Ab initio investigation of intermolecular interactions in solid benzene

合集下载

1乙基3甲基咪唑阳离子与天冬酰胺阴离子的相互作用

1乙基3甲基咪唑阳离子与天冬酰胺阴离子的相互作用

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.鄄Chim.Sin .,2009,25(8):1689-1696August Received:March 2,2009;Revised:May 9,2009;Published on Web:June 26,2009.∗Corresponding author.Email:wuyang@;Tel:+86⁃24⁃62207802.The project was supported by the National Natural Science Foundation of China (20703021)and Program for Innovative Research Groups of Liaoning Province,China (2008T074).国家自然科学基金(20703021)和辽宁省创新团队基金(2008T074)资助项目ⒸEditorial office of Acta Physico ⁃Chimica Sinica1⁃乙基⁃3⁃甲基咪唑阳离子与天冬酰胺阴离子的相互作用吴阳∗张甜甜于宁(辽宁大学化学学院,沈阳110036)摘要:利用密度泛函理论B3LYP 方法,在6⁃311+G(d ,p )水平上,对1⁃乙基⁃3⁃甲基咪唑阳离子[Emim]+与天冬酰胺阴离子[Asn]-形成的氨基酸离子液体气态阴阳离子对([Emim][Asn])进行理论研究.通过几何结构优化和频率分析得到势能面上的五个稳定构型.[Emim]+和[Asn]-之间能够形成较强的氢键相互作用,零点能校正后的能量在-373.96至-326.28kJ ·mol -1之间.其稳定化能主要来源于[Asn]-中羰基O 的孤对电子lp(O)与[Emim]+中C —H 反键轨道σ∗(C —H)之间的相互作用:lp(O)➝σ∗(C —H).红外光谱特征和自然布居分析(NPA)计算表明咪唑阳离子中参与形成氢键的C —H 键振动的红移值、阴阳离子间的电荷转移与氢键相互作用能成正比关系.分子中的原子(AIM)理论分析得到[Emim]+和[Asn]-之间的氢键相互作用以静电作用为主.通过计算结果初步探讨影响氨基酸离子液体玻璃化温度T g 的结构因素.关键词:自然布居分析;氨基酸离子液体;密度泛函理论;分子间氢键;相互作用能;红外光谱;分子中的原子理论中图分类号:O641Interaction between 1⁃Ethyl ⁃3⁃Methyl ⁃Imidazolium Cation andAsparagine AnionWU Yang ∗ZHANG Tian ⁃TianYU Ning(College of Chemistry,Liaoning University,Shenyang110036,P.R.China )Abstract :Gas phase ion pairs of the amino acid ionic liquid 1⁃ethyl ⁃3⁃methyl ⁃imidazolium asparagine ([Emim][Asn])was investigated with density functional theory at B3LYP/6⁃311+G(d ,p )level.Five geometries of the [Emim][Asn]complex were optimized and their geometrical parameters are discussed in detail.Theoretical results indicate that H ⁃bond interactions of [Emim][Asn]are very strong,-373.96to -326.28kJ ·mol -1with zero point energy (ZPE)correction,which is mainly attributed to the interaction between lone pairs of the carbonyl O atom in [Asn]-and the antibonding orbital of C —H in [Emim]+.Interaction H ⁃bond energies,IR spectra,and natural population analysis (NPA)were presented and analyzed ,declaring that both the red shift of the C —H stretching frequencies in the imidazolium cation and the charge transferred between cation and anion were in roughly direct proportion to the interaction energies.Atoms in molecules (AIM)analyses indicate that the H ⁃bond between [Emim]+and [Asn]-is primarily ionic character.A preliminary analysis of cation ⁃anion interactions provides some initial hints as to the structural factors that contribute to the experimental glass transition temperature T g .Key Words :Natural population analysis;Amino acid ionic liquid;Density functional theory;IntermolecularH ⁃bond;Interaction energy;IR spectra;Atoms in molecules theory离子液体是由有机阳离子和无机或有机阴离子构成的室温或室温附近呈液体状态的盐类[1-3].离子1689Acta Phys.鄄Chim.Sin.,2009Vol.25液体有许多独特的性质,如蒸汽压小、热稳定性好、电化学稳定性好、对很多有机和无机物质的溶解性好、不易燃等,可以用作电化学反应介质或电解液,是一类重要的新型“绿色”有机溶剂[2-10].离子液体最大的特点是具有可设计性,即可通过修饰或调变阴阳离子的结构或种类来调控离子液体的物理化学性质,以满足特定的应用需求[10-16].但是传统离子液体的制备和纯化过程实际上是非绿色的[17],通常需要用到非环境友好型的化学试剂(如二氯甲烷)或是产生“非绿色”有机溶剂和固体废物等.由此,以生物可再生分子为前驱的离子液体的合成受到了化学界和生物界的广泛关注[18-25].氨基酸离子液体,是以天然氨基酸作为阴离子或者阳离子的一类离子液体.由于氨基酸离子液体多具有官能团或手性,并且具有良好的环境友好性、生物相容性、生物降解等功能,可作为新一代绿色无污染的溶剂和催化剂.Ohno等[18-21]首先合成出以20种天然氨基酸为阴离子、烷基咪唑为阳离子的室温离子液体.Kou等[22,23]则通过简单的方法获得了α⁃氨基酸和α⁃氨基酸脂为阳离子的氨基酸离子液体.研究表明,氨基酸离子液体的热稳定性、熔点、黏度等性质与传统离子液体并无很大差异,尤其是其能够溶解许多生命物质,如DNA、纤维素、碳酰化合物等,在工业化学和药物化学等多种领域,氨基酸离子液体具有广泛的应用[10,16].氨基酸离子液体的显著特点是具有较强的氢键相互作用,因此对氨基酸离子液体中阴阳离子对的相互作用模式、微观结构等与宏观性质之间关系的研究显得十分必要[26-31],这也是离子液体功能化设计的必由之路.目前,对氨基酸离子液体的理论研究才刚刚起步,Mou等[29]对1⁃乙基⁃3⁃甲基咪唑阳离子与甘氨酸阴离子形成的氨基酸离子液体进行了较为详细的理论研究;Rong等[30]对谷氨酸阳离子与BF-4、SO2-4、Cl-、NO-3等阴离子形成的氨基酸离子液体进行了研究,计算表明,阴阳离子对之间相互作用能越小,化合物的熔点越低.本文选取1⁃乙基⁃3⁃甲基咪唑阳离子和天冬酰胺阴离子组成的气态阴阳离子对([Emim][Asn])作为研究对象,其中[Asn]-作为阴离子的氨基酸离子液体的理论研究还未见报道. [Emim]+阳离子在实验上能够和20种天然氨基酸阴离子形成性能良好的离子液体[18],同时理论上也有许多文献给出过详细的报道[26,29,32-38].其中咪唑环上氢原子C2⁃H(即为C原子相连的H原子,下同)被认为具有最强的酸性,最容易与质子受体相互作用形成氢键,氢原子C4⁃H和C5⁃H形成氢键的能力则较弱(图1).Wang等[26]在研究[Emim]+X-(X=Cl,Br)体系时,将[Emim]+咪唑环周围分为五个区域S1、S2、S3、S4和S5进行讨论(图1).本文也将天冬酰胺阴离子([Asn]-)放在咪唑环的这五个区域内,讨论氨基酸阴离子与咪唑阳离子之间相互作用的微观机制、氢键作用能、电荷布居等电子结构信息,同时利用AIM方法得到的电子密度拓扑信息来探讨氢键相互作用本质等.并与实验及其它理论计算进行比较,初步给出影响氨基酸离子液体玻璃化温度等性质的结构因素.1计算方法利用密度泛函理论[39]的B3LYP方法[40],在6⁃311+G(d,p)水平上对[Emim][Asn]阴阳离子对的几何构型进行优化,并计算氢键相互作用能、红外光谱特征、自然布居分析(NPA)、自然键轨道(NBO)等. B3LYP是一种杂化的密度泛函方法,它包括Becke 的交换能方程,Lee⁃Yang⁃Par的相关能方程和Hartree⁃Fock交换能项.B3LYP方法计算速度快,能节省大量的计算机资源,目前已广泛应用到离子液体体系的研究中[26,29-31,37,38].在密度泛函方法下,Wang 等[26]利用6⁃31+G∗、6⁃31++G∗∗和6⁃311++G∗∗基组对[Emim]X(X=Cl、Br)离子液体体系分别进行计算,结果表明后两种基组得到的结果非常相近;Mou等[29]利用6⁃311++G∗∗和更高水平基组6⁃311+G(2d,2p)图1在B3LYP/6⁃311+G(d,p)水平上优化得到的[Asn]-和[Emim]+的结构Fig.1Geometries of the isolated[Asn]-and[Emim]+ optimized at B3LYP/6⁃311+G(d,p)levelThe partial charges(unit in e)of[Emim]+and[Asn]-are in parentheses.S1,S2,S3,S4,and S5mean the possible regions for H⁃bonds of[Emim]+.The corresponding electrostatic potential surfaces are presented.The isodensity contours are0.0004a.u..1690No.8吴阳等:1⁃乙基⁃3⁃甲基咪唑阳离子与天冬酰胺阴离子的相互作用及aug⁃cc⁃pVTZ计算[Emim][Gly]气态阴阳离子对,表明这三种基组得到的离子对优化结构、氢键相互作用能的差别很小.因而本文选取了B3LYP/6⁃311+ G(d,p)计算方法.氢键相互作用能的计算公式如下:ΔE=2625.5[E AX-E A+-E X-](1)其中E AX为阴阳离子对的相互作用能量,E A+和E X-分别为阳离子、阴离子的能量.同时进行了零点振动能(ZPE)校正,利用Boys和Bernardi方法[41]考虑了基组重叠误差(BSSE).在优化结构的基础上,对[Emim][Asn]进行自然键轨道分析(NBO),探讨阴阳离子轨道相互作用对氢键稳定化能的贡献.另外,通过Bader的AIM(atoms in molecules)拓扑理论[42],将分子中的电子密度作为研究对象,深入探讨阴阳离子对[Emim][Asn]间氢键相互作用的本质.所有的计算工作都是利用Gaussian98[43]和Gaussian03[44]程序完成的.2结果与讨论2.1几何结构与氢键相互作用能图1给出了在B3LYP/6⁃311+G(d,p)方法下优化得到的[Emim]+和[Asn]-单体结构,以及相应的静电势能面示意图,颜色越深,电荷密度越大.从[Asn]-阴离子的静电势能面中可以看出羰基上的两个氧原子(O1和O2)、酰胺氧原子(O5)周围负电荷密度较大,我们对[Emim]+与[Asn]-酰胺氧形成的分子间氢键构型也进行了优化,发现其稳定性远远不如[Emim]+与[Asn]-羰基氧形成的氢键相互作用.自然布居计算也给出羰基氧原子O1和O2的电荷分别为-0.768e和-0.796e,酰胺氧O5的电荷为-0.675e,进一步表明羰基氧原子更易与氢原子形成氢键.因此本文主要对[Emim]+咪唑环周围五个区域与[Asn]-中羰基氧形成的分子间氢键进行讨论.利用B3LYP/6⁃311+G(d,p)方法优化了[Emim]+与[Asn]-形成的气态氨基酸离子液体阴阳离子对,考虑到[Emim]+的五个区域S1、S2、S3、S4和S5,相应地得到了I、II、III、IV和V五种构型(图2).表1给出了氢键相互作用能ΔE、零点能校正后的相互作用能ΔE ZPE,以及基组重叠误差校正后的相互作用能ΔE BSSE.从图2可以看到构型I中C2⁃H和[Asn]-羰基氧形成的氢键键长最短,为0.1675nm,构型I 的氢键相互作用能量也最大,ZPE校正后的能量为-373.96kJ·mol-1;其次是构型II中C2⁃H和[Asn]-羰基氧形成的氢键,其键长为0.1682nm,相互作用能量的绝对值比构型I略小,ΔE ZPE为-373.17kJ·mol-1.与其它三种构型比较,构型I和构型II的能量要稳定30-46kJ·mol-1,毫无疑问这和C2⁃H参与形成氢键有关,由于C2⁃H具有很强的酸性[32-38],因而形成的氢键键长最短,氢键相互作用能最大.比较构型I 和构型II中的另一个氢键,前者是[Emim]+中甲基侧链氢与[Asn]-羰基氧形成的氢键,后者则是[Emim]+中乙基侧链氢与[Asn]-羰基氧形成的氢键,结果表明两者参与形成氢键的能力基本相当,甲基氢具有略大的酸性,形成的相互作用能绝对值略大,和Mou 等[29]在B3LYP/aug⁃cc⁃pVTZ方法下对[Emim][Gly]体系的报道结果相一致.构型III和V中较短的氢键分别由[Emim]+咪唑环中C5⁃H和C4⁃H与[Asn]-羰基氧形成的氢键,键长分别为0.1773和0.1768nm,氢键相互作用能较为接近,ΔE ZPE分别为-337.06和-336.43kJ·mol-1,表明C4⁃H和C5⁃H的酸性小于C2⁃H,形成氢键相互作用能量略小.构型IV中,咪唑环上的C4和C5上的氢原子都参与了形成氢键,键长分别为0.2348和0.1811nm,ΔE ZPE为-326.28 kJ·mol-1,是最不稳定的构型.考虑ZPE校正的五种构型稳定顺序为I>II>III>V>IV,即S1、S2区域形成的构型最稳定,其次是S3和S5区域,最后是S4区域,与文献报道的[Emim][Cl]体系在B3LYP/6⁃311++ G(d,p)水平下计算的结果相一致[26].从计算结果可以看出,气态[Emim]+和[Asn]-阴阳离子对之间的相互作用能ΔE较大,为-375.72 kJ·mol-1(构型I),这与Mou等[29]计算的[Emim]+和[Gly]-相互作用的结果类似.Mou等利用B3LYP/6⁃311++G(d,p)方法优化了[Emim][Gly]体系,并在优化结构的基础上利用B3LYP/6⁃311+G(2d,2p)及B3LYP/ aug⁃cc⁃pVTZ方法进行单点能计算,最稳定构型的相互作用能量ΔE分别为-396.11、-394.80、-393.90 kJ·mol-1.我们也曾利用B3LYP/6⁃311+G(d,p)方法对[Emim][Gly]体系进行计算,最稳定构型与Mou等人研究的结构非常相似,相互作用能为-397.40kJ·mol-1.另外,在B3LYP/6⁃311+G(d,p)水平下我们还讨论了[Emim][Cys]体系[45],得到七个稳定结构,其中最稳定构型的相互作用能为-390.84kJ·mol-1.毫无疑问,咪唑类阳离子与氨基酸阴离子之间较大的相互作用能与氨基酸阴离子中羰基氧带有较大的负电荷相关.与传统离子液体相比较,咪唑类氨基酸离子液体应该具有较大的熔点、黏度及较小的电导率等.例如通常认为传统离子液体的电导率为10-3S·1691Acta Phys.鄄Chim.Sin.,2009Vol.25cm -1,而实验得到的[Emim][Asn]的电导率为1.1×10-6S ·cm -1[18].比较[Emim][Gly]、[Emim][Cys]和[Emim][Asn],[Emim][Asn]体系的相互作用能量明显低于前两者,最稳定构型相互作用能量比相应的[Emim][Gly]和[Emim][Cys]分别小21.68和15.12kJ ·mol -1.这主要是由于优化得到的[Asn]-阴离子中形成了分子内氢键,分子内氢键的形成减弱了羰基氧接受质子的能力,从而降低了分子间氢键相互作用[29].Ohno 等[18]的实验曾给出离子液体[Emim][Gly]、[Emim][Cys]和[Emim][Asn]的玻璃化温度(T g )分别为-65、-19和-16℃.虽然目前对于离子液体的玻璃化温度还没有确切的规律可循,但是一般认为阴阳离子间静电相互作用以及离子对间van der Waals (vdW)作用是决定离子液体玻璃化温度高低的主要因素[46].从本文及本课题组先前[45]的计算结果可以看到,[Gly]-的侧链结构远远小于[Cys]-和[Asn]-,离子液体阴阳离子对堆积过程中,[Emim][Cys]和[Emim][Asn]离子对侧链原子间的vdW 相互作用要大于[Emim][Gly]体系中侧链原子间的vdW 作用,从而使[Emim][Cys]和[Emim][Asn]具有较高图2在B3LYP/6⁃311+G(d ,p )水平上优化得到的[Emim][Asn]阴阳离子对的稳定几何构型Fig.2Stable geometries for complexes of [Emim][Asn]optimized at B3LYP/6⁃311+G(d ,p )levelbong length in nm and bond angle indegreeComplexΔE /(kJ ·mol -1)ΔE ZPE /(kJ ·mol -1)ΔE BSSE /(kJ ·mol -1)I -375.72-373.96-373.33II -374.99-373.17-372.48III -338.71-337.06-335.90IV -328.02-326.28-325.70V-338.60-336.43-336.10表1在B3LYP/6⁃311+G(d ,p )水平上得到的[Emim][Asn]体系中氢键相互作用能量Table 1Interaction energies of hydrogen bond of[Emim][Asn]complexes calculated atB3LYP/6⁃311+G(d ,p )level1692No.8吴阳等:1⁃乙基⁃3⁃甲基咪唑阳离子与天冬酰胺阴离子的相互作用的玻璃化温度.这说明氨基酸离子液体的玻璃化温度和离子对间的vdW相互作用密切相关,vdW相互作用越大,玻璃化温度越高[18].另外对于[Emim][Asn]体系,虽然其具有较小的氢键相互作用能量,但玻璃化温度在三者中最高.一方面是由于侧链的vdW作用,另一方面是由于酰胺氧很容易与其它离子对中的氢原子形成离子对间的氢键网络结构,氢键网络结构的形成会使离子液体的玻璃化温度升高.由此可见决定氨基酸离子液体玻璃化温度的因素较为复杂,除阴阳离子对间静电作用和离子间的vdW相互作用外,还应该考虑氨基酸阴离子的官能团以及离子对间的氢键网络结构等.2.2红外光谱特征在优化得到的[Emim][Asn]五种稳定构型的基础上,利用B3LYP/6⁃311+G(d,p)计算了该五种结构的振动光谱(图3).计算得到的振动频率没有虚频,表明这五种结构都是势能面上的稳定点.从红外光谱图可见,[Emim]+与[Asn]-形成离子对以后,形成氢键处C—H键的红外伸缩振动都有不同程度的红移,尤其是参与形成氢键的咪唑环上C—H键的振动.表2列出了[Emim]+和[Asn]-形成氢键体系后, [Emim]+单体中相应的C—H键振动频率与形成离子对后五种构型中咪唑阳离子参与形成氢键的C—H键振动频率的差值Δν.Δν反映了形成氢键前后C—H键红外吸收峰位置的变化,Δν为正值,则氢键形成后C—H的振动频率减小,红外吸收波长增加,吸收峰红移.振动频率红移值越大,该C—H键的氢质子受氢键的束缚程度越大,则形成的氢键相互作用越强.构型I中[Emim]+阳离子咪唑环C2—H的振动频率为2576.79cm-1,与相应单体的振动频率3278.02cm-1比较,红移值为701.23cm-1;而参与形成氢键的甲基侧链C6—H键振动的红移值相对很小,只有164.25cm-1.除构型IV外,其它三种构型都有类似的结果.构型IV中,咪唑环上C4—H和C5—H键振动的红移值分别为10.67和417.09cm-1.五个构型中[Emim]+阳离子咪唑环上参与形成的分子间氢键的C—H键的振动频率红移值越大,氢键相互作用越强.构型I和II分子间氢键相互作用最强,振动频率红移值最大,分别为701.23和676.31cm-1,构型III和V的氢键稳定性次之,红移值为505.17和510.76cm-1,构型IV最不稳定,红移值最小为417.09 cm-1.2.3自然布居分析(NPA)众所周知,较为弥散的电荷分布是离子液体的一个显著特点.为了更加深入地研究[Emim]+与[Asn]-形成的氨基酸离子液体阴阳离子对的电荷分布、电荷转移等对氢键结构、相互作用能量的贡献,我们利用B3LYP/6⁃311+G(d,p)方法对五种稳定构型进行了自然布居分析(NPA).表3列出了形成气态阴阳离子对后[Emim]+咪唑环和[Asn]-中部分原子的表2在B3LYP/6⁃311+G(d,p)水平上计算得到五种[Emim][Asn]构型中C—H键的伸缩振动频率及其红移值Table2Stretching vibration frequencies of C—Hbonds and the corresponding red⁃shift valuesin the five complexes calculated atB3LYP/6⁃311+G(d,p)levela)Δν=νmonomer-νcomplex Complex Bondν/cm-1Δνa/cm-1I C2—H2576.79701.23C6—H3000.76164.25 II C2—H2601.71676.31C7—H3019.82114.32 III C5—H2786.07505.17C7—H2977.78101.44 IV C4—H3280.5710.67C5—H2874.15417.09 V C4—H2780.48510.76C6—H2929.17235.84图3在B3LYP/6⁃311+G(d,p)水平上得到的[Emim]+单体和[Emim][Asn]五种稳定构型的红外光谱Fig.3Infrared spectra of the isolated[Emim]+monomer and five stable[Emim][Asn]complexescalculated at B3LYP/6⁃311+G(d,p)level1693Acta Phys.鄄Chim.Sin.,2009Vol.25NPA 数值以及相应的电荷转移值.从表3中可以看出形成离子对后,原子的电荷分布都有部分的改变,毫无疑问这是和阴阳离子间形成氢键相互作用有关.如单体[Emim]+咪唑环中C2⁃H 和C6⁃H 中氢原子的电荷分别为0.241e 和0.226e ,形成离子对I 后C2⁃H 和C6⁃H 中氢原子的电荷为0.303e 和0.288e ,都改变了0.062e ;单体[Asn]-中羰基O 的电荷分别为-0.768e 和-0.796e ,形成离子对I 后羰基O 的电荷为-0.793e 和-0.789e .其它构型也有类似的结果,其中参与形成氢键的[Asn]-氧原子的负电荷密度和[Emim]+氢原子的正电荷密度改变较大.另外,形成氨基酸离子液体后,阴阳离子之间存在电荷转移,电子从[Asn]-阴离子流向[Emim]+阳离子.构型I 、II 、III 、IV 和V 的电荷转移分别为0.117e 、0.115e 、0.097e 、0.079e 和0.104e .电荷转移的多少和氢键相互作用能量成大致的正比关系,[Emim][Asn]五种构型电荷转移数值的关系为I >II >V >III >IV,与ZPE 校正后的相互作用能顺序基本上一致.2.4轨道相互作用分析利用B3LYP/6⁃311+G(d ,p )方法讨论[Emim][Asn]五种构型中轨道相互作用对氢键稳定化能的贡献.在NBO 分析中,自然键轨道对离子对稳定性的贡献可以通过二级微扰理论进行预测[47].质子给体NBO(i )轨道和质子受体NBO(j )轨道之间的稳定化能量E (2)可以通过下面的方程求解[47]:E (2)=ΔE ij =q iF (i ,j )2εj -εi(2)其中q i 是给体轨道占据的电荷数,εi 和εj 是轨道能量,F (i ,j )是矩阵单元.[Emim][Asn]五种构型的稳定化能E (2)的计算结果列于表4.对于[Emim][Asn]五种离子对构型,其稳定化能主要来源于[Asn]-中羰基O 原子的孤对电子和[Emim]+咪唑环的C —H 反键轨道之间的相互作用:lp(O1)➝σ∗(C —H).如构型I 和II 中羰基O1原子的孤对电子与咪唑环C2—H 反键轨道的相互作用较大,分别为111.93和108.00kJ ·mol -1,表明构型I 和II 之间氢键的稳定化能主要来源于lp(O1)➝σ∗(C2—H)之间的相互作用.相对于这两种稳定构型,后三种构型的稳定化能较小,如构型III 的lp(O1)➝σ∗(C5—H)和构型V 的lp(O1)→σ∗(C4—H)的E (2)值分别为70.20和66.22kJ ·mol -1,而IV 的lp(O2)➝σ∗(C5—H)轨道之间的相互作用最小,为62.71kJ ·mol -1.另外,从表2和表4中可以发现,lp(O)➝σ∗(C —H)轨道相互作用的稳定化能E (2)和氢键相互作用能之间存在大致的正比关系.2.5AIM 分析Bader 的AIM 理论被认为是判断氢键存在及其强弱的有力工具,已经广泛应用到对各种氢键的讨论中[42].其中键临界点(BCP)处的电荷密度ρ用来表示原子间成键的强弱,电荷密度越大,表明该处的氢键作用越强,反之氢键作用越弱.电子云密度的拉ComplexHydrogen bond E (2)(lp(1)(O)➝σ∗(C —H))/(kJ ·mol -1)E (2)(lp(2)(O)➝σ∗(C —H))/(kJ ·mol -1)I C2—H …O125.58111.93C6—H …O213.1916.45II C2—H …O124.49108.00C7—H …O212.7714.07III C5—H …O124.9170.20C7—H …O213.1419.72IV C4—H …O1 2.550.59C5—H …O218.0062.71VC4—H …O124.9566.22C6—H …O215.8229.80表4[Emim][Asn]五种构型中lp(O)➝σ∗(C —H)轨道相互作用的稳定化能E (2)Table 4The second ⁃order interaction energies E (2)between lp(O)and σ∗(C —H)in the fivecomplexes [Emim][Asn]表3在B3LYP/6⁃311+G(d ,p )水平上得到的[Emim][Asn]稳定构型和相应单体的部分原子自然布居(NPA)以及电荷转移数值(CT)Table 3Natural population analysis (NPA)of [Emim][Asn]complexes and the corresponding monomers,and the charge transfers (CT)calculuted at B3LYP/6⁃311+G(d ,p )levelThe labels of atoms are referred to Fig.1;unit in e ;∗the charge of the hydrogen atoms connected with carbon atomsIII III IV V [Emim]+[Asn]-Q (N1)-0.375-0.366-0.343-0.357-0.365-0.351Q (C2)0.2950.2960.2660.2480.2630.294Q (N3)-0.361-0.369-0.367-0.359-0.341-0.349Q (C4)-0.032-0.038-0.048-0.018-0.001-0.008Q (C5)-0.036-0.0290.002-0.013-0.046-0.005Q (C2⁃H)∗0.3030.3030.2220.2190.2210.241Q (C4⁃H)∗0.2300.2290.2320.2770.3110.251Q (C5⁃H)∗0.2290.2300.3130.3080.2330.250Q (C6⁃H)∗0.2880.2520.2130.2090.2980.226Q (C7⁃H)∗0.2430.2860.2940.2150.2150.218Q (O1)-0.793-0.794-0.789-0.782-0.780-0.768Q (O2)-0.789-0.790-0.799-0.812-0.800-0.796Q (C3)0.7810.7800.7770.7700.7760.747Q (N4)-0.877-0.877-0.881-0.881-0.880-0.906CT0.1170.1150.0970.0790.104lp(1)and lp(2)refer to the two lone pair electrons.1694No.8吴阳等:1⁃乙基⁃3⁃甲基咪唑阳离子与天冬酰胺阴离子的相互作用普拉斯值∇2ρ则用来判断原子间相互作用的性质,若∇2ρ的值为正值,表明原子间的作用以静电作用为主;若∇2ρ的值为负值,表明以共价键为主.在B3LYP/6⁃311+G(d,p)的方法下利用Gaussian 03程序[44]对[Emim][Asn]阴阳离子对的五种构型进行了AIM的计算.表5列出了五个构型在BCP处的电子密度ρBCP以及相应的拉普拉斯值∇2ρBCP.计算结果表明五种构型的∇2ρBCP都是正值,即[Emim]+和[Asn]-形成的阴阳离子对的氢键结构中静电作用占主导地位.构型I和II中,C2—H…O1处的电子密度ρBCP值在这五种优化构型中最大,分别是0.0526和0.0518a.u.,这和I、II构型相对最为稳定的结论相一致.与传统的中性氢键的电子密度值(ρBCP在0.002-0.04a.u.[26]之间)相比较,构型I和II的电子密度值甚至更大一些,说明在S1和S2区域离子对间的氢键相互作用非常强,这与C2⁃H的给质子能力最强,酸性最强密切相关.构型III、IV和V的电子密度值都略大于传统氢键的电子密度值,说明此离子液体的氢键相互作用强度和传统的中性氢键作用相当[26].3结论利用B3LYP/6⁃311+G(d,p)方法,优化得到了[Emim][Asn]气态氨基酸离子液体阴阳离子对的五种构型,详细地讨论了几何构型特征、氢键相互作用能、红外光谱特征、自然布局分析以及AIM理论得到的电子密度等性质.[Emim]+咪唑环中C2⁃H具有最强的酸性,形成氢键相互作用最大,得到的构型I 和II最稳定.C4⁃H和C5⁃H的酸性则较弱,形成氢键相互作用较小,构型III、IV、V的稳定性较差,比构型I和II的相互作用能小30-46kJ·mol-1,五种构型的稳定性顺序为I>II>III>V>VI.阴阳离子对的红外光谱计算表明五种构型中参与形成分子间氢键的C—H伸缩振动的频率不尽相同,氢键相互作用能越大,振动频率的红移值越大.由于离子液体中电荷弥散对离子液体的性质有非常大的影响,利用AIM理论考虑了五种构型中BCP处的电荷密度及其拉普拉斯值,拉普拉斯值表明[Emim]+和[Asn]-形成的氢键以静电作用为主,构型I和II的电子密度非常大,均超过传统中性氢键的电子密度范围,具有非常强的氢键相互作用.NPA计算给出形成氢键相互作用后原子电荷自然布居都有不同程度的改变,电子从[Asn]-阴离子流向到[Emim]+阳离子,电荷转移越多,氢键相互作用越强.NBO分析表明氢键相互作用的稳定化能主要来源于[Asn]-羰基O原子的孤对电子和[Emim]+中参与形成氢键的C—H反键轨道之间的相互作用,即lp(O)➝σ∗(C—H).构型I和II中lp(O1)➝σ∗(C2—H)轨道相互作用的稳定化能最大,则I和II构型具有较强的氢键相互作用.理论计算与实验结果相比较可知决定氨基酸离子液体玻璃化温度的因素较为复杂,除阴阳离子的静电相互作用和分子间的vdW相互作用外,还应考虑氨基酸阴离子的官能团以及离子对间的氢键网络结构等. References1Wilkes,J.S.;Zaworotko,mun.,1992,13:9652Zhang,S.J.;Lü,X.M.Ionic liquid:from fundamentals toapplications.Beijing:Science Press,2006:2-6,64-71[张锁江,吕兴梅.离子液体——从基础研究到工业应用.北京:科学出版社,2006:2-6,64-71]3Welton,T.Chem.Rev.,1999,99:20714Wasserscheid,P.;Welton,T.Ionic liquids in synthesis.Weinheim, Germany:Wiley⁃VCH,20035Visser,A.E.;Swatloski,R.P.;Reichert,mun.,2001:1356Huddleston,J.G.;Willauer,H.D.;Swatloski,R.P.Chem.Commun.,1998:17657Wasserscheid,P.;Keim,W.Angew.Chem.,2000,112:39268Oleg,B.;Grant,D.S.J.Phys.Chem.B,2006,110:114819Dyson,P.J.;McIndoe,J.S.;Zhao,mun.,2003:50810Gathergood,N.;Garcia,M.T.;Scammells,P.J.Green Chem., 2004,6:16611de Souza,R.F.;Padilha,J.C.;Goncalves,R.S.;Dupont,J.表5用AIM理论计算的键临界点处的电荷密度ρBCP和拉普拉斯值∇2ρBCPTable5Electron densitiesρBCP and Laplacian∇2ρBCPat the bond critical points of the intermolecular H鄄Bonds using the AIM TheoryComplex Hydrogen bondρBCP(a.u.)∇2ρBCP(a.u.)I C2—H…O10.05260.1335C6—H…O20.02090.0710II C2—H…O10.05180.1330C7—H…O20.02000.0676III C5—H…O10.04080.1216C7—H…O20.02490.0831IV C4—H…O10.01360.0505C5—H…O20.03790.1155V C4—H…O10.04110.1225C6—H…O20.02740.09101695Acta Phys.⁃Chim.Sin.,2009Vol.25mun.,2003,5:72812Wang,P.;Zakeeruddin,S.M.;Comte,P.J.Am.Chem.Soc.,2003, 125:116613Lozano,P.J.;de Diego,T.;Carrie,D.Biotechnol.Prog.,2003, 19:38014Abraham,M.H.;Zissimos,A.M.;Huddleston,J.G.Ind.Eng.Chem.Res.,2003,42:41315Majewski,P.;Pernak,A.;Grzymislawski,M.Acta Histochemica, 2003,105:13516Bao,W.;Wang,Z.;Li,.Chem.,2003,68:59117Zhang,Q.S.;Zhao,J.B.;Guo,B.N.;Wu,F.Chem.J.Chin.Univ., 2006,27:2304[张青山,赵君波,郭炳南,吴锋.高等学校化学学报,2006,27:2304]18Fukumoto,K.;Yoshizawa,M.;Ohno,H.J.Am.Chem.Soc.,2005, 127:239819Fukumoto,K.;Ohno,mun.,2006:308120Kagimoto,J.;Fukumoto,K.;Ohno,mun.,2006: 225421Ohno,H.;Fukumoto,K.Acc.Chem.Res.,2007,40:112222Tao,G.H.;He,L.;Liu,W.S.Xu,L.;Xiong,W.;Wang,T.;Kou, Y.Green Chem.,2006,8:63923Tao,G.H.;He,L.;Sun,N.;Kou,mun.,2005:3562 24Li,W.;Rong,H.;Wu,X.M.;Chen,Z.Y.Acta Phys.⁃Chim.Sin., 2008,24:868[李巍,荣华,吴新民,陈中元.物理化学学报,2008,24:868]25Li,X.H.;Jiang,Y.B.;Zhang,L.;Li,R.Acta Phys.⁃Chim.Sin., 2008,22:747[李雪辉,江燕斌,张磊,李榕.物理化学学报,2008,22:747]26Wang,Y.;Li.H.R.;Han,S.J.J.Chem.Phys.,2005,123:174501 27Zhang,L.;Li,H.R.;Wang,Y.;Hu,X.B.J.Phys.Chem.B,2007, 111:1101628Zhou,G.H.;Liu,X.M.;Zhang,S.J.;Yu,G.R.;He,H.Y.J.Phys.Chem.B,2007,111:707829Mou,Z.X.;Li,P.;Bu,Y.X.;Wang,W.H.;Shi,J.Y.;Song,R.J.Phys.Chem.B,2008,112:508830Rong,H.;Li,W.;Chen,Z.Y.;Wu,X.M.J.Phys.Chem.B,2008, 112:145131Li,W.;Qi,C.S.;Wu,X.M.;Rong,H.;Gong,L.F.J.Mol.Struct.⁃Theochem,2008,855:3432Dieter,K.M.;Dymek,C.J.;Heimer,N.E.;Rovang,J.W.;Wilkes, J.S.J.Am.Chem.Soc.,1988,110:272633Meng,Z.;D觟lle,A.;Carper,W.R.J.Mol.Struct.⁃Theochem, 2002,585:11934Katsyuba,S.A.;Zvereva,E.E.;Vidis,A.;Dyson,P.J.J.Phys.Chem.A,2007,111:35235Urahata,S.;Ribeiro,M.J.Chem.Phys.,2004,120:185536Liu,Z.P.;Huang,S.P.;Wang,W.C.J.Phys.Chem.B,2004, 108:1297837Dong,K.;Zhang,S.J.;Wang,D.X.;Yao,X.Q.J.Phys.Chem.A, 2006,110:977538Hunt,P.A.;Gould,I.R.J.Phys.Chem.A,2006,110:226939(a)Hohenberg,P.;Kohn,W.Phys.Rev.,1964,136:B864(b)Kohn,W.;Shan,L.J.Phys.Rev.,1965,140:A113340(a)Becke,A.D.J.Chem.Phys.,1993,98:1372(b)Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B,1988,37:785 41Boys,S.F.;Bernardi,F.Molecular Physics,1970,19:55842Bader,R.F.W.Atom in molecules:a auantum theory.New York:Oxford University Press,199043Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian98, Revision A.11.Pittsburgh PA:Gaussian,Inc.,199844Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian03, Revision C.02.Wallingford,CT:Gaussian Inc.,200445Wu,Y.;Zhang,T.T.;Li,J.R.Acta Chim.Sin.,2009,67:1 [吴阳,张甜甜,李静蕊.化学学报,2009,67:1]46Turner,E.A.;Pye,C.C.;Singer,R.D.J.Phys.Chem.A,2003, 107:227747Reed,A.E.;Curtiss,L.A.;Weinhold,F.Chem.Rev.,1988,88: 8991696。

Biosensors and Bioelectronics

Biosensors and Bioelectronics

Biosensors and Bioelectronics Biosensors and bioelectronics are innovative technologies that have the potential to revolutionize the field of healthcare and diagnostics. These devices are designed to detect and analyze biological substances, such as proteins, DNA, and other biomolecules, with high sensitivity and specificity. They have a wide range of applications, including medical diagnostics, environmental monitoring, and food safety testing. However, despite their immense potential, there are still several challenges and limitations that need to be addressed in order to fully realize the benefits of biosensors and bioelectronics. One of the main challenges facing biosensors and bioelectronics is the need for improved sensitivity and specificity. While these devices have the capability to detect and analyze biological substances with high precision, there is still room for improvement in terms of their sensitivity and specificity. This is particularly important in the field of medical diagnostics, where accurate and reliable detection of biomarkers is crucial for early disease diagnosis and monitoring. Researchers and engineers are constantly working on developing new materials and technologies to enhance the sensitivity and specificity of biosensors and bioelectronics, but there is still a long way to go before these devices can be widely used in clinical settings. Another challenge is the need for improved stability and durability of biosensors and bioelectronics. Many of these devices are made from delicate materials that can degrade over time, leading to reduced performance and reliability. This is a significant concern, especially in applications where long-term stability and durability are essential, such as implantable biosensors for continuous monitoring of physiological parameters. Researchers are exploring new materials and fabrication techniques to improve the stability and durability of biosensors and bioelectronics, but more research and development are needed to address this challenge effectively. In addition to technical challenges, there are also regulatory and ethical considerations that need to be taken into account when developing and deploying biosensors and bioelectronics. These devices are often used to collect and analyze sensitive biological information, raising concerns about privacy and data security. There is also a need for clear regulations and guidelines to ensure the safety and effectiveness of biosensors and bioelectronicsin various applications. Furthermore, there are ethical considerations surrounding the use of these devices, particularly in the context of genetic testing and personalized medicine. It is important for researchers, engineers, and policymakers to work together to address these regulatory and ethical challenges and ensure that biosensors and bioelectronics are developed and used responsibly. Despite these challenges, biosensors and bioelectronics have the potential to make a significant impact on healthcare and diagnostics. These devices have the capability to provide rapid and accurate detection of biomarkers, enabling early disease diagnosis and personalized treatment. They also have the potential to improve the monitoring of physiological parameters, leading to better management of chronic conditions and improved patient outcomes. In addition, biosensors and bioelectronics have applications beyond healthcare, including environmental monitoring and food safety testing, where they can help ensure the safety and quality of our environment and food supply. In conclusion, biosensors and bioelectronics hold great promise for the future of healthcare and diagnostics, but there are still several challenges and limitations that need to be addressed. Improving the sensitivity and specificity, stability and durability, as well as addressing regulatory and ethical considerations, are essential for realizing the full potential of these devices. With continued research, development, and collaboration among researchers, engineers, and policymakers, biosensors and bioelectronics have the potential to revolutionize the way we diagnose and monitor diseases, as well as improve the safety and quality of our environment and food supply.。

翻译 1

翻译 1

Mg-Al-Zn合金组织的晶粒尺在摩擦搅拌的依赖性弱搅拌处理的Y.N.王,a,b C.I.张,a C.J.李,a H.K.林a,c和黄祚芊a,*a材料科学与工程学院;纳米科学中心和纳米技术,国立中山大学圣大学,高雄804,台湾,中华民国b材料科学与工程学院,大连理工大学,大连116024,中国研究所c工研院南,工业技术研究院,台南县734,台湾,中华民国收到2006年4月25日;经修订的2006年5月18日;接受二零零六年六月七日可在网上二零零六年七月五日摘要在Mg-Zn-Al系合金热挤压加工通常表现出较强的粒度屈服应力的依赖。

然而,相同的摩擦搅拌处理的Mg-Zn-Al系合金的样品表现出弱得多的晶粒尺寸的依赖。

高施密特因子摩擦搅拌处理的样品在0.3左右,负责在的Hall-Petch关系的低参数。

关键词:镁合金;搅拌摩擦加工;纹理;晶粒尺寸的依赖镁合金已经吸引了运输车辆制造越来越大的兴趣,因为它们可以提供一个相当大的重量减少的结构。

然而,他们的延展性较差,由于在室温下的六边形结构可滑移系的数量有限,可能会限制其广泛应用。

另一方面,在镁合金的晶粒尺寸强化效率比以Al和其它合金高得多[1],这意味着晶粒细化镁合金是更有利。

大量的研究集中在镁合金的微结构上的修改已经进行,以提高和控制的机械性能[2-12]。

在镁合金中,存在基础和非基础滑移系之间的临界剪切应力(CROSS)有很大差异[13],这引起了严重的各向异性的机械性能。

其结果是,当变形镁合金具有强的晶体学织构在其微观结构,它们的机械性能显著由质地除了晶粒尺寸的影响[4-7,12,14]。

最近,研究搅拌摩擦加工(FSP)已经证明,有效的微观组织均匀化和细化可在镁基合金可以实现为严重的塑性变形和动态再结晶的结果。

已经发现该纹理具有强烈的不均匀分布沿着焊接工具的销柱表面基面的积累也带出,在搅拌区[8,15]。

有大量的报道[6,16-18]对晶粒尺寸和镁合金的基础上的Hall-Petch关系机械性能的关系之间的相关性。

用羟基磷灰石作纳米基因转染载体。我国专家用基因疗法治疗感觉神经性耳聋在白豚鼠试验中获良好效果

用羟基磷灰石作纳米基因转染载体。我国专家用基因疗法治疗感觉神经性耳聋在白豚鼠试验中获良好效果

作精心改进 , 并开发适 合不 同靶 组织器 官的基 因治 疗产 品 ,
带动生物 医学产业的发展。 [ 隆技术 ] 克
西 班 牙 诞 生 世 界 首 头克 隆斗 牛
和皮肤癌 晚期患者参 与 了试 验 , 些 患者先 前接受过 化疗 , 这
但病情仍在发展 。试验结 果 表 明 R o s el i y n的使 用取 得 了成
转导现象 的发 现 者是 美 国科 学家 津德 和莱 德伯
格。他们在研究 中发现 ,2噬菌体感染 宿主细菌 细胞 P2 时, 在形成子代噬菌体颗粒时 , 噬菌体外壳蛋 白偶尔会
滑型。这项研究轰动 了整个 生物界 , 次确立 了 D A 首 N 是遗传物质的概念。因此 , 在微生物学 中, 转化 指细菌 吸收外源性 D A而改 变 自身 遗传性 状 的现 象 。转 化 N 现象在原核生物 中广泛存在 , 自然界外 源基 因重 组 是
2 转导 ( asut n t nd c o ) r i
“ 转化” 词来 源 于著 名 的细 菌转 化 实 验。14 一 94 年 , 国微 生物学家艾弗 里从杀 死的光 滑型肺 炎球菌 美 ( 有荚膜 ) 中提取 D A, 其与粗糙 型肺炎球 菌 ( N 将 无荚
膜) 一起培养 , 结果发现部分粗造型肺炎球菌转变成光
的一种主要形式 。在基 因工程研 究 中, 常用 的受 体 最
人 体细胞 , 用病 、 尿病 和麻痹症 。 糖
将细菌染色体 片段包裹 进去 , 而不是 它们 自己的遗传
物质 。当这种噬 菌体再 次感 染 细菌 时, 入细 菌细胞 注
iS细胞培育过程 中并不 伤及 胚胎 , P 因此 它们用 于 医学
用途在道德上也是可 以接受的。 用羟基磷灰石作纳米基因转染载体 。 我国 专家用基因疗法治疗 感觉神经性耳聋 在 白豚 鼠试验 中获 良好效果

NBTI degradation From physical mechanisms to modelling

NBTI degradation From physical mechanisms to modelling

Introductory Invited PaperNBTI degradation:From physical mechanisms to modellingV.Huarda,*,M.Denaisb,c,C.ParthasarathybaPhilips R&D Crolles,850rue Jean Monnet,38926Crolles,FrancebSTMicroelectronics,Central R&D Labs,850rue Jean Monnet,38926Crolles,France cLaboratoire Mate´riaux et Microe ´lectronique de Provence (L2MP –UMR CNRS 6137)–ISEM,Maison des Technologies,Place Georges Pompidou,83000Toulon,FranceReceived 18January 2005Available online 26April 2005AbstractAn overview of the evolution of transistor parameters under negative bias temperature instability stress conditions commonly observed in p-MOSFETs in recent technologies is presented.The physical mechanisms of the degradation as well as the different defects involved have been discussed according to a systematic set of experiments with different stress conditions.According to our findings,a physical model is proposed which could be used to more accurately pre-dict the transistor degradation.Finally,based on our new present understanding,a new characterization methodology is proposed,which would open the way to a more accurate determination of parameter shifts and thus allowing imple-menting the degradation into design rules.Ó2005Elsevier Ltd.All rights reserved.1.IntroductionBias temperature instability (BTI)is a degradation phenomenon occurring mainly in MOS Field Effect Transistors (MOSFETs),known since the late 1960s [1,2].Even though the exact root causes of the degrada-tion are not yet well understood,it is now commonly admitted that under a constant gate voltage and an ele-vated temperature a build up of positive charges occurs either at the interface Si/SiO 2or in the oxide layer lead-ing to the reduction of MOSFET performances.Never-theless,this degradation remained marginal for many years,especially when compared to hot carrier injection(HCI)degradation,thanks to the exclusive use of buried channel devices at this time.As a result of aggressive scaling of MOS transistors,the thickness of the gate oxide layer was decreased down to 1.4nm or even lower.In order to improve the transis-tors performances,nitrogen atoms were introduced into the oxide layer by different nitridation processes,but mostly by thermal annealing.This nitridation step is in-tended both to give a better control on the gate leakage current and to avoid the boron atoms,used to dope the polysilicon gate,to flow through the oxide into the sub-strate.Besides,the general trend was that most of the de-vices turned out to be surface-channel devices instead of buried-channel ones in recent technologies to counter the short-channel effects inherent of the downscaling process and to improve the performances.As a conse-quence of both the introduction of the nitridation pro-cess step and the use of surface-channel devices,many0026-2714/$-see front matter Ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.microrel.2005.02.001*Corresponding author.E-mail address:vincent.huard@ (V.Huard).Microelectronics Reliability 46(2006)1–23researchers ascribed an enhanced BTI-like degradation of p-MOSFETs under negative bias and elevated tem-peratures,the so-called NBTI effect[3–5].This work aims to investigate the evolution of tran-sistor parameters under NBTI stress conditions,leading to a general definition of the Negative Bias Temperature Instability in p-MOSFETs in recent technologies.Sys-tematic sets of experiments have been performed with different stress conditions to identify the physical mech-anisms lying behind the degradation.According to our findings,the interface traps creation is not the sole source of degradation but a major hole trapping effect also occurs.This trapping behaviour is at the origin of a strong recovery effect which makes an accurate mea-surement of the degradation difficult.We propose a new characterisation methodology which gives a more accurate view of the actual degradation.2.Device fabrication and experimental detailsThe devices used in this study were n-and p-MOS-FETs with dual gate process,i.e.n+and p+polysilicongate,respectively,with pure or nitrided(NO)gate oxide layers.Source and drain junctions were formed with ar-senic/phosphorous ion implantations for n-MOSFET and a boron-based implantation for p-MOSFET.Exper-iments were carried out on MOSFETs with oxide thick-ness ranging from 1.6nm to10nm.The MOSFETs have gate lengths ranging from0.1l m to10l m and typ-ically a width of10l m.NBTI stress was applied with the gate electrode held at a low constant negative bias(rang-ing fromÀ0.75V toÀ3.5V)under a temperature ranging from25°C to200°C while the source/drain and n-well electrodes were grounded.In order to characterize the NBTI effect,we primarily used a conventional methodol-ogy based on periodic stops during the stress to measure MOS parameters and/or the two-level charge pumping (CP)current as a measure of the interface traps density. The CP curves are measured with a frequency of105Hz and low gate bias V gl ranging fromÀ0.7V to0.3V and a voltage swing from1V to1.5V.A new characterization methodology will be introduced later in the paper,as it is based on recentfindings.Most of the experiments were carried out at125°C unless it is mentioned differently.2.1.Bias temperature instabilities2.1.1.Degradation of electrical parametersBy definition,bias temperature instabilities are ob-served when either a capacitor or a transistor is stressed at relatively high temperatures(typically ranging from 80°C to150°C)under a low and constant gate voltage while the source/drain and well electrodes are grounded. The symmetry of stress conditions along the channel proves that this degradation is not related to channel carrier transport.Fig.1shows the typical evolution of I dÀV g curves in linear regime for a p-MOSFET once degraded under NBTI stress conditions for10,000s. Generally,it is observed that after an NBTI stress,the saturated drain current value(I dsat)is reduced.The for-ward and reverse values of the saturated drain current both degrade identically,demonstrating the symmetry of the stress.By the same time,the threshold voltage (V th)is increased as well as the S/D series resistance.Fi-nally,the mobility,as described through the g mÀV g curve is also reduced(cf.Fig.1).Altogether,the degra-dation of these parameters demonstrates the build-up of positive charges close or at the interface of Si/SiO2and yields to a lower level of performance for the transistor. For short stress times,the off-leakage current is decreas-ing due to the shift of the I dÀV g curves linked to the threshold voltage shift.Nevertheless,in some cases,an increase of the GIDL observed at lowfields may over-come this decrease and limit the performances of the cir-cuit by an increased consumption.The instabilities exist in most of the configurations, for either p-MOSFETs or n-MOSFETs,and whatever a negative bias and/or a positive bias is applied,except for the n-MOSFET under positive bias,which does ex-hibit almost no degradation.Nevertheless,as shown in Fig.2,applying NBTI stress conditions(i.e.negative gate voltage)on p-MOSFETs represents the most degrading case.That is why the rest of this paper will mainly focus on the mechanisms of p-MOSFET degra-dation under NBTI conditions,but all the conclusions would also apply to the other configurations.2V.Huard et al./Microelectronics Reliability46(2006)1–232.2.Interface traps creation under NBTI stress conditionsSo far,the microscopic details of the NBTI degrada-tion are not clearly understood but there is a general agreement to say that there is generation of traps at the Si–SiO2interface during negative BT aging.2.3.Nature of interface trapsDue to the lattice mismatch between the bulk silicon and the silicon dioxide and considering the amorphous nature of the dielectrics,some Si atoms at the interface are left unbound when the great majority is bound to oxygen atoms(or nitrogen atoms for the case of nitrided oxides).This trivalent Si atom at the Si/SiO2interface has an unpaired valence electron in a dangling orbital (dangling bond),and is often called Pb centers[6].On (100)-oriented wafers,commonly used for ICs,two de-fects named Pb0and Pb1have been detected by electron spin resonance(ESR)methods,and showed to result from strain relaxation at the interface.These two types of defects have slightly different local atomic configura-tions and so are expected to have slightly different elec-trical behaviours.In both cases,these defects have an amphoteric nature.This means that the dangling orbital can be occupied by zero,one or two electrons,which would make the same defect positively charged(donor-like),neutral or negatively charged(acceptor-like), depending on the Fermi level at the interface[7,8].Dur-ing the consecutive process steps,these dangling bonds are generally annealed by hydrogen atoms,which create SiH bonds at the interface.Though considerably improving the initial parameters of the transistor,these bonds might be broken during the operating lifetime of the device,which in turn will lead to a degradation of its parameters.2.4.Role of charge transportIn most of wearout mechanisms,such as hot-carrier injection,oxide breakdown or electromigration,experi-ments pointed out that the charge transport activated directly or indirectly the degradation.Naturally, whether or not the charge transport is related to the NBTI degradation is a question,which has to be an-swered.It should be pointed out that the symmetrical nature of the stress with no drain-to-source potential drop implies that there is no charge transport along the channel.The only remaining displacement of chan-nel carriers is based on their thermal activity.Concern-ing the role of carriersflowing through the oxide layer by either direct tunnelling and/or Fowler–Nordheim mechanism,it is interesting to compare both ultra-thin oxides(about2nm-thick)and thicker oxides(about 6.5nm-thick)degradations.In the latter case,the NBTI degradation can be important for these oxides when stressed with a low oxidefield below the detection limit of Fowler–Nordheim current(cf.Fig.3).In that case, the tunnelling probability of carriers through the oxide layer is close to zero which is not the case for thinner oxides under similar oxidefield.Nevertheless,the NBTI degradation monitored in this case is rather similar in spite of the different conduction probabilities through the oxide layer.In agreement with many researchers, we have to conclude that the NBTI degradation isV.Huard et al./Microelectronics Reliability46(2006)1–233closely related to the presence of‘‘cold channel holes’’. This assumption is also supported by the small level of degradation for an n-MOSFET under PBTI conditions (cf.Fig.2),where only negligible hole densities can be found on both sides of the oxide layer.Nevertheless, the exact mechanism of degradation involving cold holes remains unknown at this point.2.5.Influence of channel hole populationIf the channel cold holes are responsible for the NBTI degradation,thefirst thing to check out is the ef-fect of varying the hole population by keeping the other stress conditions constant.This configuration can be ob-tained experimentally by two different ways.Thefirst one is to increase the initial threshold voltage V th0by adding an additional implant.For a similar gate voltage value V g,the oxidefield value would be similar(due to the channel potential grounded to zero)but the channel hole population(proportional to V gÀV th)would de-crease when the threshold voltage is increased.Another way is to change the initial threshold voltage value V th0 by applying a positive bulk bias.In this case,for an increasing positive bulk bias,the threshold voltage value is increased and so that the channel hole population is decreased.Fig.4shows that though V gÀV th is varying by about10%,no changes can be observed in the inter-face traps creation dynamics.In the latter case,some precautions are taken in order to avoid additional degra-dation due to hot holes injection resulting from impact ionisation phenomenon induced by electronsflowing through the oxide layer.Basically,for gate voltage up to2.5V,hot electrons coming from the gate demon-strated no impact on electrical parameters.Under hot carrier stress configuration,degradation rates have been found similar whatever the presence of electronsflowing through the gate.Fig.4shows that,over a relatively large range of channel hole population(large gate volt-ages range for varying bulk voltages),the electrical parameters shifts are similar and not impacted by vary-ing the hole population(i.e.the bulk voltage).As a con-clusion,if the channel holes are responsible for the observed degradation,their population is not a limiting factor.Ourfindings are in agreement with conclusionsof Mitani et al.[9].2.6.Gate voltage or oxidefield dependenceSymmetrically,for different bulk biases,the gate volt-age V g is changed in a way to keep V gÀV th constant and so that the channel hole population is made similar. In this case,only the oxidefield is modified.When the oxidefield is increased,the electrical parameters show a clear increase of their degradation(cf.Fig.5).These results demonstrate the importance of the oxidefield and/or the gate voltage in the degradation.The question of whether the oxidefield or the gate voltage is the driving factor of the degradation remains. Typically,gate voltage dependence is linked to a carrier-energy driven degradation similarly to the case of the gate oxide breakdown and the Channel Hot Carrier (CHC)-induced degradation[10,11].But,as discussed in Fig.3,NBTI degradation occurs also for thick oxides for oxidefields where the gate leakage current is below the detection limit.Therefore,it is difficult to assign the NBTI degradation to energetic carriersflowing through the oxide,either holes or electrons,such as pro-posed in[12].In order to investigate the oxidefield4V.Huard et al./Microelectronics Reliability46(2006)1–23dependence,the interface traps creation under NBTI degradation is investigated for different gate oxide thick-nesses,ranging from2.1nm to10nm-thick,considering both pure oxides and nitrided oxides with various nitrid-ation processes.Fig.6a shows that for pure oxides stressed with a similar gate voltage the interface traps creation is reduced when the oxide thickness is in-creased.Summarizing a set of pure oxides with four dif-ferent thicknesses stressed with various gate voltages for three different stress times,Fig.6b shows that for a given stress time the number of interface traps created are identical for similar oxidefields.These results clearly demonstrate that the oxidefield is the driving force of the interface traps creation during NBTI degradation for pure oxides[13,14].It is questionable if the incorporation of nitrogen atoms into the oxide network will modify this oxide-field dependence.As already discussed previously in the introduction,incorporation of nitrogen is known to en-hance the NBTI degradation.Following the approach that NBTI degradation is solely linked to the creation of interface traps,it means that the nitrogen atoms should modify the properties of the interface.Several possibilities have been already discussed in literature as the introduction of mechanical stresses in the atomic structure close to the SiO2/Si interface,a catalytic role [15],an increase of Pb1proportion with respect to the Pb0center[16],a reduction of the activation energy of SiH bond[17].Whatever the mechanism which might be involved here,the incorporation of nitrogen atoms should modify the interface degradation rate.To solveout that question,both n-MOSFETs and p-MOSFETS devices with either pure or nitrided oxides have been stressed under NBTI stress conditions with thicknesses ranging from 2nm to 10nm.Fig.7shows that the inter-face traps creation is identical for pure and nitrided oxi-des over a wide range of oxide thicknesses.It means that for interface traps creation the oxide field is the major driving force and not the nature of the oxide itself.A crucial point is raised here because the strong impact of the incorporation of nitrogen on the NBTI degrada-tion is well documented in the literature.But,the inter-face traps creation is not modified by the presence of nitrogen atoms.This contradiction shows that the inter-face traps cannot be the sole root cause of the device parameter shifts.This point will be discussed further in this paper.2.7.Temperature dependenceBesides the importance of the oxide field,the NBTI degradation is also activated with temperature.Fig.8shows the influence of the temperature on the interface traps creation for temperatures ranging from 50°C to 200°C under similar oxide field.The time dynamics present two main characteristics:power law behaviour at low stress times and saturation phenomenon for long stress times.Besides it should be noticed that for low stress times,the power law exponent increases with tem-perature.Fig.9shows that it increases linearly with tem-perature.The combination of these two factors implies that the apparent activation energy E a (as determined through degradation levels in an Arrhenius plot)at a given time is not a constant value.Fig.10shows that E a varies with the stress time,increasing for low stress times and finally decreasing for long stress times.As a consequence,the interface traps creation is a non-Arrhenius phenomenon [18],which requires a deeper analysis to understand both the temperature dependence and at the end the physical mechanisms lying behind.This analysis is required in order to be able to determine realistic extrapolation laws for various temperatures.2.8.Time dynamicsUnderstanding the physics that lies behind the NBTI degradation requires to understand not only the oxide field and temperature dependences of the interface traps creation but also the time dynamics.It is also a strong requirement in order to develop an accurateextrapola-6V.Huard et al./Microelectronics Reliability 46(2006)1–23tion model for device lifetime.A characteristic feature of the interface traps creation during NBTI degradation is its fractional power law time dependence(cf.Fig.11). As most of the published data,our experiments span a range from0.2to0.3for the power law exponent.Nev-ertheless,the fractional time dependence of NBTI degra-dation decreases at longer stress times and indicates a tendency towards saturation.Several phenomenological models have been pro-posed to explain the formation of interface traps associ-ated with NBTI degradation.Jeppson et al.[19] proposedfirst a diffusion-controlled mechanism to ex-plain the observed time dependence of interface trap generation.Other authors suggested a similar mecha-nism and examined the time dependence of different charged diffusing species[4,20].Their common assump-tion is that as reaction-limited time dependence obeys a linear relationship,the observed fractional time depen-dence has tofind its origin in a diffusion-limited mode. Diffusion of hydrogenated species away from the inter-face could possibly explain the power law dependence (t a)of the interface traps creation down to t1/2[4],and indeed,at the time,observed values of power law expo-nents ranged between0.75and0.5.However,in more re-cent years,time-dependencies below t1/2and saturation effects are common for sub-micron devices.Recent stud-ies proposed new evolutions of such approach to explain power law exponents ranging about0.25[21,22].In light of the analysis of such Reaction–Diffusion(RD)models, it is possible to distinctly observefive different regimes of evolution(cf.Fig.12from[21]).At short times(t<s reac) (regime1),the system is reaction limited with a charac-teristic slope of1,linked directly to the dissociation en-ergy of SiH bonds.In this approach,it is important to notice that all bonds are identical and the system can be described by a single dissociation energy E d.In re-gime2,the reaction is in equilibrium but theflux of hydrogen away from the interface is negligible.Regime 3is characterized by the hydrogen diffusion limited time dependence described by a power law exponent,which is independent of the oxidefield and/or the temperature but is only determined by the nature of the diffusing hydrogenated species.In regime4,the power law expo-nent increases up to0.5due to hydrogen diffusion into the gate which is supposed to occur with infinite diffu-sion velocity.Finally,in regime5,the generationslowsdown due to saturation of the process and the lack of new bonds to be broken.In order to check the validity of this approach to de-scribe the NBTI degradation,it is important to get some new insights into the interface traps creation during NBTI degradation.One way is to apply preliminary stresses(pre-stress)on the devices in order to break some SiH bonds present at the interface previous to the stress.By doing so,according to the RD model, the regime1should not be impacted since its slope and time constant are only defined by the dissociation energy E d of the bonds.But,a parallel shift downwards of the regime3power law part is expected due to the reduction of the maximum saturation level linked to the maximum number of SiH bonds present previously to the stress.Actually,Fig.13shows that pre-stressing a transistor modifies the reaction-limited part,with a decreasing linear slope(i.e.increasing associated dissoci-ation energy E d)when pre-stress lasts longer.It strictly means that SiH bonds can have various dissociation energies.Concerning the interface traps generation, many authors[23,24]have already reported that the de-fect activation energy of SiH bonds at the interface show a broadened Fermi derivative distribution g(E,r)(with r about0.1eV).In case of distributed dissociation ener-gies,for a given pre-stress time,the slope of the linear part is proportional to the number of SiH bonds for that particular dissociation energy over the characteristic time constant related to this dissociation energy.Our analysis led for two oxidefields on large number of pre-stress times shows that the dissociation energies can befitted by a broadened Fermi derivative distribu-tions with a spread r about0.1eV(cf.Fig.14),as found by other experimental approaches[23,24].In conclusion, we have presented in this section experimental proofs that the SiH bonds at the interface have dispersed disso-ciation energies according to a broadened Fermi deriva-tive distribution.This is an important statement,which will be driven the way we understand and model the interface traps creation.2.9.Model for interface traps creationBreaking a Si–H bond at the interface is often de-scribed by afirst-order reaction such asRðt;sÞ¼1ÀeÀt sÀÁð1Þwhere s represents the time constant of the reaction and is supposed to be directly related to the dissociation en-ergy of the bond E d.Dissociation energy is defined in8V.Huard et al./Microelectronics Reliability46(2006)1–23this case either as the energy to break the SiH bond or the migration barrier the H atoms have to pass over to be released.For degradation times shorter than the time constant(t<s),the degradation rate presents a linear behaviour with time and so a constant defect generation rate P gen=1/s.As shown previously,SiH bonds at the interface do not present a single dissociation energy E d but a contin-uum of energies which,in agreement with other authors [23,24],will be further described by a broadened Fermi derivative distribution g(E d,r)due to disorder-induced variationsgðE d;rÞ¼1re E dmÀE drÀÁ1þe E dmÀE drÀÁ2ð2Þwhere E dm is the median dissociation energy and r is the spread of the distribution with experimental values about0.1eV.In this approach,every single bond is broken accord-ing to afirst-order equation,but each of them with a specific time constant depending on their own dissocia-tion energy.In consequence,given a range of bond ener-gies,lower-energy bonds would be broken relatively quickly leaving higher-energy bonds to be broken more slowly.The degradation rate results from the combina-tion of every single defectfirst-order equation rate, which has been analytically derived as[25]D N it it max ðtÞ¼Z1gðE d;rÞRðt;sðE dÞÞd E d/11þtsÀÁÀað3Þassuming s¼s0expðE dðE oxÞÞand a¼kT for s min<t<s,T being the bond temperature and s min the time constant of the weakest defect.The resulting evolution of the interface traps genera-tion with stress time according to Eq.(3)is shown in Fig.15.For very short times(t<s min),the degradation is lin-ear,with a slope linked to the defect generation rate of the weakest bonds.For longer stress times,more and more different bonds participate to the degradation, yielding to power-law dependence such as described in Eq.(3)with afinal saturation when less and less bonds are left to be broken.Fig.16shows that experimentaldynamics for various temperatures can be well repro-duced by Eq.(3),even the saturation effect that is clearly visible at higher temperatures.An important point in describing the temperature behaviour of the interface traps creation is the capability of the model to predict the temperature dependence of the power law exponent.The linear temperature depen-dence of the power law exponent was already pointed out above in Fig.9.In Fig.17,according to Eq.(3), the spread of the distribution r is determined byfitting experimental power law exponentsÕevolution and is found to be about0.1eV,as previously deduced by non-related methodologies.Due to the various temperature measurements,not only the spread of the distribution is known but it is also possible to have a close idea of what is the saturation value N it max.For a given value of oxidefield and various temperatures,studying the evolution of the time con-stant s,it is possible to extract the constant s o for 2.1nm nitrided oxide.Its value was found to be 1.34·10À8s in this case(cf.Fig.18).This value was found to be identical for various oxidefields.Once thisV.Huard et al./Microelectronics Reliability46(2006)1–239constant is known,it is possible to study the variation of s with oxidefield.This study yields to the determination of the mean dissociation energy E dm,function of theoxidefield.Fig.19shows that the dissociation energy evolves almost linearly with the oxidefield with aflat band limit of about1.5eV,which spans in the range of theoretical values(1.5-1.8eV)proposed by Pantelides et al.[26]for the migration barrier;depending if the hydrogen species migrate away in the substrate or in the oxide.Fig.20shows that using this model allows a good evaluation of the evolution of the apparent activation energy of the interface traps creation.It has to be noted here that if the overall interface traps creation phenom-enon seems to have a non-Arrhenius behaviour,every single bonds considering its own dissociation energy follow an arrhenius behaviour.The deviation from the10V.Huard et al./Microelectronics Reliability46(2006)1–23Arrhenius behaviour only occurs through the existence of the distribution of dissociation energies of the SiH bonds.Besides,this set of parameters allows reproducing not only ultra-thin oxides but also thicker oxides as shown in Fig.21(Nit creation for pure thick oxides with various oxidefields).In conclusion,we have developed a consistent physi-cal-based model of the interface traps creation,which al-lows reproducing all features including oxidefield and temperature dependence over a large range of oxide thickness.3.Threshold voltage degradationSo far,we have made the assumption that the NBTI degradation is only related to the creation of interface traps.We have carefully studied how they are created and how it is influenced by the various stress parameters. But,to understand the impact of the NBTI degradation up to circuit level,it is important to make the link with device parameters such as threshold voltage.As NBTI degradation is mainly a build-up of charges at the inter-face in a symmetrical configuration along the channel, the threshold voltage parameter is more relevant to de-scribe the degradation than other parameters such as the saturated drain current.3.1.Methodology of measurementsFor the NBTI stress characterization,the devices are typically stressed under a constant gate voltage,gener-ally higher than V dd in order to benefit from an acceler-ated degradation,while the source,drain and bulk are grounded.But the stress is periodically interrupted on a linear or a logarithmic time scale,and device parame-ters(threshold voltage,drive current,etc.)are measured at nominal voltage to monitor the degradation.This ap-proach is based on the assumption that the degradation is permanently generated and cannot be removed once the stress is switched off.But,as already shown by Ershov et al[27],inserting a delay between stress inter-ruption and measurements yields to a recovery of at least a part of the degradation.Similar experiments were led measuring both the threshold voltage and the inter-face traps creation through CP measurement.As shown in Fig.22,artificially increased delay between stress interruption and measurements yields also in our case to a partial recovery of the threshold voltage shift.But it is important to notice that the number of interface traps created during the stress is similar.By the way,it is important here to consider the number of interface traps as determined through the integration of the bell-like CP curve and not to make a direct link with the maximum value of the CP current I cpmax.Actually,dur-ing the recovery phase,I cpmax is slightly reduced but the width of the bell-like CP curve is also changed.Leading the integration of this curve shows that the total number of interface traps created during the stress remains con-stant in spite of the reduction of I cpmax.The combination of the unchanged interface traps density,the partial recovery of threshold voltage and the modified edges of the bell-like CP curve with an increased delay points out the fact that the NBTI-induced threshold voltage degradation is not only related to the creation of inter-face traps but a second component has to be taken intoaccount.。

斯坦福肿瘤糖组学实验室-斯坦福大学后基因组学研究的一...

斯坦福肿瘤糖组学实验室-斯坦福大学后基因组学研究的一...

Stanford Tumor Glycome Laboratory — a new initiative of University's postgenomics research斯坦福肿瘤糖组学实验室-斯坦福大学后基因组学研究的一个新开端The Stanford University research team led by Denong Wang, PhD (photo), has been selected by the Na tional Cancer Institute to establish a Tumor Glycome Laboratory to study how changes in carbohydrate structure may play a major role in the progression of prostate cancer and how immune systems recognize and react to cancer-associated complex carbohydrates.王德農博士的斯坦福大学研究团队被美国国立肿瘤研究所(NCI)选定组建一个肿瘤糖组学研究实验室,致力于研究糖结构改变如何影响前列腺肿瘤的惡化过程,以及免疫系统如何识别和應對这些肿瘤相关的糖复合物.Stanford Tumor Glycome Laboratory is one of seven such NCI-funded labs nationwide that will share $15.5 million over five years to discover, develop and validate cancer biomarkers (molecular biological indicators) by targeting the carbohydrate (glycan, or sugar) structures on cancer cells. The other six labs will focus on glycan-based biomarkers for melanoma, breast, ovarian, lung, colon and pancreatic cancers.斯坦福肿瘤糖组学实验室是全美范围内NIC资助的七家实验室之一,这七个实验室共获得NCI1550万美元的五年研究资金,用于发现, 開发和验证肿瘤细胞上与碳水化合物结构(多聚糖或糖)相关的肿瘤生物标记物(分子生物指示剂)。

用于疾病和病症分析的无细胞DNA甲基化模式[发明专利]

用于疾病和病症分析的无细胞DNA甲基化模式[发明专利]

专利名称:用于疾病和病症分析的无细胞DNA甲基化模式专利类型:发明专利
发明人:向红·婕思敏·周,康舒里,李文渊,史蒂文·杜比尼特,李青娇
申请号:CN201780047763.3
申请日:20170607
公开号:CN110168099A
公开日:
20190823
专利内容由知识产权出版社提供
摘要:本文公开了利用测序读取来检测并定量由血液样品制备的无细胞DNA中组织类型或癌症类型的存在的方法和系统。

申请人:加利福尼亚大学董事会,南加利福尼亚大学
地址:美国加利福尼亚州
国籍:US
代理机构:北京柏杉松知识产权代理事务所(普通合伙)
更多信息请下载全文后查看。

经皮致敏小鼠肠道过敏模型的建立与评价

经皮致敏小鼠肠道过敏模型的建立与评价

2019年10月第27卷㊀第5期中国实验动物学报ACTA LABORATORIUM ANIMALIS SCIENTIA SINICAOctober 2019Vol.27㊀No.5费巧玲,齐睿娟,张小雨,等.经皮致敏小鼠肠道过敏模型的建立与评价[J].中国实验动物学报,2019,27(5):619-625.Fei QL,Qi RJ,Zhang XY,et al.Establishment and evaluation of a mouse model of intestinal allergy by epicutaneous sensitization[J].Acta Lab Anim Sci Sin,2019,27(5):619-625.Doi:10.3969/j.issn.1005-4847.2019.05.011[基金项目]中国医学科学院医学与健康科技创新工程(2016-I2M-3-015);国家自然科学基金(81601385,81873066)㊂Funded by the Medical and Health Science and Technology Innovation Project of Chinese Academy of Medical Sciences (2016-I2M-3-015),and the National Natural Science Foundation of China(81601385,81873066).[作者简介]费巧玲(1992 ),女,博士研究生,研究方向为抗炎与免疫药理学㊂Email:1554368105@ [通信作者]齐云(1964 ),男,教授,博士生导师,研究方向为抗炎与免疫药理学㊂Email:yqi@经皮致敏小鼠肠道过敏模型的建立与评价费巧玲,齐睿娟,张小雨,高源,韩宜芯,李西蒙,蔡润兰,齐云∗(中国医学科学院&北京协和医学院药用植物研究所,北京㊀100193)㊀㊀ʌ摘要ɔ㊀目的㊀建立经皮致敏小鼠肠道过敏模型㊂方法㊀首先比较经皮致敏(耳部与背部皮肤)方式与腹腔注射致敏方式诱导小鼠肠道过敏的程度㊂选用敏感性更高且操作简单易行的耳部皮肤致敏方式,即采用卡泊三醇软膏引起小鼠耳部皮肤炎症,同时涂抹卵清蛋白(ovalbumin,OVA)致敏小鼠两周㊂通过对经皮致敏小鼠灌胃OVA 攻击后肠道过敏症状㊁空肠毛细血管渗透性㊁血浆总IgE(total IgE,tIgE)和小鼠肥大细胞蛋白酶-1(mouse mast cell protease-1,mMCP-1)水平以及空肠组织病理变化等指标对模型进行评价㊂结果㊀经皮致敏肠道过敏模型相比于腹腔致敏模型可诱导更高的血浆tIgE 和mMCP-1水平㊂与对照组相比,经皮致敏OVA 灌胃攻击后模型组小鼠出现快速抓挠㊁弓背㊁腹泻等肠道过敏症状,直肠温度下降(约1.2ʎC)和空肠毛细血管通透性增加(约2倍),血浆tIgE 和mMCP-1显著升高,空肠粘膜受损㊁炎性细胞浸润㊁肥大细胞增多(约5倍)㊂结论㊀经皮致敏肠道攻击的小鼠模型具有典型的食物肠道过敏病理特征,代表了皮肤暴露于过敏原的致敏途径,为食物过敏的机制研究和防治措施提供了新的研究工具㊂ʌ关键词ɔ㊀肠道过敏;小鼠模型;经皮致敏;mMCP-1;肥大细胞ʌ中图分类号ɔQ95-33㊀㊀ʌ文献标识码ɔA㊀㊀ʌ文章编号ɔ1005-4847(2019)05-0619-07Establishment and evaluation of a mouse model of intestinal allergy byepicutaneous sensitizationFEI Qiaoling,QI Ruijuan,ZHANG Xiaoyu,GAO Yuan,HAN Yixin,LI Ximeng,CAI Runlan,QI Yun ∗(Institute of Medicinal Plant Development,Chinese Academy of Medical Sciences &Peking Union Medical College,Beijing 100193,China)Corresponding author:QI Yun.E-mail:yqi@ʌAbstract ɔ㊀Objective ㊀To establish a mouse model of intestinal allergy by epicutaneous sensitization (ES).Methods ㊀After comparing the degree of intestinal allergy induced by ES (on the ear or back skin)or intraperitoneal injection,the method of ES (on ear skin)with higher sensitivity and easier operation was selected.Calcipotriol ointment was used for induction of the inflammation of mice ear skin.At the same time,mice were epicutaneously sensitized with ovalbumin (OVA)for two weeks.The established model was evaluated according to the below symptoms,including intestinal allergic symptoms,jejunal capillary permeability,plasma tIgE and mMCP-1levels,and jejunal histopathological changes after OVA challenge (i.g.).Results ㊀In contrast to intraperitoneal injection,the ES induced higher production of plasma tIgE and mMCP-1.Moreover,the mice in the model group showed obvious intestinal allergy symptoms,such asrapid scratching,arching back and diarrhea,hypothermia (the rectal temperature was decreased about 1.2ħ),increasedjejunal capillary permeability (about 2times),and robustly increased plasma tIgE and mMCP-1levels.Histologicalchanges were also observed,such as the damage of jejunum mucosa,infiltration of inflammatory cells and the increase of mast cells(about5times).Conclusions㊀The established mouse model not only has typical pathological characteristics of food allergy,but also represents the sensitization pathway of skin exposure to allergens.It may also provide a new research tool for further mechanism research and the prevention/treatment of food allergy.ʌKeywordsɔ㊀intestinal allergy;mouse model;epicutaneous sensitization;mMCP-1;mast cells Conflicts of Interest:The authors declare no conflict of interest.㊀㊀食物过敏在全球的发病率逐年上升,严重影响儿童生活质量㊂据研究报道,我国31个城市0~14岁儿童食物过敏的总患病率为5.83%,其中学龄前儿童(3~5岁)患病率最高(6.65%)[1],鸡蛋㊁牛奶等是最常见的食物过敏原[2]㊂食物过敏引起的疾病常常影响儿童生长发育,并可能成为其他过敏性疾病的诱因[3]㊂由于食物过敏发病机制复杂,受遗传背景㊁环境因素㊁暴露条件等诸多因素的影响,利用食物过敏原建立动物模型来寻求新的预防和治疗措施是最为常用的研究方法㊂目前,国内研究报道的食物过敏动物模型大多数采用腹腔注射食物大分子蛋白(如卵清蛋白㊁花生蛋白等)的致敏方式[4],加以灌胃攻击[5]㊂此种致敏方式虽然能够增加过敏原特异性IgE抗体,但其诱导的肠道病理改变并不明显[6]㊂而在临床上,研究者早已发现皮肤炎症与食物过敏之间存在密切的关联性,如特应性皮炎患者中IgE介导的食物过敏的发生率为15%~40%[7]㊂近年来,国际上已出现采用皮肤接触过敏原诱导小鼠食物过敏的新方法[8],但国内尚未见相关研究㊂本文旨在建立经皮致敏小鼠肠道过敏的模型,以血浆tIgE水平评价全身过敏情况,以灌胃OVA攻击后血浆mMCP-1水平评价肥大细胞脱颗粒程度,初步判断经皮致敏肠道攻击优于腹腔致敏肠道攻击后,以经由耳部皮肤的致敏方式建立模型,考察该模型的病理特点,寻找其标志性的指标㊂1㊀材料与方法1.1㊀材料1.1.1㊀实验动物SPF级BALB/c小鼠,雌性,6~8周龄,由北京维通利华实验动物技术有限公司提供ʌSCXK(京) 2016-0006ɔ㊂相关动物实验均在中国医学科学院药用植物研究所SPF级动物实验室进行无菌操作ʌSYXK(京)2017-0020ɔ㊂小鼠全部饲养于独立通气笼内,饲养环境:昼夜各半交替,温度18~25ħ,湿度50%~70%㊂垫料㊁饲料和饮水均经过高温高压灭菌后使用㊂动物实验开展经中国医学科学院药用植物研究所实验动物伦理委员会审批(伦理审批号:SLXD-20180604521)㊂1.1.2㊀主要试剂卵清蛋白(Sigma,A5253),卡泊三醇软膏(爱尔兰利奥制药有限公司,041463-00),mMCP-1ELISA 试剂盒(Thermo Fisher Scientific,88-7503-22),Mouse IgE ELISA试剂盒(Biolegend,432401),甲苯胺蓝染色液(珠海贝索生物技术有限公司,BA-4125),伊文思蓝(Sigma,E2129)㊂其余试剂均为分析纯㊂1.1.3㊀主要仪器微孔板恒温振荡器(MB100-4P,杭州奥盛仪器有限公司,中国),智能温度记录仪(TH-212,北京鸿鸥成运科技有限公司,中国),酶标仪(Type354, Thermo,美国),微型高速离心机(Spin218,北京东迅天地医疗仪器有限公司,中国),电动玻璃匀浆器(DY89-Ⅱ,宁波新芝生物科技有限公司,中国),数字病理扫描仪(Aperio CS2,Leica,德国)㊂1.2㊀方法1.2.1㊀小鼠肠道过敏模型三种不同致敏方式的比较将雌性BALB/c小鼠随机分为三组,每组10只,分别采用三种不同的致敏方式㊂致敏方式一(传统的腹腔致敏):于0,7,13d腹腔注射100μg OVA(含有等体积的铝佐剂)[9];致敏方式二(经典的经皮致敏):脱去小鼠背部毛,于0d在背部皮肤贴上1cmˑ1cm纱布补丁(补丁中含有200μg OVA,100μL PBS 溶解),每24h更换补丁,于13d撤去补丁[8];致敏方式三(皮损经皮致敏):将OVA与卡泊三醇软膏按重量比1ʒ100均匀混合,每只小鼠耳部皮肤涂以20mg 含有200μg OVA的软膏混合物,连续13d[10]㊂三组小鼠于14d禁食3h后,均灌胃OVA攻击,50mg/只㊂攻击后1h,采集小鼠尾尖血液,比较三组小鼠血浆中tIgE和mMCP-1水平㊂1.2.2㊀行为学观察及直肠温度测定以下研究均采用经由耳部皮肤的致敏方式㊂设对照组与模型组,每组10只BALB/c小鼠㊂模型组小鼠耳部皮肤涂以混合OVA的卡泊三醇软膏,对照组小鼠耳部皮肤涂以等量不含OVA的卡泊三醇软膏,连续两周㊂对照组及模型组小鼠于14d灌胃50mg OVA攻击后15min测定小鼠直肠温度[11]㊂在灌胃OVA攻击后1h内观察小鼠过敏症状,记录出现过敏症状的小鼠只数,过敏症状评价指标有:快速搔抓和摩搓鼻周围及挠头(>10次)㊁弯成弓状及腹泻[12]㊂1.2.3㊀血浆tIgE及mMCP-1测定用ELISA方法测定灌胃攻击前对照组及模型组小鼠血浆中tIgE及mMCP-1水平,以及灌胃攻击后1h㊁24h血浆中tIgE及mMCP-1水平[13]㊂1.2.4㊀小鼠空肠毛细管炎性渗出实验另取BALB/c小鼠16只(设对照组及模型组,每组8只),经皮致敏两周后,灌胃OVA(50mg/只)㊂攻击后5min,尾静脉注射伊文思蓝(20mg/ kg)㊂3.5h后,小鼠用戊巴比妥钠(20mg/kg)麻醉后用10mL PBS进行心脏灌流㊂取空肠组织10 cm,称湿重,用500μL N,N-二甲基甲酰胺37ʎC萃取过夜㊂次日,将萃取液室温离心(14000r/min,15 min),上清在620nm处测定吸光度㊂以伊文思蓝的N,N-二甲基甲酰胺溶液作标准曲线,根据标准曲线计算萃取液中伊文思蓝含量㊂小鼠空肠组织毛细血管渗透性以萃取液中伊文思蓝含量/组织湿重表示[14]㊂1.2.5㊀组织病理检测小鼠经皮致敏灌胃OVA攻击后于胃下方8~ 10cm处取一段空肠组织,在中性福尔马林中固定并用石蜡包埋㊂组织切片分别用伊红-苏木精(Hematoxylin-eosin,HE)和甲苯胺蓝染色㊂计数至少十个高清视野(high-power field,HPF,ˑ200)下肥大细胞的数目㊂其测定值以每十个高清视野下的平均细胞数表示[11]㊂1.3㊀统计学分析采用SPSS17.0统计软件进行统计分析㊂模型组动物与对照组之间计量资料以均数ʃ标准差( x ʃs)表示,两组间比较采用t检验进行数据统计分析㊂设n为各组样本数,P为t检验概率值,则P< 0.05代表差异有统计学意义㊂2㊀结果2.1㊀小鼠肠道过敏模型三种不同致敏方式的比较在小鼠肠道过敏模型的建模方法中,经皮致敏(耳部和背部皮肤)方式相比于传统的腹腔致敏方式,能使小鼠OVA灌胃攻击后1h血浆中tIgE和mMCP-1水平显著升高(P<0.01)(图1),但耳部和背部皮肤致敏的两种方式之间没有显著差异(P >0.05)㊂由于耳部致敏方式较背部致敏更简便易行,故在后续实验中均采用耳部皮肤致敏方法㊂注:A.致敏小鼠灌胃OVA攻击后1h血浆tIgE水平;B.致敏小鼠灌胃OVA攻击后1h血浆mMCP-1水平( xʃs,n=10)㊂与腹腔注射致敏组相比,∗∗P<0.01㊂图1㊀小鼠肠道过敏模型三种致敏方式的比较Note.A.Plasma tIgE levels of sensitized mice1h after OVA challenge (i.g.);B.Plasma mMCP-1levels of sensitized mice1h after OVA challenge(i.g.).Error bars represent means and SDs(n=10mice per group).Statistical significance was calculated relative to the i.p. group.∗∗P<0.01.i.p.,intraperitoneal injection;epi.(ear), epicutaneous sensitization on ear skin;epi.(back),epicutaneous sensitization on back skin.Figure1㊀Comparison of three sensitization methods toestablish the mouse model of intestinal allergy2.2㊀经皮致敏肠道攻击对小鼠过敏症状的影响小鼠常见的肠道过敏症状根据其程度不同会出现快速搔抓和摩搓鼻周围及挠头(>10次)㊁腹泻㊁弯成弓状㊁不动,甚至休克死亡㊂经皮致敏的小鼠在灌胃OVA攻击之后约20min开始出现过敏反应的症状㊂60%的模型组小鼠出现明显的快速搔抓和摩搓鼻周围及挠头(>10次)㊁70%出现腹泻(稀便)㊁80%出现弯成弓状㊂而对照组小鼠活动自如㊁毛色光泽㊁粪便没有变化(图2)㊂注:经皮致敏小鼠灌胃OVA攻击后1h内出现的过敏症状: A.快速抓挠;B.腹泻;C.弓背;D.经皮致敏小鼠灌胃OVA攻击后1h内腹泻图(n=10)㊂图2㊀经皮致敏小鼠灌胃OVA攻击后的过敏症状Note.Allergic symptoms of epicutaneously sensitized mice after OVA challenge(i.g.)within1h:A.Rapidly scratching.B. Diarrhea.C.Arching back.D.The images of diarrhea of epicutaneously sensitized mice after OVA challenge(i.g.)within 1h(n=10mice per group).Figure2㊀Allergic symptoms of epicutaneouslysensitized mice after OVA challenge(i.g.)2.3㊀经皮致敏肠道攻击对小鼠直肠温度及空肠毛细血管炎性渗透的影响模型组小鼠在攻击后15min时直肠温度较对照组下降约1.2ʎC,且有统计学差异(P<0.01)(图3A)㊂模型组空肠毛细血管渗出的伊文思蓝的相对含量较对照组显著增加(P<0.01),约为对照组的注:A.经皮致敏小鼠灌胃OVA攻击后15min直肠温度;B.经皮致敏小鼠灌胃OVA攻击后3.5h空肠毛细血管渗透性( xʃs,n= 8)㊂与对照组相比,∗∗P<0.01㊂图3㊀小鼠直肠温度和空肠毛细血管渗透性Note.A.The rectal temperature of epicutaneously sensitized mice15 min after OVA challenge(i.g.).B.The jejunal capillary permeability of epicutaneously sensitized mice3.5h after OVA challenge(i.g.). Error bars represent means and SDs(n=8mice per group).Statistical significance was calculated relative to the control group.∗∗P<0.01.Figure3㊀The rectal temperature and jejunalcapillary permeability of the mice2倍(图3B)㊂2.4㊀经皮致敏方式对攻击前后小鼠血浆中tIgE和mMCP-1的影响在末次经皮致敏之后,灌胃OVA攻击之前,对照组和模型组小鼠血浆中mMCP-1的含量很低,而此时模型组小鼠血浆中tIgE水平较对照组已显著升高(P<0.01)㊂攻击后1h,模型组小鼠血浆中mMCP-1的含量大幅度增加(P<0.01),而tIgE水平较攻击之前没有显著变化(P>0.05)㊂攻击后24h,模型组小鼠血浆mMCP-1下降至略高于基础水平,而tIgE含量仍维持高水平(图4)㊂2.5㊀经皮致敏肠道攻击小鼠空肠病理改变经皮致敏灌胃OVA攻击后的小鼠,其空肠下端HE切片显示,对照组小鼠的肠黏膜结构清晰,肠绒毛排列整齐,无明显损伤,无炎症细胞浸润;模型组小鼠与对照组相比,肠黏膜出现轻度糜烂,肠绒毛损伤,排列紊乱㊁断裂或缺失,呈现炎症细胞浸润的注:A.经皮致敏小鼠灌胃OVA攻击前㊁肠道攻击后1h及24 h血浆IgE水平;B.经皮致敏小鼠灌胃OVA攻击前㊁肠道攻击后1h及24h血浆mMCP-1水平( xʃs,n=8)㊂模型组与对照组在攻击前㊁攻击后1h,攻击后24h同一时间点的比较分别为:$$P<0.01,∗∗P<0.01,##P<0.01㊂图4㊀小鼠灌胃OVA攻击前后血浆tIgE和mMCP-1水平Note.A.Plasma tIgE levels of epicutaneously sensitized mice before,1h and24h after OVA challenge(i.g.).B.Plasma mMCP-1levels of epicutaneously sensitized mice before,1h and 24h after OVA challenge(i.g.).Error bars represent means and SDs(n=8mice per group).Statistical significance was calculated relative to the control group at the same time point. Before challenge,$$P<0.01.1h after challenge,∗∗P< 0.01.24h after challenge,##P<0.01.Figure4㊀Plasma tIgE and mMCP-1levels of micebefore and after OVA challenge(i.g.)现象(图5A)㊂甲苯胺蓝染色后,对照组小鼠的肠黏膜固有层可见少量的肥大细胞,结构完整,轮廓清晰,无脱颗粒现象;模型组小鼠肠黏膜固有层可见较多肥大细胞聚集,伴随胞膜破裂㊁轮廓不清,细胞周围有明显的紫红色颗粒(图5B)㊂对照组与模型组小鼠空肠粘膜固有层肥大细胞每十个高清视野下的数目分别为(7.3ʃ1.9)和(37.4ʃ7.0),两组比较有统计学差异(P<0.01)(图5C)㊂3㊀讨论在传统的食物过敏动物模型中,致敏途径通常为灌胃[15]或通过腹腔注射过敏原以及免疫佐剂[16]㊂然而这些模型在肠道缺乏明确的免疫介导的过敏反应,显示的肠道病理证据含糊不清[17]㊂临床上发现,系统性接触性皮炎会明显增加肠道食物过敏的风险[18]㊂如特应性皮炎患儿可对很多食物抗原产生过敏反应[19],大多数特应性皮炎个体对花粉过敏并对花粉相关的食物过敏[20]㊂实际上,食物过敏原通过皮肤接触方式使机体致敏的概率远高于经口摄入途径,前者主要通过Th2细胞介导的免疫反应途径实现,也阻碍机体后期对致敏食物产生耐受性,并引发IgE介导的食物过敏的发生[12]㊂本研究发现,采用经皮致敏方式(耳部和背部皮肤)在灌胃OVA攻击后能够引起小鼠血浆tIgE 和mMCP-1水平显著升高,且与传统的腹腔致敏方式比较具有显著差异(图1)㊂意味着经皮致敏的方式能够提高造模的成功率,并且具有不依赖免疫佐剂的优势㊂由于耳部相较于背部的致敏方式更简便易行,且两组小鼠在灌胃OVA攻击后血浆tIgE 和mMCP-1水平没有显著差异,故在后续研究中均采用经由耳部皮肤致敏的方法㊂卡泊三醇是维生素D的类似物㊂在小鼠研究中,外用卡泊三醇给药于耳部和背侧皮肤,导致角质形成细胞产生上皮细胞源性细胞因子胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP)剂量依赖性增加,并在高浓度下引发特应性皮炎[21]㊂本研究中将卡泊三醇软膏和OVA溶液均匀混合制成霜剂涂于小鼠耳部,能保留较长时间,较好的模拟了特应性皮炎患者经皮接触过敏原的致敏途径㊂经皮致敏的小鼠在灌胃OVA攻击后1h内出现明显的肠道过敏症状,包括快速搔抓和摩搓鼻周围及挠头(>10次)㊁弯成弓状及腹泻(图2),表明经皮致敏是一种生理上可行的方式㊂由于Kawasak 等[11]观察到经皮致敏小鼠在灌胃OVA攻击后15 min时直肠温度下降到最低点㊂因而,我们在研究中以灌胃OVA攻击后15min的时间点测定小鼠直肠温度,并且发现模型组小鼠直肠温度较对照组小鼠直肠温度下降约1.2ʎC(图3A)㊂对灌胃OVA攻击前后血浆中tIgE和mMCP-1水平测定时发现,模型组小鼠血浆中tIgE水平保持较对照组显著升高的水平且没有明显变化(图4A),而血浆中mMCP-1水平在攻击后1h大幅度的升高(图4B),随后又逐渐降回略高于基础水平(24h),提示经皮致敏小鼠灌胃OVA攻击后1h时间点的血浆mMCP-1可作为该模型的代表性指标[22]㊂大量研究发现,食物过敏性疾病的发生与肠道屏障功能损伤有关,在食物过敏患者中肠道通透性注:A.经皮致敏小鼠灌胃OVA攻击后空肠组织HE染色(标尺200μm,ˑ200),A1代表对照组,A2代表模型组;B.经皮致敏小鼠灌胃OVA攻击后空肠组织甲苯胺蓝染色(标尺200μm,ˑ200;插入图标尺50μm,ˑ400),B1代表对照组,B2代表模型组,红色箭头所指为肥大细胞脱颗粒;C.经皮致敏小鼠灌胃OVA攻击后空肠组织每10个高清视野下肥大细胞数目( xʃs,n=8)㊂与对照组相比,∗∗P<0.01㊂图5㊀小鼠肠道攻击后空肠组织病理变化Note.A.Hematoxylin-eosin(HE)staining of mouse jejunum after epicutaneous sensitization(scale bar=200μm).A1represents the control group and A2represents the model group.B.Toluidine blue staining of mice jejunum after epicutaneous sensitization(scale bar=200μm;inset scale bar= 50μm).B1represents the control group and B2represents the model group.Red arrows indicate the degranulation of mast cells.C.The number of mast cells per10HPF.Error bars represent means and SDs(n=8mice per group).Statistical significance was calculated relative to the control group.∗∗P<0.01.HPF,high-power field.Figure5㊀Histological changes of the mouse jejunum after epicutaneous sensitization显著增加,进一步加强了抗原吸收[23]㊂经皮致敏肠道攻击的小鼠,空肠下端HE染色表明其肠黏膜屏障受到了明显损坏(图5A),并伴有炎性细胞浸润㊂同时模型组小鼠空肠毛细血管炎性渗出增加(图3B),而变应原和炎性因子等可以通过影响细胞间紧密连接的完整性而增加肠粘膜的通透性㊂说明经皮致敏肠道攻击的方式能够增加肠道血管的炎性渗出,导致肠道通透性增加,吸收抗原增多,进一步加重过敏反应㊂肥大细胞在过敏反应性炎症的发病机制中起核心作用㊂经致敏后,表面接有IgE抗体的肥大细胞再次接触过敏原时,释放组织胺㊁5-羟色胺㊁白三烯等大量炎性介质,作用于靶器官和组织,引起局部或全身过敏反应[24]㊂运用药理学手段去除致敏小鼠的肥大细胞后,血浆中检测不到mMCP-1水平,小肠组织毛细血管通透性显著减小,小鼠不再出现腹泻,表明肥大细胞是口服过敏原诱导腹泻所必须的[13]㊂本研究结果显示,相较于对照组,经皮致敏肠道攻击的小鼠空肠组织肥大细胞数目和脱颗粒程度均出现明显的变化(图5B㊁C)㊂综上所述,本研究成功建立了经皮致敏肠道攻击的小鼠肠道过敏模型,该模型相比于传统的腹腔致敏模型可诱导更高的血浆tIgE和mMCP-1水平,能够明显导致小鼠出现快速抓挠㊁弓背㊁腹泻等肠道过敏症状,引起小鼠直肠温度下降和肠道通透性增加,导致肠道的功能改变和肥大细胞相关的病理改变㊂该模型代表了临床人体皮肤暴露过敏原的经皮致敏食物过敏发病机制,为相关研究提供了一种新的研究工具㊂参㊀考㊀文㊀献(References)[1]㊀解洪丽,邵明军,刘传合,等.全国31城市儿童食物过敏患病情况调查[A].第八次全国中西医结合变态反应学术会议论文汇编[C].中国深圳:中国中西医结合学会,2016:276.Xie HL,Shao MJ,Liu CH,et al.Investigation on food allergy ofchildren in31cities of China[A].Proceedings of the8thNational Conference on Allergy of Integrated Chinese and WesternMedicine[C].Shenzhen,China:Chinese Association of theIntegration of Traditional and Western Medicine,2016:276.[2]㊀Joneja JM.Infant food allergy:where are we now?[J].JParenter Enteral Nutr,2012,36(Suppl1):49S-55S. [3]㊀单延春,冯雪英,衣明纪,等.食物过敏儿童的生长状况与营养管理[J].中国儿童保健杂志,2016,24(10):1055-1058.Shan YC,Feng XY,Yi MJ,et al.Growth status and nutritionalmanagement of children with food allergy[J].Chin J ChildHealth Care,2016,24(10):1055-1058.[4]㊀黄建芳,王彩霞,向军俭,等.食物过敏动物模型的研究进展[J].食品科学,2014,35(3):280-284.Huang JF,Wang CX,Xiang JJ,et al.Research advances inanimal models of food allergy[J].Food Sci,2014,35(3):280-284.[5]㊀闫秀梅,闫景彬,黄爱芬,等.SD大鼠食物过敏动物模型建立及其消化系统超微结构变化[J].中华临床免疫和变态反应杂志,2015,9(1):31-35.Yan XM,Yan JB,Huang AF,et al.Establishment of foodallergy model in SD rats and changes of ultrastructure of digestivesystem[J].Chin J Allergy Clin Immunol,2015,9(1):31-35.[6]㊀Knippels LM,Penninks AH,Spanhaak S,et al.Oralsensitization to food proteins:a Brown Norway rat model[J].Clin Exp Allergy,1998,28(3):368-375.[7]㊀Kwon J,Kim J,Cho S,et al.Characterization of food allergies inpatients with atopic dermatitis[J].Nutr Res Pract,2013,7(2):115-121.[8]㊀Hsieh KY,Tsaiw CC,Wu CH,et al.Epicutaneous exposure toprotein antigen and food allergy[J].Clin Exp Allergy,2003,33(8):1067-1075.[9]㊀Yamada A,Ohshima Y,Yasutomi M,et al.Antigen-primedsplenic CD8+T cells impede the development of oral antigen-induced allergic diarrhea[J].J Allergy Clin Immunol,2009,123(4):889-894.[10]㊀Hussain M,Borcard L,Walsh KP,et al.Basophil-derived IL-4promotes epicutaneous antigen sensitization concomitant with thedevelopment of food allergy[J].J Allergy Clin Immunol,2018,141(1):223-234.[11]㊀Kawasaki A,Ito N,Murai H,et al.Skin inflammationexacerbates food allergy symptoms in epicutaneously sensitizedmice[J].Allergy,2018,73(6):1313-1321. [12]㊀Noti M,Kim BS,Siracusa MC,et al.Exposure to food allergensthrough inflamed skin promotes intestinal food allergy through thethymic stromal lymphopoietin-basophil axis[J].J Allergy ClinImmunol,2014,133(5):1390-1399.[13]㊀Brandt EB,Strait RT,Hershko D,et al.Mast cells are requiredfor experimental oral allergen-induced diarrhea[J].J ClinInvest,2003,112(11):1666-1677.[14]㊀Ahrens R,Osterfeld H,Wu D,et al.Intestinal mast cell levelscontrol severity of oral antigen-induced anaphylaxis in mice[J].Am J Pathol,2012,180(4):1535-1546.[15]㊀Li XM,Schofield BH,Huang CK,et al.A murine model of IgE-mediated cow s milk hypersensitivity[J].J Allergy ClinImmunol,1999,103(1):206-214.[16]㊀Ogawa T,Miura S,Tsuzuki Y,et al.Chronic allergy to dietaryovalbumin induces lymphocyte migration to rat small intestinalmucosa that is inhibited by MAdCAM-1[J].Am J PhysiolGastrointest Liver Physiol,2004,286(5):702-710. [17]㊀Li XM,Serebrisky D,Lee SY,et al.A murine model of peanutanaphylaxis:T-and B-cell responses to a major peanut allergenmimic human responses[J].J Allergy Clin Immunol,2000,106(1):150-158.[18]㊀Tsakok T,Marrs T,Mohsin M,et al.Does atopic dermatitiscause food allergy?A systematic review[J].J Allergy ClinImmunol,2016,137(4):1071-1078.[19]㊀Sampson HA,McCaskill CC.Food hypersensitivity and atopicdermatitis:evaluation of113patients[J].J Pediatr,1985,107(5):669-675.[20]㊀Worm M,Forschner K,Lee HH,et al.Frequency of atopicdermatitis and relevance of food allergy in adults in Germany[J].Acta Derm Venereol,2006,86(2):119-122. [21]㊀Li M,Hener P,Zhang Z,et al.Topical vitamin D3and low-calcemic analogs induce thymic stromal lymphopoietin in mousekeratinocytes and trigger an atopic dermatitis[J].Proc Natl AcadSci U S A,2006,103(31):11736-11741.[22]㊀Vaali K,Puumalainen TJ,Lehto M,et al.Murine model of foodallergy after epicutaneous sensitization:Role of mucosal mast cellprotease-1[J].Scand J Gastroenterol,2006,41(12):1405-1413.[23]㊀王娟红,李寰舟,李蒙,等.基于肠道屏障的食物过敏机制研究进展[J].中国中药杂志,2015,40(7):1240-1243.Wang JH,Li HZ,Li M,et al.Advance in studies on food allergymechanism based on gut barrier[J].Chin J Chin Mater Med,2015,40(7):1240-1243.[24]㊀Reitsma M,Westerhout J,Wichers HJ,et al.Protein transportacross the small intestine in food allergy[J].Mol Nutr Food Res,2014,58(1):194-205.[收稿日期]㊀2019-04-29。

第五章 晶体中电子能带理论

第五章 晶体中电子能带理论

ˆ 具有晶格周期性。 因此晶体中单电子哈密顿量 H
ˆ ˆ ˆ ˆ ˆ T ( Rn ) H (r ) (r ) H (r Rn ) (r Rn ) H (r )T ( Rn ) (r )
ˆ, H ˆ ] HT ˆ ˆ TH ˆˆ 0 [T

Байду номын сангаас

n1 n2 n3 ˆ ˆ ˆ ˆ 可得到 T ( Rn ) (r ) T (a1 ) T (a2 ) T (a3 ) (r ) n1 n2 n3 (a1 ) (a2 ) (a3 ) (r ) ( Rn ) (r ) n1 n2 n3 即 ( Rn ) (a1 ) (a 2 ) (a 3 ) (a1 )、 (a2 )、 (a3 ) ? 设晶体在 a1、a 2、a3方向各有 N 1、N 2、N 3个原胞 ,
第五章 晶体中电子 能带理论
能带理论

能带论是目前研究固体中的电子状态,说明固体性质最重
要的理论基础。

能带理论是用量子力学的方法研究固体内部电子运动的理 论。它曾经定性地阐明了晶体运动的普遍特点,并进而说 明了导体与绝缘体、半导体的区别所在,解释了晶体中电 子的平均自由程问题。

能带论的基本出发点是认为固体中的电子不再是完全被束


, 2 e
ik a2
, 3 e
ik a3

( Rn ) e ---布洛赫定理 ik Rn (r Rn ) e (r )
ik Rn
( Rn ) e ik Rn (r Rn ) e (r ) ---布洛赫定理

谷氨酸功能异常与阿尔茨海默病

谷氨酸功能异常与阿尔茨海默病

Glutamate Dysfunction and AlzheimerZHANG ShuaiDepartment of Pharmacology【ABSTRACTa multi-factorial induced complicated neurodegenerative disease. Glutamate dysfunction wasinvolved in AD and glutamate excitotoxicity is one of the most important pathogenesis of AD.The function of glutamate fluctuates during the development from normal cognition to ADincrease the difficulty of intervention study. The aim of this review is to discuss the relationship between glutamate dysfunction and AD. By discussing the physiological and pathological function of glutamate【KEY WORDS谷氨酸是中枢神经系统内重要的兴奋性神经递由突触前神经元合成和储存,放入突触间隙,与突触后膜上的谷氨酸受体结合并发。

谷氨酸作为神经递质,1 谷氨酸合成,释放及重吸收功能与AD1.1 谷氨酸合成,释放及重吸收的生理过程动物体内谷氨酸的来源有两种,一种源于葡萄糖代谢:葡萄糖经无氧糖酵解生成丙酮酸,之后丙酮酸进入线粒体经氧化脱羧生成乙酰辅酶A并进入三羧酸循环,经一系列步骤合成α-酮戊二酸,α-酮戊二酸在谷氨酸脱氢酶的作用下产生谷氨酸,这类谷氨酸被认为主要起代谢作用,与蛋白质的合成等相关;第二种来源的谷氨酸则主要作为兴奋性神经递质存在,通过谷氨酸-谷氨酰胺循环由谷氨酰胺通过谷氨酰胺酶催化脱氨基形成[9],谷氨酰胺酶由于可以被磷酸盐刺激激活而被称为磷酸活化谷氨酰胺酶(phosphate activated glutaminase,PAG),催化谷氨酰胺水解生成谷氨酸和氨[10]。

银杏黄酮对三氯化铝致老年性痴呆模型大鼠的作用

银杏黄酮对三氯化铝致老年性痴呆模型大鼠的作用

银杏黄酮对三氯化铝致老年性痴呆模型大鼠的作用银杏黄酮(Ginkgoflavone)是从中草药银杏叶中提取分离的有效成分。

临床及药理研究[1-3]表明,银杏黄酮对老年性痴呆有一定的治疗作用,能对抗老年性痴呆所导致的学习记忆能力的降低,认为作用机制可能是使老年性痴呆病人脑组织中M1受体上调。

但老年性痴呆是个综合过程,涉及机体各个系统、不同结构层次的多项指标。

本文采用三氯化铝所致的老年性痴呆模型大鼠考察了银杏黄酮的促智及抑制β-APP阳性神经元生成的作用。

1材料1.1动物Wistar大鼠,雄性,200~220g,上海西普尔-必凯实验动物有限公司,合格证号:SCXK(沪)2003-2002。

1.2药品与试剂银杏黄酮:沈阳药科大学植化教研室提供。

结晶三氯化铝:沈阳市试剂三厂(批号:20001201)。

多聚甲醛:中国医药(集团)上海化学试剂公司(批号:990020)。

单克隆抗β-APP:ZYMED公司(批号:20873083)。

SA1021-即用型SABC免疫组化染色试剂盒:武汉博士德生物工程有限公司(批号:200210)。

1.3仪器大鼠跳台箱:DBA-2型,医科院药物研究所。

OLYMPUSBH-2型光学纤维镜:日本OL YMPUS光学有限公司。

Leitzl512型石蜡切片机:德国Leitz公司。

LX-1型医用溶蜡箱:天津市三水科学仪器有限公司。

2方法2.1三氯化铝致老年性痴模型的建立取健康♂大鼠50只,随机分为5组:正常组、模型组及3个给药组。

除正常组外其余各组灌服AlCl3500mg/(kg•d),正常组灌服等容积的蒸馏水,第30天时用大鼠避暗法考察痴呆形成程度,待模型形成后,给药组灌服Alcl3的同时给予不同浓度的银杏黄酮,连续75天。

第75天开始进行跳台试验,第80天处死大鼠,测定背海马和齿状回内含淀粉样前体蛋白(β-APP)神经元的个数[4-6]。

2.2痴呆大鼠学习记忆能力的测定-跳台法[7-8]跳台箱底部为电栅板,箱内有一高10cm的平台。

羟基查尔酮类衍生物C8对东莨菪碱致痴呆小鼠学习记忆的影响

羟基查尔酮类衍生物C8对东莨菪碱致痴呆小鼠学习记忆的影响

羟基查尔酮类衍生物C8对东莨菪碱致痴呆小鼠学习记忆的影响目的:观察羟基查尔酮类衍生物C8对东莨菪碱诱导的记忆障碍小鼠学习记忆的影响。

方法:实验小鼠除空白对照组、东莨菪碱组(模型组)灌服0.5%CMC-Na溶液外,C8给药组(高、低2个剂量组)灌服C8,阳性对照组灌服吡拉西坦,连续灌胃22 d。

从第15天起进行Morris 水迷宫试验,连续8 d。

结果:C8能明显缩短定位航行实验中模型小鼠的逃避潜伏期,明显延长空间探索实验中模型小鼠在原平台所在象限的游泳时间。

结论:C8对东莨菪碱引起的小鼠学习记忆能力障碍有改善作用。

[Abstract] Objective: To evaluate hydroxy chalcones derivative C8 on scopolamine-induced dementia learning and memory in mice. Methods: Excepted the blank control group and scopolamine hydrobromide group (oral 0.5%CMC-Na resolution), C8 high-dose group and low-dose group were administered C8, positive control group was administered Piracetam for 22 days. The 15th day onwards, Morris water maze test was carried out for 8 days. Results: C8 could significantly shorten the escape latency of place navigation test in mice, prolonged the swim time of mice in the platform quadrant in spatial probe test. Conclusion: C8 has benefit to the injury of learning and memory function caused by scopolamine.[Key words] Hydroxy chalcones derivative; Alzheimer’s diseas e; Morris water maze; Learning and memory阿尔茨海默病(Alzheimer’s disease,AD)又称老年痴呆症,是一种发生于老年和老年前期以进行性认知功能障碍和记忆损害为特征的中枢神经系统退行性疾病[1]。

酒精依赖综合征及戒酒措施

酒精依赖综合征及戒酒措施

【摘要】 酒精是一种公认的成瘾的精神活性物质,大量饮酒、长期慢性饮酒会引起有害的行为问题(如酒驾、酒后肇事等)、躯体健康问题(肝硬化、酒精性末梢神经炎等)、精神心理问题(酒精依赖、酒精型人格障碍等)。

近年来,我国酒的生产与消费均呈现出稳步增长的势头,同时由于社会文化因素、家族/个体易感性、饮酒者的心理学因素等,精神卫生相关工作者在临床上接诊越来越多的酒精所致精神障碍患者。

本文将具体阐述酒精所致精神障碍中酒精依赖综合征的定义、诊断标准、发病机制、危害、戒酒措施等。

【关键词】 酒精依赖;戒酒措施;药物治疗;心理治疗;综合治疗Review of alcohol dependence syndrome and abstinence measuresCUI Jia-bin, NA Long, SUN Ning, LUO Jin-xiu (Shanxi Medical University, Taiyuan 030001, China)Corresponding author: LUO Jin-xiu, E-mail: luojinxiu64@ 【Abstract 】 Alcohol is a recognized addictive psychoactive substance. Heavy drinking and long-term chronic drinking can cause harmful behavior problems (driving under the influence, drunken accident etc.), physical health problems(liver cirrhosis, alcoholic peripheral neuritis etc.) and mental problems (alcohol dependence, alcoholic personality disorder etc.). In recent years, the production and consumption of alcohol in China have shown a steady growth momentum. At the same time, due to social and cultural factors, family/individual susceptibility, psychological factors of drinkers and other factors, mental health workers have seen more and more patients with mental disorders caused by alcohol in clinical practice. In this paper, the definition, diagnostic criteria, pathogenesis, treatment of alcohol dependence syndrome in mental disorders caused by alcohol will be elaborated.【Key words 】 Alcohol dependence; Abstinence measures; Medicine treatment; Psychotherapy; Comprehensive therapy酒精依赖综合征及戒酒措施崔佳彬,那龙,孙宁,罗锦秀(山西医科大学,太原 030001)通讯作者:罗锦秀 E-mail :luojinxiu64@据世界卫生组织2018年的数据显示,全球约有23 700万男性及4600万女性患有酒精依赖综合征(alcohol dependence syndrome ,ADS )。

机械敏感性离子通道蛋白Piezo1在椎间盘髓核细胞中的表达及意义

机械敏感性离子通道蛋白Piezo1在椎间盘髓核细胞中的表达及意义

机械敏感性离子通道蛋白Piezo1在椎间盘髓核细胞中的表达及意义1. 引言1.1 Piezo1是什么Piezo1是一种机械敏感性离子通道蛋白,是最新发现的一种参与机械感应的蛋白分子。

它的发现填补了机械感应通路中的一个关键缺口,为人们深入研究细胞对于外部机械刺激做出响应的机制提供了新的线索。

Piezo1作为机械感知通道蛋白,能够感知和传导机械刺激,从而引发细胞内一系列生理反应。

它在多种细胞类型中均有表达,在哺乳动物的细胞中广泛存在。

Piezo1的结构研究表明,其蛋白分子呈现出类似于激活门控离子通道的结构,具有特殊的机械感受性。

Piezo1是一种重要的机械感知通道蛋白,在细胞内扮演着重要的角色。

通过对Piezo1的研究,可以更深入地了解细胞对于机械刺激的感知和响应机制,为相关疾病的治疗提供新的思路和途径。

Piezo1的发现和研究将为生命科学领域的进一步发展带来新的突破和机遇。

1.2 机械敏感性离子通道蛋白在细胞中的作用机械敏感性离子通道蛋白在细胞中起着重要的作用。

细胞内的Piezo1通道是一种重要的机械感受器,可以感知和传导细胞外的机械力信号。

当外部机械力作用在细胞膜上时,Piezo1通道会被激活,导致离子通道开放,进而引发钙离子通道通透性的改变,从而影响细胞内的钙离子浓度。

这一过程是细胞对于机械刺激做出快速反应的重要机制。

Piezo1通道不仅在传递机械信号中起到关键作用,还参与了多种细胞活动,如胞外基质的附着、细胞迁移、细胞增殖、细胞肥大等。

在神经元和心肌细胞中,Piezo1通道还参与到神经递质释放和心律的调节中。

Piezo1通道不仅在椎间盘髓核细胞中具有重要作用,还在许多其他细胞类型中发挥着重要功能。

深入研究Piezo1通道的作用机制,将有助于揭示细胞对于机械刺激的感知和响应机制,同时也有望为相关疾病的治疗提供新的思路和靶点。

2. 正文2.1 椎间盘髓核细胞中Piezo1的表达情况针对椎间盘髓核细胞中Piezo1的表达情况进行了研究。

教育类产品显性文本广告的内隐记忆效应

教育类产品显性文本广告的内隐记忆效应

心智与计算77心智与计算, Vol.3,No.2 (2009), 77-87文章编号:MC - 2009-12收稿日期:2009-03-23出版日期:2009-06-30© 2007 MC– 厦门大学信息与技术学院教育类产品显性文本广告的内隐记忆效应沈 汪 兵(南京师范大学教科院暨认知神经科学实验室,江苏南京 210097)wangbingshpsy@摘要:本研究选取安徽省某大学42名非心理学专业的大学生,采用了2(呈现方式:图片,文字)×2(产品价值:高价位,低价位)×3(测验类型:再认测验,知觉辨认测验,广告词汇决策测验)混合实验设计,探查了教育类产品显性广告的内隐记忆效应。

结果发现:①知觉辨认测验表现出内隐记忆效应。

②广告词汇决策测验并没有表现出清晰的内隐记忆效应。

关键词:教育类产品;显性广告;再认;内隐记忆;广告词汇决策中图分类号:B 84文献标识码:AThe Effects of Implicit Memory on Obvious Textual Advertisements of Educating ProductsSHEN Wang-bing(Lab of Cognitive Neuroscience and School of Education Science, Nanjing 210097, China)Abstract: 42 college students from non-psychology special field carried out the study on the implicit memory effects about educating product advertisement. The experiment adopt 2 (display way: photograph , characters) ×2 (products value: high price place,low price place)×3 (tests types: recognition test,perception identification test, advertisements lexical decision test) mixed design. The results showed that:①clear implicit memory effects through perception identification test, but,②no clear implicit memory effects show in advertisements lexical decision test.Key words: educating products; obvious advertisements; recognition; implicit memory; advertisement lexical decision1 问题提出广告是由确定的资助人运用大众媒介劝说或影响受众的一种付费方式的非人员的沟通[1]。

酒精中毒大鼠小脑损伤的病理改变

酒精中毒大鼠小脑损伤的病理改变

酒精中毒大鼠小脑损伤的病理改变赵丽1,关继奎1,陈嘉峰2摘要:目的 观察酒精中毒大鼠小脑损伤的病理改变。

方法 Wistar雄性大鼠以50%食用酒精,逐渐增量灌胃4周造出慢性酒精中毒模型。

通过光学显微镜及透射电子显微镜观察酒精中毒后大鼠小脑损伤的病理改变。

结果 酒精中毒组大鼠光学显微镜观察到小脑颗粒细胞及蒲肯野细胞(purkinje cell)均显著减少,细胞变性明显,尤以蒲肯野细胞为著。

电子显微镜观察到小脑毛细血管内皮细胞中细胞器明显减少。

细胞核形状不规则,核仁不明显、且形状不规则。

结论 酒精中毒后引起小脑细胞及其超微结构损伤,为其导致的运动及认知功能障碍提供了基础理论依据。

关键词:酒精中毒;小脑损伤;病理改变中图分类号:R595.6 文献标识码:APathological changes of cerebellar injury in rats with alcoholism ZHAO Li, GUAN Jikui, CHEN Jiafeng.(The First People's Hospital of Wuhu, Wuhu 241000, China)Abstract:Objective To observe the pathological changes of cerebellar injury in rats with alcoholism.Methods An animal model of chronic alcoholism was established in Wistar male rats by gavage of 50% edible alcohol at increasing doses for 4 weeks. The pathological changes of cerebellar injury in rats after alcoholism were observed using an optical mi⁃croscope and a transmission electron microscope.Results Optical microscopy in rats with alcoholism showed signifi⁃cantly reduced number of granule cells and Purkinje cells in the cerebellum, and significant cell degeneration, especially in Purkinje cells. Electron microscopy showed significantly reduced organelles, irregularly shaped nucleus, and unobvi⁃ous and irregularly shaped nucleolus in cerebellar capillary endothelial cells.Conclusion Alcoholism induces damages to the cerebellar cells and their ultrastructure, providing a basic theoretical basis for the resulting motor and cognitive dys⁃function.Key words:Alcoholism;Cerebellar injury;Pathological change由于食入性酒精饮品摄入导致酒精中毒(alco⁃holism)引发脑损伤的病例在我国明显增多。

复方聚乙二醇电解质散联合二甲硅油散对老年患者结肠镜检查前肠道准备效果的影响

复方聚乙二醇电解质散联合二甲硅油散对老年患者结肠镜检查前肠道准备效果的影响

【摘要】 目的 观察复方聚乙二醇电解质散联合二甲硅油散对老年患者结肠镜检查前肠道准备效果的影响。

方法 选择2015年8月至2018年8月于上海交通大学附属第六人民医院接受电子结肠镜检查的126例老年患者,使用随机数字表法将其分为观察组和对照组,每组各63例。

于检查前给予所有患者复方聚乙二醇电解质散,观察组患者加用二甲硅油散水溶液口服。

比较两组患者肠道准备不良反应、肠道清洁度、肠道内气泡量评分、肠镜检查时间、生理盐水冲洗量、病灶检出率。

结果 观察组患者肠道准备不良反应总发生率显著低于对照组(P <0.05),肠道内气泡量总评分和病灶检出率均显著高于对照组(均P <0.05),肠镜检查时间显著短于对照组(P <0.05),生理盐水冲洗量显著少于对照组(P <0.05)。

两组患者肠道清洁度总评分比较差异无统计学意义(P >0.05)。

结论 复方聚乙二醇电解质散联合二甲硅油散能够降低老年患者结肠镜检查前肠道准备不良反应发生率,减少肠道内气泡量,对于改善检查视野、提高病灶检出率均具有积极作用。

【关键词】 复方聚乙二醇电解质散;二甲硅油散;老年;结肠镜检查;肠道准备Effect of polyethylene glycol electrolytes powder combined with dimethicone powder on intestinal preparation before colono-scopy in elderly patientsGuo Yang, Zou Jing (Department of Digestive Endoscopy Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China)Correspondingauthor:ZouJing,E-mail:189****************【Abstract 】 Objective To observe the effect of polyethylene glycol electrolytes powder combined with dimethicone powder on intestinal preparation before colonoscopy in elderly patients. Method A total of 126 elderly patients scheduled to undergo electronic colonoscopy in Shanghai Jiaotong University Affiliated Sixth People's Hospital divided into observation group and control group by random number table method, with 63 patients in each group, they were given polyethylene glycol electrolytes powder before examination, while observation group patients were given dimethicone powder. The adverse reactions of intestinal preparation, intestinal cleanliness, intestinal bubble volume score, enteroscopy time, saline irrigation volume and lesion detection rate were compared between the two groups. Result The total incidence of adverse reactions due to intestinal preparation in observation group was significantly lower than that in control group (P <0.05), the total score of intestinal bubble volume and lesion detection rate were significantly higher than those in control group (all P <0.05), the duration of enteroscopy was significantly shorter than that in control group (P <0.05), the amount of normal saline washing was significantly less than that in control group (P <0.05). There was no significant difference in the total scores of intestinal cleanliness between the two groups (P >0.05). Conclusion Polyethylene glycol electrolytes powder combined with dimethicone powder can reduce the incidence of adverse reactions of intestinal preparation before colonoscopy in elderly patients, reduce the amount of intestinal bubbles, improve the visual field of examination and the detection rate of lesions.【Key words 】 Polyethylene glycol electrolytes powder; Dimethicone powder; Elderly ; Colonoscopy; Intestinal preparation复方聚乙二醇电解质散联合二甲硅油散对老年患者结肠镜检查前肠道准备效果的影响郭阳,邹静(上海交通大学附属第六人民医院 消化内镜中心,上海 200233)通信作者:邹静 E-mail :189****************结肠镜检查是下消化道疾病尤其是结直肠疾病的重要诊断手段,良好的肠道准备是保证病变观察效果的前提,理想的肠道准备应符合快速、安全、清洁效果好等原则,且应确保患者使用方便、容易接受、不良反应少[1]。

环糊精和离子液体 参考文献

环糊精和离子液体 参考文献

Journal of Chromatography A,1155(2007)134–141Evaluation of chiral ionic liquids as additives to cyclodextrinsfor enantiomeric separations by capillary electrophoresis Yannis Franc¸ois a,Anne Varenne a,Emilie Juillerat a,Didier Villemin b,Pierre Gareil a,∗a Laboratory of Electrochemistry and Analytical Chemistry,UMR CNRS7575,ENSCP,11rue Pierre et Marie Curie,75231Paris Cedex05,Franceb Laboratory of Molecular and Thio-organic Chemistry,UMR CNRS6507,ENSI Caen,6,Boulevard du Mar´e chal Juin,14050Caen Cedex,FranceAvailable online23December2006AbstractA great interest has been drawn these last years towards ionic liquids in analytical chemistry,especially for separation methods.Recent synthesis of chiral ILs opened the way of the evaluation of new potential selectors for enantiomeric separations.This work focused on the evaluation of two chiral ILs(ethyl-and phenylcholine of bis(trifluoromethylsulfonyl)imide)by CE.Particular selectivities are awaited by exploiting unique ion–ion or ion–dipole interactions and by tailoring the nature of the cation and the anion.To evaluate such phenomena,a study was carried out with anti-inflammatory drugs2-arylpropionic acids as model compounds.The results show that these chiral ILs did not present direct enantioselectivity with regard to these model analytes.The influence of chiral ILs in the electrolytes was then studied in the presence of classical chiral selectors(di-or trimethyl-␤-cyclodextrin).Although no general trend could be established,an increase in separation selectivity and resolution was observed in some cases,suggesting synergistic effects.The complementary determination of apparent inclusion constant values of these IL cations in the used cyclodextrins by affinity CE provided support to the understanding of the phenomena involved.©2006Elsevier B.V.All rights reserved.Keywords:Ionic liquids;Capillary electrophoresis;Chiral separations;Choline-based ionic liquids;Neutral cyclodextrins;Arylpropionic acids1.IntroductionThe high proportion of chiral compounds of biological or pharmacological interest has aroused a considerable need for the determination of the enantiomeric purities in the last20 years.Since the pioneering works by Zare and co-workers[1] and Fanali[2]and as testified by the very important amount of literature and a number of comprehensive reviews[3–11], capillary electrophoresis(CE)has proven to be an excellent alternative to classical chromatographic techniques in thisfield. The use in very small quantity and in free form of the chiral selector makes it possible to compare the effects of various selectors and afterwards perform routine analyses at lower cost.A great interest is being triggered by ionic liquids(IL)as alternatives for conventional molecular solvents used in organic synthesis and catalytic reactions[12].They supplement the fam-ily of“green solvents”including water and supercriticalfluids.∗Corresponding author.Tel.:+33155426371;fax:+33144276750.E-mail address:pierre-gareil@enscp.fr(P.Gareil).Among these,room temperature ionic liquids are defined as materials containing only ionic species and having a melting point lower than298K.They exhibit many interesting proper-ties such as negligible vapor pressure,low melting point,large liquid range,unique solvation ability and overall,the versa-tility of their physico-chemical properties makes them really attractive.They have been proposed as solvents for chemical reactions[13–15],multiphase bioprocess operations[16]and liquid–liquid separations[17,18],as electrolytes for batteries and fuel cells[19],stationary phases in gas chromatography [20–23]and mobile phase additives in liquid chromatography [24–26].During these last years,a great attention has been paid to the relevance of these new media for capillary electrophoresis(CE) [27–37]and many efforts have been directed toward the under-standing of the separation mechanisms involved in IL-containing background electrolytes(BGE).Concerning chiral separations, two applications only have been reported so far.Thefirst one was with achiral ILs[38],1-ethyl-and1-butyl-3-methylimidazolium cations,associated with BF4−or PF6−anions.The enantiose-lectivity for binaphtyl derivatives was produced by a polymeric surfactant,whereas the presence of the ILs only modified the0021-9673/$–see front matter©2006Elsevier B.V.All rights reserved. doi:10.1016/j.chroma.2006.12.076Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141135retention times and peak efficiency.Nevertheless,little was elucidated about the separation mechanism.Recent synthe-sis of chiral ILs[39,40]opened the way of the evaluation of new potential selectors for enantiomeric separations.Rizvi and Shamsi[41]realized thefirst chiral separation of several anionic compounds by micellar electrokinetic chromatography using two new synthetic chiral ionic liquids,undecenoxycarbonyl-l-pryrrolidinol bromide and undecenoxycarbonyl-l-leucinol bromide.This work was focused on the separation performances of two chiral ILs(ethyl-and phenylcholine of bis(trifluoromet-hylsulfonyl)imide)by CE.In a previous work,a nonaqueous capillary electrophoresis(NACE)study on the electrophoretic behavior of2-arylpropionic acids(profens),which were often selected as model chiral anionic compounds[42]in the pres-ence of an achiral imidazolium-based IL evidenced peculiar ion-pairing interactions between these analytes and the achi-ral IL[43].In the present work,the electrophoretic behavior of the same model analytes wasfirst studied in the presence of one of both chiral choline-based ILs in nonaqueous media. As these chiral ILs alone did not present any enantioselectivity with regard to these model analytes under the conditions tested, the influence of the chiral ILs was then studied in aqueous and hydro-organic electrolytes containing classical chiral cyclodex-trin selectors(di-or trimethyl-␤-cyclodextrin).Thefigures of merit(effective enantioselectivity and resolution)of the chiral separations of the six arylpropionic acids were systematically determined,depending on the nature and the concentration of the chiral IL and cyclodextrin,ionic strength and hydro-organic composition of the electrolyte,to investigate for possible syner-gistic effects between the two chiral selectors.In addition to this study,apparent inclusion constant values for the used chiral ILs cations and neutral cyclodextrin derivatives were determined by affinity CE to provide support to the understanding of phenom-ena involved.2.Experimental2.1.Chemicals and reagentsLithium bis(trifluoromethylsulfonyl)imide(LiNTf2)(≥99%) was a gift from Institut Franc¸ais du P´e trole(Solaize,France). (R)(−)2-Hydroxy-N,N,N-trimethyl-1-phenylethanaminium (PhChol NTf2)and(R)(−)1-hydroxy-N,N,N-trimethylbutan-2-aminium bis(trifluoromethylsulfonyl)imide(EtChol NTf2) were synthesized(see Section2.2)in Villemin’s group(Caen, France).Methanol(GC grade,99.9%purity)and sodium acetate were purchased from Prolabo(Fontenay-sous-Bois,France). Formamide(>99%)and hexadimethrin bromide(polybrene) were supplied by Aldrich(St.Louis,MO,USA).Glacial acetic acid(>99%),heptakis-(2,6-di-O-methyl)-␤-cyclodextrin (DM-␤-CD)(>90%)and heptakis-(2,3,6-tri-O-methyl)-␤-cyclodextrin(TM-␤-CD)(>90%)were obtained from Sigma (St.Louis,MO,USA).2-Arylpropionic acids(carprofen,supro-fen,naproxen,ketoprofen,indoprofen and ibuprofen)were donated by Rhone-Poulenc-Rorer(Vitry-sur-Seine,France).2.2.Synthesis of chiral ionic liquidsWasserscheid et al.have been thefirst to propose the use of choline derivatives as chiral ionic liquid[44].These chiral ammonium ions can be easily obtained from pure enantiomeric aminoalcohol coming from the“chiral pool”as starting product.The syntheses of the chiral ionic liquids were achieved in two steps:(i)permethylation of amine group into ammonium group and(ii)the metathesis exchange of anion.In a typical procedure of permethylation,the R(−)2-ami-nobutan-1-ol(0.44g,5mmol)[respectively,R(−)or S(+) phenylglycin-1-ol(0.5g, 3.6mmol)]and the iodomethane (2.13g,15mmol)were refluxed in diethyl ether(30ml)under argon atmosphere and were protected from the light.After6 days’reflux,the solvent was removed by distillation under reduced pressure.The reactional mixture was solubilized in water(6mL)and extracted three times(3×5mL)with CH2Cl2. The aqueous phase was evapored under vacuum.For the anion exchange step,the ammonium iodide (25mmol)was dissolved in water(35mL)and an aqueous saturated solution of lithium bis(trifluoromethylsulfonyl)imide (7.2g,25mmol)was added.The liquid obtained was centrifuged and the ionic liquid and water were separated.The ionic liquid was washed with water(3×10mL)andfinally vacuum-dried.2.3.Characterization of chiral ionic liquidsThe structures of the chiral ionic liquids were characterized by1H,13C and19F NMR spectroscopy.2.3.1.(R)(−)1-Hydroxy-N,N,N-trimethylbutan-2-aminiumbis(trifluoromethylsulfonyl)imide(EtChol NTf2)Colorless oil;1H NMR(400MHz,MeOD)CD3CN/TMS δ(ppm):0.97(t,3J HH=7Hz,3H,C H3-CH2),1.93(quint, 3J HH=2Hz,2H,CH3-C H2-CH),3.24(s,10H,CH3-CH2-C H-(N-(C H3)3)-CH2-OH),3.73(dq,3J HH=14Hz,4J HH=4Hz,1H, CH3-CH2-CH-(N-(CH3)3)-C H2-OH), 3.95(d,3J HH=14Hz, 1H,CH3-CH2-CH-(N-(CH3)3)-C H2-OH),4.68(s,1H,CH3-CH2-CH-(N-(CH3)3)-CH2-O H);13C NMR(62.9MHz,MeOD) CD3CN/TMSδ(ppm):11.93(s,1C,C H3),19.38(s,1C, CH3-C H2-CH),53.55(s,3C,N-(C H3)3),58.36(s,1C,CH-C H2-OH),78.77(s,1C,CH3-CH2-C H-(N-(CH3)3)-CH2-OH), 121.60(quad,1J CF=1273Hz,2C,N-(SO2-C F3)2);19F NMR (235.3MHz,MeOD),CD3CN/CCl3Fδ(ppm):−81.08(s,6F, N-(SO2-C F3)2).2.3.2.(R)(−)2-Hydroxy-N,N,N-trimethyl-1-phenylethanaminiumbis(trifluoromethylsulfonyl)imide(PhChol NTf2)Colorless oil;1H NMR(400MHz,MeOD)CD3CN/TMSδ(ppm):2.79(s,1H,O H),3.19(s,9H,Ph-CH-(N-(C H3)3)-CH2-OH),4.22(d,3J HH=13Hz,1H,Ph-CH-(N-(CH3)3)-C H2-OH), 4.45(dd,3J HH=13Hz,3J HH=7Hz,1H,Ph-C H-(N-(CH3)3)-CH2-OH), 4.61(dd,3J HH=7Hz,3J HH=4Hz,Ph-CH-(N-(CH3)3)-C H2-OH),7.49–7.56(m,3C,1H para and2H ortho), 7.62–7.65(m,2H,2H meta);13C NMR(62.9MHz,MeOD) CD3CN/TMSδ(ppm):53.90(s,3C,Ph-CH-(N-(C H3)3)-CH2-136Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141OH),62.04(s,1C,Ph-CH-(N-(CH3)3)-C H2-OH),80.35(s,1C, Ph-C H-(N-(CH3)3)-CH2-OH),121.64(q,1J CF=1273Hz,2C, N-(SO2-C F3)2),130.88(s,3C,1C para,2C meta),132.35(s,2C, 2C ortho),132.91(s,1C,C);19F NMR(235.3MHz,MeOD), CD3CN/CCl3Fδ(ppm):−81.06(s,6F,N-(SO2-C F3)2.2.4.Capillary electrophoresis and proceduresAll experiments were performed with a HP3D CE(Agilent Technologies,Waldbronn,Germany)capillary electrophoresis system.This apparatus automatically realized all the steps of the measurement protocols,including capillary conditioning,sam-ple introduction,voltage application and diode array detection, and allows to run unattended method sequences.A CE Chemsta-tion(Agilent Technologies,Waldbronn,Germany)was used for instrument control,data acquisition and data handling.Polymi-cro bare fused-silica capillaries of50␮m i.d.were obtained from Photonlines(Marly-le-Roi,France).They were used in 35cm total length(26.5cm to detection).Background elec-trolytes(BGE)were made up with acetic acid/sodium acetate at two different concentrations(5and60mM)to a pH of5.0.The methanol–water mixtures were prepared by volumic mixing in0, 10and25%(v/v)methanol proportions.Analytes were detected by UV absorbance at200,230,240,254and300nm,according to cases.Formamide(0.001%,v/v,in the BGE)was used as neu-tral marker to determine the electroosmotic mobility.The sample solutions were prepared by dissolving each analyte at a concen-tration of ca.0.5mM in methanol.Samples were introduced hydrodynamically by successively applying a30mbar pressure for3s(approximately,4nL)to the neutral marker,BGE and sample vials.New capillaries were conditioned by successive flushes with1and0.1M NaOH and then with water under a pressure of935mbar for10min each.The temperature in the capillary cartridge was set at25◦C.The acquisition rate was 10points/s.Capillaries were rinsed with water and dried by air when not in use.2.5.Capillary coatingCapillaries were dynamically coated with polybrene as described in the literature[45–47].Briefly,a new fused-silica capillary wasfirstflushed with1M NaOH for20min and rinsed with water.Next,the capillary wasflushed with a poly-brene solution at3g/100mL in water for15min.Finally, the capillary was rinsed with water for5min and condi-tioned with BGE for5min,all these steps being performed under a pressure of935mbar.Recoating of the capillary with the cationic polymer was accomplished by using a similar method.plexation constant determinationThe apparent formation constant K for the inclusion com-plexes between chiral PhChol cations and neutral CDs of interest,was determined by mobility shift affinity capillary electrophoresis(ACE)according to a method similar to that developed for a series of imidazolium based ILs cations[48].Briefly,PhChol NTf2was dissolved at a concentration of 2mM and electrophoresed in BGEs(ionic strength:5mM) containing increasing concentrations of DM-␤-CD or TM-␤-CD(0–100mM).Each injection with a given electrolyte was repeated twice.Effective mobilities(μep)of PhChol cation were calculated from migration time measurement at peak apex.The obtained values were corrected to compensate for change in electrolyte viscosity due to increasing CD concentrations.The corrected valuesμep,coor werefitted to non-linear and linear forms(linearized isotherm,x-reciprocal,y-reciprocal,double reciprocal)of the1:1stoichiometry complexation isotherm [49,50]to determine the K-value.2.7.Calculation of the performance parameters for thechiral separationsThe effective electrophoretic selectivity[51],αeff,was cal-culated according to Eq.(1):αeff=μep1μep2(1) whereμep1,μep2are the effective mobilities for enantiomers1 and2.The chiral resolution,R s,between two enantiomers,1and2, was calculated according to:R s=1.177t2−t1δ1+δ2(2) where t1,t2are the migration times andδ1,δ2are the temporal peak widths at half height.3.Results and discussionIn a previous work,interactions between an achiral IL(1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and a series of2-arylpropionic acids were studied in nonaqueous capillary electrophoresis(NACE)[43].The results indicated a quadratic effect of the concentration of the achiral IL in the BGE on profen electrophoretic mobilities due to antagonistic interac-tions between anionic analytes and imidazolium cations either adsorbed to the capillary wall or free in the BGE electrolyte.With a view to evaluate a new family of chiral selectors,the same con-ditions have been investigated with two chiral choline-based ILs (ethyl-and phenylcholine bis(trifluoromethylsulfonyl)imide). No enantioselectivity has been shown in these conditions for this family of compounds.This work was then directed to the study of the association of a chiral IL to the best chiral selectors,reported previously for the enantiorecognition of profens,DM-␤-CD and TM-␤-CD[52,53],to search for possible synergistic effects. The use of CDs nevertheless is poorly compatible with that of nonaqueous BGEs,to preserve adequate CD solubilization and partial formation of inclusion complexes.This study was there-fore realized in water and90:10and75:25(v/v)water–MeOH mixtures.The choice of MeOH as molecular solvent in hydro-organic mixtures was based on its favorable anion-solvating properties and ion-pairing and its ability to dissolve the tested CD.Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141137Fig.1.Schematic description of the interaction system between anionic profen A−,chiral IL+cation,free in the BGE or adsorbed onto the capillary wall,and ␤-CD derivatives.The aim of this work was then to determine if a synergistic effect may exist between the chiral IL cation and the CD,and possibly to elucidate the interaction system bringing into play the three different entities:analyte,chiral IL and␤-CD derivative (Fig.1).The main parameters expected to impact this complex system were the nature and concentration of the IL,the nature and concentration of the CD,the concentration of the buffer and the hydro-organic composition of the BGE.The influence of adding LiNTf2to the separation electrolyte in place of the chiral ILs was tested under the same conditions to discriminate specific chiral cation effect from a mere salt effect.Also,the study was conducted either with bare fused-silica capillaries or polybrene-coated capillaries,to assess the influence of IL cation adsorbed to the capillary wall.Owing to the number of parameters to be studied,only three model profens(naproxen,carprofen and suprofen,Fig.2)were investigated for the part of the experiments realized with bare silica capillaries.For the experiments performed with polybrene-coated capillaries,which were only realized in aqueous media, the following six profens were selected:naproxen,carpro-fen,suprofen,ketoprofen,indoprofen and ibuprofen(Fig.2). The retained parameters for discussion were effective elec-trophoretic chiral selectivity,αeff(thermodynamic parameter, independent of electroosmoticflow variation)and chiral resolu-tion,R s(global parameter).It is to note that no enantioselectivity was obtained for naproxen under all conditions tested and for suprofen under all DM-␤-CD conditions.The results obtained for carprofen and suprofen with bare silica capillaries are given in Table1,while those obtained for thefive profens showing enantioselectivity with polybrene-coated capillaries are pre-sented in Table2.In a number of cases,an increase in resolution R s and a decrease in selectivityαeff were observed for the experiments with chiral ILs,as compared to the experiments without salt,but no general trend on the evolution of R s andαeff can be traced.3.1.Influence of electroosmoticflow and total salt concentration on R sThe two chiral choline IL derivatives,EtChol and PhChol, were used in this work at a concentration of10mM and at two buffer salt concentrations(5and60mM),in keeping with the preliminary study realized with achiral imidazolium-based IL cation by NACE[43].Indeed,the chiral IL addition in solution caused a change of system properties such as a possible varia-tion of the electrolyte viscosity,a marked increase in the total salt concentration,especially when the buffer salt concentration is5mM,and a modification of the capillary wall.These three parameters could mask a specific effect of the chiral IL on the enantiomeric separation.The viscosity of each solution was measured using CE instru-mentation by the method described in the literature[54].The results showed no difference upon adding an IL or LiNTf2salt to a solution already containing a CD.So,there was no viscosity effect due to the IL addition on enantiomeric separation.As the addition of the chiral IL was changing the total salt con-centration of the solution,the same experiments were realized with LiNTf2salt in place of chiral IL to discriminate between a mere salt effect and a specific effect due to the chiral nature of IL cations.In effect,in a lot of cases,Table1shows an increase in R s upon chiral IL addition,but also upon LiNTf2addition.Salt addition caused a decrease in electroosmotic mobility(μeo)and under these counter-electroosmoticflow condition an increase in R s values[55].As expected,a more importantμeo variation and hence R s increase was observed at the lower starting level of buffer salt concentration(5mM),for which the relative variation in concentration was higher(Fig.3).It was also noted that,with bare silica capillaries,in the major-ity of cases the addition of a chiral IL caused a more important decrease inμeo than LiNTf2did.This decrease was likely due to the adsorption of the IL cation to the capillary wall,as already mentioned by Stalcup and co-workers[27,28].To further dis-criminate between IL cation wall adsorption and salt effect,the same experiments were resumed with polybrene-coated capil-laries which are anticipated to eliminate the IL cation interaction with capillary wall.Table2shows that in a majority of cases, an increase in R s for the experiments with chiral IL and LiNTf2 was still observed as compared to CD-alone experiments.In all these cases,a decrease inμeo was also observed,due to the increase in salt concentration.These experiments with positively charged capillaries highlighted the significance of salt effects on the chiral resolution of thefive model profens.3.2.Influence of chiral IL onαeffFinally,effective electrophoretic selectivity,αeff,designed to be independent of electroosmotic mobility,was the only param-eter able to indicate a possible synergistic effect between the two selectors.In some cases,when the initial buffer salt con-centration was5mM,an increase inαeff was observed upon adding10mM LiNTf2salt.This behavior can only be under-stood in considering that the apparent inclusion constants for profens into the CDs,which controlαeff,can be depending on electrolyte ionic strength.Apart from this,an increase inαeff, with a difference of more than3%,in the presence of a chiral IL additive as compared to the experiments with the same con-centration of LiNTf2was noted infive cases with bare silica capillaries(Table1)and in four cases with the polybrene-coated138Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141Table1Electroosmotic mobility(μeo),enantiomer electrophoretic mobilities(μep1andμep2),chiral effective selectivity(αeff)and resolution(R s)for carprofen and suprofen obtained under various aqueous and hydroorganic BGE conditions in bare silica capillaries50␮m i.d.×35cm(effective length,26.5cm)capillaries.Applied voltage:25kV.Temperature:25◦C.UV absorbance at230nm.See Fig.3for electrolyte additive concentrations.The ovoid circle highlight cases of synergistic effects.Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141139Fig.2.Structures of(A)the studied arylpropionic acids and(B)ionic liquids ethylcholine and phenylcholine bis(trifluoromethylsulfonyl)imide(EtCholNTf2, PhCholNTf2).p K a values at26–27◦C from Ref.[53].capillaries(Table2).Such a relative difference was consid-ered as the limit of significance based on a mean3%error for experimental electrophoretic values of chiral compounds (Tables1and2).Among these nine cases,eight were obtained with5mM buffer salt concentration and allfive cases identi-fied in the experiments reported in Table1were obtained with aqueous and hydroorganic media.It is to note that the exper-iments with polybrene-coated capillaries were performed with both5mM(results shown in Table2)and60mM(results not shown)buffer salt concentrations,but no case of synergy was observed at the higher concentration.In spite of the lack of general trend,this behavior suggests that the synergistic effect observed between the two selectors may be due to specific ion-pairing interaction between the analyte and the chiral IL cation.The presence of the phenyl group in the chiral choline cation did not appear to be of importance in the observation of apparent synergistic effects,whereas most cases were observed with TM-␤-CD.For a better understanding of the interactions brought into play and to assess a possible competition between the analyte and the IL cation for inclusion complex forma-tion with the CD,a study on possible inclusion complexation between chiral IL cation and␤-CD derivatives was under-taken.Concerning EtChol NTf2,a recent study realized by our group on inclusion constant determination between quite a large number of neutral CDs and alkyl(methyl)methylimidazolium140Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141Table2Electroosmotic mobility(μeo),enantiomer electrophoretic mobilities(μep1andμep2),chiral effective selectivity(αeff)and resolution(R s)obtained for model profens under various aqueous BGE conditions with5mM buffer salt concentration in polybrene-coatedcapillariesOther conditions:see Table1.cations[48],revealed that the inclusion of IL cation almostexclusively depends on the alkyl chain length.For1-ethyl-3-methylimidazolium cation,no inclusion was measured with any tested CD.On analogy,it seems reasonable to conclude that there is no inclusion between EtChol cation and the two␤-CD derivatives of the present study.The previously used mobility shift affinity CE method was adapted to determine the apparent inclusion constant for PhChol cation and DM-and TM-␤-CD in a acetic acid/sodium acetate buffer at pH5.0(ionic strength, 30mM).The results obtained in this work showed that there was no inclusion of PhChol cation into TM-␤-CD cavity but that this cation formed a complex with DM-␤-CD having an apparent constant of144±3at25◦C.This difference in behav-ior could be explained by the more important steric hindrance of TM-␤-CD as compared to DM-␤-CD.Eventually,the study of inclusion phenomena between chiral IL cations and used CDs showed that there was an influence of the CD nature on the competition between the analyte and the IL cation with the CD.Nevertheless,the two thirds of apparent synergistic cases were observed with TM-␤-CD with respect to DM-␤-CD for EtChol as well as PhChol ILs,which does not allow to further clarify which factor is the mostinfluent.Fig.3.Enantioseparation of carprofen in the presence of TM-␤-CD and chiral ILs.Bare fused-silica capillary,50␮m i.d.×35cm(effective length,26.5cm). Electrolyte:2.63mM acetic acid,5.0mM sodium acetate buffer,pH5.0con-taining(a)30mM TM-␤-CD,(b)30mM TM-␤-CD+10mM EtCholNTf2, (c)30mM TM-␤-CD+10mM PhCholNTf2,(d)30mM TM-␤-CD+10mM LiNTf2in(90:10,v/v)H2O–MeOH mixture.Applied voltage:25kV.Tempera-ture:25◦C.UV absorbance at230nm.Hydrodynamic injection(30mbar,3s). EOF:electroosmoticflow.Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–1411414.ConclusionThis work focused on the evaluation of two chiral ILs(ethyl-and phenylcholine of bis(trifluoromethylsulfonyl)imide)by CE. No direct enantioselectivity was observed for these two chi-ral IL cations with respect to a series of arylpropionic acids, selected as model compounds,in various nonaqueous BGE con-ditions.BGEs containing both a chiral IL cation and a classical chiral selector(di-or trimethyl-␤-cyclodextrin)in water and water–MeOH mixtures were subsequently investigated to look for a compromise between the selective formation of inclusion complexes,favored in aqueous electrolyte,and of ion-pairs, favored in nonaqueous media.In most cases,an increase in res-olution was observed upon adding one of the chiral IL,but this variation was most often due to a decrease in electroosmoticflow, resulting from the increase in salt concentration and a possible wall adsorption.In nine cases,however,simultaneous increase inαeff and R s was observed as compared to a simple salt effect, which suggests a synergistic effect of the two selectors.Appar-ent inclusion constant for EtChol and PhChol cations and the used cyclodextrins were evaluated,demonstrating an influence of the CD nature on the competition between the analyte and the IL cation with respect to CD complexation.Nevertheless,the presence of the phenyl group in the IL cation appeared to be of less importance in promoting these synergistic effects than that of methanol and of a low salt concentration in the BGE,which suggests that specific ion-pairing interactions may be involved. AcknowledgementsThe authors thank Julie du Mazaubrun and Estelle Dav-esne for their collaboration in this work,Jean-Marc Busnel and Thomas Le Saux for very fruitful discussions.References[1]E.Gassmann,J.E.Kuo,R.W.Zare,Science230(1985)813.[2]S.Fanali,J.Chromatogr.494(1989)441.[3]B.Chankvetadze,Capillary Electrophoresis in Chiral Separation,Wileyand Sons,Chichester,1997.[4]M.I.Jimidar,W.Van Ael,P.Van Nyen,M.Peeters,D.Redlich,M.DeSmet,Electrophoresis25(2004)2772.[5]B.Chankvetadze,G.Blaschke,J.Chromatogr.A906(2001)309.[6]H.Nishi,S.Terabe,J.Chromatogr.A875(2000)1.[7]G.Vigh,A.D.Sokolowski,Electrophoresis18(1997)2305.[8]G.G¨u bitz,M.G.Schmid,Electrophoresis25(2004)3981.[9]M.L¨a mmerhofer,J.Chromatogr.A1068(2005)3.[10]M.L¨a mmerhofer,J.Chromatogr.A1068(2005)31.[11]A.Van Eeckhaut,Y.Michotte,Electrophoresis27(2006)2880.[12]P.Wasserscheidt,T.Weldon,Ionic Liquids in Synthesis,Wiley-VCH,NewYork,2003.[13]J.Dupont,R.F.de Souza,P.A.Z.Suarez,Chem.Rev.102(2002)3667.[14]P.Wasserscheidt,W.Keim,Angew.Chem.Int.Ed.39(2000)3772.[15]M.J.Earle,K.R.Seddon,Pure Appl.Chem.72(2000)1391.[16]S.G.Cull,J.D.Holbrey,V.Vargas-Mora,K.R.Seddon,G.J.Lye,Biotech-nol.Bioeng.69(2000)227.[17]J.G.Huddleston,H.D.Willauer,R.P.Swatloski,A.E.Visser,R.D.Rogers,m.(1998)1765.[18]A.G.Fadeev,M.M.Meagher,mun.(2001)295.[19]A.E.Visser,R.P.Swatloski,R.D.Rogers,Green Chem.2(2000)1.[20]F.Pachole,H.T.Butler,C.F.Poole,Anal.Chem.54(1982)1938.[21]D.W.Armstrong,J.L.Andersen,J.Ding,T.Welton,J.Am.Chem.Soc.124(2002)14247.[22]A.Berthod,L.He,D.W.Armstrong,Chromatographia53(2001)63.[23]A.Heintz,D.W.Kulikov,S.P.Verevkin,J.Chem.Eng.Data47(2002)894.[24]M.J.Ruiz-Angel,S.Carda-Broch,A.Berthod,J.Chromatogr.A1119(2006)202.[25]M.P.Marszall,T.Baczek,R.Kaliszan,J.Sep.Sci.29(2006)1138.[26]X.Xiao,L.Zhao,X.Liu,S.Jiang,Anal.Chim.Acta519(2004)207.[27]E.G.Yanes,S.R.Gratz,A.M.Stalcup,Analyst125(2000)1919.[28]E.G.Yanes,S.R.Gratz,M.J.Baldwin,S.E.Robinson,A.M.Stalcup,Anal.Chem.73(2001)3838.[29]M.Vaher,M.Koel,M.Kaljurand,Chromatographia53(2001)S-302.[30]M.Vaher,M.Koel,M.Kaljurand,Electrophoresis23(2002)426.[31]M.Vaher,M.Koel,M.Kaljurand,J.Chromatogr.A979(2002)27.[32]R.Kuldvee,M.Vaher,M.Koel,M.Kaljurand,Electrophoresis24(2003)1627.[33]M.Vaher,M.Koel,J.Chromatogr.A990(2003)225.[34]K.Tian,S.Qi,Y.Cheng,X.Chen,Z.Hu,J.Chromatogr.A1078(2005)181.[35]S.Qi,Y.Li,Y.Deng,Y.Cheng,X.Chen,Z.Hu,J.Chromatogr.A1109(2006)300.[36]M.P.Marszall,M.J.Markuszewski,R.Kaliszan,J.Pharm.Biomed.Anal.41(2006)329.[37]M.E.Yue,Y.P.Shi,J.Sep.Sci.29(2006)272.[38]S.M.Mwongela,A.Numan,N.L.Gill,R.A.Agbaria,I.M.Warner,Anal.Chem.75(2003)6089.[39]J.Ding,D.W.Armstrong,Chirality17(2005)281.[40]C.Baudequin,D.Br´e geon,J.Levillain,F.Guillen,J.-C.Plaquenvent,A.-C.Gaumont,Tetrahedron:Asymm.16(2005)3921.[41]S.A.A.Rizvi,S.A.Shamsi,Anal.Chem.78(2006)7061.[42]B.K.Patel,M.Hanna-Brown,M.R.Hadley,A.J.Hutt,Electrophoresis25(2004)2625.[43]Y.Francois,A.Varenne,E.Juillerat,A.-C.Servais,P.Chiap,P.Gareil,J.Chromatogr.A1138(2007)268.[44]P.Wasserscheid,A.Bosman,C.Bolm,mun.(2002)200.[45]Y.J.Yao,S.F.Y.Li,J.Chromatogr.A680(1994)431.[46]E.Cordova,J.Gao,G.M.Whitesides,Anal.Chem.69(1997)1337.[47]A.Macia,F.Borrull,M.Calull,C.Aguilar,Electrophoresis25(2004)3441.[48]Y.Francois,A.Varenne,J.Sirieix,P.Gareil,J.Sep.Sci.,in press.[49]K.A.Connors,Binding Constants.The Measurements of Molecular Com-plex Stability,John Wiley&Sons,New York,1987.[50]K.L.Rundlett,D.W.Armstrong,J.Chromatogr.A721(1996)173.[51]F.Leli`e vre,P.Gareil,A.Jardy,Anal.Chem.69(1997)385.[52]S.Fanali,Z.Aturki,J.Chromatogr.A694(1995)297.[53]F.Leli`e vre,P.Gareil,J.Chromatogr.A735(1996)311.[54]Y.Francois,K.Zhang,A.Varenne,P.Gareil,Anal.Chim.Acta562(2006)164.[55]C.Schwer,E.Kenndler,Chromatographia33(1992)331.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :0801.0668v 1 [c o n d -m a t .s o f t ] 4 J a n 2008Ab initio investigation of intermolecular interactions in solidbenzeneO.Bludsk´y ∗and M.RubeˇsInstitute of Organic Chemistry and Biochemistry,Academy of Sciences of the Czech Republicand Center for Biomolecules and Complex Molecular Systems,Flemingovo n´a m.2,16610Prague 6,Czech Republic P.Sold´a n †‡Charles University in Prague,Faculty of Mathematics and Physics,Department of Chemical Physics and Optics,Ke Karlovu 3,12116Prague 2,Czech Republic (Dated:February 2,2008)Abstract A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed.The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy.The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods.The experimental crystal lattice constants of the solid benzene are reproduced,and the value of 480meV/molecule is calculated for its cohesive energy.PACS numbers:61.50.Lt,61.66.-f Keywords:molecular solids,ab initio,intermolecular forces,solid benzeneI.INTRODUCTIONIn the last50years,weakly bound solids,including rare-gas solids and organic molecular solids,have been the subject of considerable research interest.1,2,3Many experimental mea-surements and theoretical predictions of the crystal structures,lattice constants,cohesive energies,lattice dynamics and phase behavior of weakly bound solids have been published. While experiments can be performed directly on the weakly bound solids,theoretical predic-tions are often derived from models that build upon pairwise additive interaction energies and include the most important refinements such as non-additive contributions and zero-point energy.Such information is obtained from calculations on the corresponding weakly bound dimers,trimers or tetramers.Therefore,a good knowledge of the intermolecular interactions is essential for the reliable theoretical determination of the properties of the weakly bound solids.Recently,a series of the state-of-the-art theoretical studies on rare-gas solids has been performed using the high-level ab initio coupled-cluster method.4,5,6,7In these studies,the pairwise additive contributions to the interaction energy were represented by empirical po-tentials,the zero-point-energy(ZPE)corrections were calculated within the harmonic ap-proximation from the pairwise additive contributions,and non-additive contributions were determined using coupled-cluster calculations with single and double excitations and a per-turbative treatment of the triple excitations(CCSD(T)).8It was revealed that theoretical predictions of the structural parameters at this level of theory agree with experiment,well within the experimental error bars.It would be ideal if it were possible to apply the same treatment to weakly bound molec-ular solids.However,empirical potentials are not always available.Moreover,when the cor-responding molecule is relatively large,the high level ab initio methods,such as CCSD(T), are not always affordable.That is why density-functional-theory(DFT)calculations are often performed to determine lattice constants and cohesive energies.On the other hand, predicting the structural parameters of weakly bound molecular crystals using merely the DFT methodology is not straightforward due to the inability of the DFT to account for the dispersion interactions.In this paper,we present a combined approach to the weakly bound molecular crystals in which the pairwise additive contribution to the interaction energy is calculated at the2CCSD(T)level and the ZPE correction and non-additive contributions are treated purely at the DFT level.We illustrate our approach by calculating the cohesive energy and crystal lattice parameters of solid benzene,the simplest real crystalline system,in which interactions between aromatic molecules can be studied.In a very recent study on the solid-benzene vi-brational dynamics,9the Perdew-Burke-Ernzerhof(PBE)exchange-correlation functional10 performed extremely well,and its results were in an excellent agreement with the inelastic neutron-scattering spectroscopy data.For precisely this reason,we have selected the PBE functional as a basic DFT tool for our study.The methodology of our approach is described in Section II.In Section III,the results obtained for the solid benzene are discussed,followed by conclusions in Section IV.II.METHODOLOGYIn general,the interaction energy of a molecular crystal can be expressed asE(a)=E(2)(a)+ n≥3E(n)(a)+∆E ZPE(a),(1) where the3x3matrix a represents lattice parameters,E(2)is a pairwise additive(two-body) contribution, n≥3E(n)represents the sum of many-body non-additive terms,and∆E ZPEis a zero-point-energy correction.It has been shown that the periodic DFT methods can accurately describe the crystal structure(mutual orientation of molecules)and spectra of molecular solids.On the other hand,the DFT with local density functionals badly fails for binding,and therefore a higher level of theory has to be used for the calculation of cohesive energies and equilibrium lattice constants.Our computational methodology consists of the following steps:(i)afixed-volume plane-wave DFT geometry optimization for the given lattice parameters a,(ii)a calculation of the two-body term using a coupled-cluster method, and(iii)an estimate of the many-body contributions and a calculation of the ZPE correction at the periodic DFT level.The pairwise additive contribution E(2)represents by far the largest contribution to the total interaction energy,which is the reason why this term was evaluated at the highest level of theory feasible for solid benzene.3A.Plane-wave DFT calculationThefixed-volume structural optimizations for the solid benzene were performed with the lattice constants obtained from the one-parameter scaling of the experimentally determined unit cell(Pbca orthorhombic cell with a=7.355˚A,b=9.371˚A,and c=6.699˚A).13The calculations were carried out using the periodic plane-wave DFT with the Perdew-Burke-Ernzerhof(PBE)exchange-correlation functional.10The cut-offenergy of800eV and hard potentials for carbon and hydrogen atoms(ENMAX=700eV)were employed.The Kohn-Sham equations were solved using a plane-wave basis set by the projector-augmented wave (PAW)method of Bl¨o chl11as adopted by Kresse and Joubert.12The Brillouin-zone sampling was carefully checked for convergence with the number of k points.The Vienna Ab initio Simulation Package(VASP)14was used for all the plane-wave PBE calculations.B.Calculations of the E(2)termThe CCSD(T)calculations of the interacting benzene pairs in a crystal(for intermolecular distances of less than10˚A)were carried out with the augmented correlation-consistent valence-double-ζbasis set with polarization functions15(AVDZ)using the MOLPRO2002.6 program suite.16The complete basis set(CBS)extrapolation was performed using a simple correlation-energy dependence on the basis-set cardinal number X(E X=E CBS+AX−3).17 The density-fitting spin-component-scaled MP2(SCS-MP2)method18was employed for the correlation energy extrapolation(using the AVTZ and AVQZ basis sets).The Hartree-Fock energies were calculated using the AV5Z basis on the carbon atoms and the V5Z basis on the hydrogen atoms(the AV5Z∗basis set).The CCSD(T)/CBS estimate E CC CBS for the benzene dimer was evaluated according to the formulaE CC CBS =E CC AVDZ−E MP2AVDZ+E MP2−HFCBS+E HF AV5Z∗.(2)All the calculated interaction energies were corrected for the basis set superposition error (BSSE)using the counterpoise correction method of Boys and Bernardi.19The E(2)calcula-tions were performed using the benzene geometry of Gauss and Stanton20(r CC=1.3915˚A, r CH=1.0800˚A).4FIG.1:Asymptotic part of the intermolecular benzene-benzene potential calculated for the sand-wich and T-shaped structures.C.Asymptotic quadrupole-quadrupole and dispersion corrections to E(2)An asymptotic intermolecular benzene-benzene potential was derived from the coupled-cluster data for the sandwich(D6h)and T-shaped(C2v)structures of the benzene dimer. The following functional form of the asymptotic behavior was assumedE asympt=ωQ2zzR6+C8D.Plane-wave DFT calculation of many-body and ZPE correctionsThe sum of many-body non-additive terms n≥3E(n)was approximated as the difference between the total crystal energy(without ZPE)and the pairwise additive contribution,both calculated at the the PBE/PW-800eV level.A simple cubic cell with a lattice parameter of20˚A was employed for the benzene-pair plane-wave calculations.The calculated benzene-pair interaction energies were in excellent agreement with the counterpoise corrected benzene-dimer interaction energies obtained from the PBE/AVQZ calculations.The pairwise additive contributions for the intermolecular distances larger than10˚A were calculated using Eq.(3) with Q zz=−4.85(3)a.u.and C6=−3.87(3)102a.u.(with C8set to zero)obtained by fitting the corresponding PBE/AVQZ data.The ZPE correction∆E ZPE was evaluated using zone-centered(Γ-point)harmonic fre-quencies calculated at the PBE/PW-800eV level.III.RESULTS AND DISCUSSIONIn Table I,the individual contributions to the cohesive energy of solid benzene are pre-sented,including four approximation levels of the pairwise additive contribution.By com-paring thefirst two rows,it is evident that the basis-set dependence has to be considered very carefully.Our CCSD(T)/CBS estimates can be directly compared with the latest theoret-ical benchmarks for the benzene dimer.For example,our binding energy for the T-shaped (C2v)benzene-dimer structure overestimates the best theoretical value,calculated at the QCISD(T)/CBS level,22by0.6%.The same error has to be expected for the two-body con-tribution in Table I,and our value is thus likely to be overestimated by4meV/molecule.It arises from Table I that when taking into account only the nearest neighbors,the two-body contribution is underestimated by12%even at the CBS limit.The inclusion of the pairs up to10˚A explicitly(Eq.2))and the long-range pairs asymptotically(Eq.3))was found to be necessary.The pairwise additive contribution to the cohesive energy is lowered by the many-body and ZPE-correction contributions thus leading to our best estimates of480meV/molecule (C6H6)and486meV/molecule(C6D6)of the solid-benzene cohesive energy.The calculated cohesive energy compares well with the experimental values of the heat of sublimation of6TABLE I:Two-body,many-body,and ZPE contributions to the total cohesive energy of solid benzene(in meV/molecule).model level E cohTABLE II:Two-body,many-body,and ZPE contributions to the theory/experiment ratio for the fcc crystal lattice constant of rare-gas solids(derived from Ref.[5])and deuterated solid benzene.Ne Ar Kr Xe C6D6Czech Republic.∗Electronic address:ota.bludsky@uochb.cas.cz‡Electronic address:pavel.soldan@mff.cuni.cz1G.L.Pollack,Rev.Mod.Phys.36,748(1964).2V.A.Apkarian and N.Schwentner,Chem.Rev.99,1481(1999).3M.Schwoerer and H.C.Wolf,Organic Molecular Solids(Wiley,Berlin,2006).4K.Rosciszewski,B.Paulus,P.Fulde,and H.Stoll,Phys.Rev.B60,7905(1999).5K.Rosciszewski,B.Paulus,P.Fulde,and H.Stoll,Phys.Rev.B62,5482(2000).6K.Rosciszewski and B.Paulus,Phys.Rev.B66,092102(2002).7P.Schwerdtfeger,N.Gaston,R.Krawczyk,R.Tonner,and G.Moyano,Phys.Rev.B73,064112 (2006).8J.ˇC´ıˇz ek,Adv.Chem.Phys.14,35(1969).9G.J.Kearley,M.R.Johnson.and J.Tomkinson,J.Chem.Phys.124,044514(2006).10J.P.Perdew,K.Burke and M.Ernzerhof,Phys.Rev.Lett.77,3865(1996).11P.E.Bl¨o chl,Phys.Rev.B50,17953(1994).12G.Kresse and D.Joubert,Phys.Rev.B59,1758(1999).13W.I.F.David,R.M.Ibberson,G.A.Jeffrey,and J.R.Ruble,Physica B180,597(1992). 14G.Kresse and J.Hafner,Phys.Rev.B48,13115(1993).15T.H.Dunning,Jr.,J.Chem.Phys.90,1007(1989).16MOLPRO is a package of ab initio programs written by H.-J.Werner and P.J.Knowles with contributions from others;for more information,see the web page /molpro/.17 A.Halkier,T.Helgaker,P.Jorgensen,W.Klopper,H.Koch,J.Olsen,and A.K.Wilson,Chem.Phys.Lett.286,243(1998).18S.Grimme,J.Chem.Phys.118,9095(2003).19S.F.Boys and F.Bernardi,Mol.Phys.19,553(1970).20J.Gauss and J.F.Stanton,J.Phys.Chem.A104,2865(2000).21 A.J.Stone,The Theory of Intermolecular Forces(Oxford University Press,New York,1996). 22T.Janowski and P.Pulay,Chem.Phys.Lett.447,27(2007).923Data from the NIST Standard Reference Database69,June2005Release:NIST Chemistry WebBook.10。

相关文档
最新文档