2016年中考数学必做模拟题练习
2016年中考数学模拟试题精选
24.
25.解:过M作与AC平行的直线,与OA、FC分别相交于H、N,
(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;
(2)抛物线C1:y=(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
10.(本题满分9分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3 ).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1, ,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
(1)求b,k的值;(2)求△BDC的面积;
(3)在反比例函数 的图像上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.
7.(本题满分7分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα= .
最新)2016年中考模拟数学试题(含答案)
最新)2016年中考模拟数学试题(含答案) 2016年中考模拟数学试题(含答案)一.选择题(每小题3分,共24分)1.3的倒数是()。
A。
4/3443 B。
3443/3 C。
-4/3443 D。
-3443/42.右图是某几何体的三视图,该几何体是()。
A。
圆锥 B。
圆柱 C。
正三棱柱 D。
正三棱锥3.下列运算中正确的是()。
A。
π=1 B。
x2=x C。
2-2=-4 D。
--2=24.不等式组{x≤-2,x-2>1}的解集是()。
A。
x≤-2 B。
x>3 C。
3<x≤-2 D。
无解5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失。
灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手。
截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款万元。
科学计数法表示为()元。
A。
8.01×107 B。
80.1×107 C。
8.01×108 D。
0.801×1096.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()。
A。
19,15 B。
15,14.5 C。
19,14.5 D。
15,157.如图:∠B=30°,∠C=110°,∠D的度数为()。
A。
115° B。
120° C。
100° D。
80°二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是()。
9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=()°。
10.在二次函数y=ax2+bx+c的图像如图所示,下列说法中①b2-4ac<0②-2b/a<0③abc>0④a-b-c<0,说法正确的x是(填序号)。
2016中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016年中考数学模拟试卷及答案(精选两套)
1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。
最新2016 年中考模拟数学试题(含答案)
2016年中考模拟数学试题时间120分钟满分120分 2016.2.4一、选择题(共10 小题,每小题3分,满分30分)1.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=153.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.4.已知k、b是一元二次方程(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD 的面积不变D.四边形ABCD的周长不变6.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为 x,则 x 满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=7.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限8.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0 时,y1随x 的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.48题图 9题图 10题图9.如图,在网格中,小正方形的边长均为 1,点 A,B,C 都在格点上,则∠ABC 的正切值是()A.2B.C.D.10.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1 个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共24分)11.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是.12.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.13.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.13题图 14题图 15题图14.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).15.如图,矩形EFGH 内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF= EH,那么EH的长为.16.将一副三角板按图叠放,则△AOB 与△DOC的面积之比等于.16题图 17题图 18题图17.如图,港口A 在观测站O 的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即 AB的长)为.18.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x 轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为.三、解答题(共66分)19.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.20.已知关于 x 的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中 a、b、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.21.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;若四边形AFCE是菱形,求菱形AFCE的周长.22.如图,在平面直角坐标系中,O为原点,直线AB分别与x 轴、y轴交于B和A,与反比例函数的图象交于 C、D,CE⊥x 轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;求△OCD的面积.23.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)24.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2 米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5 米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;试计算出电线杆的高度,并写出计算的过程.25.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N 处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A 在同一平面内,E、C、N 在同一条直线上,求条幅的长度(结果精确到 1米)(参考数据:≈1.73,≈1.41)26.如图1,在正方形ABCD 中,P是对角线BD 上的一点,点E在AD 的延长线上,且PA=PE,PE交CD 于F.(1)证明:PC=PE;求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一、选择题1.故选D.2.故选C3.故选:C.4.故选B.5.故选C.6.故选B.7.故选:D.8.故选C9.故选:D.10.故选B.二、填空题11.m<.12.1.4.13.2.14 故答案为:③.15.1.516故答案为:1:3.17. 2km .18.三、解答题19.解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4∴另一边为8米或50米.答:当矩形长为25米是宽为8米,当矩形长为50米是宽为4米.20.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;∵方程有两个相等的实数根,∴2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.21.解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,解得:x= ,则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.22.解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3= ,∴m=﹣6.∴该反比例函数的解析式为y=﹣.联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC 的面积=4×3÷2=6,故△OCD 的面积为2+6=8.23.解:(1)甲同学的方案不公平.理由如下:列表法,5 (5,2)(5,3)(5,4)8种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;不公平.理由如下:所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.24.解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以 AM=10﹣2=8,由平行投影可知,=,即=,解得CD=7,即电线杆的高度为7米.25.解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(10+10 )米,∴AN=AH+EF=米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=10 ≈17米,答:条幅的长度是17米.26.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
2016年中考数学模拟试卷及参考答案
2016年中考数学模拟试卷及参考答案蒯海峰【期刊名称】《中学数学月刊》【年(卷),期】2016(000)004【总页数】5页(P57-61)【作者】蒯海峰【作者单位】江苏省苏州市振华中学 215006【正文语种】中文一、填空题(本大题共12小题,每小题3分,共36分)的平方根是2.因式分解:x3-4x2+4x=3.函数中,自变量x的取值范围是4.小明从前面的镜子里看到后面墙上挂钟的时间为2:30,则实际时间是5.若不等式组的解集是-1<x<1,则(a+b)2 016=6.如图1,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是7.若,则8.将△ABC绕点B逆时针旋转到△A′BC′使A,B,C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4 cm,则图2中阴影部分面积为cm2.9.甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是(填“甲”或“乙”)10.如图3,在平行四边形ABCD中,E是边CD上的点,BE与AC交于点F,如果,那么11.要给长、宽、高分别为x, y, z的箱子打包,其打包方式如图4所示,则打包带的长至少要(单位:mm)(用含x, y, z的代数式表示)12.如图5,根据下面的运算程序,若输入时,输出的结果y=二、选择题(本大题共6小题,每小题3分,共18分)13.下列根式中,与为同类二次根式的是( )14.在函数中,自变量x的取值范围是( )A.x≥2 B.x>2 C.x≤2 D.x< 215.一种灭虫药粉30千克,含药率15%,现要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%而小于35%,则所用药粉的含药率x 的范围是( )A.15%<x<23% B.15%<x<35% C.23%<x<47% D.23%<x<50% 16.一个正方体的平面展开图如图6所示,将它折成正方体后“建”字对面是( ) A.和 B.谐C.苏 D.州17.一组数据3, 2, 1, 2, 2的众数、中位数和方差分别是( )A.2, 1, 0.4 B.2, 2, 0.4C.3, 1, 2 D.2, 1, 0.218.如图7,已知⊙O的两条弦AC, BD相交于点E,∠A = 70°,∠C = 50°,那么sin∠AEB的值为( )三、解答题(本大题共11小题,共76分)19.(本题5分)计算20.(本题5分)先化简,再求值,其中a满足a2-4a+3=0.21.(本题5分)解不等式组并在所给的数轴(图8)上表示出其解集.22.(本题6分)小明的书包里只放了A4大小的试卷共5张,其中语文3张、数学2张.若随机地从书包中抽出2张,求抽出的试卷恰好都是数学试卷的概率.23.(本题6分)如图9,在正方形ABCD中,E是AB边上任一点,BG⊥CE,垂足为点O,交AC于点F,交AD于点G.(1)证明:BE=AG;(2)当点E是AB边中点时,试比较∠AEF和∠CEB的大小,并说明理由.24.(本题6分)已知电视发射塔BC,为稳固塔身,周围拉有钢丝地锚线(图10中线段AB),若AB=60 m,并且AB与地面成45°角,欲升高发射塔的高度到CB′,同时原地锚线仍使用,若塔升高后使地锚线与地面成60°角,求电视发射塔升高了多少米?(即BB′的高度)25.(本题8分)通常情况居民一周时间可以分为常规工作日(周一至周五)和常规休息日(周六和周日).居民一天的时间可以划分为工作时间、个人生活必须时间、家务劳动时间和可以自由支配时间等四部分.北京市统计局在全市居民家庭中开展了时间利用调查,并绘制了统计图.(1)由图11,调查表明,北京市居民人均常规工作日工作时间占一天时间的百分比为(2)调查显示,看电视、上网、健身游戏、读书看报是居民在可自由支配时间中的主要活动方式,其中平均每天上网占可自由支配时间的12%,比读书看报的时间多8分钟,请根据以上信息补全图12;(3)由图12,调查表明,北京市居民在可自由支配时间中看电视的时间最长,根据这一信息,请你在可自由支配时间的利用方面提出一条建议:26.(本题8分)某商场将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台.为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4 800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?27.(本题9分)已知抛物线y=ax2-x+c经过点,且它的顶点P的横坐标为-1.设抛物线与x轴相交于A, B两点,如图13.(1)求抛物线的解析式;(2)求A, B两点的坐标;(3)设PB与y轴交于点C,求△ABC的面积.28.(本题9分)如图14,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A, E, D.(1)判断点E是否在y轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x轴的上方是否存在点P和点Q,使以点O, B, P, Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P和点Q 的坐标;若不存在,请说明理由.29.(本题9分)如图15,在等腰梯形ABCD中,AB∥CD,AD=BC=4,CD=6,AB=10.点P从点B匀速向点A运动,速度为2个单位/秒.过点P作直线BC的垂线PE,E为垂足,直线PE将梯形ABCD分成两部分.(1)∠A=°;(2)将左下部分以PE为对称轴向上翻折.若两部分重合的面积为S,试求出S与运动时间t之间的函数关系式,并求出S的最大值;(3)在(2)的条件下,若B点的对应点为B′,在整个运动过程中,是否存在以点D, P, B′为顶点的三角形为直角三角形?若存在,请直接写出t的值;若不存在,请说明理由.2016年中考数学模拟试题参考答案一、填空题或甲二、选择题13.C. 14.B. 15.C. 16.D. 17.B. 18.D.三、解答题19.原式20.原式解方程a2-4a+3=0,得x1=1,x2=3.又因为a≠3,且a ≠2,所以a=3不合题意舍去,故a=1,从而原式21.-1≤x<3(图略).22.分别用语1、语2、语3、数1、数2表示这5页试卷.从中任意摸出2页试卷,可能出现的结果有(数1, 数2), (数1, 语1), (数1, 语2), (数1, 语3), (数2, 语1), (数2, 语2), (数2, 语3), (语1, 语2), (语1,语3), (语2, 语3),共10种,它们出现的可能性相同.所有结果中,满足摸到的2页试卷都是数学试卷(记为事件A)的结果有1种,即(数1, 数2),所以,即摸到的2页试卷都是数学试卷的概率为23.(1)如图16,因为四边形ABCD是正方形,所以∠ABC=90°,故∠1+∠3=90°.因为BG⊥CE,∠BOC=90°,所以∠2+∠3=90°,故∠1=∠2.在△GAB和△EBC中,因为∠GAB=∠EBC=90°,AB=BC,∠1=∠2,所以△GAB≌△EBC(ASA),故AG=BE. (2)当点E位于线段AB中点时,∠AEF=∠CEB.理由如下:当点E位于线段AB中点时,AE=BE.由 (1)知AG=BE,故AG=AE.因为四边形ABCD是正方形,所以∠GAF=∠EAF=45°.又因为AF=AF,所以△GAF≌△EAF(SAS),故∠AGF=∠AEF.由(1)知△GAB≌△EBC,所以∠AGF=CEB,故∠AEF=∠CEB.25.(1)31.6%.(2)略.(3)答案不惟一,如适当减少看电视的时间,多做运动,有益健康(合理即给分).26.(1)根据题意,得,即由题意,得,整理得x2-300x+20 000=0.解得x1=100,x2=200.要使百姓得到实惠,取x=200.故每台冰箱应降价200元. (3)对于,当时,因此,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5 000元.27.(1)由题意得解得故抛物线的解析式为令y=0,即,整理得x2+2x-3=0,解得x1=-3,x2=1.因此A(-3, 0), B(1, 0). (3)将x=-1代入中,得y=2,即P(-1, 2).设直线PB的解析式为y=kx+b,于是2=-k+b,且0=k+b.解得k=-1,b=1,即直线PB的解析式为 y=-x+1.令x=0,得y=1,即OC=1.又因为AB=1-(-3)=4,所以,即△ABC的面积为2.28.(1)点E在y轴上,理由如下:连结AO,如图17,在Rt△ABO中,因为,所以AO=2,故,所以∠AOB=30°.由题意可知∠AOE=60°,所以∠BOE=∠AOB+∠AOE=30°+60°=90°.因为点B在x轴上,所以点E在y轴上. (2)过点D作DM⊥x轴于点M,因为OD=1,∠DOM=30°,所以在Rt△DOM中,因为点D在第一象限,所以点D的坐标为由(1)知EO=AO=2,点E在y轴的正半轴上,所以点E的坐标为(0, 2),故点A的坐标为因为抛物线y=ax2+bx+c经过点E,所以c=2.由题意,将代入y=ax2+bx+2中,得解得故所求抛物线的表达式为存在符合条件的点P和点Q.理由如下:由于矩形ABOC 的面积,故以O, B, P, Q为顶点的平行四边形面积为由题意可知OB为此平行四边形一边,因为,所以OB边上的高为2.依题意设点P的坐标为(m,2),因点P在抛物线上,故,解得,所以因为以O,B,P,Q为顶点的四边形是平行四边形,所以PQ∥,故当点P1的坐标为(0, 2)时,点Q的坐标分别为;当点P2的坐标为时,点Q的坐标分别为29.(1)60°.(2)因为∠A=∠B=60°, PB=PB′,所以△PB′B是等边三角形,故当0<t≤2时,;当2<t≤2时,;当4<t≤5时,设PB′, PE分别交DC于G, H,作GK⊥PH于K(图18).因为△PB′B是等边三角形,所以∠B′PB=60° =∠A,故PG∥AD.又。
2016中考数学模拟试卷(带答案)
2016年中考数学模拟试卷(带答案)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列运算正确的是()A.B.C.D.2.某种商品标价为1200元,售出价800元,则最接近打()折售出A.6折B.7折C.8折D.9折3.从五个点(-2,6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线上的概率是()A.B.C.D.4.平行四边形ABCD中,AC平分DAB,AB=2,则平行四边形ABCD的周长为()A.4B.6C.8D.125.若,则的值为()A.B.C.D.6.若点M(x,y)满足,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定7.如图,⊙O的直径AB=8,P是圆上任一点(A、B除外),APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.B.C.6D.8.给出四个命题:①正八边形的每个内角都是135②半径为1cm和3cm的两圆内切,则圆心距为4cm③长度等于半径的弦所对的圆周角为30④Rt△ABC中,C=90,两直角边a,b分别是方程x2-7x+12=0的两个根,则它外接圆的半径长为2.5以上命题正确的有()A.1个B.2个C.3个D.4个9.若直角三角形的两条直角边长为、,斜边长为,斜边上的高为,则有()A.B.C.D.10.直角坐标系xoy中,一次函数y=kx+b(kb0)的图象过点(1,kb),且b2,与x轴、y轴分别交于A、B两点.设△ABO的面积为S,则S的最小值是()A.B.1C.D.不存在二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.点(-1,2)变换为(2,1),请描述一种变换过程.12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路与曙光路交叉口),沿街道走的最近距离是m.13.数据11,9,7,10,14,7,6,5的中位数是,众数是.14.在△ABC中,B=45,cosC=,AC=5a,则用含a的代数式表示AB是(第14题)(第15题)(第16题)15.如图,⊙O为△ABC的内切圆,C=90,BO的延长线交AC 于点D,若BC=3,CD=1,则⊙O的半径等于.16.如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:,若m是任意实数,对化简结果,你发现原式表示的数有什么特点?18.如图是一个圆锥的三视图,求它的母线长和侧面积.(结果保留)19.在平面直角坐标系中,已知点A(6,),B(0,)(1)画一个圆M,使它经过点A、B且与y轴相切(尺规作图,保留作图痕迹);(2)若圆M绕原点O顺时针旋转,旋转角为(0),当圆M与x轴相切时,求圆心M走过的路程.(结果保留)20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,(1)根据这规律可知第④个图中有多少个三角形?第n个图中有多少个三角形?(用含正整数n的式子表示);(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;21.如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的抛物线三角形,[a,b,c]称为抛物线三角形系数.(1)若抛物线三角形系数为[-1,b,0]的抛物线三角形是等腰直角三角形,求的值;(2)若△OAB是抛物线三角形,其中点B为顶点,抛物线三角形系数为[-2,2m,0],其中m且四边形ABCD是以原点O为对称中心的矩形,求出过O、C、D三个点的抛物线的表达式.22.如图,直角梯形ABCD,DAB=90,AB∥CD,AB=AD,ABC=60.以AD为边在直角梯形ABCD外作等边△ADF,点E是直角梯形ABCD内一点,且EAD=EDA=15,连接EB、EF.(1)求证:EB=EF;(2)四边形ABEF是哪一种特殊四边形?(直接写出特殊四边形名称)(2)若EF=6,求直角梯形ABCD的面积;23.如图1,抛物线与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且OB=,(O为坐标原点).(1)求实数k的值;(2)求实数a,b的值;(3)如图2,过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,请直接写出所有满足△EOC∽△AOB的点E的坐标.参考答案一、选择:1-5CBCCD6-10BABCB二、填空:11、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下112、34013、8,714、15、16、三、解答题:17(6分)、化简得.--------------------------4分是一个非负数18(8分)L=13--------------------2分S侧面积=65---------------6分19(8分)(1)画法正确4分(其中无痕迹扣1分)(2)..2分或3..2分20、(1)10个------------------2分-----------------4分(2)不存在..4分(其中过程3分)21、(1)b=2或2..5分(其中点坐标求出适当给分)(2)..5分(其中点坐标求出适当给分)22、(1)证明完整..4分(2)菱形-------4分(写平行四边形3分)(3)S梯形=----------------4分23、(1)k=4..3分(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)(3)提示:发现OCOB,且OC=2OB所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分希望为大家提供的2016年中考数学模拟试卷的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
2016年中考数学模拟题(一)(含答案)
2016年中考数学模拟题(一)一、选择题:本大题共12个小题,每小题3分,共36分.1.的倒数是()A.﹣2 B.2 C.D.2.下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3a C.a2•a3=a6D.(a+b)2=a2+b23.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9 C.3.4×10﹣10 D.3.4×10﹣114.下列四个立体图形中,左视图为矩形的是()A.①③B.①④C.②③D.③④5.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A.B.C.D.7.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是358.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根9.已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是()A.B.C.D.10.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°11.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm)那么该圆的半径为()A.8cm B.9cm C.cm D.10cm12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4二、填空题:本大题共6个小题,每小题3分,共18分.13.函数y=的自变量x的取值范围是.14.计算:(﹣)×=.15.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.16.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为.17.若a2﹣3b=5,则6b﹣2a2+2015=.18.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P 在AB边上,连接EF、QE.若AB=6,PB=1,则QE=.三、解答题:本大题共6个小题,共46分.19.(本小题满分6分)计算:.20.(本小题满分6分)化简:﹣÷.21.(本小题满分8分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).22.(本小题满分8分)如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)23.(本小题满分9分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.24.(本小题满分9分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.四、解答题:共2个小题,共20分.25.(本小题满分9分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.26.(本小题满分11分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.2016年中考数学模拟题(一)参考答案一.选择题1.A 2.B 3.C 4.B 5.C 6.C 7.B 8.C 9.B 10.C 11.C 12.C 二.填空题13.x≤且x≠014.815.(﹣3,5)16.417.200518.2.三.解答题19.解:原式=﹣1+4×﹣2﹣1+3=+1.20.解:原式=﹣•=﹣=.21.解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC=,∴点C旋转到C2点的路径长=.22.解:作CD⊥AB交AB延长线于点D,∠D=90°由题意,得∠DCB=45°,∠CAD=90°﹣60°=30°,AB=32海里,设CD=x海里,在Rt△DCB中,tan∠DCB=,tan45°==1,BD=x,AD=AB+BD=32+x,tan30°==,解得x=16+16,∵∠CAD=30°,∠CDA=90°,∴AC=2CD=32+32≈87.42海里,答:码头A与小岛C的距离约为87.42海里.23.解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.24.解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.四、解答题25.解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.26.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,过点P作PG⊥y轴于点G,则==,即==,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P (﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P (,﹣2);②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=,解得DP=3,过点P作PG⊥y轴于点G,则==,即==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).第11页(共11页)。
2016年中考数学模拟试卷及答案(精选两套)2016年中考数学模拟试卷及答案(精选两套)
图1山东省滕州市初中2016届九年级数学第一次模拟说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B 铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为120分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 若m-n=-1,则(m-n )2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -12. 已知点A (a ,2013)与点A′(-2014,b )是关于原点O 的对称点,则b a 的值为 A. 1 B. 5 C. 6 D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12, B .15, C .12或15, D .184. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个D. 4个5. 如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A=40°,∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35°6. 下列关于概率知识的说法中,正确的是A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨.图2B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上. C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖. D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61.7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是A. 0≥aB. 21≠a C. 0≥a 且21≠a D. 一切实数10. 如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6 cm ,则AB 的长为 A. 4 cm B. 23cm C. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是 A .625)1(4502=+x B. 625)1(450=+xC .625)21(450=+xD. 450)1(6252=+x12. 如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b+c>0;④2c <3b ; ⑤a +b <m (am +b)(m ≠1的实数). 其中正确结论的有 A. ①②③ B. ①③④C. ③④⑤D. ②③⑤山东省滕州初中2016届九年级第一次模拟数 学 试 题第Ⅱ卷总分表题号 二 三 四 五 六 总 分 总分人 复查人 得分第Ⅱ卷 非选择题(84分)二、填空题(本大题共6个小题,每小题3分,满分18分)只要求填写最后结果.13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________.14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________.15. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点 D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x ,则得 分 评卷人21____y y (填“>”、“=”或“<”).17. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为 . 18. 已知101=-aa ,则a a 1+的值是______________.三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.(1)计算题:20)1(3112)3(----+--; (2)解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ).(1)画树状图或列表,写出点Q 所有可能的坐标; (2)求点Q (x ,y )在函数y =-x +5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分)21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A .(1)画出△11OB A ,直接写出点1A ,1B 的坐标; (2)在旋转过程中,点B 经过的路径的长; (3)求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?BE五、几何题(本大题满分12分)23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD 为⊙O 的切线; (2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.六、综合题(本大题满分14分)24. 如图,抛物线y=21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDBCDDCBCBAB二、填空题(本大题共6个小题,每小题3分,满分18分)13. -3 14. 0或2 15. 1.6 16. > 17. 52 18. 14± D.三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.计算题:(1)原式=1)13(321--+-(注:每项1分) ………………3分=13--. ……………………………………………………4分(2)解:整理原方程,得:0142=--x x . ……………………………………1分 解这个方程:……(方法不唯一,此略).52,5221-=+=∴x x ……………………………………………………4分得 分 评卷人20. 解:画树状图得:(1)点Q 所有可能的坐标有: (1,2),(1,3),(1,4) (2,1),(2,3),(2,4) (3,1),(3,2),(3,4) (4,1),(4,2),(4,3) 共12种. …………4分(2)∵共有12种等可能的结果,其中在函数y=﹣x+5的图象上的有4种,即:(1,4),(2,3),(3,2),(4,1),……………………………………………5分∴点(x ,y )在函数y=﹣x+5的图象上的概率为:=. …………………7分(3)∵x 、y 满足xy >6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x 、y 满足xy <6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.……………………………………………………9分()31124==小明胜P ,()21126==小红胜P……………………………10分 游戏不公平∴≠2131 . …………………………………………………11分 公平的游戏规则为:若x 、y 满足6≥xy 则小明胜,若x 、y 满足xy <6则小红胜. …………………………………………12分四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分)21.(1)如图,)3,3(1-A ,)1,2(1-B …………………………………………3分注:画图1分,两点坐标各1分.(2)由)2,1(B 可得:5=OB , ……………4分弧1BB =πππ255241241=⨯⨯=⋅r …6分 (3)由)3,3(A 可得:23=OA ,又5=OB ,πππ2918414121=⨯⨯=⋅=OA S OAA 扇形,πππ455414121=⨯⨯=⋅=OB S OBB 扇形, ……………………………8分B 1A 1OBA则线段AB 所扫过的面积为:πππ4134529=- . ……………………10分 22.解:(1)设售价应涨价x 元,则:770)10120)(1016(=--+x x , …………………………………………2分解得:11=x ,52=x . ……………………………………………………3分 又要尽可能的让利给顾客,则涨价应最少,所以52=x (舍去).∴ 1=x .答:专卖店涨价1元时,每天可以获利770元. ……………………………4分(2)设单价涨价x 元时,每天的利润为W 1元,则:810)3(107206010)10120)(1016(221+--=++-=--+=x x x x x W (0≤x ≤12) 即定价为:16+3=19(元)时,专卖店可以获得最大利润810元. ……6分设单价降价z 元时,每天的利润为W 2元,则:750)1(307206030)30120)(1016(222+--=++-=+--=z z z z z W (0≤z ≤6)即定价为:16-1=15(元)时,专卖店可以获得最大利润750元. ………8分综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元. …10分五、几何题(本大题满分12分) 23.(1)证明:连接OD ,∵BC 是⊙O 的切线,∴∠ABC=90°, …………1分 ∵CD=CB , ∴∠CBD=∠CDB , ∵OB=OD ,∴∠OBD=∠ODB ,∴∠ODC=∠ABC=90°,即OD ⊥CD , ……………3分∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分(2)如图,∠DOE=∠ODB+∠OBD=2∠DBE ,…………………6分由(1)得:OD ⊥EC 于点D ,∴∠E+∠C=∠E+∠DOE =90°, ………………7分∴∠C=∠DOE =2∠DBE. ………………………………………………………8分(3)作OF ⊥DB 于点F,连接AD ,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°, ………………………………9分又∵OB=AO=2,OF ⊥BD ,∴ OF=1,BF=, ………………………………10分∴BD=2BF=2,∠BOD=180°-∠DOA =120°, ……………………………11分∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S 三角形扇形阴影.…12分注:此大题解法不唯一,请参照给分.六、综合题(本大题满分14分)24.解:(1)∵点)01(,-A 在抛物线221y 2-+=bx x 上, ∴02)1()1(212=--⨯+-⨯b ,∴23-=b , …………………………………2分 ∴抛物线的解析式为223212--=x x y . ………………………………………3分∵825)23(212232122--=--=x x x y ,∴顶点D 的坐标为)825,23(-. …………………………………………………5分(2)△ABC 是直角三角形. 当0=x 时,2-=y ,∴)2,0(-C ,则2=OC . …6分当0=y 时,0223212=--x x ,∴4,121=-=x x ,则)0,4(B . ………7分 ∴1=OA ,4=OB , ∴5=AB .∵252=AB ,5222=+=OC OA AC ,20222=+=OB OC BC , ∴222AB BC AC =+, ……………………………………………………8分 ∴△ABC 是直角三角形. ……………………………………………………9分(3)作出点C 关于x 轴的对称点C ′,则)2,0('C .连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,CD 一定,当MC+MD 的值最小时,△CDM 的周长最小. ………………10分设直线C ′D 的解析式为b ax y +=,则:则⎪⎩⎪⎨⎧-=+=825232b a b ,解得2,1241=-=b a ,…11分∴21241'+-=x y D C …………………………12分当0=y 时,021241=+-x ,则4124=x ,……13分∴)0,4124(M . …………………………………14分济南市2016年初三年级学业水平考试数学全真模拟试卷3第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.)1.|-2 014|等于( )A.-2 014B.2 014C.±2 014D.2 0142.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A.a-c>b-cB.a+c<b+cC.ac>bcD.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗B.2颗C.3颗D.4颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A.10,10B.10,12.5C.11,12.5D.11,106.一个几何体的三视图如图所示,则这个几何体是( )7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是( )8.对于非零的两个实数a ,b ,规定a b=11b a -,若2(2x-1)=1,则x 的值为( )5531A. B. C. D.6426-9.已知2x y 30-++=(),则x+y 的值为( )A.0B.-1C.1D.510.如图,已知⊙O 的两条弦AC 、BD 相交于点E ,∠A =70°,∠C =50°,那么sin ∠AEB 的值为( )A.231C.D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.76D.8012.如图,点D 为y 轴上任意一点,过点A(-6,4)作AB 垂直于x 轴交x 轴于点B ,交双曲线6y x-=于点C,则△ADC 的面积为( )A.9B.10C.12D.1513.2012-2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( )A.60°B.90°C.120°D.180°15.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度向B点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3 cm的速度运动,到达B点时运动同时停止.设△AMN 的面积为y(cm2),运动时间为x(s),则下列图象中能大致反映y与x之间的函数关系的是第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.a 10a b -+=-,则=___________.17.命题“相等的角是对顶角”是____命题(填“真”或“假”).18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(5,3),则这束光从点A 到点B 所经过的路径的长为______.20.若圆锥的母线长为5 cm ,底面半径为3 cm ,则它的侧面展开图的面积为________cm 2(结果保留π).21.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D=______度.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)解方程组:x3y1, 3x2y8.+=-⎧⎨-=⎩(2)解不等式组2x312x0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.(本小题满分7分)(1)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;(2)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.(本小题满分8分)一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?25.(本小题满分8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(本小题满分9分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P 为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA 交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.27.(本小题满分9分)已知如图,一次函数1y x 12=+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为(1,0).(1)求二次函数的解析式.(2)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.(3)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似,若存在,求a的值;若不存在,说明理由.28.(本小题满分9分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为2 43(,),且与y 轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标.(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由.(3)以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案1.B2.C3.B4.B5.D6.D7.C8.A9.C 10.A 11.C 12.A 13.A 14.D 15.C16.4 17.假18.2 19.π 21.3622.(1)解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,(2)解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2,在数轴上表示为:23.(1)证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.(2)证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.1.5x=30,故甲、乙两公司单独完成此项工程,各需20天、30天. (2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元.根据题意得:12(y+y-1 500)=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费:30×(5 000-1 500)=105 000(元);故甲公司的施工费较少.25.解:(1)张老师一共调查了:(6+4)÷50%=20(人);(2)C类女生人数:20×25%-3=2(人);D类男生人数:20-3-10-5-1=1(人);将条形统计图补充完整如图所示:(3)列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12.26.解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP.又∵∠B=∠C=90°, ∴△ABP ∽△PCE ,2AB BP 2x 1m,,y x x.PC CE m x y 22∴==∴=-+-即 (2)2221m 1m m y x x (x ),22228=-+=--+∴当mx 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上,2m1,m 8∴≤≤解得∴m 的取值范围为:0m <≤(3)由折叠可知,PG=PC ,EG=EC ,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°, ∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC , ∴∠GAP=∠APB , ∴∠GAP=∠APG , ∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG ,交于点H ,则易知ABCH 为矩形,HE=CH-CE=2-y ,GH=AH-AG=4-(4-x )=x ,在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2, 即:x 2+(2-y )2=y 2,化简得:x 2-4y+4=0①. 2221m1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC . ∵AG ∥PC ,AG=PC ,∴四边形APCG 为平行四边形,∴AP=CG .易证△ABP≌GNC,∴CN=BP=x.过点G作GN⊥PC于点N,则GH=2,PN=PC-CN=4-2x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C 的坐标为(4,3).设符合条件的点P 存在,令P (a ,0). 当P 为直角顶点时,如图,过C 作CF ⊥x 轴于F.∵∠BPC=90°, ∴∠BPO+∠CPF=90°. 又∵∠OBP+∠BPO=90°, ∴∠OBP=∠CPF, ∴Rt △BOP ∽Rt △PFC ,BO OP 1t,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0, 解得:t=1或t=3,∴所求的点P 的坐标为(1,0)或(3,0), ∴运动时间为1秒或3秒.(3)存在符合条件的t 值,使△APQ 与△ABD 相似. 设运动时间为t ,则AP=2t ,AQ=at.∵∠BAD=∠PAQ , ∴当APAQAP AQAB AD AD AB ==或时,两三角形相似.at 2t AB 5AD 333aa ,53====∴==,或∴存在a 使两三角形相似且a a 53==28.解:(1)由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()()∵抛物线经过(0,2), 22a 042,3∴--=()解得:a=16,22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时,解得:x=2或x=6,∴A (2,0),B (6,0).(2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,∴AP+CP=BC的值最小.∵B (6,0),C (0,2) ,∴OB=6,OC=2, BC AP CP BC ∴=∴+== ∴AP+CP的最小值为(3)如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE ,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE, ∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM.设OD=x,则CD=DM=OM-OD=4-x,则Rt △COD 中,OD 2+OC 2=CD 2,∴x 2+22=(4-x )2.33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b,∵直线CE 过C (0,2),D(3,02)两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,,∴直线CE 的解析式为4y x 2.3=-+。
2016年数学中考模拟题 (含答案)
(第9题图)2013年初中毕业生学业考试模拟试题数 学一、选择题:(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1、9的平方根是( )。
A 、3B 、±3C 、3D 、±3 2、如图,小手盖住的点的坐标可能为( )。
A .(34)-, B . (46)--, C .(63)-, D . (52),3、有理数a 、b 在数轴上的位置如图所示,则b a +的值( )A .大于bB .小于0C .小于aD .大于04、一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( ) A .和 B .谐 C .清 D .远5、如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( )A .2cmB .4cmC .6cmD .8cm 6、抛物线2)8(2+--=a y 的顶点坐标是( )A 、(2,8)B 、(8,2)C 、(—8,2)D 、(—8,—2) 7、下列函数中,自变量x 的取值范围是x ≥3的是( )。
A 、31-=x y B 、31-=x yC 、3-=x yD 、3-=x y8、 两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9:16B . 3:4C .9:4D .3:169、在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm π D .2120cm(第2题图)yxO建 设和 谐 清远(第4题图)A B CD(第5题图)E10、函数y ax a =-与a y x=(a ≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题;(本大题共6小题,每小题4分,共24分。
中考数学模拟试题含答案(精选5套)培训资料
2016中考数学模拟试题含答案(精选5套)2015年中考数学模拟试卷(一)数学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回.....一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B铅笔涂黑)1. 2 sin 60°的值等于A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D.3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是A. 平行四边形B. 矩形C. 正方形D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的圆弧角扇形菱形等腰梯形A. B. C. D.信息,可估算出该校喜爱体育节目的学生共有A. 1200名B. 450名C. 400名D. 300名 8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为 A. (x + 2)2 = 9 B. (x - 2)2 = 9C. (x + 2)2= 1D. (x - 2)2=1 9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =A. 1∶2B. 1∶4C. 1∶3D. 2∶3 10. 下列各因式分解正确的是A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x+ 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效)13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,(第9题(第11题(第12题再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分) 21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数. 22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;3121--+x x ≤1, ……① 解不等式组: 3(x - 1)<2 x +(第18题(第21题图)°(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2-21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.(第23题(第24题(第26题2016年初三适应性检测参考答案与评分意见说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+= 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= n m m +·m n m n m ))((-+ …………3分= m – n …………4分20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 =3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分=10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分 在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ),∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、 选择题1、数2-中最大的数是() A 、1- B、0 D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是()A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是() A 、0a b +> B 、0a b -> C 、0ab > D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=()A 、20°B 、80°C 、60°D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若10x >则一定成立的是()DE左视图俯视图A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016中考数学复习必做模拟题
2016年中考数学复习必做模拟题中考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了2016年中考数学复习必做模拟题。
1.(2013年福建漳州)用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形2.(2013年湖南长沙)下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形3.(2013年海南)如图4-3-9,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是()A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD图4-3-9图4-3-10图4-3-11图4-3-12图4-3-134.(2013年黑龙江哈尔滨)如图4-3-10,在ABCD中,AD=2AB,CE平分∠BCD,并交AD边于点E,且AE=3,则AB的长为()A.4B.3C.52D.25.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.(2013年山东烟台)如图4-3-11,ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为____________.7.(2013年江西)如图4-3-12,ABCD与DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为__________.8.(2013年福建泉州)如图4-3-13,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是__________.9.(2012年四川德阳)已知一个多边形的内角和是外角和的32,则这个多边形的边数是________.10.(2013年四川南充)如图4-3-14,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.11.(2013年福建漳州)如图4-3-15,在ABCD中,E,F是对角线BD上两点,且BE=DF.(1)图中共有______对全等三角形;(2)请写出其中一对全等三角形:________≌__________,并加以证明.B级中等题12.(2013年广东广州)如图4-3-16,已知四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.13.(2012年辽宁沈阳)如图4-3-17,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.C级拔尖题14.(1)如图4-3-18(1),ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图4-3-18(2),将ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.1.B2.A3.D4.B5.C6.157.25°8.平行四边形9.510.证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD.∴∠OAE=∠OCF.∵∠AOE=∠COF,∴△OAE≌△OCF(ASA).∴OE=OF.11.解:(1)3(2)①△ABE≌△CDF.证明:在ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF.又∵BE=DF,∴△ABE≌△CDF(SAS).②△ADE≌△CBF.证明:在ABCD中,AD∥BC,AD=BC,∴∠ADE=∠CBF,∵BE=DF,∴BD-BE=BD-DF,即DE=BF.∴△ADE≌△CBF(SAS).③△ABD≌△CDB.证明:在ABCD中,AB=CD,AD=BC,又∵BD=DB,∴△ABD≌△CDB(SSS).(任选其中一对进行证明即可)12.解:(1)略(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠性质,可得∠A′=∠A,A′B=AB,设A′D与BC交于点E,∴∠A′=∠C,A′B=CD,在△BA′E和△DCE中,∠A′=∠C,∠BEA′=∠DEC,BA′=DC,∴△BA′E≌△DCE(AAS).13.证明:(1)∵四边形ABCD是平行四边形,∴∠DAB=∠BCD.∴∠EAM=∠FCN.又∵AD∥BC,∴∠E=∠F.又∵AE=CF,∴△AEM≌△CFN(ASA).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又由(1),得AM=CN,∴BM=DN.又∵BM∥DN∴四边形BMDN是平行四边形. 14.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠1=∠2.又∵∠3=∠4,∴△AOE≌△COF(ASA).∴AE=CF.(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D.由(1),得AE=CF.由折叠的性质,得AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠C,∠B1=∠D.又∵∠1=∠2,∴∠3=∠4.∵∠5=∠3,∠4=∠6,∴∠5=∠6.在△A1IE与△CGF中,∠A1=∠C,∠5=∠6,A1E=CF,∴△A1IE≌△CGF(AAS).∴EI=FG.为大家推荐的2016年中考数学复习必做模拟题,还满意吗?相信大家都会仔细阅读,加油哦!精心整理,仅供学习参考。
2016中考模拟卷含答案
中考数学模拟试卷一、选择题(12小题,每小题3分,共36分 ) 1. sin60°的相反数是( )A .1-2 B. C.D.-22. 已知空气的单位体积质量为克/厘米3,用小数表示为( )A .0.000124B .0.0124C .-0.00124D .0.001243. 下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个4. 任意给定一个非零数,按下列程序计算,最后输出的结果是( )A.mB.m2C.m +1 D.m -15. 下列说法中,不正确...的是( ). A .为了解一种灯泡的使用寿命,宜采用普查的方法B .众数在一组数据中若存在,可以不唯一C .方差反映了一组数据与其平均数的偏离程度D .对于简单随机样本,可以用样本的方差去估计总体的方差 6. 不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<7. 同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为( ) A .B .C .D . 8. 如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm31024.1-⨯31024.1-⨯9136561367圆柱 圆锥 球 正方体 N9. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A .4B .5C .6D .710. 如图,已知RtΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ) A .B .C .D . 11. 如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分, 则图中阴影部分的面积是△ABC 的面积的( )A.91 B.92 C.31 D.9412. 如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )A . 1B . 2C . 3D .4 二、填空题( 13. 分解因式:421881x x -+=14. 已知两圆相切,它们的直径分别为方程2680x x -+=的两个不相等实数根,则该两圆圆心距为15. 抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为2(1)4y x =--,则b= ,c= .16. 观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 . 三、解答题(7小题,共52分) 17. (本题5分)计算:()1-3020143164-81-12-1⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛++ππ5168π24π584π12((第11题图)18. (本题6分)解方程:261393x x x x +=+--19. (本题7分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.各类学生人数比例统计图(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格)各类学生成绩人数比例统计表20.(本题8分)如图所示,某旅游景区计划修建一条连接B、C两地的索道.测量人员在山脚A点测得B、C两地的仰角分别为30°和45°,在B地测得C地的仰角为60°,已知C地比A地高1200m,则索道至少需多长?(,结果精确到1m).21.(本题8分)如图,矩形ABCD中,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F。
2016年中考模拟数学试题(附答案)
2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。
2016中考数学模拟题(附答案)
2016中考数学模拟题(附答案)中考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了2016中考数学模拟题。
A级基础题1.下列各条件中,不能作出唯一三角形的条件是()A.已知两边和夹角B.已知两边和其中一条边所对的角C.已知两角和夹边D.已知两角和其中一角的对边2.(2013年四川遂宁)如图6,在△ABC中,C=90,B=30,以A 为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是BAC的平分线;②ADC=60③点D在AB的中垂线上;④S△DAC∶S△ABC=1∶3.其中正确的个数是()A.1个B.2个C.3个D.4个3.(2013年河北)已知:线段AB,BC,ABC=90.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:①以点C为圆心,AB的长为半径画弧;②以点A为圆心,BC的长为半径画弧;③两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图611).图612乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图612).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对4.(2013年福建三明)如图613,在△ABC中,C=90,CAB=60.按以下步骤作图:图613①分别以A,B为圆心,以大于12AB的长为半径作弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=________.5.(2013年甘肃白银)两个城镇A,B与两条公路l1,l2的位置如图614.电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在下图中,用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹).6.(2012年贵州铜仁)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图615,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).B级中等题7.如图616,已知△ABC,且ACB=90.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明).①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作ABD=BAC.(2)请判断直线BD与⊙A的位置关系(需证明).8.(2013年江苏宿迁)如图617,在平行四边形ABCD中,ADAB.(1)作出ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AFBE,垂足为点O,交BC于点F,连接EF.w求证:四边形ABFE为菱形.C级拔尖题9.(2013年山东德州)(1)如图618(1),已知△ABC,以AB,AC为边向△ABC外作等边三角形ABD和等边三角形ACE.连接BE,CD.请你完成图形,并证明:BE=CD(尺规作图,不写做法,保留作图痕迹);(2)如图618(2),已知△ABC,以AB,AC为边向外作正方形ABFD 和正方形ACGE.连接BE,CD.BE与CD有什么数量关系?简单说明理由;(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图618(3),要测量池塘两岸相对的两点B,E的距离,已经测得ABC=45,CAE=90,AB=BC=100米,AC=AE,求BE的长.(1)(2)(3)尺规作图1.B2.D3.A4.85.解:作线段AB的垂直平分线,作两条公路夹角的平分线,两线分别交于点C1,C2.如图48,所以点C1、C2就是符合条件的点.6.解:如图49,点M为所求.7.解:(1)如图50.(2)直线BD与⊙A相切.证明如下:∵ABD=BAC,AC∥BD.∵ACB=90,⊙A的半径等于BC,点A到直线BD的距离等于BC.直线BD与⊙A相切.8.解:(1)如图51.(2)∵BE平分ABC,ABO=FBO.∵AFBE于点O,AOB=FOB=AOE=90.又∵BO=BO,△AOB≌△FOB.AO=FO,AB=FB.∵四边形ABCD是平行四边形,AD∥BC,AEO=FBO.△AOE≌△FOB.AE=BF.又∵AE∥BF,四边形ABFE是平行四边形.又∵AB=FB,平行四边形ABFE是菱形.11.(1)证明:如图52.∵△ABD和△ACE都是等边三角形,AD=AB,AC=AE,BAD=CAE=60.BAD+BAC=CAE+BAC.即CAD=EAB.△CAD≌△EAB.BE=CD.(2)解:BE=CD.理由:∵四边形ABFD和ACGE均为正方形,AD=AB,AC=AE,BAD=CAE=90.CAD=EAB.△CAD≌△EAB.BE=CD.(3)解:如图53,过A作等腰直角三角形ABD,BAD=90,则AD=AB=100,ABD=45.BD=1002.连接CD,则由(2)可知BE=CD.∵ABC=45,在Rt△DBC中,BC=100,BD=1002.CD=1002+10022=1003.BE的长为1003米.希望为大家提供的2016中考数学模拟题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
2016年中考数学模拟试题(一)及答案
2016年中考数学模拟试题数学试卷(一)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比-1大1的数是( )A.2 B.1 C.0 D.-22.某外贸企业为参加2012年中国南通港口洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为()A.10.5 B.1.05 C.1.05 D.0.1053.右图是由4个相同的小正方体组成的几何体,其俯视图为()A. B. C. D.4.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<C.(b-1)(a+1)>0 D.(b-1)(a-1)>05.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°16.已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是( ) A.B.m≥0C.m≥1D.m≥27.方山镇2012年的蔬菜产量是1200吨,今年的产量达到1452吨,如果平均每年的增长率为x ,那么x 满足的方程是( ) A .1200(1+x )2=1452 B .1200(1+x %)2=1452 C .1200(1+2x )=1452D .1200(1+x %)=14528.同一直角坐标系中,函数xay -=与1+=ax y (a ≠0)的图象可能是( )9.小红制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被3整除的概率是( )A .B .C .D .10.如图,函数y=的图象经过点A (1,﹣3),AB 垂直x 轴于点B ,则下列说法正确的是( )A.k=3B. 函数图象关于y 轴对称C. S △AOB =3D. x <0时, y 随x 增大而增大11如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∠BCD =30°,下列结论:①AE =BE ;②OE =DE ;③AB =BC ;④.其中正确的是( )A .①B .①②③C .①③D .①②③④12. 如图,正方形OABC 边长为2,顶点A 、C 在坐标轴上,点P 在AB 上,CP 交OB 于点Q ,OQ=OC ,则﹣213.如图,在等腰D 是AC 上一点,若那么AD 的长为( )14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0; ②9a+c >3b ; ③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( ) A .1个 B . 2个 C . 3个 D . 4个15.已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具).以下是嘉淇、小刚两同学的作业:【嘉淇】①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1).【小刚】①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2).对于两人的作业,下列说法正确的是( )A .嘉淇对,小刚不对B .嘉淇不对,小刚对C .两人都对D .两人都不对 16.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )图2图1BA .A→O→B B .B→A→C C .B→O→CD .C→B→O二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.已知m 、n 是一元二次方程x 2-3x +1=0的两个根,那么代数式2m 2+4n 2-6n +2003的值是__________. 18.已知关于x 的分式方程a +2x +1=1的解是非正数,则a 的取值范围是________. 19.右图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5=___.20.如图,在反比例函数2y x=(x > 0)的图象上有点A 1,A 2,A 3,…,A n -1,A n ,这些点的横坐标分别是1,2,3,…,n -1,n 时,点A 2的坐标是__________;过点A 1 作x 轴的垂线,垂足为B 1,再过点A 2作A 2 P 1⊥A 1 B 1于点P 1,以点P 1、A 1、A 2为顶点的△P 1A 1A 2的面积记为S 1,按照以上方法继续作图,可以得到△P 2 A 2A 3,…,△P n -1 A n -1 A n ,其面积分别记为S 2,…,S n -1,则S 1+ S 2+…+S n =________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)(1(2)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.如图,在菱形ABCD 中,AB =2,∠ABC =60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角()090αα<< 后得直线l ,直线l 与AD 、BC 两边分别相交于点E 和点F . (1)求证:△AOE ≌△COF ;(2)当=30α 时,求线段EF 的长度.DB第23题图甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.如图,边长为1的正方形ABCD一边AD在x负半轴上,直线lB(x,1)与x轴、y轴分别交于点H、F,抛物线y=-x2+bx+c顶点E在直线l上.⑴求A、D两点的坐标及抛物线经过A、D两点时的解析式.⑵当该抛物线的顶点E(m,n)在直线l上运动时,连接EA、ED,试求△EAD的面积S与m之间的函数解析式.并写出m的取值范围.⑶设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A、C、E、G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.26.如图14-1,矩形ABCD中,AB=8,BC=38,半径为3的⊙P与线段BD相切于点M,圆心P与点C在直线BD的同侧,⊙P沿线段BD从点B向点D滚动.发现:BD=______;∠CBD的度数为_______;拓展:①当切点M与点B重合时,求⊙P与矩形ABCD重叠部分的面积②在滚动过程中如图14-2,求AP的最小值;B(图14-1B图14-2探究:①若⊙P与矩形ABCD的两条对角线都相切,求此时线段BM的长,并直接写出tan∠PBC的值.Array②在滚动过程中如图14-3,点N是AC上任意一点,直接写出BP+PN的最小值.图14-3答案一、选择题1——16 CBBC B BA B DDDB ABCC 二、填空题17 2015 18 a≤-1且a≠-2 19 360°20 (2,1);1 nn-.三、解答题21.(1)2013(2) x=-222.(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)根据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;则P==.23.【答案】(1)∵四边形ABCD是菱形,∴OA=OC,AD∥BC.∴∠OAE=∠OCF,∠OEA=∠OFC.∴△AOE≌△COF(AAS).(2)∵AB=AC=2,∠ABC=60°,∴△ABC是等边三角形.∴∠AOAE=∠ACB=60°.又∵=30α =∠AOE,∴EF⊥BC.∵四边形ABCD 是菱形, ∴OA =OC =1.在Rt △OCF 中,由sin ∠OCF =OF OC ,得OF =OC sin60°=1 ∵△AOE ≌△COF , ∴OE =OF .∴EF24.【答案】(1)4.5,60(km/h);(2)y=28x+264.(7x 5.4≤≤)(3)1855小时和32209小时 【解析】解:(1)在途中的货站装货耗时半小时,说明a=4+0.5=4.5. 甲的速度:460÷(7+32)=60(km/h) (2)设直线OD 为y=mx,直线EF 为y=nx+b.由图像可知:⎩⎨⎧+=50m 460=4.5)n -(7+4m n 解得:⎩⎨⎧=28n 78=m 把n=28,(7,460)代入y=nx+b.中得:b=264. ∴y=28x+264.(7x 5.4≤≤) (3)相距15千米,两种:①78x-60(x+32)=15 解得:x=1855②28x+264-60(x+32)=15解得:x=32209答:乙出发1855小时和32209小时时与甲相聚15千米。
2016中考数学模拟试题(有答案)
2016年中考数学模拟试题(有答案)科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了2016年中考数学模拟试题。
A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-112.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).希望为大家提供的2016年中考数学模拟试题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为每位学生对知识点的掌握程度不同,复习进度也不同。
查字典数学网初中频道为大家提供了2016年中考数学必做模拟题练习,希望能够切实的帮助到大家。
A级基础题1.(2013年湖北宜昌)合作交流是学习教学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是()A.7 B.7.5 C.8 D.92.(2013年重庆)某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同 D.无法确定谁的成绩更稳定3.(2012年江苏无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况 B.了解某市中学生课外阅读的情况 C.了解某市百岁以上老人的健康情况 D.了解某市老年人参加晨练的情况4.(2013年湖北黄石)为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:捐款的数额/元 5 10 20 50 100人数/人 2 4 5 3 1关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100 B.平均数是30 C.极差是20 D.中位数是205.为了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A.某市八年级学生的肺活量 B.从中抽取的500名学生的肺活量C.从中抽取的500名学生 D.5006.(2013年浙江绍兴)某校体育组为了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如图7-1-8所示的两幅统计图.根据统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?B级中等题7.(2012年广东肇庆)某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,图7-1-9所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人 C.丙地区的人数比乙地区的人数多180人 D.甲地区的人数比丙地区的人数少180人8.(2013年湖北黄石)青少年“心理健康”问题越来越引起社会的关注,某中学为了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图(如图7-1-10).请回答下列问题:分组频数频率50.5~60.5 4 0.0860.5~70.5 14 0.2870.5~80.5 1680.5~90.590.5~100.5 10 0.20合计 1.00(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导.请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.9.(2013年山东威海)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下表:序号项目 1 2 3 4 5 6笔试成绩/分 85 92 84 90 84 80面试成绩/分 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是________分,众数是________分;(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前2名人选.C级拔尖题10.(2013年重庆)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”“2小时~3小时”“3小时~4小时”“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图7-1-11所示的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.以
上就是查字典数学网为大家整理的2016年中考数学必做模拟题练习,怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!。