昆明理工大学材料力学习题册概念答案
昆明理工大学工程力学B_C练习册五至八章答案
第四章材料力学的基本假设和基本概念一、是非判断题1.1 ( ∨) 1.2 ( ∨) 1.3 ( ×) 1.4( ×) 1.5 ( ∨)1.6 ( ∨) 1.7 ( ∨) 1.8 ( ×)二、填空题2.1 强度,刚度。
2.2 强度,刚度稳定性。
2.3 连续性,均匀性,各向同性。
2.4 连续性假设。
应力、应变变形等。
2.5 拉伸压缩弯曲。
2.6 弯曲剪切压弯组合。
2.7 γ=2α;γ=α-β;γ=0 。
第五章轴向拉压的应力与变形一、是非判断题1.1 ( ×) 1.2 ( ×) 1.3 ( ×) 1.4 ( ×) 1.5 ( ×)1.6 ( ×) 1.7 ( ×) 1.7 ( ×)二、填空题2.1 外力合力的作用线与杆轴向重合;杆沿轴线方向伸长或缩短。
2.2 产生拉伸变形的轴力为正;反之为负。
2.3 横,σ= F N / A ;450斜,σ/2 。
2.4 (1)校核;(2)设计界面尺寸;(3)确定许可载荷。
2.5 2 ,σ≤σp。
2.6 __大于1的_,___小_____。
三、选择题3.1 _D_。
3.2 B 。
3.3 B 。
3.4 B 。
3.5 _D_。
3.6 B 。
3.7 A 。
四、计算题4.12FF (+)(-) F(+)(-)4.24.3(-) qa (+)20kN (-) 30kN (+)60kN(+)(+)Aaγ13AaγAaγ11MPa A F N 1001020010206311111-=⨯⨯-==----MPa A F N 3331030010106322222.-=⨯⨯-==----MPa A F N 2510400101063333333=⨯⨯==----σ4.44.5F F(+) (-)F (+)CD BC AB AD l l l l ∆+∆+∆=∆EAl F EA l F EA l F NCDNBCNAB333++=EA Fl 3=(-) (-) 100kN260kNMPaA F ACNAC AC 521020020010100263.)(-=⨯⨯⨯-==-σMPaA F BCNBC BC 56102002001026063.-=⨯⨯⨯-==-σ解: kN F NAC1001-=)(kN F NBC260160100-=--=510523-⨯-==.)(EAC ACσε51056-⨯-==.E BC BCσεBC BC AC AC BC AC l l l l l εε+=∆+∆=∆)(4)(.m 410351-⨯-=4.6∑=0Y 02300=-W F AB sin kN W F AB 601544=⨯==⇒查表(P370)得不等边角钢63×40×4的横截面面积为: kN F F AB NAB 60==20584cm A .=斜杆AB 的轴力为: MPa A F AB NAB AB 93731005842106043..=⨯⨯⨯==-σ[]MPa 170=<σ∴斜杆AB 满足强度条件 解:1)为使杆件承受最大拉力,应使胶合面上的σ和τ同时达到它们的许用应力,即: 由(5.3)和(5.4)式得: []σασσα==2cos []ταστα==22sin [][]2222==⇒τσααsin cos 2==⇒αααctg sin cos 05726.=⇒α4.82)求许可载荷: []σαασσα≤==22由:cos cos AF[]kNA F 5057261041010020462=⨯⨯⨯=⋅≤⇒-).(cos cos ασ[]kNF 50 取=⇒E 杆为研究对象∑=0Y 0300=-'sin D AB F F ∑=0EM0130022=⨯⨯-D F 取销钉A 为研究对象由强度条件:[]σσ≤==ADDAD NAD AD A F A F 22[]28282cm F A DAD .=≥⇒σ查表(P366)AD 杆选等边角钢80×80×6mm : 23979cmA AD .=由强度条件:[]265172cm F A ABAB .=≥⇒σ查表(P367)AB 杆选等边角钢100×100×10mm :226119cm A AB .=[]σσ≤==ABAB AB NAB AB A FA F 22kNF D 300=⇒kNF F D AB 6002==⇒'4.9第六章 材料拉伸和压缩时的力学性能一、是非判断题 1.1 ( ∨ ) 1.2 ( × )二、填空题2.1 a , b , c 。
昆明理工大学 材料力学A 80学时 练习册1-13章答案
杆
螺
FN杆 A杆
FN螺 A螺
p ( D 2 d12 ) D 2 d12 p 杆 4 d12 4 d12
p ( D 2 d12 ) D 2 d12 p 螺 24 d 2 4 6d 2
18.1MPa D 2 d12 6 螺 d 2 p 6.5 MPa D 2 d12
2 2
11
材料力学 练习册 80 学时
昆明理工大学
此答案由李鹏程师傅提供,qiangguo 编辑整理。鹏程师傅祝大家学习进步身体健康 !
2.6 F m F 解:1)为使杆件承受最大拉力,应使胶 合面上的 σ 和 τ 同时达到它们的许用应 力,即:
cos
2
α
2 cos2 2 sin 2
FB
a a a a
M1 1 2 P F a N1 a 1 a B P 2 FS1 2 FB P a a
2 a 2 a 2 P a a a a a P a P a P 2 2 2 P
a C P
P
2a
F
2-2 截面:
C P P P P P
X
1
0
, FN 2 FB 2 2F
P P
n
2
sin 2
cos 0 ctg 2 26.57 sin
2)求许可载荷:
F cos2 A A 100106 4 104 F 50kN 取 F 50kN cos2 (cos 26.570 )2 由: cos2
);1.13 ( ×
二、填空题 1.1 杆件 变形 , 应力,应变 。 1.2 外力的合力作用线通过杆轴线 , 沿杆轴线伸长或缩短 。 1.3 受一对等值,反向,作沿剪切面发生相对错动 , 沿剪切面发生相对错动 。 1.4 外力偶作用面垂直杆轴线 。 任意二横截面发生绕杆轴线的相对转动 。 1.5 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 , 梁轴线由直线变为曲线 。 1.6 包含两种或两种以上基本变形的组合 。 1.7 1.8 1.9 1.10 1.11 1.12 强度 , 刚度 , 稳定性 。
材料力学习题册答案
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
昆明理工大学材料力学A80学时练习册1-13章答案
第一章 绪论一、是非判断题1.1 ( × );1.2 ( × );1.3 ( × );1.4 ( ∨ );1.5 ( ∨ );1.6 ( ∨ ) 1.7 ( ∨ );1.8 ( × );1.9 ( × );1.10 ( ∨ );1.11 ( ∨ )1.12 ( ∨ );1.13 ( × );1.14 ( ∨ );1.15 ( ∨ ) ;1.16 ( × )二、填空题1.1 杆件 变形 , 应力,应变 。
1.2 外力的合力作用线通过杆轴线 , 沿杆轴线伸长或缩短 。
1.3 受一对等值,反向,作沿剪切面发生相对错动 , 沿剪切面发生相对错动 。
1.4 外力偶作用面垂直杆轴线 。
任意二横截面发生绕杆轴线的相对转动 。
1.5 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 , 梁轴线由直线变为曲线 。
1.6 包含两种或两种以上基本变形的组合 。
1.7 强度 , 刚度 , 稳定性 。
1.8 强度 , 刚度 , 稳定性 。
1.9 连续性 , 均匀性 , 各向同性 。
1.10 连续性假设 。
应力 、 应变 变形等 。
1.11 拉伸 , 压缩 , 弯曲 。
1.12 2α ; α-β ; 0 。
三、选择题1.1 1 。
1.2 C 。
1.3 C 。
四、计算题1.10=A X ∑=0X FF S =⇒∑=0Y 0=-F Y A F Y A =⇒∑=0A M 0=--FL M FL M -=⇒y x解:1. 求A 端的反力: 2. 求1-1截面的内力: ∑=0Y 0=F F S-∑=01C M 02=--/FL M 2/FL M -=⇒X A M1.2第二章 拉伸、压缩与剪切一、是非判断题2.1 ( × );2.2 ( ×);2.3 ( × );2.4. ( ×);2.5 ( × );2.6 ( × ) 2.7 ( × );2.9 ( × );2.10 ( × );2.11( × );2.12( ∨ )二、填空题2.1 2.22.3 最大工作应力σmax 不超过许用应力[σ] , 强度校核 ; 截面设计 ; 确定许可载荷 。
昆明理工大学工程力学B_C练习册三至八章答案解读
2.4(1)校核;(2)设计界面尺寸;(3)确定许可载荷。
2.52,σ≤σp。
2.6__大于1的_,___小_____。
三、选择题
3.1_D_。3.2B。3.3B。3.4B。3.5_D_。3.6B。3.7A。
四、计算题
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
第六章材料拉伸和压缩时的力学性能
一、是非判断题
1.1(∨)1.2(×)1.3(×)
二、填空题
2.1a,b,c。
2.2弹性、屈服、强(硬)化、缩颈,
σp,σe,σs,σb。
2.3延伸率δ、断面收缩率ψ。
2.4拉断后的标距长度。
2.5δ<5%为脆性材料;δ≥5%为塑性材料。
2.6延伸率δ。延伸率δ过小。
2.7σs(σ0.2);σb。
2.8E=σ/(ε1-ε2)。
2.9标出图示应力—应变曲线上D点的
弹性应变εe,塑性应变εp,及材料的延伸率δ。
2.10δ=23%,ψ=_59%______。
2.11规定产生0.2%的塑性应变时对应的应力值来。
2.12450,最大切。
三、选择题
3.1 _B_。
3.2 _B_。
3.2
3.3
3.4
3.5
3.6
3.73.8第四章来自料力学的基本假设和基本概念一、是非判断题
1.1(∨)1.2(∨)1.3(×)1.4(×)1.5(∨)
1.6(∨)1.7(∨)1.8(×)
二、填空题
2.1强度,刚度。
2.2强度,刚度稳定性。
2.3连续性,均匀性,各向同性。
材料力学习题册1-14概念答案.
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( × ) 1.2 内力只作用在杆件截面的形心处。
( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( × ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ∨ ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( ∨ ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( × ) 1.9 同一截面上各点的切应力τ必相互平行。
( × ) 1.10 应变分为正应变ε和切应变γ。
( ∨ ) 1.11 应变为无量纲量。
( ∨ ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ∨ ) 1.13 若物体内各点的应变均为零,则物体无位移。
( × ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( × )二、填空题1.1 材料力学主要研究 受力后发生的以及由此产生1.2 拉伸或压缩的受力特征是 ,变形特征是 。
B题1.15图题1.16图外力的合力作用线通过杆轴线 杆件1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
昆明理工大学材料力学习题册概念答案
材料力学练习册80学时学号姓名日期昆明理工大学评分第一章绪论是非判断题1.1材料力学的研究方法与理论力学的研究方法完全相同。
(X )1.2内力只作用在杆件截面的形心处。
(X )1.3杆件某截面上的内力是该截面上应力的代数和。
(X )1.4确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
(V )1.5根据各向同性假设,可认为材料的弹性常数在各方向都相同。
(V )1.6根据均匀性假设,可认为构件的弹性常数在各点处都相同。
(V )1.7同一截面上正应力(7与切应力T必相互垂直。
(V )1.8同一截面上各点的正应力(7必定大小相等,方向相同。
(X )1.9同一截面上各点的切应力"必相互平行。
(X )1.10应变分为正应变£和切应变y。
(V )1.11应变为无量纲量。
(V )1.12若物体各部分均无变形,则物体内各点的应变均为零。
(V )1.13若物体内各点的应变均为零,则物体无位移。
(X )1.14平衡状态弹性体的任意部分的内力都与外力保持平衡。
(V )1.15题1.15图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。
(V )1.16题1.16图所示结构中,4〃杆将发生弯曲与压缩的组合变形。
(X )二、填空题1.1 材料力学主要研究杆件受力后发生的变形,以及由此产生的应力,应变。
1.2拉伸或压缩的受力特征是外力的合力作用线通过杆轴线,变形特征专业专业学号姓名日期评分是______________ O1.3剪切的受力特征是受一对等值,反向,作用线距离很近的力的作用,变形特征是沿剪切面发生相对错动。
1.4 扭转的受力特征是__________________________ ,变形特征是____________________________ 。
1.5弯曲的受力特征是 _______ ,变形特征是梁轴线由直线变为曲线。
1.6组合受力与变形是指 _______________________ o 1.7构件的承载能力包括强度,刚度和稳定性三个方面。
昆明理工大学工程力学BC练习册五至八章答案
1.3 ( × ) 1.7 ( × )
1.4 ( × )
1.5 ( × )
二、填空题 2.1 外力合力的作用线与杆轴向重合 ; 2.2 产生拉伸变形的轴力为正;反之为负
杆沿轴线方向伸长或缩短 。
2.3
横 , σ= F N / A ; 450 斜
, σ/2
2.4 (1) 校核 ;(2) 设计界面尺寸
2.5 2 , σ≤σp 。
F=qa
2F (+)
q
F=qa
a
a
a
qa
(+) (-) qa
4.2
F
3F
2F
F (+)
(-) 2F 80kN 50kN
30kN
60kN (+)
(-) 20kN
30kN (+)
13Aa
(+)
2a
11Aa
F
Aa
a
4.3
3
20kN 2
10kN 1
20kN
11
FN 11 A1 1
20 10 3 200 10 6
2.6 __大于 1 的_, ___小_____。
;(3) 确定许可载荷
。
。 。
三、选择题 3.1 _D_。3.2 B 。3.3 B 。3.4 B 。3.5 _D_。3.6 B 。3.7 A 。
-1-
工程力学 习题集
只限自己使用,请不要传播 —— 李鹏程
昆明理工大学
四、计算题 4.1
F
F
2F
2F
(-) F
2 cos 2 sin 2
2
F 解:1)为使杆件承受最大拉力,应使胶合面上的σ
昆明理工大学材料力学1-14计算答案
FS
m
m
解:假想沿 n-n 面切开,取右半部分为 研究对象并作左视图。由对称性可知, 每个螺栓所受的切力相等,设为 Fs。
o
∑M
截面 n-n
0
=0
FS ×
D0 ×4−m = 0 2
n
∴τ =
Fs = 15 .92 MPa ≤ [τ ] = 60 MPa A
2.13*
图示正方形截面的混凝土柱,其横截面边长为 200mm,浇注在混凝土基础上。基础 分两层,每层厚为 t,上层基础为边长 a=300mm 的正方形混凝土板。下层基础为边长 b=800mm 的正方形混凝土板。柱承受轴向压力 F=200kN,假定地基对混凝土板的反力 均匀分布,混凝土的许用剪应力 [τ] = 1.5MPa ,试计算为使基础不被剪坏所需的厚度
a a 2a
F
解:取 ABC 杆为研究对象:
A
2 2
F’B
B x1 1-1 截面:
∑M
A
=0
⇒ FB = 2 2F
FN2
a a 2a
F
y x
a 2a
∑X =0 ∑Y = 0 ∑M = 0
C1
⇒ FN 1 = 2 F
⇒ Fs1 = − F ⇒ M1 = −aF
A 45
0
C B
F
2-2 截面:
解:设木材承受的轴力为 FNw,每个等边角钢承受的轴力为 FNs
3
F
F
∑Y = 0
FNw + 4FNs − F = 0
(a )
为 1 次超静定问题
由 Δl w = Δl s
⇒
FNwl F l = Ns Ew Aw Es As
昆明理工大学工程力学习题册答案资料
工程力学习题集只限自己使用,请不要传播昆明理工大学李鹏程第一章静力学基础二、填空题2.1 -F i sin a ; F i cos a ; F 2 cos 02 ; F 2 sin a ; ___ 0 ___ ; _F 3_ ; F 4 sin 0; F 4 cos a 4。
2.2 _____ 120° _____ , __________ 0 __________ 。
2.3 —外 __________________ 内 ___________ 。
2.4 —约束 —; __________ 相反 _______ ; ________ 主动 _______________ 主动2.5 ___ 3—,2.6___ 偶矩代数值相等(力偶矩的大小相等,转向相同) —。
三、选择题3.1 _(c)_。
3.2 _A_。
3.3 D 。
3.4 _D_。
3.5 _A_。
3.6 _B_。
3.7 _C ____________________3.8M 0(F 3) = -180KN mm4.2M x (FJ = 0M x (F 2尸-25 2N m M x (F )= 25.2N m(a) 四、计算题 (b) (c)(d)4.1M 0(F 1) - -2.5 2 KN mmM °(F 2) =25-3-15 =28.3 KN mm五、受力图 M y (FJ - -50N m M y (F 2) = -25. 2N m M y (F 3) = -25 2N mM z (F 1) = 0 M z (F 2) =25 2N m Mzkp25 2N m5.2 (c)P 25.3 (1) 小球(2) 大球(3) 两个球合在一起PAEC口(1) AB 杆 ⑵CD 杆 ⑶整体只限自己使用,请不要传播李鹏程T AP IBCP2T A T BCB(c)(1) AC 杆(2) CB 杆Y B (3)整体S HII X A^.B YB (d)(1) AC段梁(2) CD段梁⑶整体vY D(1) CD 杆⑵AB杆⑶0A杆Y D(1) 滑轮D(2) AB 杆⑶CD杆只限自己使用,请不要传播李鹏程Y AX 。
材料力学习题册_参考答案(1-9章)
(图 1)
(图 2)
3.有 A、B、C 三种材料,其拉伸应力—应变实验曲线如图 3 所示,曲线( B )材料
的弹性模量 E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。
4.材料经过冷作硬化后,其( D )。
A.弹性模量提高,塑性降低
B. 弹性模量降低,塑性提高
C.比例极限提AB 梁的中点
D 任意点
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 ( A )
A 分别是横截面、450 斜截面
B 都是横截面
C 分别是 450 斜截面、横截面
D 都是 450 斜截面
15. 设轴向拉伸杆横截面上的正应力为σ,则 450 斜截面上的正应力和剪应力( D )。
A σ=Eε=300MPa
B σ>300MPa
C 200MPa<σ<300Mpa
D σ<200MPa
21.图 9 分别为同一木榫接头从两个不同角度视图,则( B )。
A. 剪切面面积为 ab,挤压面面积为 ch; B. 剪切面面积为 bh,挤压面面积为 bc;
C. 剪切面面积为 ch,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。
F
p
.D
.
.
.
.
...
解:设每个螺栓受力为 F,由平衡方程得
根据强度条件,有 [σ]≥
故螺栓的内径取为 24mm。 4.图示一个三角架,在节点 B 受铅垂荷载 F 作用,其中钢拉杆 AB 长 l1=2m,截面面
积 A1=600mm2,许用应力 [ ]1 160MPa ,木压杆 BC 的截面面积 A2=1000mm2,许 用应力 [ ]2 7MPa 。试确定许用荷载[F]。
昆明理工大学 工程力学 练习册一至八章答案
只限自己使用,请不要传播 —— 李鹏程第一章 静力学基础一、是非判断题 1.1 ( ∨ ) 1.2 ( × ) 1.3 ( × ) 1.4 ( ∨ ) 1.5 ( × ) 1.6 ( × ) 1.7 ( × ) 1.8 ( ∨ ) 1.9 ( × ) 1.10 ( × ) 1.11 ( × ) 1.12 ( × ) 1.13 ( ∨ ) 1.14 ( × ) 1.15 ( ∨ )1.162.1 2.2 2.3 外 内 。
2.4 约束 ; 相反 ; 主动 主动 。
2.5 3 ,2.6 力偶矩代数值相等(力偶矩的大小相等,转向相同) 。
三、选择题3.1 (c) 。
3.2 A 。
3.3 D 。
3.4 D 。
3.5 A 。
3.6 B 。
3.7 C 。
3.8四、计算题4.14.2(e)(d) (a)mm KN F M ⋅-=18030)(mm KN F M ⋅=-=3.2815325)(20mm KN F M ⋅-=25210.)(01=)(F M x m N F M y ⋅-=501)(01=)(F M z m N F M x ⋅-=2252)(m N F M y ⋅-=2252)(mN F M z ⋅=2252)(mN F M x ⋅=2253)(mN F M y ⋅-=2253)(mN F M z ⋅=2253)(只限自己使用,请不要传播 —— 李鹏程五 、受力图 5.15.2(a)(b) B B(b) (c) P 2(d)只限自己使用,请不要传播 —— 李鹏程5.3(1) 小球 (2) 大球 (3) 两个球合在一起 P 2P 1A CB (a)(1) AC 杆 (2) CB 杆 (3)整体(1) AC 段梁 (2) CD 段梁 (3)整体 (1) AB 杆 (2) CD 杆(3)整体只限自己使用,请不要传播——李鹏程第二章力系的简化一、是非判断题1.1( ×) 1.2( ∨) 1.2( ×)二、填空题2.1 平衡。
材料力学A80学时练习册
1、AB、BC 两段都产生位移。
2、AB、BC 两段都产生变形。
正确答案是
。
2
材料力学 练习册 80 学时
昆明理工大学
专业
学号
姓名
日期
评分
P
A
B
C
B’
C’
E
D
选题 1.1 图
1.2 选题 1.2 图所示等截面直杆在两端作用有力偶,数值为 M,力偶作用面与杆的对称面
一致。关于杆中点处截面 A—A 在杆变形后的位置(对于左端,由 A’ —A’表示;对
拉伸与剪切等强度设计,螺栓杆直径 d 与螺栓头高度 h 的比值应取 d/ h =
。
2.13 木榫接头尺寸如图示,受轴向拉力 F 作用。接头的剪切面积 A=
,切应力
τ=
;挤压面积 Abs=
,挤压应力 σbs=
。
2.14 两矩形截面木杆通过钢连接器连接(如图示),在轴向力 F 作用下,木杆上下两侧的剪切
(
)
2.6 空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增大且壁厚也
同时增大。
(
)
2.7 已知低碳钢的 σp=200MPa,E=200GPa,现测得试件上的应变 ε=0.002,则其应力能用
胡克定律计算为:σ=Eε=200×103×0.002=400MPa。
(
)
2.9 图示三种情况下的轴力图是不相同的。
学号
姓名
日期
评分
第一章 绪论
一、是非判断题
1.1 材料力学的研究方法与理论力学的研究方法完全相同。
(
)
1.2 内力只作用在杆件截面的形心处。
(
)
1.3 杆件某截面上的内力是该截面上应力的代数和。
材料力学习题册答案
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
材料力学习题册答案.
80 kN 60 kN 40 kN
FN 4F
x
F FN
F
x F
F FN/kN
60
2F FN
40
x 20
F
x
a
F
FN
a
q=F/a a
4F
Fl F Fl
l 2F
2F
F x
2F FN
3
2-4、已知 q 10 kN m ,试绘出图示杆件的轴力图
5 kN
15 kN
q
5 kN
1m
1.5 m
FN/kN 15
(6)以下结论中正确的是( B ) (A)杆件某截面上的内力是该截面上应力的代数和; (B)应力是内力的集度; (C)杆件某截面上的应力是该截面上内力的平均值; (D)内力必大于应力。
(7)下列结论中是正确的是( B ) (A)若物体产生位移,则必定同时产生变形; (B)若物体各点均无位移,则该物体必定无变形; (C)若物体无变形,则必定物体内各点均无位移; (D)若物体产生变形,则必定物体内各点均有位移。
(10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。(非 )
1-2 填空题
(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设
、
各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
40 kN
55 kN 25 kN
20 kN
2-2 试求图示拉杆截面 1-1,2-2,3-3 上的轴力,并作出轴力图。
解: FN1 2F ; FN2 F ; FN3 2F 。
(完整版)材料力学习题册答案..
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.10认为固体在其整个几何空间内无间隙地充满了组成该物体的物质,这样的假设称为。根据这一假设构件的、和就可以用坐标的连续函数来表示。
1.11填题1.11图所示结构中,杆1发生变形,
杆2发生变形,杆3发生变形。
1.12下图(a)、(b)、(c)分别为构件内某点处取出的单元体,变形后情况如虚线所示,则单元体(a)的切应变γ=;单元体(b)的切应变γ=;单元体(c)的切应变γ=。
2.9图示三种情况下的轴力图是不相同的。(×)
2.10图示杆件受轴向力FN的作用,C、D、E为杆件AB的三个等分点。在杆件变形过程中,此三点的位移相等。(×)
2.11对于塑性材料和脆性材料,在确定许用应力时,有相同的考虑。(×)
2.12连接件产生的挤压应力与轴向压杆产生的压应力是不相同的。(∨)
二、填空题
第一章绪论
一、是非判断题
1.1材料力学的研究方法与理论力学的研究方法完全相同。(×)
1.2内力只作用在杆件截面的形心处。(×)
1.3杆件某截面上的内力是该截面上应力的代数和。(×)
1.4确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。(∨)
2.16图示两钢板钢号相同,通过铆钉连接,钉与板的钢号不同。对铆接头的强度计算应
2.5由于安全系数是一个__大于1_____数,因此许用应力总是比极限应力要___小___。
2.6两拉杆中,A1=A2=A;E1=2E2;υ1=2υ2;若ε1′=ε2′(横向应变),则二杆轴力FN1_=__FN2。
2.7低碳钢在拉伸过程中依次表现为弹性、屈服、强化、局部变形四个阶段,其特征点分别是σp,σe,σs,σb。
三、选择题
1.1 选题1.1图所示直杆初始位置为ABC,作用力P后移至AB’C’,但右半段BCDE的形状不发生变化。试分析哪一种答案正确。
1、AB、BC两段都产生位移。
2、AB、BC两段都产生变形。
正确答案是1。
1.2 选题1.2图所示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致。关于杆中点处截面 A—A在杆变形后的位置(对于左端,由 A’ —A’表示;对于右端,由 A”—A”表示),有四种答案,试判断哪一种答案是正确的。
2.14两矩形截面木杆通过钢连接器连接(如图示),在轴向力F作用下,木杆上下两侧的剪切面积A=2lb,切应力τ=F/2lb;挤压面积Abs=2δb,挤压应力σbs=F/2δb。
2.15挤压应力与压杆中的压应力有何不同挤压应力作用在构件的外表面,一般不是均匀分布;压杆中的压应力作用在杆的横截面上且均匀分布。
2.8衡量材料的塑性性质的主要指标是延伸率δ、断面收缩率ψ。
2.9延伸率δ=(L1-L)/L×100%中L1指的是拉断后试件的标距长度。
2.10塑性材料与脆性材料的判别标准是塑性材料:δ≥5%,脆性材料:δ<5%。
2.11图示销钉连接中,2t2>t1,销钉的切应力τ=2F/πd2,销钉的最大挤压应力σbs=F/dt1。
1.5根据各向同性假设,可认为材料的弹性常数在各方向都相同。(∨)
1.6根据均匀性假设,可认为构件的弹性常数在各点处都相同。(∨)
1.7同一截面上正应力σ与切应力τ必相互垂直。(∨)
1.8同一截面上各点的正应力σ必定大小相等,方向相同。(×)
1.9同一截面上各点的切应力τ必相互平行。(×)
1.10应变分为正应变ε和切应变γ。(∨)
2.1轴力的正负规定为。
2.2受轴向拉伸或压缩的直杆,其最大正应力位于横截面,计算公式为,最大切应力位于450截面,计算公式为。
2.3拉压杆强度条件中的不等号的物理意义是最大工作应力σmax不超过许用应力[σ],强度条件主要解决三个方面的问题是(1)强度校核;
(2)截面设计;(3)确定许可载荷。
2.4轴向拉压胡克定理的表示形式有2种,其应用条件是σmax≤σp。
2.3强度条件是针对杆的危险截面而建立的。(×)
2.4.位移是变形的量度。(×)
2.5甲、乙两杆几何尺寸相同,轴向拉力相同,材料不同,则它们的应力和变形均相同。(×)
2.6空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增大且壁厚也同时增大。(×)
2.7已知低碳钢的σp=200MPa,E=200GPa,现测得试件上的应变ε=0.002,则其应力能用胡克定律计算为:σ=Eε=200×103×0.002=400MPa。(×)
2.12螺栓受拉力F作用,尺寸如图。若螺栓材料的拉伸许用应力为[σ],许用切应力为[τ],按拉伸与剪切等强度设计,螺栓杆直径d与螺栓头高度h的比值应取d/h=4[τ]/[σ]。
2.13木榫接头尺寸如图示,受轴向拉力F作用。接头的剪切面积A=hb,切应力τ=F/hb;挤压面积Abs=cb,挤压应力σbs=F/cb。
二、填空题
1.1材料力学主要研究受力后发生的,以及由此产生的。
1.2拉伸或压缩的受力特征是,变形特征是。
1.3剪切的受力特征是,变形特征是。
1.4扭转的受力特征是,变形特征是。
1.5弯曲的受力特征是,变形特征是。
1.6组合受力与变形是指。
1.7构件的承载能力包括,和三个方面。
1.8所谓,是指材料或构件抵抗破坏的能力。所谓,是指构件抵抗变形的能力。所谓,是指材料或构件保持其原有平衡形式的能力。
1.11应变为无量纲量。(∨)
1.12若物体各部分均无变形,则物体内各点的应变均为零。(∨)
1.13若物体内各点的应变均为零,则物体无位移。(×)
1.14平衡状态弹性体的任意部分的内力都与外力保持平衡。(∨)
1.15题1.15图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。(∨)
1.16题1.16图所示结构中,AB杆将发生弯曲与压缩的组合变形。(×)
正确答案C。
1.3 等截面直杆其支承和受力如图所示。关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是C。
第二章拉伸、压缩与剪切
一、是非判断题
2.1因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致。(×)
2.2轴向拉压杆的任意截面上都只有均匀分布的正应力。(×)