可微;()p t ,()u ϕ'连续,且()1u ϕ'≠.求()()z z p y p x x y∂∂+∂∂.五、(本题满分6分)计算2(1)xx xe dx e -+∞-+⎰.六、(本题满分5分)设()f x 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰.试证:存在(0,1)ξ∈使()()0.f f ξξξ'+=七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成aQ c p b=-+,其中a b 、、 c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少.(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少?八、(本题满分6分)求微分方程dy dx =的通解.九、(本题满分8分)设矩阵010010000010012A y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. (1) 已知A 的一个特征值为3,试求y ;(2) 求矩阵P ,使()()TAP AP 为对角矩阵.十、(本题满分8分)设向量12,,,t ααα是齐次线性方程组0AX =的一个基础解系,向量β不是方程组0AX =的解,即0A β≠.试证明:向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障仍可获得利润5万元;发生两次故障所获利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?十二、(本题满分6分)考虑一元二次方程20x Bx C ++=,其中B C 、分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p 和有重根的概率q .十三、(本题满分6分)假设12,,,n X X X 是来自总体X 的简单随机样本;已知(1,2,3,4)k k EX a k ==.证明:当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.1995年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1) 设1()1x f x x -=+,则()()n f x = . (2) 设()yz xyf x=,()f u 可导,则x y xz yz ''+= .(3) 设(ln )1f x x '=+,则()f x = .(4) 设100220345A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A *是A 的伴随矩阵,则1()A *-= .(5) 设12,,,n X X X 是来自正态总体2(,)N μσ的简单随机样本,其中参数μ和2σ未知,记22111,(),n n i i i i X X Q X X n ====-∑∑则假设0:0H μ=的t 检验使用统计量t =_____.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设()f x 为可导函数,且满足条件0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点(1,(1))f 处的切线斜率为 ( )(A) 2 (B) 1- (C)12(D) 2- (2) 下列广义积分发散的是 ( )(A)111sin dx x-⎰(B) 1-⎰ (C)2x edx +∞-⎰(D) 221ln dx x x+∞⎰(3) 设矩阵m n A ⨯的秩为()r A m n =<,m E 为m 阶单位矩阵,下述结论中正确的是 ( )(A) A 的任意m 个行向量必线性无关 (B) A 的任意一个m 阶子式不等于零 (C) 若矩阵B 满足0BA =,则0B =(D) A 通过初等行变换,必可以化为(,0)m E 的形式(4) 设随机变量X 和Y 独立同分布,记,U X Y V X Y =-=+,则随机变量U 与V 必然( )(A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 (5) 设随即变量X 服从正态分布2(,)N μσ,则随σ的增大,概率{}P X μσ-< ( )(A) 单调增大 (B) 单调减少 (C) 保持不变 (D) 增减不定三、(本题满分6分)设2202(1cos ),0()1,01cos ,0xx x x f x x t dt x x ⎧-<⎪⎪==⎨⎪⎪>⎩⎰,试讨论()f x 在0x =处的连续性和可导性.四、(本题满分6分)已知连续函数()f x 满足条件320()3xx t f x f dt e ⎛⎫=+ ⎪⎝⎭⎰,求()f x .五、(本题满分6分)将函数2ln(12)y x x =--展成x 的幂级数,并指出其收敛区间.六、(本题满分5分)计算22()min{,}xy x y e dxdy +∞+∞-+-∞-∞⎰⎰.七、(本题满分6分)设某产品的需求函数为()Q Q p =,收益函数为R pQ =,其中p 为产品价格,Q 为需求量(产品的产量),()Q p 为单调减函数.如果当价格为0p ,对应产量为0Q 时,边际收益00Q Q dR a dQ ==>,收益对价格的边际效应0p p dRc dp==<,需求对价格的弹性1p E b =>.求0p 和0Q .八、(本题满分6分)设()f x 、()g x 在区间[,]a a -(0a >)上连续,()g x 为偶函数,且()f x 满足条件()()f x f x A +-=(A 为常数).(1) 证明()()()aaaf xg x dx A g x dx -=⎰⎰;(2) 利用(1)的结论计算定积分22sin arctan x x e dx ππ-⎰.九、(本题满分9分)已知向量组(Ⅰ)123,,ααα;(Ⅱ)1234,,,αααα;(Ⅲ)1235,,,αααα,如果各向量组的秩 分别为(I)(II)3r r ==,(III)4r =.证明:向量组12354,,,ααααα-的秩为4.十、(本题满分10分)已知二次型2212323121323(,,)43448f x x x x x x x x x x x =-+-+.(1) 写出二次型f 的矩阵表达式;(2) 用正交变换把二次型f 化为标准形,并写出相应的正交矩阵.十一、(本题满分8分)假设一厂家生产的每台仪器,以概率0.70可以直接出厂;以概率0.30需进一步调试, 经调试后以概率0.80可以出厂;以概率0.20定为不合格品不能出厂.现该厂新生产了(2)n n ≥台仪器(假设各台仪器的生产过程相互独立).求:(1) 全部能出厂的概率α;(2) 其中恰好有两台不能出厂的概率β; (3) 其中至少有两台不能出厂的概率θ.十二、(本题满分8分)已知随机变量X 和Y 的联合概率密度为4,01,01,(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其他, 求X 和Y 联合分布函数(,)F x y .1994年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)2222x xdx x -+=+⎰_____________.(2) 已知()1f x '=-,则000lim(2)()x xf x x f x x →=---_____________.(3) 设方程2cos xy e y x +=确定y 为x 的函数,则dydx=_____________. (4) 设121000000,000000n n a aA a a -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦LL M M MM L L其中0,1,2,,,i a i n ≠=L 则1A -=_____________.(5) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其他, 以Y 表示对X 的三次独立重复观察中事件12X ⎧⎫≤⎨⎬⎩⎭出现的次数,则{}2P Y == _____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 曲线2121arctan (1)(2)x x x y e x x ++=+-的渐近线有 ( )(A) 1条 (B) 2条 (C) 3条 (D) 4条 (2) 设常数0λ>,而级数21nn a∞=∑收敛,则级数1(1)nn ∞=-∑ ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (3) 设A 是m n ⨯矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B AC =的秩为1r ,则( )(A) 1r r > (B) 1r r <(C) 1r r = (D) r 与1r 的关系由C 而定(4) 设0()1,0()1,()()1P A P B P A B P A B <<<<+=,则 ( )(A) 事件A 和B 互不相容 (B) 事件A 和B 相互对立(C) 事件A 和B 互不独立 (D) 事件A 和B 相互独立(5) 设12,,,n X X X L 是来自正态总体2(,)N μσ的简单随机样本,X 是样本均值,记222212112222341111(),(),111(),(),1n n i i i i n n i i i i S X X S X X n n S X S X n n μμ=====-=--=-=--∑∑∑∑则服从自由度为1n -的t 分布的随机变量是 ( )(A) X t S μ-=(B) X t S μ-=(C) X t S μ-=(D) X t S μ-=三、(本题满分6分)计算二重积分(),Dx y dxdy +⎰⎰其中{}22(,)1D x y x y x y =+≤++. 四、(本题满分5分)设函数()y y x =满足条件440,(0)2,(0)4,y y y y y '''++=⎧⎨'==-⎩求广义积分0()y x dx +∞⎰.五、(本题满分5分)已知22(,)arctan arctan y x f x y x y x y=-,求2f x y ∂∂∂.六、(本题满分5分)设函数()f x 可导,且10(0)0,()()xn n n f F x t f x t dt -==-⎰,求20()limnx F x x → 七、(本题满分8分)已知曲线0)y a =>与曲线y =00(,)x y 处有公共切线,求:(1) 常数a 及切点00(,)x y ;(2) 两曲线与x 轴围成的平面图形绕x 轴旋转所得旋转体的体积x V . 八、(本题满分6分)假设()f x 在[,)a +∞上连续,()f x ''在(),a +∞内存在且大于零,记()()()()f x f a F x x a x a-=>-,证明()F x 在(),a +∞内单调增加. 九、(本题满分11分) 设线性方程组231121312312223223132********434,,,.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 证明:若1234,,,a a a a 两两不相等,则此线性方程组无解;(2) 设1324,(0)a a k a a k k ====-≠,且已知12,ββ是该方程组的两个解,其中12111,1,11ββ-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦写出此方程组的通解.十、(本题满分8分)设0011100A x y ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦有三个线性无关的特征向量,求x 和y 应满足的条件.十一、(本题满分8分)假设随机变量1234,,,X X X X 相互独立,且同分布{}{}00.6,10.4(1,2,3,4)i i P X P X i =====,求行列式1234X X X X X =的概率分布.十二、(本题满分8分)假设由自动线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T (单位:元)与销售零件的内径X 有如下关系:1,10,20,1012,5,12.X T X X -<⎧⎪=≤≤⎨⎪->⎩问平均内径μ取何值时,销售一个零件的平均利润最大?1993年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 2352limsin 53x x x x→∞+=+ .(2) 已知()232,arctan ,32x y f f x x x -⎛⎫'==⎪+⎝⎭则0x dy dx == .(3) 级数0(ln 3)2nnn ∞=∑的和为 . (4) 设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为 .(5) 设总体X 的方差为1,根据来自X 的容量为100的简单随机样本,测得样本均值为5,则X 的数学期望的置信度近似等于0.95的置信区间为 .二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(1) 设()f x=21,0,0,0,x xx ≠⎪=⎩则()f x 在点0x =处 ( ) (A) 极限不存在 (B) 极限存在但不连续(C) 连续但不可导 (D) 可导 (2) 设()f x 为连续函数,且()()ln 1,xxF x f t dt =⎰则()F x '等于 ( )(A)()2111ln f x f x x x ⎛⎫+ ⎪⎝⎭ (B) ()11ln f x f x x ⎛⎫+ ⎪⎝⎭ (C)()2111ln f x f x x x ⎛⎫- ⎪⎝⎭(D) ()1ln f x f x ⎛⎫- ⎪⎝⎭(3) n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的 ( )(A) 充分必要条件 (B) 充分而非必要条件 (C) 必要而非充分条件 (D) 既非充分也非必要条件 (4) 假设事件A 和B 满足()1P B A =,则 ( )(A) A 是必然事件 (B) ()0P B A =. (C) A B ⊃ (D) A B ⊂(5) 设随机变量X 的密度函数为()x ϕ,且()()x x ϕϕ-=.()F x 是X 的分布函数,则对任意实数a ,有( )(A) 0()1()aF a x dx ϕ-=-⎰. (B) 01()()2aF a x dx ϕ-=-⎰(C) ()()F a F a -= (D) ()2()1F a F a -=-三、(本题满分5分)设()z f x,y =是由方程0z y xz y x xe ----+=所确定的二元函数,求dz .四、(本题满分7分)已知22lim 4xxax x a x e dx x a +∞-→∞-⎛⎫= ⎪+⎝⎭⎰,求常数a 的值.五、(本题满分9分)设某产品的成本函数为2,C aq bq c =++需求函数为1(),q d p e=-其中C 为成本,q 为需求量(即产量),p 为单价,,,,,a b c d e 都是正的常数,且d b >,求:(1) 利润最大时的产量及最大利润; (2) 需求对价格的弹性;(3) 需求对价格弹性的绝对值为1时的产量.六、(本题满分8分)假设:(1) 函数()(0)y f x x =≤<+∞满足条件(0)0f =和0()1xf x e ≤≤-; (2) 平行于y 轴的动直线MN 与曲线()y f x =和1xy e =-分别相交于点1P 和2P ; (3) 曲线()y f x =,直线MN 与x 轴所围封闭图形的面积S 恒等于线段12P P 的长度. 求函数()y f x =的表达式.七、(本题满分6分)假设函数()f x 在[0,1]上连续,在(0,1)内二阶可导,过点(0,(0))A f 与(1,(1))B f 的直线与曲线()y f x =相交于点(,())C c f c ,其中01c <<.证明:在(0,1)内至少存在一点ξ,使()0f ξ''=.八、(本题满分10分)k 为何值时,线性方程组12321231234,,24x x kx x kx x k x x x ++=⎧⎪-++=⎨⎪-+=-⎩ 有惟一解,无解,有无穷多组解?在有解情况下,求出其全部解.九、(本题满分9分)设二次型222123122313222f x x x x x x x x x αβ=+++++经正交变换X PY =化成22232f y y =+,其中123(,,)T X x x x =和123(,,)TY y y y =是三维列向量, P 是3阶正交矩阵.试求常数,αβ.十、(本题满分8分)设随机变量X 和Y 同分布, X 的概率密度为23,02,()80,.x x f x ⎧<<⎪=⎨⎪⎩其他 (1) 已知事件{}A X a =>和{}B Y a =>独立,且()34P A B .=求常数a.(2) 求21X的数学期望.十一、(本题满分8分)假设一大型设备在任何长为t 的时间内发生故障的次数()N t 服从参数为t λ的泊松分布. (1) 求相继两次故障之间时间间隔T 的概率分布;(2) 求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q .1992年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 设商品的需求函数为1005Q P =-,其中,Q P 分别表示为需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是_________.(2) 级数21(2)4nnn x n ∞=-∑的收敛域为_________. (3)交换积分次序1(,)dy f x y dx =⎰_________.(4) 设A 为m 阶方阵,B 为n 阶方阵,且0,,0A A a B b C B ⎛⎫===⎪⎝⎭,则C =________. (5) 将,,,,,,C C E E I N S 等七个字母随机地排成一行,那么,恰好排成英文单词SCIENCE 的概率为__________. 二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(1) 设2()()xax F x f t dt x a =-⎰,其中()f x 为连续函数,则lim ()x a F x →等于 ( ) (A) 2a (B) 2()a f a(C) 0 (D) 不存在(2) 当0x →时,下面四个无穷小量中,哪一个是比其他三个更高阶的无穷小量? ( )(A) 2x (B) 1cos x -1 (D) tan x x -(3) 设A 为m n ⨯矩阵,齐次线性方程组0Ax =仅有零解的充分条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关 (D) A 的行向量线性相关(4) 设当事件A 与B 同时发生时,事件C 必发生,则 ( )(A) ()()()1P C P A P B ≤+- (B) ()()()1P C P A P B ≥+- (C) ()()P C P AB = (D) ()()P C P AB =(5) 设n 个随机变量12,,,n X X X 独立同分布,2111(),,ni i D X X X n σ===∑2211()1ni i S X X n ==--∑,则 ( ) (A) S 是σ的无偏估计量 (B) S 是σ的最大似然估计量 (C) S 是σ的相合估计量(即一致估计量) (D) S 与X 相互独立三、(本题满分5分)设函数ln cos(1),1,1sin ()21, 1.x x x f x x π-⎧≠⎪⎪-=⎨⎪=⎪⎩问函数()f x 在1x =处是否连续?若不连续,修改函数在1x =处的定义使之连续.四、(本题满分5分)计算arccot .xxe I dx e=⎰五、(本题满分5分)设sin()(,)xz xy x yϕ=+,求2z x y ∂∂∂,其中(,)u v ϕ有二阶偏导数.六、(本题满分5分)求连续函数()f x ,使它满足20()2()xf x f t dt x +=⎰.七、(本题满分6分)求证:当1x ≥时,212arctan arccos 214x x x π-=+. 八、(本题满分9分)设曲线方程(0)xy e x -=≥.(1) 把曲线x y e -=,x 轴,y 轴和直线(0)x ξξ=>所围成平面图形绕x 轴旋转一周,得一旋转体,求此旋转体体积()V ξ;求满足1()lim ()2V a V ξξ→+∞=的a .(2) 在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积. (3)九、(本题满分7分)设矩阵A 与B 相似,其中20010022,02031100A x B y --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.(1) 求x 和y 的值.(2) 求可逆矩阵P ,使得1P AP B -=.十、(本题满分6分)已知三阶矩阵0B ≠,且B 的每一个列向量都是以下方程组的解:123123123220,20,30.x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ (1) 求λ的值; (2) 证明0B =.十一、(本题满分6分)设A B 、分别为m n 、阶正定矩阵,试判定分块矩阵00A C B ⎛⎫= ⎪⎝⎭是否是正定矩阵.十二、(本题满分7分)假设测量的随机误差2(0,10)XN ,试求100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松分布求出α的近似值(要求小数点后取两位有效数字). [附表]十三、(本题满分5分)一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30.假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望EX 和方差DX .十四、(本题满分4分)设二维随机变量(,)X Y 的概率密度为,0,(,)0,y e x y f x y -⎧<<=⎨⎩其他,(1) 求随机变量X 的密度()X f x ; (2) 求概率{1}P X Y +≤.1991年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.) (1) 设sin ,xyz e=则dz = _______.(2) 设曲线()3fx x a x =+与()2g x bx c =+都通过点()10,,-且在点()10,-有公共切线,则a =_______,b = _______,c = _______. (3) 设()x f x xe =,则()()n fx 在点x = _______处取极小值 _______.(4) 设A 和B 为可逆矩阵,00A X B⎛⎫=⎪⎝⎭为分块矩阵,则1X -= _______. (5) 设随机变量X 的分布函数为0,1,0.4,11,(){}0.8,13,1,3.x x F x P X x x x <-⎧⎪-≤<⎪=≤=⎨≤<⎪⎪≥⎩则X 的概率分布为 _______.二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 下列各式中正确的是 ( )(A) 01lim 11x x x +→⎛⎫+= ⎪⎝⎭ (B) 01lim 1xx e x +→⎛⎫+= ⎪⎝⎭ (C) 1lim 1xx e x →∞⎛⎫-=- ⎪⎝⎭ (D) 1lim 1xx e x -→∞⎛⎫+= ⎪⎝⎭(2) 设10(1,2,)n a n n≤≤=则下列级数中肯定收敛的是 ( ) (A)1nn a∞=∑ (B)1(1)nn n a ∞=-∑(C) 1n ∞=21(1)n n n a ∞=-∑(3) 设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随矩阵*A 的特征根之一是( )(A) 1n A λ- (B) 1A λ- (C) A λ (D) nA λ(4) 设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ( )(A) A 与B 不相容 (B) A 与B 相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -=(5) 对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则 ( )(A) ()()()D XY D X D Y =⋅ (B) ()()()D X Y D X D Y +=+(C) X 和Y 独立 (D) X 和Y 不独立三、(本题满分5分)求极限 120lim x xnxxx e e e n →⎛⎫+++⎪⎝⎭,其中n 是给定的自然数.四、(本题满分5分)计算二重积分DI ydxdy =⎰⎰,其中D 是由x 轴,y1=所围成的区域,0,0a b >>.五、(本题满分5分)求微分方程22dyxyx y dx=+满足条件2x e y e ==的特解.六、(本题满分6分)假设曲线1L :()2101y x x =-≤≤、x 轴和y 轴所围区域被曲线2L :2y ax =分为面积相等的两部分,其中a 是大于零的常数,试确定a 的值.七、(本题满分8分)某厂家生产的一种产品同时在两个市场销售,售价分别为1p 和2p ;销售量分别为1q 和2q ;需求函数分别为112402q .p =-和2210005q .p =-,总成本函数为()123540C q q .=++试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大利润为多少?八、(本题满分6分)试证明函数1()(1)xf x x=+在区间(0,)+∞内单调增加.九、(本题满分7分)设有三维列向量12321110111111,,,,λααλαβλλλ+⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==+==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦问λ取何值时,(1) β可由123,,ααα线性表示,且表达式唯一? (2) β可由123,,ααα线性表示,且表达式不唯一? (3) β不能由123,,ααα线性表示?十、(本题满分6分)考虑二次型22212312132344224f x x x x x x x x x λ=+++-+.问λ取何值时,f 为正定二次型.十一、(本题满分6分)试证明n 维列向量组12,,,n ααα线性无关的充分必要条件是1112121222120T T T nT T T nT T T n n n nD αααααααααααααααααα=≠,其中Ti α表示列向量i α的转置,1,2,,i n =.十二、(本题满分5分)一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数.求X 的概率分布.十三、(本题满分6分)假设随机变量X 和Y 在圆域222x y r +≤上服从联合均匀分布. (1) 求X 和Y 的相关系数ρ;(2) 问X 和Y 是否独立?十四、(本题满分5分)设总体X 的概率密度为1,0,(;)0,0,aa x ax e x p x x λλλ--⎧>⎪=⎨≤⎪⎩其中0λ>是未知参数,0a >是已知常数.试根据来自总体X 的简单随机样本12,,,n X X X ,求λ的最大似然估计量ˆλ.1990年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.) (1)极限n →∞=_________.(2) 设函数()f x 有连续的导函数,(0)0,(0)f f b '==,若函数()sin ,0,(),0f x a xx F x xA x +⎧≠⎪=⎨⎪=⎩在0x =处连续,则常数A =___________.(3) 曲线2y x =与直线2y x =+所围成的平面图形的面积为_________.(4) 若线性方程组121232343414,,,x x a x x a x x a x x a +=-⎧⎪+=⎪⎨+=-⎪⎪+=⎩有解,则常数1234,,,a a a a 应满足条件________.(5) 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为________.二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数sin ()tan xf x x x e=⋅⋅,则()f x 是 ( )(A) 偶函数 (B) 无界函数 (C) 周期函数 (D) 单调函数 (2) 设函数()f x 对任意x 均满足等式(1)()f x af x +=,且有(0),f b '=其中,a b 为非零常数,则 ( ) (A) ()f x 在1x =处不可导 (B) ()f x 在1x =处可导,且(1)f a '= (C) ()f x 在1x =处可导,且(1)f b '= (D) ()f x 在1x =处可导,且(1)f ab '= (3) 向量组12,,,s ααα线性无关的充分条件是 ( ) (A) 12,,,s ααα均不为零向量(B) 12,,,s ααα中任意两个向量的分量不成比例(C) 12,,,s ααα中任意一个向量均不能由其余1s -个向量线性表示 (D) 12,,,s ααα中有一部分向量线性无关(4) 设,A B 为两随机事件,且B A ⊂,则下列式子正确的是 ( )(C) ()()P B A P B = (D) ()()()P B A P B P A -=- (5) 设随机变量X 和Y 相互独立,其概率分布为则下列式子正确的是 ( )(A) X Y = (B) {}0P X Y == (C) {}12P X Y == (D) {}1P X Y ==三、计算题(本题满分20分,每小题5分.) (1) 求函数2ln ()21xetI x dt t t =-+⎰在区间2[,]e e 上的最大值. (2) 计算二重积分2yDxe dxdy -⎰⎰,其中D 是曲线24y x =和29y x =在第一象限所围成的区域. (3) 求级数21(3)nn x n ∞=-∑的收敛域. (4) 求微分方程sin cos (ln )xy y x x e-'+=的通解.四、(本题满分9分)某公司可通过电台及报纸两种形式做销售某种商品的广告,根据统计资料,销售收入R (万元)与电台广告费用1x (万元)及报纸广告费用2x (万元)之间的关系有如下经验公式:221212121514328210.R x x x x x x =++---(1) 在广告费用不限的情况下,求最优广告策略;(2) 若提供的广告费用为1.5万元,求相应的最优广告策略. 五、(本题满分6分)设()f x 在闭区间[0,]c 上连续,其导数()f x '在开区间(0,)c 内存在且单调减少;(0)0f =,试应用拉格朗日中值定理证明不等式:()()()f a b f a f b +≤+,其中常数a b 、满足条件0a b a b c ≤≤≤+≤.六、(本题满分8分)已知线性方程组1234512345234512345,3230,226,54332,x x x x x a x x x x x x x x x b x x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩ (1) a b 、为何值时,方程组有解?(2) 方程组有解时,求出方程组的导出组的一个基础解系; (3) 方程组有解时,求出方程组的全部解.已知对于n 阶方阵A ,存在自然数k ,使得0k A =,试证明矩阵E A -可逆,并写出其逆矩阵的表达式(E 为n 阶单位阵).八、(本题满分6分)设A 是n 阶矩阵,1λ和2λ是A 的两个不同的特征值,12,X X 是分别属于1λ和2λ的特征向量.试证明12X X +不是A 的特征向量.九、(本题满分4分)从0,1,2,,9十个数字中任意选出三个不同数字,试求下列事件的概率:1A ={三个数字中不含0和5};2A ={三个数字中不含0或5}.十、(本题满分5分)一电子仪器由两个部件构成,以X 和Y 分别表示两个部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为:0.50.50.5(),0,0,(,)0,x y x y e e e x y F x y ---+⎧-+≥≥=⎨⎩1-若其他. (1) 问X 和Y 是否独立?(2) 求两个部件的寿命都超过100小时的概率α.十一、(本题满分7分)某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72 分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率. [附表]表中()x Φ是标准正态分布函数.一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.) (1) 曲线2sin y x x =+在点122,ππ⎛⎫+⎪⎝⎭处的切线方程是__ _ .(2)幂级数nn ∞=的收敛域是__ _ . (3) 齐次线性方程组1231231230,0,0x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩ 只有零解,则λ应满足的条件是__ _ . (4) 设随机变量X 的分布函数为()00sin 0212,x ,F x A x,x ,,x ,ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩则A =__________,6P X π⎧⎫<=⎨⎬⎩⎭ .(5) 设随机变量X 的数学期望()E X μ=,方差2()D X σ=,则由切比雪夫(Chebyshev)不等式,有{3}P X μσ-≥≤__ _ .二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设()232xxf x ,=+-则当0x →时 ( )(A) ()f x 与x 是等价无穷小量 (B) ()f x 与x 是同阶但非等价无穷小量 (C) ()f x 是比x 较高阶的无穷小量 (D) ()f x 是比x 较低阶的无穷小量 (2) 在下列等式中,正确的结果是 ( )(A) ()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C)()()df x dx f x dx =⎰(D) ()()d f x dx f x =⎰ (3) 设A 为n 阶方阵且0A =,则 ( ) (A) A 中必有两行(列)的元素对应成比例(B) A 中任意一行(列)向量是其余各行(列)向量的线性组合 (C) A 中必有一行(列)向量是其余各行(列)向量的线性组合 (D) A 中至少有一行(列)的元素全为0(4) 设A 和B 均为n n ⨯矩阵,则必有 ( )(A) A B A B +=+ (B)AB BA =(C) AB BA = (D) ()111A B A B ---+=+(5) 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 ( )(A) “甲种产品滞销,乙种产品畅销” (B) “甲、乙两种产品均畅销”(C) “甲种产品滞销” (D) “甲种产品滞销或乙种产品畅销”三、计算题(本题满分15分,每小题5分)(1) 求极限11lim sin cos xx .x x →∞⎛⎫+ ⎪⎝⎭(2) 已知(,),,,z f u v u x y v xy ==+=且(,)f u v 的二阶偏导数都连续.求2zx y∂∂∂.(3) 求微分方程562xy y y e -'''++=的通解.四、(本题满分9分)设某厂家打算生产一批商品投放市场.已知该商品的需求函数为2()10x P P x e -==,且最大需求量为6,其中x 表示需求量,P 表示价格.(1) 求该商品的收益函数和边际收益函数.(2分)(2) 求使收益最大时的产量、最大收益和相应的价格.(4分) (3) 画出收益函数的图形.(3分)五、(本题满分9分)已知函数,01,()2,1 2.x x f x x x ≤≤⎧=⎨-≤≤⎩试计算下列各题: (1) 200();xS f x e dx -=⎰(4分) (2) 412(2);x S f x e dx -=-⎰(2分)(3) 222(2)(2,3,);n xn nS f x n e dx n +-=-=⎰(1分) (4) 0n n S S ∞==∑.(2分)六、(本题满分6分)假设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且()0f x '≤,记1()(),xa F x f t dt x a=-⎰ 证明在(,)a b 内,()0F x '≤.七、(本题满分5分)。

1987年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1987年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1987 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准数 学(试卷一)一、填空题(每小题3分,满分15分. 只写答案不写解题过程)(1)与两直线 112x y t z t =⎧⎪=-+⎨⎪=+⎩及 121121x y z ++-== 都平行,且过原点的平面方程是 50x y -+=(2)当x =1/ln 2-;时,函数2xy x =取得极小值.(3)由ln y x =与两直线(1)y e x =+-及0y =围成图形的面积= 3 / 2 (4)设L 为取正向的圆周922=+y x ,则曲线积分dy x xdx y xy L)4()22(2-+-⎰的值是π18-.(5)已知三维线性空间的一组基底)1,1,0(,)1,0,1(,)0,1,1(321===ααα,则向量α=(2, 0, 0)在上述基底下的坐标是 ( 1 , 1 , -1 )二、(本题满分8分)求正的常数a 与b ,使式1sin 1lim220=+-⎰→dt ta t x bx x x 成立. 解:假若1b ≠,则根据洛必达法则有2200011lim lim(01sin cos x x x bx x b x →→==≠--⎰,与题设矛盾,于是1b =.此时2222100002111lim lim(lim(sin 1cos x x x x bx x x x →→→===--⎰,即1=,因此4a =.三、(本题满分7分)(1)设函数,f g 连续可微,(,),()u f x xy v g x xy ==+,求,.u vx x∂∂∂∂解:1212()u x xy f f f y f x x x ∂∂∂''''=⋅+⋅=+⋅∂∂∂;()(1)v x xy g y g x x∂∂+''=⋅=+⋅∂∂.(2)设矩阵A 和B 满足2AB A B =+,其中A =301110014⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求矩阵B .解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭.四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解.其中常数0a >.解:由特征方程3222(9)0r r a r +++=,知其特征根根为12,30,3r r ai ==-±. 故对应齐次方程的通解为33123cos sin x x y C C e x C e x --=++ ,其中123,,C C C 为任意常数.设原方程的特解为*()y x Ax =,代入原方程可得A =219a+. 因此,原方程的通解为*33123()cos sin x x y x y y C C e x C e x --=+=+++219a+x . 五、选择题(每小题3分,满分12分) (1)设常数0k >,则级数21)1(n nk n n+-∑∞= (C )(A)发散(B)绝对收敛(C)条件收敛(D)收敛与发散与k 的值有关.(2)设)(x f 为已知连续函数,⎰=t s dx tx f t I 0)(,0,0s t >>,则I 的值(D )(A)依赖于s 和t (B)依赖于s 、t 、x(C)依赖于t 和x , 不依赖于s (D)依赖于s , 不依赖于t (3)设1)()()(lim 2-=--→a x a f x f a x ,则在点x a =处(B)(A)()f x 导数存在,0)(≠'a f (B)()f x 取得极大值(C)()f x 取得极小值(D)()f x 的导数不存在.(4)设A 为n 阶方阵, 且0≠=a A , 而*A 是A 的伴随矩阵,则*A =(C)(A)a(B)a/1(C) 1-n a (D) n a六、(本题满分10分) 求幂级数1121+∞=∑n n n x n 的收敛域,并求其和函数. 解:记112n n n u x n +=,有1112lim lim (1)22n nn n n n n n x u x n u n x +++→∞→∞=⋅=+,令12x <,知原级数在开区间(2,2)-内每一点都收敛.又当2x =-时,原级数=111111(2)2(1)2n n n n n n n ∞∞++==-=-∑∑,故由莱布尼兹判别法知其收敛;而当2x =时,原级数=11111122(1)2n n n n n n n ∞∞++===-∑∑,显然发散,故幂级数的收敛域为)2,2[-. 又记111111()()()22n n n n n x S x x x xS x n n ∞∞+=====∑∑,其中111()()2n n xS x n ∞==∑,有1111()()21/2n n x S x x ∞-='==-∑,于是102()2ln()1/22x dx S x x x ==--⎰,因此幂级数的和函数为2()2ln 2S x x x=-,[2,2)x ∈-.七、(本题满分10分) 计算曲面积分2(81)2(1)4SI x y dydz y dzdx yzdxdy =++--⎰⎰,其中s 是曲线 )31(01≤≤⎩⎨⎧=-=y x y z 绕Y 轴旋转一周所形成的曲面,它的法向量与Y 轴正向的夹角恒大于/2π.解:S 的方程为221y x z =++,记1S :223,()y x z =+,知1S S +为封闭曲面,设其 方向取外侧,所围区域为Ω,则由高斯公式,有12(81)2(1)4S S I x y dydz y dzdx yzdxdy +=++--⎰⎰12(81)2(1)4S x y dydz y dzdx yzdxdy-++--⎰⎰12102(1)0S dv y dydz Ω=⋅---+⎰⎰⎰⎰⎰=3212(13)yz xD D dy dzdx dzdx--⎰⎰⎰⎰⎰31(1)16234y dy ππ=-+⋅⋅=⎰.八、(本题满分10分)设函数)(x f 在闭区间[0,1]上可微,对于[0,1]上的每个x ,函数的值都在开区间(0,1)内,且1)(≠'x f .证明 在(0,1)内有且仅有一个x ,使()f x x =.证:令()()h t f t t =-,知()h t 在闭区间[0,1]上连续,又由题设知0()1f x <<,于是 有(0)(0)00,(1)(1)10h f h f =->=-<. 故由零点定理,在(0,1)内有x ,使()f x x =.假若)(x f 在开区间(0,1)内有两个不同的点1x 和2x ,使得11()f x x =,22()f x x =, 不妨设12x x <,则易见)(x f 在闭区间[0,1]上连续,在(0,1)内可导,故由拉格朗日定理知,(0,1)ξ∃∈,使得2121()()()f x f x f x x ξ-'=-,即()1f ξ'=.此与1)(≠'x f 矛盾!故在(0,1)内使()f x x =的x 只能有一个.九、(本题满分8分)问,a b 为何值时,线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解?无解?有无穷多解? 并求出无穷多解时的通解.解:对方程组的增广矩阵进行初等变换,得11110111100122101221()013200101321100010A A b a b a b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭○1 当1≠a 时,系数行列式2(1)0A a =-≠,故由克拉姆法则,原方程组有唯一解;○2 当1a =,且1b ≠-时, ()3,()2r A r A ==, ()()r A r A ≠,故原方程组无解;○3 当1a =,且1b =-时, ()()24r A r A ==<,故原方程组有无穷的解. 此时显然有 11110101110122101221()00000000000000000000A A b ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→→⎪ ⎪⎪⎪⎝⎭⎝⎭可见其通解为:12(1,1,0,0)(1,2,1,0)(1,2,0,1)T T T x c c =-+-+-,其中12,c c 为任意常数.十、填空题(每小题2分,满分6分)(1)在一次试验中事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1]()1(1[---+n p p n .(2)三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3个黑球,第三个箱子中有3个黑球5五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个球为白球的概率为53/120,已知取出的是白球,此球属于第二箱的概率是20/53.(3)已知连续随机变量X 的密度为1221)(-+-=x xe xf π,则X 的数学期望为 1 ;X 的方差为 1/2 .十一、(本题满分6分)设随机变量X ,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=它其0101)(x x f X ;⎩⎨⎧≤>=-00)(y y e y f y Y ,求随机变量Z =2X +Y 的概率密度函数()z f z .解:由题设,(,)X Y 的联合密度为01,0(,)()()0y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其 它, 故Z 的分布函数2()()(2)(,)z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰,○1 当0z <时,2()00z x y zF z dxdy +≤==⎰⎰,此时()00z f z '==;○2 当02z ≤≤时,200001()22z yzz z y y yz z F z dy e dx e dy ye dy ----==-⎰⎰⎰⎰,此时 011()()(1)22z y z z z f z F z e dy e -'===-⎰;○3 当2z >时,121220001()(1)1(1)2z x y x z zz F z dx e dy e dx e e -----==-=--⎰⎰⎰,此时 21()()(1)2zz z f z F z e e -'==-综上所述,Z =2X +Y 的概率密度函数为()z f z =122120(1)02(1)2zz z e z e e z ---<⎧⎪-≤≤⎨⎪->⎩数 学(试卷二)一、(本题满分15分)【 同数学Ⅰ、第一题 】 二、(本题满分14分) (1)(6分)计算定积分2||2(||).x x x e dx --+⎰解:因||x xe-是奇函数,||||x x e -是偶函数,故原式=22||202||226.x x x e dx xe dx e --==-⎰⎰(2)(8分)【 同数学Ⅰ、第二题 】三、(本题满分7分)设函数(,,),yz f u x y u xe ==,其中f 有二阶连续偏导数,求 2.z x y∂∂∂解:121yz u f f f e f x x∂∂''''=⋅+=⋅+∂∂,2111312123()y y y y z f xe f e e f f xe f x y ∂'''''''''=⋅++⋅+⋅+∂∂. 四、(本题满分8分)【同数学Ⅰ、第四题 】 五、(本题满分12分)【 同数学Ⅰ、第五题 】 六、(本题满分10分)【 同数学Ⅰ、第六题 】 七、(本题满分10分)【 同数学Ⅰ、第七题 】 八、(本题满分10分)【 同数学Ⅰ、第八题 】 九、(本题满分8分)【 同数学Ⅰ、第九题 】 十、(本题满分6分)设12,λλ为n 阶方阵A 的特征值,12λλ≠,而21,x x 分别为对应的特征向量,试证明:21x x +不是A 的特征向量.证:假若21x x +是A 的特征向量,设其对应的特征值为3λ,则有12312()()A x x x x λ+=+, 即123132Ax Ax x x λλ+=+. 又由题设条件知111Ax x λ=,222Ax x λ=,故有131232()()0x x λλλλ-+-=.因21,x x 是属于不同特征值的特征向量,所以21,x x 线性无关, 从而13λλ=,且13λλ=,此与12λλ≠矛盾!因此21x x +不是A 的特征向量.数 学(试卷三)一、填空题(每小题2分,满分10分. 把答案填在题中横线上) (1)设)1ln(ax y +=, 其中a 为非零常数,则22)1(,1ax a y ax ay +-=''+='.(2)曲线y arctgx =在横坐标为1点处的切线方程是4221-+=πx y ; 法线方程是4/)8(2++-=πx y .(3)积分中值定理的条件是()[,]f x a b 在闭区间上连续,结论是[,],()()()baa b f x dx f b a ξξ∃∈=-⎰使得(4) 32()1nn n lin e n -→∞-=+.(5)⎰='dx x f )(c x f +)(;⎰'badx x f )2(=)2(21)2(21a f b f -. 二、(本题满分6分) 求极限 011lim()1x x xe →--解:200000111111lim()lim lim lim lim 1(1)222x x x x x x x x x x e x e x e x x e x e x x x →→→→→------=====--. 三、(本题满分7分)设⎩⎨⎧-=-=)cos 1(5)sin (5t y t t x ,求 22,.dy d y dx dx 解:因5sin ,55cos dy dx t t dt dt ==-,5sin )sin 5(1cos 1cos dy t t dx t t ==--(0+),故t tdx dy cos 1sin -=,且222sin 1()1cos 5(1cos )d y d t dtdx dt t dx t =⋅=---四、(本题满分8分) 计算定积分⎰1arcsin xdx x .解:2211121000111arcsin arcsin 2242x xdx x x π=-=-⎰⎰⎰,令sin x t =,有22120sin cos cos 4t tdt t ππ==⎰⎰,因此101arcsin 4248x xdx πππ=-⋅=⎰. 五、(本题满分8分)设D 是曲线sin 1y x =+与三条直线0x =,π=x ,0y =围成的曲边梯形.求D 绕x 轴旋 转一周所生成的旋转体的体积.解:223(sin 1)42V x dx ππππ=+=+⎰. 六、证明题(本题满分10分)(1)(5分)若()f x 在(,)a b 内可导,且导数)(x f '恒大于零,则()f x 在(,)a b 内单调增加. 证:12,(,)x x a b ∀∈,不妨设12x x <,则()f x 在12[,]x x 上连续,在12(,)x x 内可导,故由拉格朗日中值定理,12(,)(,)x x a b ξ∃∈⊂,使得2121()()()()f x f x f x x ξ'-=-. 由于)(x f '在(,)a b 内恒大于零,所以()0f ξ'>,又210x x ->,因此21()()0f x f x ->, 即21()()f x f x >,表明()f x 在(,)a b 内单调增加.(2)(5分)若()g x 在x c =处二阶导数存在,且0)(='c g ,0)(<''c g ,则()g c 为()g x 的一个极大值.证:因()()()lim 0x c g x g c g c x c →''-''=<-,而0)(='c g ,故()lim 0x c g x x c→'<-.由极限的保号性,0δ∃>,当(,)x c c δ∈-时,有()0g x x c '<-,即()0g x '>,从而()g x 在(,)c c δ-单增;当(,)x c c δ∈+时,有()0g x x c'<-,即()0g x '<,从而()g x 在(,)c c δ-单减.又由0)(='c g 知,x c =是()g x 的驻点,因此()g c 为()g x 的一个极大值.七、(本题满分10分)计算不定积分⎰+x b x a dx2222cos sin ( 其中,a b 为不全为零的非负数 )解:① 当0a =时,原式=22211sec tan xdx x c b b =+⎰;②当0b =时, 原式=22211c cot cs xdx x c a a=-+⎰;③当0ab ≠时,原式=22222(tan )sec 11arctan(tan )tan (tan )1ad x xdx a b x c a a x b ab ab bx b==+++⎰⎰.八、(本题满分15分) (1)(7分)求微分方程y x dxdyx-=,满足条件0|2==x y 的解. 解:原方程即11dy y dx x+=,故其通解为11211()()2dx dx xx y e e dx c x c x -⎰⎰=+=+⎰.因0|2==x y ,所以1c =-.于是所求初值问题的解为xx y 12-=.(2)(8分)求微分方程 x e x y y y =+'+''2的通解.解:由特征方程2210r r ++=,知其特征根根为1,21r =-.故对应齐次方程的通解为12()x y C C x e -=+ ,其中12,C C 为任意常数.设原方程的特解为*()()x y x e ax b =+,代入原方程可得a =14,b =-14. 因此,原方程的通解为*212()()x y x y y C C x e -=+=++ 14(1)x x e -. 九、选择题(每小题4分,满分16分) (1).+∞<<∞=x ex x x f x-,sin )(cos 是(D )(A )有界函数 (B )单调函数 (C )周期函数 (D )偶函数(2). 函数()sin f x x x - (D)(A )当∞→x 时为无穷大 (B )当∞→x 时有极限 (C )在),(+∞-∞内有界(D )在),(+∞-∞内无界(3)设()f x 在x a =处可导,则xx a f x a f x )()(lim 0--+→等于(B)(A ))(a f '(B ))(2a f '(C )0(D ))2(a f '(4)【 同数学Ⅰ、第五(2)题 】十、(本题满分10分)在第一象限内,求曲线12+-=x y 上的一点,使该点处切线与所给曲线及两坐标围成的面积为最小,并求此最小面积.解:设切点的横坐标为a ,则切线方程为2(1)2()y a a x a --=--,即221y ax a =-++故所围面积2312201112(1)(1)224243a a a s a x dx a a +=+--+=++-⎰. 令0s '=得驻点a =.由于0a s ''>,故所求点的坐标为2)3,其最小值为a s =23.数 学(试卷四)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 10lim xx e →=∞( ⨯ ) (2)4sin 0x xdx ππ-=⎰( √)(3)若级数1nn a∞=∑与1nn b∞=∑均发散,则级数1()nn n ab ∞=+∑必发散( ⨯ )(4)假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0,那么矩阵A 的一切1r +阶子式都等于0( √) (5)连续型随机变量取任何给定实数值的概率都等于0( √)二、选择题(每小题2分,满分10分.)(1)下列函数在其定义域内连续的是(A)(A )()ln sin f x x x =+(B )⎩⎨⎧>≤=0cos 0sin )(x xx xx f (C )⎪⎩⎪⎨⎧>-=<+=010001)(x x x x x x f (D )⎪⎩⎪⎨⎧=≠=0001)(x x xx f (2)若函数f(x)在区间(,)a b 内可导,21,x x 是区间内任意两点,且21x x <,则至少存一点ξ,使得(C )(A)()()()(),f b f a f b a a b ξξ'-=-<<. (B) 111()()()(),f b f x f b x x b ξξ'-=-<<.(C) 212112()()()(),f x f x f x x x x ξξ'-=-<<. (D) 222()()()(),f x f a f x a a x ξξ'-=-<<. (3)下列广义积分收敛的是(C )(A )dx xxe⎰∞+ln (B )⎰∞+exx dx ln (C )⎰+∞ex x dx 2)(ln (D )⎰∞+exx dx ln (4)设A 是n 阶方阵,其秩r < n , 那么在A 的n 个行向量中(A)(A)必有r 个行向量线性无关(B)任意r 个行向量线性无关(C)任意r 个行向量都构成极大线性无关向量组(D)任意一个行向量都可以由其它r 个行向量线性表示(5)若二事件A 和B 同时出现的概率P( A B ) = 0 , 则(C)(A)A 和B 互不相容(互斥)(B)AB 是不可能事件(C)AB 未必是不可能事件(D)P (A )=0或P (B )=0三、计算下列各题(每小题4分,满分16分) (1)求极限xxx xe 10)1(lim +→.解:因 1ln(1)(1)x xe x xxxe e ++=, 而ln(1)x x xe xe x+ (当0x →), 故 000ln(1)lim lim lim 1x x x x x x xe xe e xx →→→+===, 从而 10lim(1)x xx xe e →+=.(2)已知1111ln 22++-+=x x y , 求y '.解:1)1)y =-,y '=-=212xx +. (3)已知y x yx arctg z -+=,求dz .解:222()()()()()()1()1()x y x y dx dy x y dx dy d x y x y dz x y x y x y x y+-+-+---==++++--22ydx xdy x y -+=+(4)求不定积分dx ex ⎰-12.解:t =,有1)t t t t t e tdt te e dt te e c c==-=-+=+⎰⎰⎰四、(本题满分10分)考虑函数sin y x = )2/0(π≤≤x ,问:(1)t 取何值时,图中阴影部分的面积1s 与2s 之和21s s s +=最小?(2 ) t 取何值时,21s s s +=最大?解:因10sin sin sin cos 1ts t t xdx t t t =-=+-⎰,22sin ()sin cos sin sin 22t s xdx t t t t t t πππ=--=+-⎰,故122sin 2cos sin 12s s s t t t t π=+=+--,(0)2t π≤≤.令0s '=,得s 在(0,)2π内的驻点4t π=.而()14s π=,()122s ππ=-,(0)1s =,因此 4t π=时,s 最小;0t =时,s 最大.五、(本题满分6分)将函数231)(2+-=x x x f 展成x 的级数,并指出收敛区间. 解:因111111()(2)(1)121212f x xx x x x x ==-=-⋅------,而011nn x x ∞==-∑,(1,1)x ∈-, 且0011()2212n n n n n x x x ∞∞====-∑∑,(2,2)x ∈-,故1100111()(1)222nn n n n n n n f x x x x ∞∞∞+====+=+∑∑∑,其收敛区间为(1,1)-.六、(本题满分5分) 计算二重积分2x De dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3x y =围成的封闭区域.解:联立y x =和3x y =,可解得两曲线交点的横坐标0x =和1x =,于是22231130()12xx x x Dxe e dxdy dx e dy x x e dx ==-=-⎰⎰⎰⎰⎰七、(本题满分6分)已知某商品的需求量x 对价格P 的弹性为 33p -=η,而市场对商品的最大需求量为1 (万件),求需求函数.解:由弹性的定义,有33p dx p x dp =-,即23dxp dp x=-, 于是有 3px ce -=,c 为待定常数.由题意 0p =时,1x =,故1c =,因此3p x e -=.八、(本题满分8分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 【123431820160x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,k 为任意常数】 解:对方程组的增广矩阵进行初等行变换,有2143410103101130120831101000167073300000---⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪⎪⎪⎪-⎝⎭⎝⎭故原方程组与下方程组同解:132343826x x x x x =-⎧⎪=-+⎨⎪=⎩,令30x =,可得原方程组的特解(3,8,0,6)T β=-.又显然原方程组的导出组与下方程组同解:1323420x x x x x =-⎧⎪=⎨⎪=⎩,令31x =,可得导出组的基础解系(1,2,1,0)T η=-. 因此原方程组的通解为:1234(,,,)(3,8,0,6)(1,2,1,0)T T x x x x k =-+-,其中k 为任意常数.九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中A =423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭十、(本题满分6分) 求矩阵A =312014101--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.解:令0E A λ-=,即2(1)(45)0λλλ-++=,可见矩阵A 只有一个实特征值1λ=.易见,线性方程组()0E A X λ-=的基础解系为(0,2,1)T ,故A 对应于实特征值1λ=的特征向量为(0,2,1)T k ,(其中k 为非零任意常数).十一、(每小题4分,满分8分)(1)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======,试写出X 的分布函数()F x .解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x . (2)已知随机变量Y 的概率密度为000)(2222<≥⎪⎩⎪⎨⎧=-y y e y f a y a y , 求随机变量YZ 1=的数学期望EZ .解:222222200111()()y y a a y EZ E f y dy edy dy Yy y a --+∞+∞+∞-∞===⋅==⎰⎰⎰. 十二、(本题满分8分)设有两箱同种零件.第一箱内装50件,其中10件一等品;第二箱内装有30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率p ;(2)在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q .解:设i B ={取出的零件为第i 箱中的},j A ={第j 次取出的是一等品},,1,2i j =, 显然12,B B 为正概完备事件组,故全概公式得(1) 11112121101182()()()()()2502305p P A P B P A B P B P A B ==+=⋅+⋅=;(2) 1211212122110911817276()()()()()25049230291421P A A P B P A A B P B P A A B ⨯⨯=+=⋅+⋅=⨯⨯, 于是,由贝叶斯公式得q =12211()690()0.48557()1421P A A q P A A P A ===≈.数 学(试卷五)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1)【 同数学Ⅳ 第一(1)题 】(2)【 同数学Ⅳ 第一(2)题 】(3)若函数()f x 在区间(,)a b 严格单增,则对区间(,)a b 内任何一点x 有()0f x '>. ( ⨯ ) (4)若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =. ( ⨯ ) (5)【 同数学Ⅳ 第一(5)题 】二、选择题(每小题2分,满分10分)(1)【 同数学Ⅳ 第二(1)题 】(2)【 同数学Ⅳ 第二(2)题 】(3)【 同数学Ⅳ 第二(3)题 】(4)【 同数学Ⅳ 第二(4)题 】(5)对于任二事件A 和B ,有()P A B -=(C)(A)()()P A P B -(B)()()()P A P B P AB -+(C)()()P A P AB -(D))()()(B A P B P A P --三、计算下列各题(每小题4分,满分20分)(1)求极限1ln(1)limx x arctgx→+∞+. 解:11ln(1)lim ln(1)0lim0lim /2x x x x x arctgx arctgx π→+∞→+∞→+∞++===(2)【 同数学Ⅳ 第三(2)题 】(3)【 同数学Ⅳ 第三(3)题 】(4)计算定积分dxex ⎰-12112解:t =,有111111021tt t te tdt tee dt e e ==-=-=⎰⎰⎰(5)求不定积分⎰++5224x x xdx.解:22422221(1)11arctan 252(1)242xdx d x x c x x x ++==+++++⎰⎰. 四、(本题满分10分)考虑函数2y x =,10≤≤x ,问:(1)t 取何值时,图中阴影部分的面积(与数学Ⅳ第四题类似)1s 与2s 之和21s s s +=最小? (2 ) t 取何值时,21s s s +=最大?解:132223212041(1)33tts s s t x dx x dx t t t t =+=-+--=-+⎰⎰,(01)t ≤≤令0s '=,得(0,1)内的驻点12t =. 而11()24s =,1(0)3s =,2(1)3s =,因此 12t =时,s 最小;1t =时,s 最大.五、(本题满分5分)【 同数学Ⅳ 第六题 】 六、(本题满分8分)设某产品的总成本函数为21()40032C x x x =++,而需求函数为xp 100=,其中x 为产量(假定等于需求量),p 为价格. 试求:(1)边际成本; (2)边际收益; (3)边际利润; (4)收益的价格弹性.解:(1)边际成本:()3MC C x x '==+;(2)收益函数:()R x p x =⋅=()MR R x'==;(3)利润函数:21()()()40032L x R x C x x x =-=--, 边际利润:()3ML L x x'==--;(4)收益的价格函数:2(100)()R x p==,收益的价格弹性:2222(100)1(100)p dR p R dp p =-⋅=-. 七、(本题满分8分)【 同数学Ⅳ 第八题 】 八、(本题满分7分)【 同数学Ⅳ 第九题 】 九、(本题满分6分)【 同数学Ⅳ 第十题】十、(本题满分8分)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======, 试写出X 的分布函数()F x ,并求X 的数学期望与方差.解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x , 10.220.330.5 2.3EX =⨯+⨯+⨯=;222210.220.330.5 5.9EX =⨯+⨯+⨯=222() 5.9 2.30.61DX EX EX =-=-=十一、(本题满分8分)【 同数学Ⅳ 第十二题】。

概率论与数理统计历年考研试题-知识归纳整理

概率论与数理统计历年考研试题-知识归纳整理

第3章 数字特征1. (1987年、数学一、填空)设随机变量X 的概率密度函数,1)(122-+-=x x e x f π则E(X)=( ),)(X D =( ).[答案 填:1;21.]由X 的概率密度函数可见X~N(1,21),则E(X)=1,)(X D =21.2. (1990年、数学一、填空)设随机变量X 服从参数为2的泊松分布,且Z=3X-2, 则E(X)=( ). [答案 填:4]3. (1990年、数学一、计算)设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求:(1)对于X 的边缘密度函数;(2)随机变量Z=2X+1的方差。

解:(1)由于D 的面积为1,则(X,Y)的联合密度为⎩⎨⎧<<<=0,x |y |1,x 1 ,1),(其他y x f当0<x<1时,x dy dy y x f x f xxX21),()(===⎰⎰-+∞∞-,其他事情下0)(=x f X.(2)322)( )(1=⋅==⎰⎰∞+∞-xdx x dx x f x X E X 212)( )(1222=⋅==⎰⎰∞+∞-xdx x dx x f x X E X 181))(()(22=-=X E EX X D4. (1991年、数学一、填空)设X~N(2,2σ)且P{2<X<4}=0.3,则P{X<0}=( )。

[答案 填:知识归纳整理0.2]3.0212)0(2220}42{=-⎪⎭⎫ ⎝⎛Φ=Φ-⎪⎭⎫ ⎝⎛Φ=⎭⎬⎫⎩⎨⎧<-<=<<σσσσX P X P即8.02=⎪⎭⎫⎝⎛Φσ,则2.021222}0{=⎪⎭⎫⎝⎛Φ-=⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-<-=<σσσσX P X P 5. (1992年、数学一、填空)设随机变量X 服从参数为1的指数分布,则=+-)(2X e X E ( ).[答案 填:34]6. (1995年、数学一、填空)设X 表示10次独立重复射击命中目标的次数且每次命中率为0.4,则2EX =( )。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1987年全国硕士研究生入学统一考试数学试题 (试题IV )一、 判断题(每小题答对得2分,答错-1分,不答得0分,全题最低0分)(1)10lim xx e→=∞()(2)4sin 0x xdx ππ-=⎰()(3)若级数1nn a∞=∑与1nn b∞=∑均发散,则级数()1nn n ab ∞=+∑必发散 ()(4)假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0,那么矩阵A 的一切1r +阶子式都等于0()(5)连续型随机变量取任何给定实数值的概率等于0() 二、选择题(本题共5小题,每小题2分,满分10分) (1)下列函数在其定义域内连续的是 (A )()ln sin f x x x =+(B )()sin ,0,cos ,0.x x f x x x ≤⎧=⎨>⎩(C )()1,0,0, x 0,1,0.x x f x x x +<⎧⎪==⎨⎪->⎩(D )()0,0, x 0.x f x ≠==⎩(2)若()f x 在(),a b 内可导且12a x x b <<<,则至少存在一点ξ,使得 (A )()()()()()f b f a f b a a b ξξ'-=-<< (B )()()()()()111f b f x f b x x b ξξ'-=-<< (C )()()()()()212112f x f x f x x x x ξξ'-=-<< (D )()()()()()222f x f a f x a a x ξξ'-=-<< (3)下列广义积分收敛的是 (A )ln ex dx x -∞⎰(B )ln e dx x x +∞⎰(C )()2ln e dxx x +∞⎰(D)e +∞⎰(4)设n 阶方阵A 的秩()r A r n =<,那么在A 的n 个行向量中 (A )必有r 个行向量线性无关(B )任意r 个行向量都线性无关(C )任意r 个行向量都构成极大线性无关组(D )任意一个行向量都可以由其他r 个行向量线性表出 (5)若二事件A 和B 同时出现的概率()0P AB =,则 (A )A 和B 不相容(互斥)(B )AB 是不可能事件 (C )AB 未必是不可能事件(D )()0P A =或()0P B = 三、计算下列各题(每小题4分,满分16分) (1)求极限()11lim xxx xe →+(2)已知lny =,求y '(3)arctanx yz x y+=-,求dz (4)求不定积分⎰四、(本题满分10分) 考虑函数sin ,02y x x π=≤≤。

问:(1) t 取何值时,图1中阴影部分的面积1S 与2S 之和12S S S =+最小? (2) t 取何值时,面积12S S S =+最大? 五、(本题满分6分) 将函数()2132f x x x =-+展开x 的级数,并指出收敛区间 六、(本题满分5分) 计算二重积分2xDe dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3y x =围成的封闭区域七、(本题满分6分)已知某商品的需求量x 对价格p 的弹性33p η=-,而市场对该商品的最大需求量为1(万件)。

求需求函数 八、(本题满分8分)解线性方程组12341341231342434,3,31,773 3.x x x x x x x x x x x x x -+-=-⎧⎪+-=-⎪⎨++=⎪⎪+-=⎩九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中 4 2 3 1 1 01 2 3A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦十、(本题满分6分)求矩阵 3 1 2 0 1 4 1 0 1A --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量 十一、(本题共2小题,每小题4分,满分8分)(1) 已知随机变量X 的概率分布为()()()10.2,20.3,30.5P X P X P X ======,试写出X 的分布函数()F x(2) 已知随机变量Y 的概率密度为()2222e ,0,0, 0.y a y y f y a y -⎧⎪>=⎨⎪≤⎩,求随机变量1Z Y =的数学期望EZ十二、(本题满分8分)假设有两箱同种零件:第一箱内装50件,其中10件一等品;第二箱内装30件,其中18件一等品,现从两箱中随意挑出一箱,然后从该箱中先后随机取两个零件(取出的零件均不放回)。

试求:(1) 先取出的零件是一等品的概率p(2) 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q(试题V )一、 判断题(本小题答对得2分 ,答错得-1分,不答得0分,全题最低0分) (1)【同数学IV 第一(1)题】 (2)【同数学IV 第一(2)题】 (3)若函数()f x 在区间(),a b 严格单增,则对区间(),a b 内任何一点x 有()0f x '>() (4)若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =() (5)【同数学IV 第一(5)题】二、选择题(每小题2分,满分10分) (1)【同数学IV 第二(1)题】 (2)【同数学IV 第二(2)题】 (3)【同数学IV 第二(3)题】 (4)【同数学IV 第二(4)题】 (5)对于任二事件A 和B ,有()P A B -= (A )()()P A P B -(B )()()()P A P B P AB -+(C )()()P A P AB -(D )()()()P A P B P AB -+ 三、计算下列各题(每小题4分,满分20分)(1)求极限1ln 1cot limx x arc x→+∞⎛⎫+ ⎪⎝⎭(2)【同数学IV 第三(2)题】 (3)【同数学IV 第三(3)题】 (4)计算定积分112⎰(5)求不定积分4225xdxx x ++⎰四、(本题满分10分)考虑函数2,01y x x =≤≤。

问:(1) t 取何值时,图2中阴影部分的面积1S 与2S 之和12S S S =+最小? (2) t 取何值时,面积12S S S =+最大? 五、(本题满分5分)【同数学IV 第六题】 六、(本题满分8分) 设某产品的总成本函数为()2140032C x x x =++,而需求函数为p =,其中x 为产量(假定等于需求量),p 为价格,试求:(1)边际成本(2)边际收益(3)边际利润(4)收益的价格弹性七、(本题满分8分)【同数学IV 第八题】 八、(本题满分7分)【同数学IV 第九题】 九、(本题满分6分)【同数学IV 第十题】 十、(本题满分8分)已知随机变量X 的概率分布为()()()10.2,20.3,30.5P X P X P X ======,试写出X 的分布函数()F x ,并求X 的数学期望与方差十一、(本题满分8分)【同数学IV 第十二题】答案速查(试卷IV )一、判断题(1)× (2)√(3)×(4)√(5)√ 二、选择题 (1)(A ) (2)(C ) (3)(C ) (4)(A ) (5)(C ) 三、(1)e (2(3)22ydx xdyx y -++(4))1c +四、(1)当4t π=时,面积12S S S =+最小(2)当0t =时,面积12S S S =+最大五、()11011122nnn n n f x x x ∞∞+==⎛⎫=++ ⎪⎝⎭∑∑,其收敛区间为()1,1-六、12e- 七、3p x e-=八、1234331828201660x k x k k x k x --⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(k 为任意常数) 九、 3 8 6 2 9 62 12 9B --⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦十、实特征值1λ=,特征向量为[]0,2,1Tk ,(其中k 为非零任意常数)十一、(1)()0, 1,0.2,12,0.5,23,1, 3.x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩(2)2a十二、(1)25(2)0.48557答案速查(试卷V )一、判断题(1)略(2)略(3)×(4)×(5)略 二、选择题(1)略(2)略(3)略(4)略(5)(C )三、(1)1(2)略(3)略(4)1(5)211arctan42x C ++ 四、(1)当12t =时,12S S S =+最小 (2)当1t =时,12S S S =+最大 五、略六、(1)3x +(2(33x --(4)1 七、略 八、略 九、略十、()0, 1,0.2,12,0.5,23,1, 3.x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩; 5.9;0.61EX DX ==十一、略。

相关文档
最新文档